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Dear Editor, 

In this new version of the manuscript we have again addressed all comments and concerns raised by Reviewer #1 to whom we 

are very grateful. While editing the text we realized that there was an oversight in the formulation of the  MedKd.2018 

algorithm, which had to do with the fact that we considered the water contribution twice. We did update the algorithm and 

results are now much more sound as described by the totally new paragraph about the matchup results for Kd490. So once 5 

again, thanks to the Reviewer #1 for raising the concern about the unexpected results previously presented. 

 

I would like the authors to further improve on the clarity of the NRT/DT/REP characteristics. The abstract concludes saying 

that the study “demonstrates that the NRT processing chain compares sufficiently well with the historical in situ datasets to be 

confidently used also for reprocessing the full data series”. This should not be interpreted literally, particularly by users of the 10 

NRT data; as I understood the text, no validation results are shown for (strictly) NRT data so that the results of the manuscript 

are not valid for this type of data. This should be clearly stated in appropriate places in the text and the conclusion of the 

abstract modified accordingly. Again if I understand well, the authors have recently applied their DT processing chain to the 

full time series for this paper; considering that the NASA missions are then in a R2018 status and the MERIS data associated 

with the latest ESA reprocessing (post 2012), this DT time series is in practice a REP time series at least up to 2018 when the 15 

calibration of MODIS and VIIRS might start diverging from the R2018 parameters. Again from a user point of view, the 

quality of the DT data might become degraded for new data. This should also be simply stated. 

Done: 

1) The mention of the NRT from the abstract has been removed and replaced with a reference to the title “operational 

multi-sensor processing”. Hence lines 17-18 now read: “Here we demonstrate that the operational multi-sensor 20 

processing chain compares sufficiently well with the historical in situ datasets to be confidently used also for 

reprocessing the full data time series.”. 

2) Following comment on page 13 l.24 we clarified that the validation analysis is conducted with the processing chain 

in the DT mode (and not NRT) and the sentence now reads: ”we used the NRT/DT production chain described in 

Section 2.2 to process the entire satellite data archive and hence generating a consistent DT dataset”. 25 

3) A  new sentence was added on the conclusions and reads: “As the accuracy of the L3 DT data depends also on the  

sensor calibration  of the L2 data  used in the NRT/DT processing chain, the L3 operational products might become 

degraded for newer data if the calibration of the sensors starts diverging from the R2018 parameters.”. 

 

The authors should also consider the minor comments that follow to further improve the text. 30 

 

Page 1 

l.16: “kd”: kd and Kd are used randomly in the manuscript. Please stick to one symbol. 

Done. We also updated two figures containing “kd”. 
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l.16: “reflectance’ 

Done. 

 

Page 2 

l.2: remove “on” 5 

Done. 

 

Page 3 

l.11 : “The next…” 

Done. 10 

 

Page 4 

l.11-12: “radiance”, “irradiance” (2) 

Done. 

l.25: “locations” 15 

Done. 

Page 5 

l.5: “processed with” 

Done. 

l.7: “the only changes being the input data…” 20 

Done. 

l.9: “(NASA processing version R2018.0) currently rely on” 

Done. 

l.10: “L2 data”  

Done. 25 

l.11: “which uses” 

Done. 

l.15: “As detailed later” 

Done. 

l.21: “VIIRS data are derived …” 30 

Done. 

l.22: “MODIS-AQUA data” 

Done. 

l.25: “In this work,” 
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Done. 

l.26: “this chain, Chl and Kd490”: I interpret that ‘REP’ refers to Chl and Kd490 derived from CCI Rrs?  

Correct! 

l.31: “chain is used … are obtained” (for tense consistency). 

Done. 5 

l.32: “MERIS data are from” 

Done. 

 

Page 6 

l.24: “removal flag of l2gen” 10 

Done. 

 

Page 7 

l.6: “nearest-neighbour approach”: ? if this is the case, and considering that the missing pixel is surrounded by valid values, 

which one is chosen? 15 

The reviewer is right, as now stated we use the median value of the surrounding valid pixels. 

l.10: this is in effect produces a sensor-specific daily L3 product, right? Is simple averaging used? 

Yes. We added “by simple averaging” to the text. 

l.26: “estimate Rrs”: is a MODIS 510 nm band computed? Is there a special treatment as this band is kind of between 488 and 

531? 20 

Done. A few sentences were added to better detail the specific case of the 510 nm band. 

l.29: “from which it is then possible to derive…” 

Done. 

 

Page 8 25 

l.10: “The magnitude of the differences” ? An order of magnitude difference would suggest a factor 10. 

Done. 

l.10: considering that its results are well described in this paragraph, I am wondering if having Fig. S1 in supplementary 

material is appropriate. It could also be included in the main text. 

Done. 30 

l.12: “443 nm” 

Done. 

l.17: “responsible for” 

Done. 
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Page 9 

l.4: “reduce the spatial gradients”: but what is described here only relates to time. 

Done. 

Page 10 5 

l2: “on the use of a SeaWiFS daily climatology field”: this would help understanding the method description. 

Done. 

l.7: “sharp gradients”: at that stage between one-sensor daily map and its associated climatology? 

Done. We specified that the procedure refers to the prevention of gradients in the final merged product (thus between sensors). 

l.21: I’d suggest to reword as: “the satellite Rrs benefiting from the bias correction are closer to the in situ measurements at all 10 

bands”. 

Done. 

 

Page 11 

l.21: “O’Reilly” 15 

Done. 

 

Page 12 

l.4 : “For Case I …”: by D’Alimonte et al. ? I don’t think they used the MedOC data set. This sentence introduces some 

confusion in this paragraph (and might removed). 20 

Done. 

l.33: “whose functional …”: does this bring some additional information to the sentence? It might just be better to say “ratio 

between 490 and 555 nm”. 

Done. 

 25 

Page 13 

l.6: these are ‘grid points’ and no longer ‘pixels’. 

Done. 

l.8: “10 am”: Fig. S2 says 12am. 

Done. Caption of Fig.S2 has been corrected accordingly. 30 

l.24: “NRT/DT”: this should be a place to clarify that the validation analysis is conducted with the processing chain in the DT 

mode (and not NRT). 

Done. The sentence was extended to read: ”we used the NRT/DT production chain described in Section 2.2 to process the 

entire satellite data archive and hence generating a consistent DT dataset” 
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Page 14 

l.9: “(RPD of 76%)” 

Done. 

l.11: “Table S2-S7”: from these tables, it seems that the band-shifted data are also compared with respect to in-situ data; this 5 

should be mentioned in the table caption. Similarly, if there are validation statistics for all bands of each mission, it is likely 

that in-situ data have also been band-shifted when necessary. This is not mentioned anywhere I think. Units should be 

mentioned. 

Done. A symbol has been added to tables S2-S7 where necessary to indicate the band-shifted wavelengths. Moreover, a 

sentence has been added in section 2.1 (The Mediterranean Sea in situ bio-optical dataset: MedBiOp) to specify that the in 10 

situ data spectral resolution was increased via band-shifting to allow the satellite – in situ matchup. A similar sentence was 

also added to the caption of Table 1. Units were added to the table captions. 

l.13: Table 2: units (% or geophysical) should be indicated. 

Done. 

l.31: “larger”: in relative terms. APD is largest at 670 nm, but lowest in RMSD. 15 

Done. 

 

Page 15 

l.3: I’d say: “differences between these two products being smaller than 5%”, to avoid confusion and clarify that this is a 

comparison with respect to in-situ data. 20 

Done. 

l.4: “R2014 and R2018”: yes but note that there are other notable differences between Multi and CCI, such as the use of 

Polymer. 

Done. 

l.6: “is seen at 670 nm” (to avoid repetition). 25 

Done. 

l.11-12: isn’t it the same message as lines 1-2? 

Done. This sentence has been removed. 

l.17: MERIS is also processed with POLYMER, no? 

Yes it is, but here we are describing possible sources of differences and MERIS is processed with POLYMER in both chains 30 

(Multi and CCI). 

l.26: “merged..” what? Product? 

Done. 
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Page 16 

l.7: “CRMSD” 

Done. 

l.9: “global set … a larger modal…” 

Done. 5 

l.18: “Figure 6 and Table S7”: why should stats for kd be similar with Rrs results? l.19: it is also surprising that the Med 

algorithm is actually worse (in terms of bias). l.20: “one such reason” 

As mentioned earlier, we rephrased the entire paragraph on the basis of the new results on the Kd matchup analysis. 

 

Page 17 10 

l.3: “CCI, 2016b” ? 

Done. 

l.6: “merging approach” 

Done. 

l.7: “locations” 15 

Done. 

 

Fig.1: “in situ stations” 

Done. 

Fig. 3: what do the curves within the color bars mean? 20 

They show the distribution histogram of the image. A sentence has been added to the figure caption. 

Fig. 8: “red and orange”: isn’t it black and blue? 

Done. 

Fig.9: “NRT”: this should be NRT/DT. 

Done. 25 

Fig.10: “space-time distribution”: panel c? 

Done. 

Table 5: “the three matchup data set”: three? Units should be given when appropriate (same for all Tables S). 

Done. 

Table S9: “whose location is shown in Figure 10c”? 30 

Done. 
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Abstract. The Mediterranean near-real-time multi-sensor processing chain has been set up and is operational in the framework 10 

of the Copernicus Marine Environment Monitoring Service (CMEMS). This work describes the main steps operationally 

performed to enable single ocean colour sensors to enter the multi-sensor processing applied to the Mediterranean Sea by the 

Ocean Colour Thematic Assembly Centre within CMEMS. Here, the multi-sensor chain takes care of reducing the inter-sensor 

bias before data from different sensors are merged together. A basin-scale in situ bio-optical dataset is used both to fine-tune 

the algorithms for the retrieval of phytoplankton chlorophyll and attenuation coefficient of light, Kd, and to assess the 15 

uncertainty associated with them. The satellite multi-sensor remote sensing reflectance spectra better agree with the in situ 

observations than those of the single sensors. Here we demonstrate that the operational multi-sensor processing chain compares 

sufficiently well with the historical in situ datasets to be confidently used also for reprocessing the full data time series. 

1 Introduction 

The Copernicus Marine Environment Monitoring Service (CMEMS) is one of the six services of the Copernicus program. It 20 

provides regular and systematic reference information on the physical state, variability and dynamics of the ocean, ice and 

marine ecosystems for the global ocean and the European seas. CMEMS delivers both satellite and in-situ high-level products 

prepared by Thematic Assembly Centres (TACs) and modelling and data assimilation products prepared by Monitoring and 

Forecasting Centres (MFCs). The Ocean Colour Thematic Assembly Centre (OCTAC) builds and operates the European ocean 

colour operational service within CMEMS providing global, Pan-European and regional (Arctic Ocean, Atlantic Ocean, Baltic 25 

Sea, Black Sea, and Mediterranean Sea) ocean colour (OC) products based on earth observation from OC missions (Le Traon 

2015, Von Schuckman 2017). The OCTAC bridges the gap between space agencies, providing ocean colour data, and all users 

who need the added-value information not available from space agencies. Presently, the OCTAC relies on current and legacy 

OC sensors: MERIS (MEdium Resolution Imaging Spectrometer) from ESA, SeaWiFS (Sea-viewing Wide Field-of-view 

Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer) from NASA, VIIRS (Visible Infrared Imager 30 
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Radiometer Suite) from NOAA, and most recently the Copernicus Sentinel 3A OLCI (Ocean and Land Colour Instrument) 

sensor. 

