Discovering sounds in Patagonia, characterizing sei whale (*Balaenoptera borealis*) downsweeps in the south-eastern Pacific Ocean.

Running title: Sei whale vocalizations in Chile

Sonia Español-Jiménez\(^1\), Paulina A. Bahamonde\(^{1,2}\), Gustavo Chiang\(^1\), Verena Häussermann\(^3\)

\(^1\) MERI Foundation, Avenida Kennedy 5682, Santiago de Chile, Chile.

\(^2\) Núcleo Milenio INVASAL, Concepción, Chile.

\(^3\) Facultad de Ciencias Naturales, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso, Chile, and Huinay Scientific Field Station, Chile.

sespanol@fundacionmeri.cl
Abstract

The sei whale (*Balaenoptera borealis*) is one of the least known whale species. Information on sei whales distributions and its regional variability in the south-eastern Pacific Ocean are even more scarce than that from other areas. Vocalizations of sei whales from this region are not described yet. This research presents the first characterization of sei whale sounds recorded in Chile during austral autumn of 2016 and 2017. A total of 41 calls were identified to be sei whale downsweeps. In 2016, calls ranged from an average maximum frequency of 105.3 Hz down to an average minimum 35.6 Hz over 1.6 s with a peak frequency of 65.4 Hz. During 2017, calls ranged from an average maximum frequency of 93.3 Hz down to 42.2 Hz (over 1.6 s) with a peak frequency of 68.3 Hz. The absolute minimum frequency recorded was 30 Hz and the absolute maximum frequency was 129.4 Hz. Calls generally occurred in pairs, but triplets or singles were also registered. These low frequency sounds share characteristics with recordings of sei whales near the Hawaii Islands, but with differences in the maximum frequencies and duration. These calls distinctly differ from sounds previously described for sei whales in the Southern Ocean and are the first documented sei whale calls in the south-eastern Pacific.
The sei whale (*Balaenoptera borealis*; Lesson 1828) is the third largest rorqual in the Balaenopteridae family, after the blue whale (*B. musculus*) and the fin whale (*B. physalus*). It is also one of the least known whales. The sei whale is a cosmopolitan species found in temperate oceans and subpolar areas (Mackintosh, 1942; Gambell, 1968; Rice, 1998; Horwood, 2002; Reeves *et al*., 2002; Jefferson *et al*., 2008). It prefers deep offshore waters with temperatures below 20°C and avoids semi enclosed bodies of water (Omura and Nemoto, 1955; Gambell, 1985). North Atlantic, North Pacific and Antarctic populations are almost certainly separated and probably subdivided into geographic stocks (Horwood, 1987; Baker *et al*., 2004; Kanda *et al*., 2006; Huijser *et al*., 2018). International Whaling Commission in 1991 divided the global sei whale population in “stocks” (based on the distribution of catches, sightings and mark-recapture data) for management purposes (Donovan, 1991). However, genetic studies provide a different population distribution. For example, at North Atlantic Ocean, the sei whale population from Iceland, the Gulf of Maine and the Azores share the same genetic diversity, showing the wide latitudinal and longitudinal ranges they moved. Furthermore, it is well known the genetic divergence between North Pacific and North Atlantic stocks, but no studies of this genetic structure between hemispheres or within the Southern Ocean have been presented (Huijser *et al*., 2018). In the Southern Hemisphere, sei whale sightings were recorded from the Subtropical Convergence to the Antarctic Convergence, but the only observation record of adult animals come from the austral summer in south of the Antarctic Convergence (Gambell, 1974; Lockyer, 1977). In general, sei whales migrate seasonally from the reproduction areas in low latitudes in winter to their feedings areas in high latitudes in summer (*Reeves et al*.,
Reproduction areas are poorly known (Perry et al., 1999) and feeding areas show great variability between years (Jonsgård and Darling, 1977). Population boundaries and migratory patterns are also poorly understood. In the austral summer there are concentrations of sei whales between 40° and 50°S; older, larger individuals tend to travel to northern Antarctic, while smaller, younger individuals tend to stay at lower latitudes (Rice, 1998; Acevedo et al., 2017).

