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Abstract. The performance of short-range operational forecasts of significant wave height in the Baltic Sea 6 

is evaluated. Forecasts produced by a base configuration are inter-compared with forecasts from two 7 

improved configurations: one with improved horizontal and spectral resolution and one with ensembles 8 

representing uncertainties in the physics of the forcing wind field and the initial conditions of this field. 9 

Both the improved forecast classes represent an almost equal increase in computational costs. The inter-10 

comparison therefore addresses the question: would more computer resources most favorably be spent on 11 

enhancing the spatial and spectral resolution or, alternatively, on introducing ensembles? The inter-12 

comparison is based on comparisons with hourly observations of significant wave height from seven 13 

observation sites in the Baltic Sea during the three-year period 2015-2017. We conclude that for most wave 14 

measurement sites, the introduction of ensembles enhances the overall performance of the forecasts, 15 

whereas increasing the horizontal and spectral resolution does not. These sites represent offshore 16 

conditions, well exposed from all directions with a large distance to the nearest coast and with a large 17 

water depth. Therefore, the detailed shoreline and bathymetry is also a priori not expected to have any 18 

impact. Only at one site do we find that increasing the horizontal and spectral resolution significantly 19 

improved the forecasts. This site is situated in nearshore conditions, close to land, with a nearby island and 20 

therefore shielded from many directions. This study therefore concludes that to improve wave forecasts in 21 

offshore areas, ensembles should be introduced. For near shore areas, the study suggests that additional 22 

computational resources should be used to increase the resolution. 23 

 24 

1 Introduction 25 

Severe wave conditions affect ship navigation, offshore activities and risk management in coastal areas. 26 

Therefore, reliable forecasts of wave conditions are important for ship routing and planning purposes when 27 

constructing, maintaining and operating offshore facilities, such as wind farms and oil installations. 28 

Waves are generated by energy transfer from surface winds that act on the sea. The energy transfer is 29 

determined by the fetch (the distance, over which the wind acts), and by the duration of the wind. For deep 30 

water waves, defined as the wave height being much smaller than the water depth, dissipation of the wave 31 

energy mainly occurs through internal processes, e.g. whitecapping.. For shallow water waves, defined as 32 

the wave height being comparable to the water depth, dissipation through bottom friction and through 33 

wave breaking over a shallow and sloping sea bed becomes important. Shallow water waves may also be 34 

refracted over a varying bathymetry Therefore, a correct and detailed description of the bathymetry is 35 

important for correctly forecasting waves in coastal areas and other shallow sea areas. Other factors with a 36 
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potential effect on the development of waves include nonlinear wave-wave interaction, ocean currents, 37 

time-varying water depth due to variations in sea level, and sea ice coverage. 38 

The Baltic Sea is connected to the world ocean through the Danish waters with shallow and narrow Straits 39 

(see Figure 1), and this allows virtually no external wave energy to be propagated into the area. The Baltic 40 

Sea consists of a number of basins with depths exceeding 100 m, separated by sills and water areas with 41 

more moderate water depths. Between Finland and Sweden lies an archipelago with complicated 42 

bathymetry on very small spatial scales. The wind is in general westerly over the area, and the most 43 

prominent cause for severe wind and wave conditions is low pressure systems passing eastward over 44 

central Scandinavia. Winter ice occurs in the northern and eastern parts of the Baltic Sea. There is no 45 

noticeable tidal amplitude or permanent current systems. 46 

Short-term forecasting of surface waves is done by a wave model, forced with forecasted wind from an 47 

atmospheric numerical weather prediction (NWP) model. The equations of the NWP model are discretized 48 

on a horizontal grid with a certain spatial resolution, which influences the maximum spatial resolution of 49 

the wave model. The available computer resources limit the horizontal grid spacing, that can be afforded. 50 

Over time, technical development has increased available computational resources, which traditionally 51 

have been used to increase the horizontal spatial resolution of the NWP and wave models. This allows for 52 

an improved description and forecasting of the synoptic and mesoscale atmospheric systems, including the 53 

details of the associated wind field. In addition, a more detailed description of the bathymetry improves the 54 

correct description of dissipation and refraction of waves, as argued above. Additional computer resources 55 

may also be used to improve the spectral resolution in the wave model. This includes the directional 56 

resolution and the number of frequencies included. 57 

Increasing computer resources have also made ensemble NWP possible. The purpose of ensemble 58 

forecasts is to improve forecast skill by taking both the initial error of the forecast and the uncertainty of 59 

the model physics into account. Furthermore, ensemble forecast allows for probabilistic forecasts, 60 

identified as a priority for operational oceanography (She et al., 2016), and allows for quantifying forecast 61 

uncertainty. Ensemble wave forecast systems have been implemented at global scale (Alves et al., 2013; 62 

Cao et al., 2009; Saetra and Bidlot, 2002) and more regionally in the Norwegian Sea (Carrasco and Saetra, 63 