Starting from the Level-2 (L2) data downloaded from space agencies, the OCTAC generates Level-3 (L3) and Level-4 (L4) 

products in near-real time (NRT) and delayed time (DT) modes. Within CMEMS, L3 products refer to the single snapshot, or 

daily combined products, mapped onto a regular grid, while L4 are products for which a temporal averaging method and/or an 5 

interpolation procedure is applied to fill in missing data values. The NRT products are operationally produced daily to provide 

the best estimate of the ocean colour variables at the time of processing. These products are generated soon after the satellite 

swaths are available together with climatological ancillary data, e.g., meteorological and ozone data for atmospheric correction, 

and predicted attitude and ephemerides for data geolocation. In the DT processing, the updated ancillary data made available 

from the space agencies are used to improve the quality of the NRT data. NRT and DT data streams hence are designed to 10 

fulfil the operational oceanography specific requirements for near real time availability of high quality satellite data with a 

sufficiently dense space and time sampling (e.g., Le Traon et al., 2015). Generally, once a year, the full data time series 

undergoes a reprocessing (REP) to ensure most recent findings to be consistently applied and back propagated to all data. REP 

products are multi-year time series produced with a consolidated and consistent input dataset and processing software 

configuration, resulting in a dataset suitable for long-term analyses and climate studies (Von Schuckman et al., 2017, 15 

Sathyendranath et al., 2017 and references therein). 

Within CMEMS, observations from multiple missions are processed together to ensure homogenized and inter-calibrated 

datasets for all essential ocean variables. Combining the observations from different platforms results in higher coverage as 

compared with those of the single sensors. Moreover, the multi-sensor product allows non-expert users to access a robust and 

less ambiguous source of information. Currently in the OCTAC, the NRT and DT multi-sensor L3 and L4 products are derived 20 

from MODIS-AQUA and NPP-VIIRS data, while REP includes observations from SeaWiFS, MODIS-AQUA, MERIS and 

NPP-VIIRS. Global REP products are derived from two datasets: the OC-CCI (Climate Change Initiative, www.esa-

oceancolour-cci.org) funded by the European Space Agency and the Copernicus-GlobColour initially developed by Globcolour 

Project (www.globcolour.info) and then updated and produced in the framework of CMEMS. OLCI is foreseen to be included 

into the NRT/DT multi-sensor products in 2019 and in the REP when the quality of the data will be deemed suitable. 25 

In general, DT and REP products are meant to answer different questions and to satisfy different needs such as assimilation 

into operational models and climate studies, respectively. As such, DT data are expected to be as accurate as timeliness allows. 

The accuracy of REP data need to be stable in time as these data, which are consistently processed with a single software 

version, are used for studying long time scale phenomena. For the sake of timeliness, the accuracy of the NRT-DT data is 

relaxed with respect to the one associated with REP time series. In this respect, one of the aims of this work is to propagate 30 

the REP configuration to the DT processing mode, allowing full compatibility between the two datasets and to extend the 

climate-fit-research to the most recent observations. 

Regional products differ from their global counterparts as they are specifically derived to accurately reflect the bio-optical 

characteristics of each basin (e.g., Szeto et al., 2011; Volpe et al., 2007; Pitarch et al., 2016; D'Alimonte and Zibordi, 2003). 
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Due to peculiarities in the optical properties, the Mediterranean Sea oligotrophic waters are less blue (30 %) and greener (15 

%) than the global ocean (Volpe et al., 2007), causing an overestimation of the phytoplankton chlorophyll concentration (Chl) 

retrievals by standard global algorithms (e.g Bricaud et al., 2002, D’Ortenzio et al., 2002). In the last decade, more accurate 

regional bio-optical algorithms (e.g., MedOC4) were implemented in the single-sensor operational processing chains for the 

Mediterranean Sea (Santoleri et al., 2008; Volpe et al., 2012). 5 

The main objective of this work is to provide Copernicus users with a comprehensive description of the method currently 

applied by GOS (the group for Global Ocean Satellite monitoring and marine ecosystem study, of the Italian National Research 

Council, CNR) in the OCTAC context of CMEMS to produce the L3 multi-sensor ocean colour product over the Mediterranean 

Sea. The next section (Data and Methods) describes the bio-optical dataset forming the basis for the development and validation 

of the regional algorithms for the Mediterranean Sea, an update of the MedOC4 parameterization, as well as the satellite data 10 

input and output of the operational processing chain. Section 3 gives an overview of the validation results obtained in the 

comparison between the multi-sensor satellite products and the in situ data. 

2 Data and Methods 

2.1 The Mediterranean Sea in situ bio-optical dataset: MedBiOp 

The development of geophysical products that best reproduce the Mediterranean biogeochemical conditions relies on an in situ 15 

bio-optical dataset collected across the basin over twenty years (Figure 1). Several parameters are routinely measured both for 

general oceanographic purposes (e.g., water temperature, salinity, oxygen content, fluorescence and light attenuation) and for 

the calibration and validation of remote sensing data. These include phytoplankton pigment concentration via HPLC analysis 

(High Performance Liquid Chromatography), light absorption due to coloured dissolved organic matter (CDOM), light 

absorption due to algal and non algal particles as well as to total suspended matter (TSM), particulate back scattering and 20 

apparent optical properties such as remote sensing reflectance (Rrs) and the diffuse attenuation coefficient (Kd). In this work, 

the in situ Rrs dataset is used as input to update the MedOC4 Chl algorithm and to validate the multi-sensor satellite-derived 

Rrs product. The in situ Chl dataset is larger than the Rrs and all samples in correspondence of optical measurements are used 

to update the MedOC4 Chl algorithm, while all others are used to validate the multi-sensor satellite-derived Chl product. On 

the other hand, Kd measurements are only used to fine-tune the Mediterranean algorithm for ocean colour retrieval. 25 

In the OC processing chain the primary parameters used to derive the geophysical products is the spectral Rrs. The most 

important objective of using the in situ radiometric measurements is to derive surface, above-water Rrs spectra from in-water 

profiles. The multispectral Satlantic profiling system (OCR-507) is made for measuring the upwelling radiance, Lu(z,λ), the 

downward and the upward irradiance, Ed(z,λ) and Eu(z,λ), and includes a reference sensor for the downward irradiance, 

Es(0,λ), mounted on the uppermost deck of the ship. Table 1 shows that the in situ and the satellite sensor acquisition bands 30 

not always match. Hence, to allow a satellite – in situ data matchup, the in situ data spectral resolution is increased with the 

technique of the band-shifting (see section 2.2.1). A Sea-bird CTD and a tilt sensor are also part of the system. The radiometric 
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measurements are acquired and processed following the method described in Zibordi et al. (2011). To increase the number of 

samples per unit depth, data are acquired using the multicast technique (D'Alimonte et al., 2010; Zibordi et al., 2004). 

Multi-level data processing is achieved using the Software for the Elaboration of Radiometer Data Acquisitions (SERDA), 

developed at GOS. The processing steps follow the consolidated protocols for data reduction of in-water radiometry (Mueller 

and Austin, 1995; Zibordi et al., 2011). First, data are converted from digital counts into their physical units. A filter is applied 5 

to remove data with profiler tilt angle larger than 5°. In order to reduce the influence of the light variability during the 

measurements, data from each sensor are normalised by the above-water downwelling irradiance. A least-square linear 

regression is performed on the log-transformed normalised data, whose slope determines the diffuse attenuation coefficients 

of spectral upwelling radiance (Kl(λ)), spectral upwelling irradiance (Ku(λ)) and spectral downwelling irradiance (Kd (λ)); the 

exponents of the intercepts are the sub-surface quantities (Lu(0−, λ), Eu(0−, λ) and Ed(0−, λ)). Outliers due to wave 10 

perturbations are removed and identified in those points differing, by default, more than two standard deviations from the 

regression line. The depth layer normally considered as relevant for the extrapolation to the surface is 0.3-3 m, but can be 

changed on the basis of the characteristics of each profile. The upwelling sub-surface quantities (i.e. Lu(0−, λ), Eu(0−, λ)) are 

also corrected for the self-shading effect following Zibordi and Ferrari (1995) and Mueller and Austin (1995) using the ratio 

between diffuse and direct atmospheric irradiance, and the sea-water absorption. Using the primary sub-surface quantities, it 15 

is then possible to derive additional products such as the Q-factor at nadir (Qn(0−,λ)=Eu(0−,λ)/Lu(0−,λ)), the remote sensing 

reflectance (Rrs(λ)=0.543×Lu(0−,λ)/Es(0,λ)) or the normalized water-leaving radiance (Lwn(λ)=Rrs(λ)×E0(λ) with E0(λ) being 

the extra-atmospheric solar irradiance; Thuillier et al., 2003). 

Fluorimetric measurements associated with CTD casts are used to increase the depth resolution of the HPLC-derived 

chlorophyll. These calibrated fluorimetric casts are then used to compute the optically weighted pigment concentration (OWP) 20 

as already reported in Volpe et al. (2007).  

In addition to the MedBiOp dataset collected by GOS over the Mediterranean Sea, two fully independent datasets, collected 

at fixed locations, are included for the validation in this study: Rrs data estimated from above-water measurements at the Aqua 

Alta Oceanographic Tower (AAOT) as part of the AERONET-OC network in the northern Adriatic Sea (Zibordi et al., 2009), 

as well as Rrs data from the BOUSSOLE buoy located in the Ligurian Sea (Antoine et al., 2008; Valente et al., 2016). 25 

Moreover, for the validation of the diffuse attenuation coefficient we use the independent BGC-Argo float dataset from 

Organelli et al. (2016). 

2.2 Satellite Data Processing Chain 

As mentioned, GOS operates two different processing chains (Figure 2), for the NRT/DT and for the REP data production. 