Because of their smaller size, speed and elusiveness, sei whales were comparatively less important as target species for hunting until the early 1960s. After the decline of the most profitable species such as blue whales, fin whales and humpback whales, the whaling industry increased the hunting pressure on sei whales (Gambell, 1985). Thirty years ago, between the Antarctic and the North Pacific, many whales were taken from the coasts of Peru and Chile (Tonnessen and Johnsen, 1982). Most captures were carried out by the pelagic whaling in the Antarctic, which hunted more than 110,000 sei whales between 1960 and 1970 (Horwood, 2002). The International Whaling Commission estimated the size of the sei whale populations in the South Hemisphere to be 37,000 individuals after the cessation of the commercial captures in 1984, while this number was estimated 191,000 in the 1940s (Gambell, 1985). Between 1929 and 1983 sei whales captures represented 17.3% of the total catch of whales in Chile. It was the third most hunted species with approximately 1,664 individuals captured principally on the north and central coasts (Aguayo-Lobo, 1974; Aguayo-Lobo et al., 1998), although these include an unknown number of Bryde whales (Valdivia et al., 1981; Gallardo et al., 1983; Aguayo-Lobo et al., 1998). After the whale-hunting moratorium imposed by the International Whaling Commission in 1980, several research projects focused on the populations and recovery status of the large whales such as right whales, humpback
whales, blue whale and fin whales (Reeves et al., 2002). Since 1976, sei whales have been listed as endangered (IUCN 2018). Today, sei whales are the least studied of the large whales and there has been a lack of data since the end of the commercial hunting (Prieto et al., 2011).

In Chile, there are opportunistic sightings and strandings of sei whales from Antofagasta (in the north) to the Magellan Strait (in the south), including the islands of Juan Fernandez (Gallardo et al., 1983; Schlatter, 1987; Aguayo-Lobo et al., 1998; Findlay et al., 1998; Pastene and Shimada, 1999; Guzmán, 2006; Acevedo et al., 2017). Many sightings in Central Chile and Northern Patagonia (33°-48°S) have been reported since 1966, when 286 whales were sighted in March of 1966 (between 43° and 45°S); 114 in October of the same year (between 46° and 48°S), all between 30 and 190 km off the shore (Aguayo-Lobo, 1974). In March 1968 Japanese whalers reported the sightings of several hundreds of sei whales between 46° 40’ and 48°S, with a peak concentration 30 km off the coast of the Tres Montes Peninsula at the northern limit of The Penas Gulf (Pastene and Schimada, 1999). In 2015, at Penas Gulf the largest recorded baleen whale mass mortality event was reported with 363 registered carcasses of baleen whales (Häussermann et al., 2017). Genetic and morphological analysis confirmed that the examined animals were sei whales (Häussermann et al., 2017). These historical sightings support the hypothesis of Guzman (2006) about the presence of sei whales feeding in Chilean Patagonia between Chiloe island and the Magellan Strait (Acevedo et al., 2017).

Since the sei whale is endangered and poorly known, population studies are crucial as a support for its conservation. Autonomous passive acoustic monitoring devices facilitate the monitoring of cetaceans by recording their vocal signals. Passive acoustic data can
then be used to characterize and understand their acoustic behavior and determine their distribution patterns in time and space (Clark and Ellison, 1989; Richardson et al., 1995).

Acoustic signals produced by sei whales are poorly known (Prieto et al., 2011). To date, vocalizations have been described from six different geographic areas: New England (USA), Nova Scotia (Canada), Hawaii (USA), Azores (Portugal), Auckland Islands (New Zealand,) and Antarctic Peninsula (Thompson et al., 1979; McDonald et al., 2005; Rankin and Barlow, 2007; Baumgartner et al., 2008; Calderan et al., 2014; Romagosa et al., 2015). There is no record of sei whale vocalizations from the South-eastern Pacific Ocean. Comparison from intraspecific sounds from different geographic regions is interesting for possible acoustic clues to both stock and taxonomic identities. Consequently, the aim of this work is to describe sei whale vocalizations based on opportunistic recordings at the Penas Gulf, Chile and to obtain a framework baseline about the characterizes of sei whales populations in the South-eastern Pacific Ocean.

2. Methods

Two cruises to the Tres Montes Gulf (46.2-48.0° S, 74.0-75.4° W) aboard the motor sailing vessel Saoirse were carried out in May 2016 and May 2017 during which biological, oceanographic and acoustics studies were carried out (fig 01). Marine mammals were identified visually with binoculars and the naked eye for a team of experienced marine mammal observers in the vessel.