The input of both processing chains is the spectral Rrs downloaded from upstream data providers. Hence, in both cases, the 30 

atmospheric correction is not part of these processing chains. This approach differs from the previous regional processing 

chains which started from L1 (Volpe et al., 2007; 2012), as updates by the space agencies in the L1 to L2 processor resulted 

in a delay of months before it could be taken up in the operational processing chain. 
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As schematically shown in Figure 2, the NRT/DT chain consists of four parts aimed at populating a two-year rolling archive 

with multi-sensor Level-3 data at daily temporal resolution. The rolling archive includes the L3 obtained by the NRT L2 data 

(i.e., processed with preliminary ancillary data, calibration known at the time of acquisition, preliminary climatology and so 

on), which are superseded, generally after one month, by the L3 produced in DT mode. Thus, the processing chain is exactly 

the same for the two modes, NRT and DT, the only changes being the input data from space agencies. Data in the rolling 5 

archive are homogeneous in terms of format and processing software, meaning that if, for any reason, a change is made on the 

processing chain, the entire rolling archive is processed back for consistency. The ingested L2 data (NASA processing version 

R2018.0) currently derive from MODIS-AQUA and VIIRS sensors only. L2 data are downloaded from the Ocean Biology 

Processing Group (OBPG) at NASA which uses the l2gen processor for the atmospheric correction in its default 

parameterisation (Mobley et al., 2016). The NRT/DT chain involves the pre-processing of different sensors with different 10 

wavelengths (as detailed in Section 2.2.1) that are then merged together over a common set of wavelengths (Table 1, Section 

2.2.2). Section 2.2.3 provides a description of the algorithms for the satellite-derived Chl estimation and for the attenuation 

coefficient of light at 490 nm (Kd490). As detailed later, the inherent optical properties (IOPs: the absorption due to 

phytoplankton, aph, and to detrital and dissolved matter, adg, and the backscattering due to particles, bbp, all at 443 nm) are used 

to align the different sensors over the common set of wavelengths. For this reason, the IOPs are an active part of the processing 15 

and are also made available to users as output of the chain. 

For the REP processing, Rrs spectra over the common set of wavelengths (Table 1) are produced by the Plymouth Marine 

Laboratory (PML) using the OC-CCI processor version 3 (hereafter CCIv3, www.esa-oceancolour-cci.org) merging MERIS, 

MODIS-AQUA, SeaWiFS and VIIRS data. As fully detailed in CCI (2016a), SeaWiFS and VIIRS data are derived from the 

OBPG chain using the l2gen processor, while MERIS and MODIS-AQUA data are processed with the POLYMER 20 

atmospheric correction processor (Steinmetz et al., 2011). At the moment of writing, the CCIv3 is based on the NASA 

reprocessing R2014.0. Within CMEMS, PML runs the regional CCIv3 processor at 1km resolution rather than at 4km as for 

the global OC-CCI dataset. In this work, with CCIv3 we will refer to both the processor and the derived Rrs exclusively made 

for CMEMS, whereas with REP we will refer to the output of this chain, Chl and Kd490. These are consistently retrieved with 

the same algorithms as in the NRT/DT chain (Section 2.2.3), updated on a yearly basis and are available to users on the 25 

CMEMS web portal (marine.copernicus.eu). 

As shown in Figure 1, most of the in situ data used for the validation analyses do not overlap with the two-year rolling archive 

(2017-2018, at the time of writing). Hence, for the sole scope of the product validation, the NRT/DT production chain is used 

to process the entire satellite data archive, including SeaWiFS and MERIS data. SeaWiFS data are obtained from NASA-

OBPG (R2018.0), while MERIS data are from the ESA third reprocessing with the POLYMER, made available by PML. 30 

2.2.1 NRT/DT single sensor pre-processing 

Once downloaded and quality checked, single-sensor L2 data are fed into the pre-processing chain to harmonize data from 

different sensors in terms of format, projection, and most of all in terms of a common set of wavelength bands. The quality 
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checks that are operationally performed soon after the download are associated with the integrity of data files or their effective 

coverage over the region of interest (the Mediterranean Sea, in this case). Moreover, the pre-processing also takes care of 

sorting out issues that may affect one sensor only such as the destriping procedure or the removal of the bowtie effect. 

Destriping 

An important task, operationally performed over both MODIS-AQUA and NPP-VIIRS images is the application of a destriping 5 

procedure over L2 products to remove the instrument-induced stripes. These two sensors scan the Earth surface via a rotating 

mirror system that reflects the surface radiance to band detectors. Stripes originate from two hardware problems: i) the two 

sides of the mirror are not exactly identical, and ii) the band detector degradation is not homogeneous. Destriping correction 

is performed by applying the method developed by Bouali and Ignatov (2014) and adapted to ocean colour products by 

Mikelsons et al. (2014). The procedure splits the image into a stripe-affected and a stripe-free part. The stripe-affected part is 10 

then passed through a filter that removes the stripes, and then is added back to the stripe-free component to produce the final 

destriped image. The definition of striped and de-striped domains is achieved by measuring the gradients (both along and 

across the scan) and by selecting as “stripped” the ones below the pre-determined threshold values. 

Removal of the bowtie effect 

As sensor detectors have constant angular resolution, the sampled Earth area, i.e. the dimension of the pixel at ground, increases 15 

with the scan angle. This results in consecutive scans to overlap away from nadir, in turn giving the entire scan the shape of a 

bowtie. Differently than other sensors such as MODIS-AQUA, the aggregation scheme on board VIIRS removes this effect 

through a combination of aggregation and deletion of overlapping pixels, resulting in a series of rows of missing values at the 

edge of each L2 granule. These lines can be identified through the bowtie removal flag of l2gen (BOWTIEDEL). In this 

production chain and in view of the sensor merging, these missing values are filled in by linear interpolation. Alas, the L2 20 

flags associated with these pixels are not updated due to the difficulty of interpolating binary fields. 

Flagging & Mosaicking 

Each L2 granule is quality checked via the application of the L2 flags provided by Space Agencies. The L2 flags result from 

the atmospheric correction procedure and provide the sensing conditions at pixel scale. The flags currently applied are those 

of the OBPG standard processing (https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/), except for the atmospheric correction 25 

failure (ATMFAIL) flag that is not applied to VIIRS because it overlaps for almost all water pixels over the Mediterranean 

Sea with the BOWTIEDEL, thus effectively thwarting the interpolation of the lines affected by the bowtie effect. From a test 

over 645 granules (3200 x 3232 pixels each) acquired over the Mediterranean Sea in 100 days (10 April 2018 to 18 July 2018) 

it was found that only in 31 pixels the atmospheric correction failure flag was raised for pixels not affected by bow tie deletion 

or any of the other OBPG standard flags. 30 

Moreover, each granule undergoes a further quality check by removing all isolated pixels (defined as those pixels with a 

meaningful value that are entirely surrounded by pixels with missing value) and by filling in all isolated missing pixels (defined 

as those pixels with the missing value that are entirely surrounded by pixels with a meaningful value) with the median value 

of its surrounding valid pixels. All Rrs spectra are further checked for the presence of negative values, which may occur in the Deleted: using the near-neighbourhood approach35 
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blue part of the spectrum due to the failure of the atmospheric correction; one negative value within the spectrum (excluding 

the 670nm band) is enough for the entire spectrum to be rejected. All available granules for each day are remapped at 1 km 

resolution on the Equirectangular grid covering the Mediterranean Sea (6°W-36.5°E, 30°N-46°N). All re-gridded granules 

from the same sensor and from the same day are mosaicked together by simple averaging into a single file containing the 

Remote Sensing Reflectance at nominal sensors’ wavelengths. 5 

Band-shifting 

At the scale of the pixel, the goal is to merge single-sensor Rrs spectra into a single spectrum. The idea is that from the Rrs 

spectrum one can easily derive, directly or indirectly, all the geophysical parameters of interest not only for the ocean colour 

community, but also for the wider biogeochemical scientific community. One of the problems of the multi-sensor merging is 

the different set of bands of the various ocean colour sensors that have to be merged. Some bands are coincident (443 nm), 10 

others may differ by a few nanometres (486 and 488 or 410 and 412 nm) while others can be significantly different (e.g., the 

green bands of MODIS-Aqua, SeaWiFS and OLCI, which are 547nm, 555nm and 560 nm respectively, Table 1). A technique 

to collapse the various spectra on a pre-defined set of bands is thus essential for the multi-sensor merging; to this aim the band 

shifting method described by Mélin and Sclep (2015) was implemented here with the application of the Quasi Analytical 

Algorithm (QAA version 6, Lee et al., 2002 and following updates 15 

http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf) in forward and backward modes. Rrs is related to the 

absorption and scattering properties of the medium, which in turn are given by the additional contributions of all the medium 

components (seawater, particulate and dissolved matters). Starting from the Rrs at the sensor native wavelengths and from the 

characteristic spectral shapes of the IOPs, the QAA allows the estimation of the IOPs at target wavelengths. The QAA is then 

applied in forward mode to estimate the Rrs at these bands. In general, the band-shifting technique is meant to be applied when 20 

source and target wavelengths differ of a few nanometers. However, there can be cases in which the spectral distance between 

source and target wavelengths is larger, i.e., the estimation of the band at 510 nm from MODIS-AQUA at 488 and 531 nm. In 

this case, the band-shifting is operated twice: the first from the 488 towards 510 nm and the second from 531 nm towards 510 

nm. The “final” value is computed as the weighted average of the two, the weight being the inverse of the spectral distance. 

The accuracy of QAA retrievals over the Mediterranean Sea was assessed with a limited number of observations by Pitarch et 25 

al (2016), who found that bbp at 555 nm was retrieved within 5% of in situ measurements across open and coastal waters. This 

approach produces a set of common bands (grey-shaded in Table 1) for all sensors and allows the daily merging of the Rrs 

from which it is then possible to derive geophysical products. The uncertainty introduced by band shifting is estimated in most 

cases at well below 5% of the reflectance value (with averages of typically 1–2%), especially for open ocean regions (Mélin 

and Sclep, 2015). 30 
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2.2.2 NRT/DT multi sensor processing: Rrs spectra 

Once single sensor spectra are homogeneous in terms of wavebands, it is possible for the Rrs from the available sensors to be 

merged together into single images. The output is a set of six Rrs images, each of which is treated as an individual image 

independently from the other Rrs bands of the spectrum. 

Differences between MODIS and VIIRS 5 

At pixel scale, several reasons can be at the base of the differences between two observations. The geometry of the observations 

constitutes an issue that is under the control of the atmospheric correction scheme. Since this part of the processing is performed 

by space agencies, this issue is rarely accounted for in the context of L3 multi-sensor merging, which instead only considers 

the radiometric quantities as fully normalized (Maritorena and Siegel, 2005). The differences between Rrs retrieved by MODIS 

and VIIRS vary with the wavelength (Figure 3). The distribution of the Rrs ratio at 670 nm shows the most negative kurtosis. 10 

At 412 nm, the median Rrs ratio ranges between 0.7 and 1, while at 443 nm it improves and narrows to 0.85 and 1.05 with 

MODIS being in general below VIIRS. For the three other bands (490, 510 and 555 nm), the Rrs ratio distribution displays the 

narrowest spread around 1 with the median values ranging between 0.9 to 1.1. Moreover, a pixel is sampled with different 

geometry (scattering angle) and not exactly at the same time by the two sensors; in the Mediterranean Sea, the differences 

between the two sensor time overpasses do not exceed one hour. Here, we tested that the discrepancy between the two Rrs 15 

spectra cannot be ascribed to differences in the overpass times and/or to the geometry of the observation (Figure 3). We argue 

that there must be other factors responsible for the observed differences such as inter-sensor calibration or even the various 

bands used for operating the single-sensor atmospheric correction (eliciting different responses by the atmospheric correction 

code and its assumptions/simplifications). All these issues should be addressed before any sensor merging can effectively be 

performed (Sathyendranath et al., 2017). 20 

Inter-Sensor Bias Correction 

Before merging all the available sensors together at any given time, their Rrs spectra are individually bias-corrected with 

respect to their references as detailed below. Here, we extend the method developed within OC-CCI for reducing the inter-

sensor bias (CCI, 2016b), as this is a propedeutical step to the proper merging of data collected from different sensors. In 

practice, when two or more sensors are available for the same period, one sensor is taken as reference and the others are bias-25 

corrected to the reference. For the inter-sensor bias to be corrected, daily climatological bias maps are computed at the same 

spatial resolution of the source data (e.g., 1 km). During the SeaWiFS era, the method is applied to SeaWiFS-MODIS-MERIS 

sensors having SeaWiFS as reference. From 2010 onward, the method is applied to the couple MODIS-VIIRS using MODIS 

as reference, after its bias with SeaWiFS is corrected. The climatological bias maps were computed using data from 2003 to 

2007 for the SeaWiFS era, and from 2012 to 2014 for the other. 30 

Briefly, the OC-CCI scheme to compute the daily climatological bias maps is: 

1) over the periods of reference, for each sensor, a rolling temporary daily average map of Rrs is computed (simple 

mean) over the period of 7 days: the data day itself plus 3 days before and 3 days after. 
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2) For each day, the ratio between the temporary average Rrs maps from the various sensors is computed. 

3) This allows the calculation of 365 daily climatology maps of the ratio between each pair of missions over the periods 

of reference. 

4) To increase map coverage, smoothing of the daily climatology bias maps over a temporal window of 2N+1 days (with 

N=60) are computed following equations 1 and 2: 5 

!(#,%, &) =
∑ *+!+(#,+,%,&)-+
.
+/0.

∑ *+-+
.
+/0.

,     (1) 

with 

12 =
3,45|2|

3,4
,       (2) 

where d(d,x,y) is the daily bias map climatology, and 72 = 1 if 92 is associated with a valid value, zero otherwise. The value 

of the weight, w, decreases from 1, for the same day, to N/N+1 for the days before and after, to 1/N+1 for the first and last 10 

days of the ±N-day window. 

The way the daily climatological bias maps are here computed differs from the OC-CCI technique. First, the rolling temporary 

seven-day average (point 1 of the OC-CCI method described above) is here computed using equations 1 and 2, with N=3. The 

smoothing of the daily climatology bias maps is obtained by applying a weighting-function (as point 4 of the OC-CCI method 

described above) in both space and time, contemporaneously. The spatial kernel of the 3x3 box centred to the pixel is defined 15 

as: 

0.25 0.50 0.25 

0.50 1.00 0.50 

0.25 0.50 0.25 

The cumulative effect of these two weighting functions is given by their cross product. 

Furthermore, the method was not applied to the 670 nm band because the percent difference between SeaWiFS and in situ 

observations at 670 nm is one or two orders of magnitude larger than the blue-green counterparts in both oligo- and meso-

trophic conditions (MedBiOp, BOUSSOLE) (Section 3). Moreover, the number of matchups between SeaWiFS and all the 20 

available in situ data (MedBiOp, BOUSSOLE and AAOT) at 670 nm is ~40% of those in the blue-green spectral region (data 

not shown). 

Sensor-Merging 

When merging data from two or more sensors, three possible conditions can occur: i) the pixel is observed from more than 

one sensor, ii) the pixel is observed from one sensor only, iii) the pixel is in no clear sky condition or masked out because of 25 

any of the operational L2 flags, from all sensors. In the latter case the pixel is assigned the missing value. In the former two 

conditions the merging is not straightforward because it strongly depends on the ability to reduce the inter-sensor bias to zero. 

When the pixel is sampled by one sensor only, but the surrounding pixels by more than one or by the other sensors, there is an 

increasing probability of introducing artefacts or spatial gradients, which in reality do not exist and are only the result of the 
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merging procedure. To prevent the occurrence of such horizontal discontinuities, here we apply a smoothing procedure based 

on the use of a SeaWiFS daily climatology field, described in Volpe et al. (2018) and summarized below. First, the field from 

each sensor (Figure 4a-b) is filled with the same relevant daily climatology (Figure 4e, see below for more details about the 

climatology), as shown in Figure 4c-d. Filling is performed as follows; for each sensor, the difference between the two fields 

(observed and climatology) is first computed in correspondence of co-existing values. Such difference is propagated and 5 

smoothed all over the spatial domain. Missing observational values are replaced with the climatology corrected by the 

computed difference map. This prevents the generation of sharp gradients in the final merged product. At this stage, the simple 

average between all available climatology-filled sensor data is computed. Then all the non-clear sky pixels are set to the 

missing value (Figure 4f). This is the procedure operationally and currently applied to data acquired by MODIS-AQUA and 

VIIRS to produce the multi-sensor Rrs product. It is important to note that features, which are only present in the climatology, 10 

but not in the daily single-sensor images, are also absent in the merged product. In the example of Figure 4, features of such a 

kind can be clearly identified in correspondence of the Strait of Bonifacio, in the Tyrrhenian Sea, which extends eastwards 

only in the climatology (Figure 4e) but in none of the other fields (MODIS-AQUA or VIIRS). Another example is given by 

the tongue of Modified Atlantic Water (Manzella et al., 1990) that penetrates the southern sector of the Sicily Channel towards 

the Libyan coasts, which is present in AQUA, VIIRS, and in the merged image, but not in the climatology. Similarly, the 15 

Rhone River plume, visible in the climatology as a small reddish spot, is absent from both single-sensor images and from the 

merged multi-sensor product. 

After all bands are merged, single pixel Rrs spectra are available (Figure 5) for the geophysical products to be computed. 

Within this step, a mask is computed for keeping track of the single sensor inputs to the multi-sensor product and added to the 

NetCDF files (Figure 5b and Figure 5d). The examples show two cases of blue and greener waters along the Spanish coast and 20 

in the northern Adriatic Sea, respectively. In both cases, the satellite Rrs benefiting from the bias correction are closer to the 

in situ measurements at all bands. 

Climatology 

As mentioned the climatology provides a spatial support to the sensor merging. The climatology field is obtained from the 

thirteen years of SeaWiFS data. This daily field has the same spatial resolution (nominally 1 km at nadir) and projection 25 

(cylindrical) as the operational field. These climatology maps were created using the data falling into a moving temporal 

window of ± 5 days. Five days are deemed to be a good compromise between the need of filling the spatial domain and the 

de-correlation time scale of the OC data in the Mediterranean Sea; this has been estimated as being 3 days on average (the day 

at which the autocorrelation value halves, Volpe et al., 2018). The resulting daily climatology time series includes the pixel-

scale standard deviation, the average, the median, the modal, the minimum, and the maximum values. The next version of the 30 

NRT/DT processing chain will include a climatology field computed by taking into account the space-time weighted averaging 

and a longer and more recent data time series. 
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2.2.3 Level-3 geophysical products 

The input to all algorithms used to derive the various geophysical products is the Rrs spectrum, which in this context derives 

from the NRT/DT processing chain described above and from the CCIv3 processor. It should be noted that in the L1 to L2 

processing performed by the space agencies, the water leaving radiance normalization scheme makes use of Chl values 

estimated with standard algorithms. The differences between standard Chl and MedOC4 estimates in the Mediterranean Sea 5 

might affect the accuracy of the resulting Rrs. However, in the context of L3 multi-sensor merging this inconsistency cannot 

be accounted for without performing the L1 to L2 processing in house. The previous regional processing chains started from 

L1 and did take this effect into account (Volpe et al., 2007; 2012). On the other hand, in the operational oceanography 

framework, the need to keep the L2 to L3 processing chain readily up-to-date imposes a trade-off between accuracy and 

timeliness. 10 

As shown in Figure 2, from this point on, the NRT/DT and the REP chains collapse as they both use the same algorithms for 

computing Chl, Kd and the IOPs. Next sections explain how the various algorithms are derived and applied to Rrs data for 

their operational application. 

Chlorophyll a concentration 

There are two main categories of Chl algorithms, empirical and semi-analytical. Even though the latter now show performance 15 

comparable to that of empirical algorithms, these still remain more robust and are generally preferred in the operational context 

(e.g., NASA processing). Recently, Sathyendranath et al. (2017) discussed the characteristics that remote sensing data must 

have to be used in climate studies. They pointed out that semi-analytical algorithms would be preferred to empirical ones 

because they do not rely on past observations, which are not necessarily the best approximation for future observations 

(Dierssen, 2010). However, they still lack the robustness, which is typical of the empirical family of algorithms (O’Reilly et 20 

al., 2000 among others). 

Operational services such as CMEMS aim at providing data for a wide range of applications from the assimilation of open 

ocean observations into biogeochemical models (Teruzzi et al., 2014) to coastal monitoring programs (such as the Marine 

Strategy Framework Directive, e.g. Colella et al., 2016). Unfortunately, there is not yet a unique Chl algorithm able to perform 

with the same accuracy across different environments. For example open ocean waters are prevalently dominated by 25 

phytoplankton cells and their products of degradation; these waters are well represented by chlorophyll concentration and are 

generally referred to as Case I waters (Morel and Prieur, 1977). On the other hand, the optical properties of coastal regions are 

more often influenced by various water constituents not necessarily covarying with phytoplankton and are referred to as Case 

II waters. Since the offshore extension of the coastal waters may vary and be of several kilometres (pixels), depending on the 

sea and weather conditions (e.g., coastal filaments may extend several tens of kilometres in the open ocean), the adoption of 30 

static masks for the application of different algorithms would result in errors associated with the sharp fronts. One way to 

overcome this issue is to merge two Chl products into a single field, after the exact identification of the two realms (Mélin et 

al., 2011; Volpe et al 2012; Moore et al., 2014). At pixel scale, Rrs spectra are translated into Chl twice: assuming the entire 
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satellite scene to belong to Case I and to Case II waters, each with its own algorithm. Then, the water type identification follows 

the method developed by D'Alimonte et al. (2003) which uses the Mahalanobis distance between the satellite spectrum and 

the in situ reference spectra (in terms of the mean values and the covariance matrices of the two experimental datasets). For 

Case I Chl reference, D'Alimonte et al. (2003) used a former version of the current NOMAD dataset (Werdell and Bailey, 

2005). In this work, for Case I and Case II waters, the MedOC4 (Volpe et al., 2007) and CoASTS (Berthon et al., 2002, Zibordi 5 

et al., 2002) datasets are used, respectively. This approach is one step towards the need of the scientific community of dealing 

with products performing equally well in both water types, or at least to know where the first ends and the second starts 

(Sathyendranath, 2011, OC-CCI user consultation). To address also the latter point evidenced by the OC-CCI user consultation, 

a water type mask resulting from the Case I-Case II merging step is conveniently stored into the NetCDF files and made 

available to users. Thus two different algorithms are used to derive Chl in the two optical domains: the ADOC4 algorithm 10 

(D'Alimonte and Zibordi, 2003) is used for the Case II domain, while algorithm for Case I constitutes the matter of the next 

paragraph. 