Two different hydrophones were used for the recordings: an icListenHF hydrophone (sensitivity -171 dBV re 1 μPa with pre-amp; frequency response 10–200kHz from Ocean Sonic, Canada); and a SoundTrap 202 STD hydrophone (sensitivity -205 dBV re 1 μPa;
frequency response 60000Hz ±3 dB from Ocean Instruments, New Zealand). Also, we
made stereo recordings on several occasions with an HTI-96-MIN hydrophone (flat
frequency response from 0.02 to 30 kHz) connected to a handy recorder (H4nPro from
ZOOM).

Opportunistic and planned recordings were carried out depending on the weather
conditions and the vessel location. In 2017 the hydrophones were deployed for 2 to 5
days in 3 locations. In these cases, hydrophones were deployed at a depth of 5 or 10
meters on rocky bottom with no more than 40 meters depth. Hydrophones were hold
on a row with an anchorage in the end and superficial buoys in the opposite side. In both
years, during the day or night, hydrophones were deployed at a depth of 5 and 10
meters from the stationary vessel. In the opportunistic recordings, recordings were
continuously, but in the night when the vessel was anchorage, the recordings were in
intervals between 10-30 minutes each hour for guarantee the capacity of the acoustic
personal to study the recording in the next day.

During all the recordings, the engine vessel was turn off. All the recordings were stored
in the internal card memory of the equipments, and at the end of the day these were
download in a portable computer.

Audio data were analyzed using Raven Pro 1.5 (Cornell University, Ithaca, NY). Low and
high frequency (Hz), frequency range (Hz), peak frequencies (the frequency at which the
maximum power occurred within a call) and duration (s) for all calls found and attributed
to sei whales were analysed from spectrograms and waveform plots created in Raven
Pro 1.5 (Hann window; 50% overlap; window size 14563 samples; DFT 16384 samples).
Figure 01. Study area including sighting and recording locations. The whale tail indicates the area where sei whale were sighted and vocalizations were identified.
3. Results

Sei whales were sighted in both expeditions (2016 and 2017). In addition, during one day in 2017, humpback whales were sighted. Sound was recorded during 16 days in 2016 and during 19 days in 2017. A total of 363 hours was recorded between both expeditions, because the recordings were not continuous during every day, 136 hours in 2016 and 227 hours in 2017. Sei whale calls were found in 8 archives for 3 days, on 7 May 2016 and 10-11 May 2017, at 2 different locations (one in 2016 and other in 2017) (Table 1). In acoustic data from 2016, sei whale calls were detected when sei whales were sighted closer the vessel (fig 02). In 2017, between May 8th and 10th, sei whales were sighted in the area were after sei whale calls had been recorded (fig 02). Sei whale calls from 2016 were only recorded around midday, while in 2017 they were recorded in the late afternoon or at night (Table 1).
Figure 02. Photographed sei whale at the Penas Gulf a) May 7th, 2016. Photo by: Katie McConnell; b) May 10th, 2017. Photo by: Keri-Lee Pashuk.
Table 1. Sei whale recordings at the Penas Gulf.

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Local Hour</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sampling rate</th>
<th>Hydrophone Deep (meters)</th>
<th>Recording duration (minutes)</th>
<th>Hydrophone</th>
<th>Sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>07-may</td>
<td>14:07</td>
<td>S47°09.625'</td>
<td>W074°19.266'</td>
<td>44100</td>
<td>5</td>
<td>34</td>
<td>HTI-96-MIN hydrophone + Handy recorded</td>
<td>2 individuals of sei whale closer to the vessel. Figure 02 (a).</td>
</tr>
<tr>
<td>2017</td>
<td>10-may</td>
<td>19:43</td>
<td>S46°46.100'</td>
<td>W75°31.400'</td>
<td>48000</td>
<td>13</td>
<td>30 minutes each hour</td>
<td>SoundTrap 202 STD</td>
<td>3 individuals of sei whale in the area between 8-10 May. Figure 02 (b).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22:43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>11-may</td>
<td>00:43</td>
<td>S46°46.100'</td>
<td>W75°31.400'</td>
<td>48000</td>
<td>13</td>
<td>31 minutes each hour</td>
<td>SoundTrap 202 STD</td>
<td>3 individuals of sei whale in the area between 8-10 May. Figure 02(b).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02:43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>05:43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>07:43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only in two occasions humpback whale sounds above 2000 Hz were detected, in the rest of the analyzed audios, only sei whale sounds were detected without associated calls. Only calls with high-visual quality were measured. All vocalizations reported in this study were identified as downsweep calls (fig 03). We identified a total of 41 calls; 5 calls in 2016 and 36 in 2017. In 2016, calls ranged from an average maximum frequency of 105.3 Hz (SD=18.3 Hz) down to an average minimum frequency of 35.6 Hz (SD=4.6 Hz) over 1.6 s (SD=0.1 s) with a peak frequency of 65.4 Hz (SD=14.1 Hz) (Table 2). In 2017, calls ranged from an average maximum frequency of 93.3 Hz (SD=10.9 Hz) down to 42.2 Hz (SD=5.6 Hz) over 1.6 s (SD=0.3 s) with a peak frequency of 68.3 Hz (SD=14.2 Hz). The minimum frequency was 30 Hz and the maximum frequency was 129.4 Hz. Calls occurred in pairs (n=12), singles (n=5) or triplets (n=4) (Table 2).
Figure 03. Spectrogram of sei whale vocalization recorded with the hydrophone (32768 FFT, Hamming window). A. five seconds spectrogram zoomed in on a pair of calls. B. five seconds spectrogram of a pair of call. C. A pair and a single call of sei whale call within 15 seconds.
Table 2. Comparison of the frequency and timing of recorded calls in the present study with studies in other areas. Values are mean value ± standard deviation. ND = no data (the study did not include that information)