Mediterranean Sea – MedOC4 – Case I 

The algorithm used to retrieve Chl in the Case I waters of the Mediterranean Sea is an updated version of the MedOC4, a 

regionally parameterized Maximum Band Ratio (Volpe et al., 2007). Figure 6a shows both the regional and the global 15 

algorithm (OC4v6, https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/) functional forms superimposed to the in situ observations 

collected in the Mediterranean Sea. The Mediterranean Sea tends to be “greener” than the Pacific and Atlantic oceans for any 

Chl values due to higher CDOM concentrations (Volpe et al., 2007 and references therein). Considering that the empirical 

algorithms are the expression of the in situ data from which they are derived, this figure provides a means for understanding 

the need to regionalize the algorithms to avoid the significant Chl overestimation that would be obtained with the global 20 

algorithm, as already fully documented in Volpe et al. (2007, and references therein). 

An important point that has to be borne in mind is that the colour of the ocean, in terms of maximum band ratio (MBR), 

explains 74% of the entire phytoplankton variability, as expressed by the determination coefficient (r2) between the chlorophyll 

concentration and MBR (Figure 6a). This points to the importance (more than 25%) of the second order variability of the ocean 

colour signal (Brown et al., 2008) that should be accounted for by future versions of the operational algorithms, in line with 25 

the recent recommendation about the use of ocean colour data for climate studies (Sathyendranath et al., 2017). 

Diffuse Attenuation Coefficient - Kd490 

Figure 6b (red dots) shows the in situ diffuse attenuation coefficient of light at 490 nm as a function of the Rrs ratio 

(R=log10(Rrs490/Rrs555)) collected in the Mediterranean Sea. Superimposed to the in situ dataset is also the algorithm 

functional form (turquoise line) used in the OBPG processing at global scale (https://oceancolor.gsfc.nasa.gov/atbd/kd_490/). 30 

It is clear that the global algorithm only marginally overlaps with the in situ data, thus prompting for a regional dedicated 

algorithm to be developed. Black line is the in situ data best fit computed as a fourth power polynomial expression of the Rrs 

ratio between 490 and 555 nm. 
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2.3 Validation framework 

The validation of the satellite products was carried out by pairwise comparison with the in situ observations: Chl and apparent 

optical properties, e.g., Kd490 and Rrs. For determining co-location between in situ and satellite data records all measurements 

acquired in the same day were used, as L3 data used in this study do not preserve the time information. Then, similarly to 

Zibordi et al. (2012), the median values is extracted from a 3 by 3 box centred on the in situ measurement coordinates, only in 5 

presence of at least 5 valid values and the coefficient of variation smaller than 20%. Bailey and Werdell (2006) use narrow 

time window for determining coincidence (i.e. no more than ± 3 h); Figure S.1 presents the percent difference between satellite 

and in situ Rrs for time windows ranging between ±1 and ±8 hours, assuming 10 am UTC as satellite overpass time. The range 

of variability of the relative difference is always within 1%, confirming recent results from Barnes et al. (2019). 

The uncertainty associated with the in situ data is due to several factors, e.g., the sea conditions, the operator ability which in 10 

turn can introduce several contamination factors; hence, here we consider satellite and in situ observations to be both affected 

by uncertainties (Loew et al., 2017). Thus, for the matchup analysis, a type-2 regression (also called orthogonal regression) is 

implemented here (Laws and Archie, 1981). The statistical parameters for the assessment of satellite versus in situ data are 

listed in Table 2. For log-normally distributed variables (such as Chl and Kd490) both datasets are log-transformed prior to 

computing the slope (S), the intercept (I) and the determination coefficient. A good match between the two observations is 15 

achieved when S is close to one and I is close to zero. The RMSD is the average distance of a data point from the fitted line, 

measured perpendicular to the regression line. RMSD and bias have the same units as the data from which they are derived. 

3 Results and Discussion 

This section provides the validation analysis for the operational NRT/DT retrievals of Rrs and Chl with the multi-sensor 

merging approach. The NRT/DT products (Multi) are available in the CMEMS catalogue as a rolling archive spanning two 20 

years, prior which REP products are available instead. As already mentioned, since most of the in situ data used for the 

validation analyses were collected earlier than 2017 (two years ago, at the time of writing), we used the NRT/DT production 

chain described in Section 2.2 to process the entire satellite data archive and hence generating a consistent DT dataset. The 

validation of the REP products based on the CCIv3 is also included for comparison. 

Temporal trend 25 

In this context and with the general aim of identifying any temporal dependence of the computed statistics, the analysis was 

made comparing the satellite products with space-time collocated in situ measurements for each campaign separately and for 

the whole dataset. No significant temporal behaviour emerged from the analysis (results not shown), highlighting that both in 

situ and satellite data are homogeneous in time and well calibrated. Similar results were recently yielded at global scale by 

Sathyendranath et al. (2017). 30 

Matchup – Rrs single-sensors, multi-sensor 
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Figure 7 shows the relative difference between satellite and the MedBiOp Rrs spectra. Satellite Rrs at all available bands for 

each sensor are compared with the same in situ Rrs bands (Table 1). In general, the Rrs in the blue bands (443 and 490 nm) 

performs better than those at 412 nm or those in the green region (510 and 555 nm). As mentioned above, SeaWiFS, MODIS-

AQUA and VIIRS are all processed with the l2gen processor, so that it is not surprising that these three sensors display a 

common spectral behavior with respect to in situ observations. On the other hand, MERIS is the only one exhibiting a positive 5 

difference with respect to in situ observations for the 412 and 443 bands. This is likely due to the different processing 

(performed by ESA) for the L1 to L2 processing of MERIS (see section 2.2 for details). Apart from the 670 nm band (RPD of 

76%), SeaWiFS performs generally better than the other sensors, thus supporting the choice of being selected as reference 

sensor for the blue-green spectral range. All other satellite data never exceed 15% relative difference when compared with in 

situ observations at basin scale (Table S.2 to Table S.7). A noticeable feature presented in Figure 7 is the wide variability of 10 

the computed statistics (given by the standard deviation bars) highlighting that the satellite data presented here do not 

substantially differ from the in situ observations. Table 3 shows the full statistics for the Multi Rrs product. 

One of the main reasons for merging data from different sensors is to enhance the domain coverage by reducing the influence 

of both the cloud coverage and generally flagged or masked pixels as well as the out-of-satellite-swath areas; in all cases the 

use of a multi-sensor approach increases the probability of valid clear sky observations. Figure 8 shows the time series of the 15 

percent basin coverage for four single sensors (SeaWiFS, MERIS, MODIS-AQUA and VIIRS) and of the Multi product. The 

number of clear sky pixels of the Multi is on average larger than that of the single sensors by as much as 40% (Figure 8), with 

minimum impact during winter and maximum at summertime. The difference between periods of maxima and minima 

somehow reflects the cloud cover influence over the multi-sensor product, with the winter-time being characterized by both 

cloud-cover and out-of-satellite-swath, while the summer periods being mostly affected by out-of-satellite-swath masked areas. 20 

Moreover, the coverage is higher in the period 2002-2011 when SeaWiFS (until 2010), MODIS-AQUA and MERIS were 

operating simultaneously. Despite the loss in 2010 of SeaWiFS with its very wide swath, in the entire 2011 the gain (turquoise 

line in Figure 8) does not decrease substantially. After the loss of MERIS in 2012 the gain in the percent basin coverage 

dramatically decreases. Thus the basin coverage depends in first instance on the number of available sensors but also to the 

relationships of the orbital parameters among the various OC missions. 25 

Results in Figure 7 are representative of the performances of the various satellite observations (both single- and multi-sensors) 

against the in situ measurements that were widely collected over the basin in the past twenty years, the MedBiOp dataset. 

Similarly, Figure 9 shows the comparison of the two multi-sensor time series (Multi and CCIv3) against three in situ datasets: 

the basin scale dataset (MedBiOp) and two fixed location datasets (section 2.1), one of which coastal (AAOT). In general, one 

could expect the mismatch between satellite and in situ observations to be larger (in relative terms) at the extreme bands of the 30 

spectrum, i.e., at 412 nm and 670 nm. In the first case, because of the spectral distance from the NIR bands used for the 

atmospheric correction, and in the second because of the generally very low Rrs values that pose a challenge for both in situ 

and satellite determination of the Rrs at this band. Here, the difference between satellite and in situ Rrs observations at these 

extreme bands is of the same order of magnitude as the blue-green part of the spectrum when observed in open ocean 
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(MedBiOp and BOUSSOLE) but not in the coastal domain (AAOT). CCIv3 and Multi Rrs present a general good agreement, 

differences between these two products and the in situ data being smaller than 5%; this low difference is likely due to the two 

source datasets which are derived from two different NASA reprocessings, R2014 and R2018, and partially to the use of 

POLYMER for the MODIS-AQUA processing in the CCI chain; at 412 nm, and to a lesser extent at 443 nm, this difference 

is more pronounced (more than 5%) because the impact of the R2018 is larger at these bands. An even more evident difference 5 

(larger than 10%) is seen at 670 nm; here the impact of R2018 should be less important than in the blue bands. One important 

difference between Multi and CCIv3 is that Multi is not bias-corrected over SeaWiFS at this band (section 2.2.2); since 

SeaWiFS performances at this band are not as good as at the other bands it is reasonable to assume that this might be the cause 

of the observed discrepancy, further supporting the choice of not using SeaWiFS to bias-correct the other sensors in this band. 

Another important feature in Figure 9 is the general difference of satellite performance (both Multi and CCIv3) in coastal and 10 

open waters. 

Table 4 shows the number of matchups for each band of Multi and CCIv3 in correspondence of the three in situ datasets. Two 

aspects emerge: one linked to the difference between Multi and CCIv3 and the other between the 670 nm band and the other 

bands. As mentioned earlier, it is reasonable to assume that the different source data (R2018.0 for Multi and R2014.0 for 

CCIv3) is responsible for the differences in spatial coverage and hence in the number of matchups. Moreover, it should be 15 

mentioned that MODIS-AQUA used in the Multi processing chain derives from NASA R2018.0, while it derives from 

POLYMER atmospheric correction scheme for CCIv3. As for the differences between the 670 nm band and the other bands, 

the very noisy spatial patterns present in the daily images of the Rrs at 670 nm very often result, at the scale of the matchup 

pixels, in the coefficient of variation to exceed the 20% threshold (section 2.3). 

Overall, despite their absolute differences, the two multi-sensor satellite products show a similar level of accuracy which 20 

suggests that the Multi processor is also suitable for the REP processing chain. This would provide the two benefits of reducing 

the number of upstream data provider and of giving the NRT/DT and REP products full compatibility. 

Matchup – Chl 

Figure 10 shows the matchups for the L3 Chl product for both processing modes, REP (derived from the CCIv3 Rrs) and 

NRT/DT (derived from the Multi chain described in this study). To facilitate the comparison between the two satellite products, 25 

the matchup dataset includes only the points in which both satellite data are available. Both products are regularly distributed 

around the line of best agreement for the entire Chl range, although for in situ values larger than 0.3 mg m-3 there is a noticeable 

dispersion increase. Table 5 shows the statistics of the four datasets plotted in Figure 10. To assess the uncertainties of the 

Multi Chl currently distributed on the CMEMS portal, the analysis was performed on the period in which VIIRS and MODIS 

co-exist, i.e. January 2012 onwards. Despite the different number of matchups (44 vs 710) and different Chl ranges (~0.04 – 30 

2 vs ~0.007 – 9), statistics associated with the full time series are totally comparable with those obtained with the most recent 

data only (2012 to present) as denoted by the AV (MODIS-AQUA and VIIRS) subscript in both Figure 10 and Table 5. 

To further assess the level of accuracy associated with the Chl retrieval from multi mission merged approach presented in this 

study, we compared with the results at global scale reported in Climate Assessment Report, CAR, (CCI, 2017). Differently 
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than here, in the CAR, the Chl log-transformation was used to compute all the statistics, not only those associated with the 

linear fit (slope, intercept and determination coefficient, section 2.3). Therefore, for this analysis, we recomputed all the 

statistics of Table 5 accordingly (Table S.10). The in situ data used to compute the CAR statistics are much more numerous 

(14582, Table S.10). Nonetheless, results for the proposed regional algorithms as well as for CCI at global and Mediterranean 

scales show a general good agreement in terms of the determination coefficient, RMSD, CRMSD and the slope of the linear 5 

fit. The difference in the intercept only reflects the difference in the two dataset range of variability, with the global set being 

wider and characterized by a larger modal value (centred over ~1 mg m-3, Figure 8 in CAR) than the MedBiOp (Figure 10).  

Matchup – Kd490 

Figure 11a shows the validation result of the satellite-derived Kd490 with respect to the in situ Kd490 obtained from the BGC-

Argo float dataset (Organelli et al., 2016), whose space-time distribution is shown in Figure 11c. As a matter of comparison, 10 

both algorithms shown in section 2.2.3 and in Figure 6b are presented. MedKd performs better than Global algorithm as also 

highlighted by their matchup statistics (Table S.9), from which it appears that the regional algorithm presents lower biases 

(both absolute and percent) than the Global. Similarly to the Global, the MedKd algorithm overestimates in situ values larger 

than 0.1 m-1, probably due to the lower representativeness of the MedBiOp dataset used to derive the algorithm in this range 

of variability (Figure 6b and Figure 11b). Furthermore, the Global algorithm shows a clear overestimation at the lower end of 15 

the range of variability with respect to the in situ data, as well as to the regional algorithm, as shown by the two lines of best 

fit (slopes are 0.86 and 1 for the Global and the MedKd, respectively, Table S.9). On the contrary, the MedKd algorithm 

performs well at low values. 

A similar analysis from Organelli et al. (2017) shows that satellite data overestimate the BGC-Argo – derived Kd490 for values 

below 0.1 m-1 (their Figure 11). Here, we show that this still holds when the Global algorithm is used, but that the MedKd 20 

algorithm corrects for this overestimation. This analysis, performed over a fully independent dataset, justifies and supports the 

choice of using the MedKd algorithm for the operational chain in lieu of the Global. 

4 Conclusions 

This work presented the latest achievements in the operational processing chain for ocean colour data stream for the 

Mediterranean Sea in the context of the European Copernicus Marine Environment Monitoring Service. The development of 25 

the multi-sensor merged product builds on the previous version of this chain, which was focused on parallel processing of 

single sensors (SeaWiFS, MODIS and MERIS, Volpe et al., 2012). The introduction of an operational multi-sensor merged 

product aims to meet the operational oceanography intrinsic requirement of “One Question One Answer”. Three main steps 

were implemented: band-shifting, inter-sensor bias correction, and the sensor merging. The band-shifting is implemented 

exactly as in Mélin and Sclep (2015), while the implementation of the inter-sensor bias correction differs from the OC-CCI 30 

technique (CCI, 2016b) in the temporal and spatial aggregation scales. The sensor-merging shown in this work is based on the 

use of the climatology as input to the smoothing procedure as described in Volpe et al. (2018). The output of this processing 
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chain is the Rrs spectrum that constitutes the input to all algorithms used to derive the various geophysical products. The Rrs 

computed with the multi-sensor merging approach shows good agreement when compared with in situ observations not only 

with the basin-scale MedBiOp dataset but also with the two fixed locations AAOT and BOUSSOLE time series. As the 

accuracy of the L3 DT data presented in this study depends also on the sensor calibration of the L2 data used in the NRT/DT 

processing chain, the L3 operational products might become degraded for newer data if the calibration of the sensors starts 5 

diverging from the R2018 parameters. Moreover, this work presents an updated version of the empirical algorithms for Chl 

and Kd retrievals for the Mediterranean Sea based on the extended MedBiOp dataset. The comparison with the in situ 

observations yields good results when applied to both the Rrs derived from the CCIv3 processor and those derived from the 

multi-sensor merged processing shown here. This suggests the opportunity to use the proposed multi-sensor processing chain 

in the REP context as well. 10 

5 Acknowledgements 

We wish to thank the anonymous reviewers for detailed and pertinent comments that helped to greatly improve the manuscript. 

Giuseppe Zibordi, as PI of the AERONET-OC site of Venise, is warmly thanked for the Level-2 surface reflectance data 

processing and site maintenance. The authors are also grateful to the BOUSSOLE project for maintaining and providing high-

quality surface reflectance data used for the validation of the satellite observations. The International Argo Project (a pilot 15 

programme of the Global Ocean Observing System) and the national programmes that contribute to it 

(http://www.argo.ucsd.edu, http://argo.jcommops.org) are very much acknowledged. The NASA Ocean Biology Processing 

Group is strongly acknowledged for providing Level-2 data used as input to the processing chain. This work has been 

performed in the context of the Ocean Colour Thematic Assembly Centre of Copernicus Marine Environment and Monitoring 

Service (Grant number: 77-CMEMS-TAC-OC-N). 20 

6 References 

Antoine, D., Guevel, P., Desté, J.-F., Bécu, G., Louis, F., Scott, A., and Bardey, P., 2008. The “BOUSSOLE” Buoy – A New 
Transparent- to-Swell Taut Mooring Dedicated to Marine Optics: Design, Tests, and Performance at Sea. J. Atmos. Oceanic 
Technol., 25, 968–989. 
Bailey, S.W., Werdell, P.J., 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. 25 
Remote Sens Environ., 102, 12–23. 
Barnes, B. B., Cannizzaro, J. P., English, D. C., & Hu, C. (2019). Validation of VIIRS and MODIS reflectance data in coastal 
and oceanic waters: An assessment of methods. Remote Sensing of Environment, 220, 110-123. 
Berthon, J. F., G. Zibordi, Doyle, J.P., Grossi, S., van der Linde, D. Targa, C., 2002. Coastal Atmosphere and Sea Time Series 
(CoASTS), Part 2: Data Analysis. NASA Technical Memorandum. 2002-206892 Vol. 20. S. B. Hooker and E. R. Firestone. 30 
Greenbelt, Maryland, NASA Goddard Space Flight Center: 25. 
Bouali, M., and Ignatov, F., 2014. Adaptive Reduction of Striping for Improved Sea Surface Temperature Imagery from Suomi 
National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), J. Atmos. Oceanic Technol., 
31, 150-163. 

Deleted: e35 
Deleted: d
Deleted: of

Deleted: as well as 

Deleted:  



18 
 

Bricaud, A., Bosc, E., & Antoine, D., 2002. Algal biomass and sea surface temperature in the Mediterranean Basin - 
Intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sensing of 
Environment, 81(2–3), 163–178. 
Brown, A.C., Huot, Y., Werdell, P.J., Gentili, B., Claustre, H., 2008. The origin and global distribution of second order 
variability in satellite ocean color and its potential applications to algorithm development. Remote Sensing of Environment, 5 
112, 4186–4203. 
CCI, 2016a. Ocean Colour Climate Change Initiative Product User Guide. , pp. 47. http://www.esa-oceancolour-cci.org/. 
CCI, 2016b. Ocean colour data bias correction and merging. Ocean colour-Climate Change Initiative, algorithm theoretical 
basis document, version 3.7. pp. 36. http://www.esa-oceancolour-cci.org/. 
CCI, 2017. Ocean Colour Climate Change Initiative (Phase Two). Climate Assessment Report. AO-1/6207/09/I-LG. pp. 125. 10 
(http://esa-oceancolour-cci.org/?q=webfm_send/702) 
Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., Santoleri, R., 2016. Mediterranean Ocean Colour Chlorophyll Trends. 
PLoS ONE 11(6): e0155756. https://doi.org/10.1371/journal.pone.0155756. 
D’Alimonte, D. and Zibordi, G., 2003. Phytoplankton Determination in an Optically Complex Coastal Region Using a 
Multilayer Perceptron Neural Network, IEEE Geosci. Remote S., 41, 2861–2868. 15 
D'Alimonte, D., Mélin, F., Zibordi, G., Berthon, J.-F., 2003. Use of the novelty detection technique to identify the range of 
applicability of the empirical ocean color algorithms. IEEE Trans. Geosci. Remote Sens., 41, 2833-2843. 
D’Alimonte, D., Zibordi, G., Kajiyama, T., Cunha, J.C., 2010. Monte Carlo code for high spatial resolution ocean color 
simulations, Applied Optics 49, 4936-4950. 
Dierssen, H., 2010. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. 20 
Proc. Natl. Acad. Sci. 107, 17073–17078. 
D’Ortenzio, F., Marullo, S., Ragni, M., D’Alcalà, M. R., & Santoleri, R., 2002. Validation of empirical SeaWiFS algorithms 
for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas. Remote Sensing of Environment, 
82(1), 79–94. https://doi.org/10.1016/S0034-4257(02)00026-3. 
Laws, E. A., Archie, J. W., 1981. Appropriate use of regression analysis in marine biology. Marine Biology, 65(1), 13-16. 25 
Lee, Z.P., Carder, K.L., Arnone, B.A., 2002. Deriving inherent optical properties from water color: A multi-band quasi-
analytical algorithm for optically deep waters, Applied Optics, 41, 5755-5772. 
Le Traon, P-Y., Antoine, D., Bentamy, A., Bonekamp, H., Breivik, L.A., Chapron, B., Corlett, G., Dibarboure, G., DiGiacomo, 
P., Donlon, C., Faugère, Y., Font, J., Girard-Ardhuin ,F., Gohin, F., Johannessen, J.A., Kamachi, M., Lagerloef, G., Lambin, 
J., Larnicol ,G., Le Borgne, P., Leuliette, E., Lindstrom, E., Martin, M.J., Maturi, E., Miller, L., Mingsen, L., Morrow, R., 30 
Reul, N., Rio, M-H., Roquet, H., Santoleri, R., Wilkin, J., 2015. Use of satellite observations for operational oceanography: 
recent achievements and future prospects. Journal of Operational Oceanography, 8 (sup1), s12-s27. 
Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J., Calbet, X., Verhoelst, T., 2017. Validation practices for satellite-
based Earth observation data across communities. Reviews of Geophysics, 55(3), 779–817. 
http://doi.org/10.1002/2017RG000562 35 
Manzella, G. M. R., Hopkins, T. S., Minnett, P. J., & Nacini, E., 1990. Atlantic water in the Strait of Sicily. Journal of 
Geophysical Research, 95(C2), 1569–1575. 
Maritorena, S., Siegel, D. A., 2005. Consistent merging of satellite ocean color data sets using a bio-optical model. Remote 
Sensing of Environment, 94, 429–440. 
Mélin, F, and Sclep, G., 2015. Band shifting for ocean color multi-spectral reflectance data. Opt. Exp., 23, 2262-2279. 40 
DOI:10.1364/OE.23.002262. 
Mélin, F., Vantrepotte, V., Clerici, M., D’Alimonte, D., Zibordi, G., Berthon, J. F., Canuti, E., 2011. Multi-sensor satellite 
time series of optical properties and chlorophyll-a concentration in the Adriatic Sea. Progress in Oceanography, 91(3), 229–
244. http://doi.org/10.1016/j.pocean.2010.12.001 
Mikelsons, K., Wang, M., Jiang, L., Bouali, M., 2014. Destriping algorithm for improved satellite-derived ocean color product 45 
imagery, Opt. Express 22, 28058-28070. 
Mobley, C.D., Werdell, J., Franz, B., Ahmad, Z., & Bailey, S. (2016). Atmospheric Correction for Satellite Ocean Color 
Radiometry. Mobley, C.D., Werdell, J., Franz, B., Ahmad, Z., & Bailey, S. NASA/TM-2016-217551, GSFC-E-DAA-
TN35509. 