<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Year/nº vocalizations</th>
<th>High Frequency (Hz)</th>
<th>Low frequency (Hz)</th>
<th>Peak frequency (Hz)</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present study</td>
<td>Chile, South-eastern Pacific</td>
<td>2016/5</td>
<td>105.3±18.3</td>
<td>35.6±4.6</td>
<td>65.4±14.1</td>
<td>1.6±0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2017/36</td>
<td>93.3±10.9</td>
<td>42.2±5.6</td>
<td>68.3±14.2</td>
<td>1.6±0.3</td>
</tr>
<tr>
<td>Romagosa et al. (2015)</td>
<td>Azores, Northern Atlantic Ocean</td>
<td>2012/53</td>
<td>99.8±13.6</td>
<td>37.4±8.4</td>
<td>52.0±11.4</td>
<td>1.21±0.33</td>
</tr>
<tr>
<td>Calderan et al. (2014)</td>
<td>Auckland Islands, Southern Atlantic Ocean</td>
<td>2013/4</td>
<td>78.0±2.0</td>
<td>69.0±08</td>
<td>73.8±0.5</td>
<td>1.1±0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2013/4</td>
<td>83.3±4.1</td>
<td>53.8±4.9</td>
<td>78.3±3.1</td>
<td>1.2±0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2013/30</td>
<td>66.3±10.7</td>
<td>36.6±2.1</td>
<td>45.8±11.0</td>
<td>1.2±0.3</td>
</tr>
<tr>
<td>Gedamke and Robinson (2010)</td>
<td>East Antarctica, Southern Ocean</td>
<td>2006/ND</td>
<td>570</td>
<td>170</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Baumgartner et al. (2008)</td>
<td>New England, North western Atlantic Ocean</td>
<td>2006-2007/108</td>
<td>82.3±15.2</td>
<td>34.0±6.2</td>
<td>ND</td>
<td>1.38±0.37</td>
</tr>
<tr>
<td>Rankin and Barlow (2007)</td>
<td>Hawaii, Pacific Ocean</td>
<td>2002/2</td>
<td>100.3±11.1</td>
<td>44.6±12.9</td>
<td>ND</td>
<td>1.2±0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002/105</td>
<td>39.4±3.4</td>
<td>21±2.4</td>
<td>ND</td>
<td>1.2±0.11</td>
</tr>
<tr>
<td>McDonald (2005)</td>
<td>West Antarctica, Southern Ocean</td>
<td>2003/50</td>
<td>433</td>
<td>192</td>
<td>ND</td>
<td>0.45±0.3</td>
</tr>
<tr>
<td>Knowlton et al. (1991)</td>
<td>Canada, Northern Atlantic Ocean</td>
<td>1986-1989/ND</td>
<td>3500</td>
<td>1500</td>
<td>ND</td>
<td>0.5-0.8</td>
</tr>
<tr>
<td>Thompson (1979)</td>
<td>Canada, Northern Atlantic Ocean</td>
<td>ND</td>
<td>3000</td>
<td>ND</td>
<td>ND</td>
<td>0.7</td>
</tr>
</tbody>
</table>
4. Discussion