Formatted: Italian



19 
 

Moore, T. S., Dowell, M. D., Bradt, S., Ruiz Verdu, A., 2014. An optical water type framework for selecting and blending 
retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sensing of Environment, 143, 97–111. 
http://doi.org/10.1016/j.rse.2013.11.021. 
Morel, A. and Prieur, L. (1977). Analysis of variations in ocean color. Limnol. Oceanogr., 22: 709-722. 
Mueller, J. L., and Austin, R. W., 1995. Ocean Optics Protocols for SeaWiFS Validation, Revision 1, S.B. Hooker, E.R. 5 
Firestone, and J.G. Acker Ed., NASA Technical Memorandum 104566, Vol. 25, SeaWiFS Technical Report Series. 
Mueller, J. L., 2000. SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 
and 555 nm. In S. B. Hooker, & E. R. Firestone (Eds.), SeaWiFS postlaunch calibration and validation analyses: Part 3. NASA 
Tech. Memo. 2000- 206892, vol. 11 (pp. 24 – 27). Greenbelt’ NASA Goddard Space Flight Center. 
O’Reilly, J. E., Maritorena, S., Siegel, D., O’Brien, M. C., Toole, D., Mitchell, B. G., Culver, M., 2000. Ocean color 10 
chlorophyll a algorithms for SeaWiFS, OC2, and OC4: version 4. In S. B. Hooker & E. R. Firestone (Eds.), SeaWiFS 
Postlaunch Technical Report Series, vol.11. SeaWiFS postlaunch calibration and validation analyses: part 3 (pp. 9–23). 
Greenbelt, MD: NASA Goddard Space Flight Center. 
Organelli Emanuele, Barbieux Marie, Claustre Hervé, Schmechtig Catherine, Poteau Antoine, Bricaud Annick, Uitz Julia, 
D’ortenzio Fabrizio, Dall’olmo Giorgio (2016). A global bio-optical database derived from Biogeochemical Argo float 15 
measurements within the layer of interest for field and remote ocean color applications. SEANOE. 
https://doi.org/10.17882/47142. 
Organelli, E., Barbieux, M., Claustre, H., Schmechtig, C., Poteau, A., Bricaud, A., Boss, E., Briggs, N., Dall'Olmo, G., 
D'Ortenzio, F., Leymarie, E., Mangin, A., Obolensky, G., Penkerc'h, C., Prieur, L., Roesler, C., Serra, R., Uitz, J., and Xing, 
X.: Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications, Earth 20 
Syst. Sci. Data, 9, 861-880, https://doi.org/10.5194/essd-9-861-2017, 2017. 
Pitarch, J., Bellacicco, M., Volpe, G., Colella, S., & Santoleri, R. (2016). Use of the quasi-analytical algorithm to retrieve 
backscattering from in-situ data in the Mediterranean Sea. Remote Sensing Letters, 7(6), 591-600. 
Santoleri, R., Volpe, G., Marullo, S., Buongiorno Nardelli, B., 2008. Open Waters Optical Remote Sensing of the 
Mediterranean Sea, in: Remote Sensing of the European Seas, edited by: Barale, V. and Gade, M., Springer, 103–116. 25 
Sathyendranath, S., Brewin, R.J.W., Frédéric Mélin, T. J., Platt, T., 2017. Ocean-colour products for climate-change studies: 
What are their ideal characteristics?, Remote Sensing of Environment, http://dx.doi.org/10.1016/j.rse.2017.04.017 
Steinmetz, F., Deschamps, P.-Y., Ramon, D., 2011. Atmospheric correction in the presence of sun glint: application to MERIS. 
Opt. Express 19, 9783–9800. 
Szeto, M., Werdell, P. J., Moore, T. S., Campbell, J. W., 2011. Are the world's oceans optically different? J. Geophys. Res., 30 
116, C00H04, doi:10.1029/2011JC007230. 
Teruzzi, A., Dobricic, S., Solidoro, C., Cossarini, G., 2014. A 3-D variational assimilation scheme in coupled transport- 
biogeochemical models: Forecast of Mediterranean biogeochemical properties, J. Geophys. Res. Oceans, 119, 200–217, 
doi:10.1002/ 2013JC009277. 
Thuillier, G., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P. C., Mandel, H. 2003. The solar spectral irradiance 35 
from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions, 1–22. 
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine,D., Arnone, R., Balch, W.M., Barker, 
K., Barlow, R., Bélanger, S., Berthon, J.F., Besiktepe, ¸S., Brando, V., Canuti, E., Chavez, F., Claustre, H., Crout, R., Frouin, 
R.,García-Soto, C., Gibb, S.W., Gould, R., Hooker, S., Kahru, M., Klein, H., Kratzer,S., Loisel, H., McKee, D., Mitchell, B.G., 
Moisan, T., Muller-Karger, F., O’Dowd, L.,Ondrusek, M., Poulton, A.J., Repecaud, M., Smyth, T., Sosik, H.M., Twardowski, 40 
M.,Voss, K., Werdell, J., Wernand, M., Zibordi, G., 2016. A compilation of global bio-optical in situ data for ocean-colour 
satellite applications. Earth Syst. Sci. Data 8,235–252. http://www.earth-syst-sci-data.net/8/235/2016/. 
http://dx.doi.org/10.5194/essd-8-235-2016. 
Volpe, G., Santoleri, R., Vellucci, V., Ribera d’Alcala, M., Marullo, S., D’Ortenzio, F., 2007. The colour of the Mediterranean 
Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates, Remote Sens. 45 
Environ., 107, 625–638. 
Volpe, G., Colella, S., Forneris, V., Tronconi, C., Santoleri, R., 2012. The Mediterranean Ocean Colour Observing System – 
system development and product validation. Ocean Sci., 8, 869–883. 

Deleted:   



20 
 

Volpe, G., Buongiorno Nardelli, B., Colella, S., Pisano, A., Santoleri, R., 2018. An Operational Interpolated Ocean Colour 
Product in the Mediterranean Sea, in New Frontiers in Operational Oceanography, Ed. E.P. Chassignet, A. Pascual, J. Tintorè 
and J. Verron. 
von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L., Balmaseda, M., Breivik, L.-A., Verbrugge, N., 2017. The 
Copernicus Marine Environment Monitoring Service Ocean State Report. Journal of Operational Oceanography, 9(sup2), 5 
s235–s320. http://doi.org/10.1080/1755876X.2016.1273446. 
Werdell, P.J. and S.W. Bailey , 2005: An improved bio-optical data set for ocean color algorithm development and satellite 
data product validation. Remote Sensing of Environment , 98(1), 122-140. 
Zibordi, G., D’Alimonte, D., Berthon, J. F., 2004. An evaluation of depth resolution requirements for optical profiling in 
coastal waters. Journal of Atmospheric and Oceanic Technology, 21(7), 1059–1073. https://doi.org/10.1175/1520-10 
0426(2004)021<1059:AEODRR>2.0.CO;2 
Zibordi, G. and G. M. Ferrari, 1995. Instrument self-shading in underwater optical measurements: experimental data, Appl. 
Opt. 34, 2750-2754. 
Zibordi, G., Hooker, S.B., Berthon, J.-F., D'Alimonte, D., 2002. Autonomous above-water radiance measurements from an 
offshore platform: a field assessment experiment. J. Atmos. Oceano. Tech., 19, 808-819. 15 
Zibordi, G., Mélin, F., Berthon, J.F., Holben,  B., Slutsker, I., Giles, D., D'Alimonte, D., Vandemark, D., Feng, H., Schuster, 
G., Fabbri, B.E., 2009. AERONET-OC: a network for the validation of ocean color primary products. Journal of Atmospheric 
and Oceanic Technology, 26(8), pp.1634-1651. 
Zibordi, G., Berthon, J.-F., Mélin, F., D’Alimonte, D., 2011. Cross-site consistent in situ measurements for satellite ocean 
color applications: the BiOMaP radiometric dataset, Rem. Sens. Environ., 115, 2104–2115. 20 
Zibordi, G., Ruddick, K., Ansko, I., Moore, G., Kratzer, S., Icely, J., & Reinart, A. (2012). In situ determination of the remote 
sensing reflectance: An inter-comparison. Ocean Science, 8(4), 567–586. https://doi.org/10.5194/os-8-567-2012. 

7 Figures 

 

 25 

Field Code Changed

Formatted: English (US)

Formatted: English (US)

Formatted: English (US)

Formatted: English (US)



21 
 

Figure 1: Study Area and space-time distribution of the in situ MedBiOp dataset (1997-2016) used in this work. Dots identify the in 
situ stations used as sea-truth for satellite data validation, whereas crosses refer to the observations used to develop the regional OC 
algorithms. 