Given that recordings from this project were opportunistic and without digital acoustic recording tags (DTAG) deployed in sei whales we cannot prove the origin of the calls. However, we can confirm with reasonable certainty that vocalizations recorded off The Penas Gulf were produced by sei whales, due to the sightings of this species during the recordings and the expeditions. Blue whales (*Balaenoptera musculus*), fin whale (*Balaenoptera physalus*) or minke whales (*Balaenoptera acutorostrata*) produce downsweep as well (Thompson *et al.*, 1996; Schevill and Watkins, 1972; Watkins, 1981). Bryde whales (*Balaenoptera brydei*) has also several call types, included downsweep, but inhabit tropical and subtropical waters and we do not have any record in this area yet (Omura, 1959; Wade and Gerrodette, 1993; Oleson, *et al.*, 2003). Generally, fin whales downsweep have initial frequencies below 35 Hz and final frequencies around 20-18 Hz (Watkins, 1981), similar than minke whales but with shorter durations (0.2-0.3 sec) and higher frequencies (130-60 Hz) (Schevill and Watkins, 1972). Minke whales in the North Atlantic produce long pulse trains (Mellinger *et al.*, 2000), these were not recorded in this area, fin and minke whales downsweep are definitively different than our recordings. Only downsweeps from blue whales described in Chile, through the DTAG data, has a lower peak frequency and duration; low frequency is higher and downsweep had been accompanied in the recorders by the Southeast Pacific type 2 (SEP2) (Saddler *et al.*, 2017), supporting our results, that these records are really from sei whales. In addition, sei whale vocalizations described here show very similar characteristics to those described off Azores Islands by Romagosa *et al.* (2015), off New England by Baumgartner *et al.* (2008) and off Hawaii by Rankin and Barlow (2007). In these areas, sei whale vocalizations are characterized by low frequency downsweeps.
However, sei whales sweeps recorded off Nova Scotia by Thompson (1979) and Knowlton et al. (1991) or in Antarctic waters by McDonald (2005), Gedamke and Robinson (2010) are different from our recording and are characterize by higher frequencies.

Rankin and Barlow (2007) describe two ranges for the low frequency downsweeps, 100-44 Hz and 39-21 Hz with durations of 1.0 s and 1.3 s, respectively. In the present study, the minimum frequency was 30 Hz, being the average calls in the superior range defined by those authors. The range of frequencies described here are similar to what Baumgartner et al. (2008), Newhall et al. (2012) and Romagosa et al. (2015) reported, although the maximum frequency reported in the present study is higher. The higher frequency calls recorded in the North Pacific (Hawaii) and in the present study are similar, but our results showed higher frequencies in the top range (maximum off 111.4 Hz versus 129.4 Hz, respectively) and a longer duration (maximum 1.27 s versus 2.27 s, respectively). The similarities could be expected due to the possibility of there being a stereotypical call used in feeding grounds, as suggested by Romagosa et al. (2015). However, sei whales recorded in this study have shown a different call with higher frequencies and longer durations than those detected from North Atlantic or North Pacific waters.

In the sub-Antarctic Auckland Islands, a series of four calls is predominant (Calderan et al., 2014), but the calls recorded at Penas Gulf occurred principally in pairs, although single calls and triplets were also detected. During this study, no four-call series were recorded as have been recorded in North Atlantic or Pacific waters (Baumgartner et al., 2008, Newhall et al., 2012, Romagosa et al., 2015).
Sei whale calls from Antarctic waters are characterized by broadband, tonal, frequency modulated vocalizations between 100 and 600 Hz with durations between 1 and 3 s (McDonald 2005, Gedamke and Robinson, 2010). These calls do not present similarities with the calls recorded here. This may be due a geographic separation of the populations, suggesting that different sei whale populations produce different stereotypic calls. The structure of the calls of sei whales is more variable between whales than within an individual whale (Baumgartner et al., 2008). This suggests that sei whales present in Antarctic waters do not transit through southern Chile, or at least near shore Patagonia, in their migration to the breeding grounds in lower latitudes. Thus, the sei whales found in Chile, near shore in Penas and Tres Montes Gulf, might represent a different population. The few calls obtained in both expeditions maybe was due the duration of recorded in each site since they were opportunistic recordings, so visual observations, tagging efforts and genetic studies are needed to verify this hypothesis.

In the present study, most acoustic activity was recorded during the night, while Baumgartner and Fratantoni (2008), Newhall et al. (2012) and Romagosa et al. (2015) recorded calls mostly during the day. These darkness patterns coincide with results from humpback whales songs reported from Chile (Español-Jiménez and van der Schaar, 2018). However, low frequency sei whale downsweeps may have a different function from the stereotyped humpback vocalizations considered as songs (Edds-Walton 1997).