 

Figure 2: flowchart of the processing chains for the two data production lines, NRT/DT and REP modes. SA stands for space 5 
agencies. The dashed vertical line indicates that, the CNR REP processing mode only involves the application of the regional fine-
tuned algorithms for the retrieval of the geophysical quantities. 

 

M
ul
ti	
se
ns
or

pr
oc
es
sin

g
Co

m
m
on

Ch
ai
n

Si
ng
le
	se

ns
or

pr
e-
pr
oc
es
sin

g
Da

ta
So
ur
ce

NRT/DT REP

Level-2	Rrs	
from	SA

Level-3	Rrs	
CCIv3

Destriping

Bowtie	
Removal

Flagging	&	
Mosaicking

Band
Shifting	

Sensor	
Merging

Level-3	Rrs

Level-3	geophysical	products

Inter-sensor	
bias	correction



22 
 

 
Figure 3: 2D frequency histogram of the daily Rrs ratio (R, on the Y-axis) and of the difference of the cosine of the scattering angle 
(dcos) between MODIS-AQUA and VIIRS for each of the six bands of the Multi product (2012-2017). The scattering angle (:;) is 
defined as :; =

<=>

?
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zenith angles and the relative azimuth angle, respectively. R exhibits a substantial variability across the spectrum with the values 5 
shown in panels a) and f) presenting the larger differences. Overall, the median values of the Rrs ratios at the six bands are within 
the range 0.9-1.1. The noticeable feature is the lack of any dependency of R from the geometry of the observation (dcos). 
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Figure 4: Example of how the merging of MODIS and VIIRS works. Rrs 443 from MODIS AQUA (a), NPP-VIIRS (b) from April 
1st 2012. Panels c and d are obtained by filling in panels a and b with daily climatology (e). The merged multi-sensor product is 
obtained after removal of the unseen pixels (f). Distribution histograms for each image are included in relevant colour bars. 
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Figure 5: Rrs spectra from the 21st April, 2014 (panel a), from MODIS-AQUA (A, blue), NPP-VIIRS (V, red), the merged multi-
sensor product with the application of the bias correction (X, green) and without (grey), and the in situ measurements (black), all in 
correspondence of the in situ measurement location shown by the arrow in panel b. The map in panel b is the sensor mask of the 
day in which the pixels sampled by MODIS-AQUA only are shown in blue and those by NPP-VIIRS only in red; the pixels sampled 5 
by both sensors are shown in green. Panel c and d refer to the Rrs spectra and sensor mask from the 7th April 2015, in the northern 
Adriatic Sea. 
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Figure 6: panel a: algorithm for chlorophyll retrieval over the Mediterranean Sea. The maximum band ratio (MBR) is shown on 
the X-axis; it is the log10 ratio between the maximum value between the three bands in the blue (443, 490 and 510 nm) and the one 
in the green part of the light spectrum (555 nm). Red dots (N=509) are the in situ bio-optical data (MedBiOp, whose location is shown 
in Figure 1) used to compute the operational algorithm (black line). As a means of comparison the global algorithm (OC4v6, 5 
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a) functional form is also superimposed (turquoise line). Panel b: algorithm for the 
retrieval of the diffuse attenuation coefficient, Kd490, over both the Mediterranean Sea (black line) and the global ocean (turquoise 
line). The global algorithm is the SeaWiFS (https://oceancolor.gsfc.nasa.gov/atbd/kd_490). Red dots (N=366) are the in situ 
measurements over the Mediterranean Sea. Kd490 is the sum of Kbio and of the attenuation due to pure sea water (0.0166; Mueller, 
2000). 10 
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Figure 7: Relative difference between satellite and MedBiOp Rrs spectra for MODIS-Aqua (yellow), NPP-VIIRS (magenta), 
SeaWiFS (red), MERIS (green), OC-CCI (blue) and for the multi-sensor product developed and described in this work (black). 
Vertical bars represent one standard deviation from the average RPD value. Target wavelengths are marked with vertical dotted 
lines. 5 

 

Figure 8: Time series of the number of pixels for each satellite sensor as percent with respect to the basin total coverage. For the 
sake of readability, each line represents the result of the 30 days running median time series. Turquoise line is the basin coverage 
increase that is gained with the Multi with respect to the maximum coverage from the single sensors. 
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Figure 9: Relative difference between Multi and CCIv3 satellite observations and in situ measurements (MedBiOp in red, AAOT in 
green and BOUSSOLE in blue). The number of matchups used from each dataset is summarized in Table 3. Target wavelengths are 
marked with vertical dotted lines. As a reference the two red lines correspond to the black and blue lines in Figure 7 for Multi and 
CCIv3, respectively. 5 
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Figure 10: Satellite (y axis) versus in situ (MedBiOp) Chl concentration. Satellite Chl is the REP (derived by the application of the 
MedOC4.2018 to the Rrs derived from the CCIv3 processor, black) and NRT/DT (derived from the Multi processing, red). Green 
dots and blue crosses are the REP and NRT/DT for matchups on the period in which VIIRS and MODIS co-exist (REPAV and 
MultiAV). Statistics associated with the matchup comparison are shown in Table 4. 

5 
Figure 11: Satellite Kd validation with the BGC-Argo float dataset (Organelli et al., 2016). Panel a shows the in situ Kd (x axis) 
versus the satellite-derived Kd obtained with the MedKd.2018 (grey dots) and the Global algorithm (turquoise dots), respectively, 
as shown in Figure 6b. The two best-fit lines are also superimposed. The normalized frequency distribution of the two in situ Kd490 
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measurements (MedBiOp in red and the BGC-Argo in blue) is shown in Panel b. The space-time distribution of the matchups is 
shown in panel c. Relevant statistics are available in Supplementary Material (Table S.9). 

8 Tables 

 

 5 

 Sensors   

Wavelength (nm) VIIRS MODIS MERIS OLCI SeaWiFS REP In situ 

410 �       

412  � �  � � � 

413    �    

443 � � � � � � � 

486 �       

488  �      

490   � � � � � 

510   � � � � � 

531  �      

547  �      

551 �       

555     � � � 

560   � �    

665   � �   � 

667  �      

670     � �  

671 �       

Table 1: Overview of the available wavelengths from VIIRS, MODIS, MERIS, OLCI and SeaWiFS sensors and those used to 

produce the REP dataset (available from PML) and those collected in situ. Target wavelengths of the band shifting procedure are 

highlighted in grey. Column “in situ” refers to the bands of the Lu, Ed and Es Satlantic radiometers used to compute the algorithm 

functional forms and described in the in situ data description section (The Mediterranean Sea in situ bio-optical dataset: MedBiOp). 

To allow the full satellite-in situ data comparison, the in situ data that are not directly measured (those bands without the dot) are 10 
computed via band-shifting. 
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Name Units Definition 

Type-2 slope Geophysical 

 

Type-2 intercept Geophysical 
 

Determination 
coefficient  

 

Root Mean Square 
Difference Geophysical RMSD = R∑ STU

V5TU
WX

YZ
U/[

\
  

Bias Geophysical bias =
1
Nb

(Xd
e − Xd

f)

\

dg4

 

Relative percentage 
Difference Percent RPD = 100 ∙

1
Nb

Xd
e − Xd

f

Xd
f

\

dg4

 

Absolute percentage 
Difference Percent APD = 100 ∙

1
Nb

lXd
e − Xd

fl
Xd
f

\

dg4

 

Table 2: Metrics used to compare the estimated (satellite-based) dataset XE to a reference, measured in-situ dataset XM. A more 

comprehensive table of metrics is provided in Supplementary Material (Table S.1). Geophysical in column Units refers to sr-1, m-1 

or to mg m-3 when the statistics refer to Rrs, Kd or Chl, respectively. 

 

Rrs Slope Intercept r2 RMSD Bias RPD APD N 

412 0.99 -0.0006 0.77 0.0015 -0.00060 -7 18 272 

443 0.86 0.0007 0.73 0.0013 -0.00023 1 15 272 

490 0.65 0.0015 0.55 0.0013 -0.00047 -5 13 272 

510 0.65 0.0009 0.57 0.0013 -0.00060 -11 18 272 

555 0.68 0.0005 0.71 0.0012 -0.00027 -6 16 272 

670 1.19 -0.0001 0.91 0.0002 -0.00002 -3 35 197 

Table 3: Statistics associated with the Multi Rrs product (sr-1) computed over the MedBiOp dataset. The same statistics associated 5 
with all products shown in Figure 7 are provided in Supplementary Material (Table S.2 to Table S.7). 
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  Bands [nm] 

in situ Satellite 412 443 490 510 555 670 

MedBiOp 
Multi 272 272 272 272 272 197 

CCIv3 262 262 262 262 262 223 

AAOT 
Multi 1794 1794 1794 1794 1794 1301 

CCIv3 1753 1753 1753 1753 1753 1504 

BOUSSOLE 
Multi 961 961 961 961 961 780 

CCIv3 882 882 882 882 882 780 

Table 4: Number of matchups used to compute the statistics presented in Figure 9. 

 

Product Slope Intercept r2 RMSD Bias RPD APD N 

REP 0.737 -0.306 0.75 0.411 -0.093 7 47 710 

Multi 0.752 -0.309 0.74 0.427 -0.098 3 47 710 

REPAV 1.052 -0.108 0.57 0.207 -0.064 -18 43 44 

MultiAV 1.184 -0.047 0.50 0.271 -0.057 -17 48 44 

Table 5: Statistics about the Chl (mg m-3) matchup datasets described in Figure 10. The first two rows refer to the comparison of 

the two satellite multi-sensor products with the entire MedBiOp Chl dataset, while the last two refer to the statistics associated with 5 
matchups on the period in which VIIRS and MODIS co-exist (REPAV and MultiAV). A more comprehensive table of metrics is 

provided in Supplementary Material (Table S.8). 

Formatted: Font: 9 pt, Bold

Deleted: Figure 8

Deleted: three 

Formatted: Superscript

Formatted: Font: 9 pt, Bold

Deleted: Figure 910 



Page 28: [1] Deleted   Gianluca Volpe   1/2/19 2:07:00 PM 
 

Page 28: [1] Deleted   Gianluca Volpe   1/2/19 2:07:00 PM 
 

Page 28: [1] Deleted   Gianluca Volpe   1/2/19 2:07:00 PM 
 

Page 28: [1] Deleted   Gianluca Volpe   1/2/19 2:07:00 PM 
 

Page 28: [1] Deleted   Gianluca Volpe   1/2/19 2:07:00 PM 
 

Page 28: [1] Deleted   Gianluca Volpe   1/2/19 2:07:00 PM 
 

Page 28: [1] Deleted   Gianluca Volpe   1/2/19 2:07:00 PM 
 

Page 28: [1] Deleted   Gianluca Volpe   1/2/19 2:07:00 PM 
 

 

Formatted

... [1]

Formatted

... [2]

Formatted

... [3]

Formatted

... [4]

Formatted

... [5]

Formatted

... [6]

Formatted

... [7]

Formatted

... [8]