Though the behavior of sei whales is poorly studied, most studies on this species state that sei whales prefer offshore waters, but these new records and sightings along the coast of Penas and Tres Montes Gulf (Aguayo-Lobo 1974; Pastene and Schimada, 1999; Häussermann et al., 2017), demonstrated a wide habitat range, with the whales probably following productive feeding areas. If this is true, it is reasonable to assume
that the calls of sei whale’s calls are influenced by the feeding conditions (as proposed by Baumgartner and Fratantoni (2008)) and have communicative functions, e.g. cooperatively searching for prey as suggested Newhall et al. (2012). Baumgartner and Fratantoni (2008) hypothesize that calling rates are reduced at night while the whales are feeding but increase with social activity during the day when copepods are either more difficult or less efficient to capture at depth. Our data could not support this hypothesis since calls were recorded at night and it was not possible to observe what activities the whales were engaged in. Other factor could be important in the discussion about the acoustic behavior is the background noise, which masking biological important signals and impede the communications between individuals (Clark et al., 2009).

This new description of sei whale calls adds knowledge to the vocalizations and distribution of an endangered species (IUCN, 2018) red-listed under criteria A-1. It is also listed in Appendix I (“Endangered migratory species”) and II (“Migratory species with unfavorable conservation status which require international agreements for their conservation and management”) in the Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention 1979). Satellite tracking of the Chilean sei whale population, individual photo identification, distribution and characteristics of the prey species, behavioral, genetic and oceanographic studies are necessary to test some hypotheses and improve our understanding of this species.

Acknowledgements

This research would not have been possible without the assistance of Keri-Lee Pashuk and Greg Landreth of Patagonia Projects who organized the funding and operations of
expedition vessel SRV Saoirse supporting HF29 and HF32 expeditions; in addition, we want to thank Michael Kean, Gastón Herrera, Sebastián Durán, Cristian Santana, Valentina Molinos; Mark Woods of Ocean Sonic and Daniel Zitterbart for provided hydrophones; John Atkins to Ocean Instruments for help in the configurations. These expeditions were funded by Blue Marine Foundation, Global Marine Networks (USA); Iridium Communications Inc.; Deep Trekker Inc (Canada), MERI Foundation, Huinay Foundation and Fondecyt project nr 1161699. We are very grateful to Alessandro Bocconcelli and Joe Warren for their feedback on this research, also to the anonymous referee. This is publication nr 161 of Huinay Scientific Field Station. Paulina Bahamonde is supported by Nucleo Milenio INVASAL funded by Chile's government program, Iniciativa Cientifica Milenio from Ministerio de Economia, Fomento y Turismo.
References

structure of North Atlantic and North Pacific sei whales (Balaenoptera borealis) inferred
from mitochondrial control region DNA sequences and microsatellite

monitoring for marine mammals in the Jacksonville Range Complex, Marine Physical
Laboratory Technical Memorandum 548, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA. 2010.

Jonsgård, Å., and Darling, K.: On the biology of the eastern North Atlantic sei whale,
Balaenoptera borealis Lesson, Reports of the International Whaling Commission, 1, 124–

sei whales, *Balaenoptera borealis*, as revealed by microsatellites, Marine Biotechnology,

Knowlton, A., Clark, C. W. and Kraus, S. D.: Sounds recorded in the presence of sei whales
Balaenoptera Borealis, Abstract Book of The Ninth Biennial Conference on the Biology
Lockyer, C.: Some possible factors affecting the age distribution of the catch of sei
whales in the Antarctic, Reports of the International Whaling Commission, Special Issue,
1, 63-70, 1977.

Mackintosh, N.A.: The southern stocks of whalebone whales, Discovery Reports, XXII,
197-300, 1942.

E.: Sei whale sounds recorded in the Antarctic, J. Acoust. Soc. Am., 118, 3941–3945,
2005.

(Balaenoptera acutorostrata) pulse trains recorded near Puerto Rico. Marine Mammal
Science, 16(4), 739-756, 2000

distance passive localization of vocalizing sei whales using an acoustic normal mode

Oleson, E. M., Barlow, J., Gordon, J., Rankin, S., and Hildebrand, J. A.: Low frequency calls

Omura, H., and Nemoto, T.: Sei whales in the adjacent waters of Japan. III. Relation
between movement and water temperature, Reports of the International Whaling

Omura, H.: Bryde's whale from the coast of Japan. The Scientific Reports of the Whales
Research institute, 14, 1-33, 1959, 1959.