2008), and in the German Bight and Western Baltic (Behrens, 2015). 64 

From the above discussion it is evident that additional computer resources can be used in different ways to 65 

change the wave forecast setup, in order to increase the forecast quality. The purpose of the present study 66 

is to investigate the effect on the forecast quality of increasing the horizontal resolution and the spectral 67 

resolution vs. introducing ensemble forecasts. This will be done by verifying the DMI operational 68 

forecasting of wave conditions in the Baltic Sea in different configurations against available observations of 69 

significant wave height. 70 

Increasing the horizontal resolution of the NWP-system may also lead to improved wind forecasts, due to in 71 

particular better descriptions of processes in extratropical cyclones. In these cases, where the wind field is 72 

strong and varying on a small spatial scale, wave forecasts may also be improved by running the wave 73 

model in a similarly high resolution.   74 
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This paper is arranged as follows. Section 2 describes the model and setup, Section 3 describes the 75 

observations used and the verification methodology is described in Section 4. Verification of DMI-HIRLAM 76 

wind forecasts is in Section 5, whilst verification of the significant wave height (SWH) is presented  in 77 

Section 6. Results of the verification are discussed in Section 7 and conclusions made in Section 8. 78 

2 Model and setup 79 

The DMI operational wave forecasting system DMI-WAM uses the 3rd generation spectral wave 80 

model WAM Cycle4.5.1 (Günther et al., 1992), with one minor change of source term functions. To speed 81 

up wave growth from calm sea, the spectral energy has a lower limit corresponding to a wave height of 7 82 

cm. It is forced by the regional NWP model DMI-HIRLAM and the global NWP model ECMWF-GLM. WAM 83 

solves the spectral wave equation, and calculates the wave energy as a function of position, time, wave 84 

period and direction. Derived variables, such as the significant wave height (SWH), are calculated as 85 

suitable integrals of the wave energy spectrum. 86 

The DMI-WAM model system forecasts waves in a larger area than the Baltic Sea and therefore has a setup 87 

with two nested spatial domains of different geographical extent (see Figure 1): North Atlantic (NA) and 88 

North Sea/Baltic Sea (NSB), of which forecast results from the NSB-domain are analyzed in this study. The 89 

NA domain uses the JONSWAP wave spectrum for fully developed wind-sea (Hasselmann et al., 1973) along 90 

open model boundaries, while the NSB domain use modeled wave spectra from the NA domain at its open 91 

boundaries (one-way nesting). 92 

 93 

 94 

Figure 1 Nesting of domains in DMI-WAM. Outer frame is North Atlantic (NA) domain, inner frame is the North Sea/Baltic 95 
Sea(NSB)-domain. Dotted frame is the Transition Area. Only data from the NSB-domain are analyzed in this study. 96 

The wave energy is discretized into a number of wave directions and frequencies. To facilitate wave growth 97 

from calm sea, a lower limit is applied to the spectral energy. The resulting surface roughness 98 

parameterizes the effect of capillary waves, and corresponds to a minimum significant wave height of 7 cm. 99 

The energy source is the surface wind. The sink terms are wave energy dissipation through wave breaking 100 

(white capping), wave breaking in shallow areas, and friction against the sea bed. Depth-induced wave 101 

breaking (Battjes and Janssen, 1978) is used in the NSB domain only, since in the NA domain, the depth 102 

maps are not detailed enough for activation of this effect. The wave energy is redistributed spatially by 103 

http://www.dmi.dk/laer-om/temaer/atmosfaeren/hirlam/
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wave propagation and depth refraction, and spectrally by non-linear wave-wave interaction. Interaction 104 

with ocean currents and effects due to varying sea level caused by tides or storms are not incorporated. 105 

In addition to a land mask, we have a time-varying ice mask. Below ice 30% concentration, sea ice is 106 

assumed to have no effect. Above 30% ice concentration, no wave energy is generated or propagated, i.e. 107 

the effect is like that of land. The applied sea ice concentrations originate from OSISAF 108 

(http://osisaf.met.no/p/ice/) with a frequency of 24 hours and around 25 km true horizontal resolution, 109 

gridded to ~10 km horizontal resolution and interpolated to the WAM-grid. The ice cover is initialized every 110 

day at 00z, and kept constant throughout each forecast run. 111 

The surface wind forcing is provided by different atmospheric models for the two domains. For the NA 112 

domain, wind is provided by the ECMWF-HRES global weather forecast every 3 hours. For the NSB domain, 113 

the surface wind is provided every hour by DMI-HIRLAM. Setup details are summarized in Table 1 114 

 115 

Table 1 Specifications of DMI-WAM nested setup. 116 

Domain North Atlantic North Sea/Baltic Sea 

Longitude 69W-30E 13W-30E 

Latitude 30N-78N 47N-66N 

Atmospheric forcing ECMWF-HRES DMI-HIRLAM  

Boundary condition JONSWAP One-way nested 

Depth-induced wave 
breaking 

No Yes 

 117 

Each forecast run is initialized using the sea state at analysis time, calculated by the previous run as a six 118 

hour forecast. The operational DMI-WAM suite is run four times a day to 48 h forecast range. This is also 119 

true for the North Atlantic domain, even when new forcing is available twice per day only. This is for 120 

practical reasons, since the North Atlantic domain is very cheap to run. Spatial fields of forecasted SWH and 121 

other variables are output in hourly time resolution. 122 

Historically, three different configurations of the DMI-WAM setup have been used, and data from these for 123 

the period 2015-2017 is the basis for the present verification. In the old LOW configuration, the horizontal 124 

resolution is around 50 km in the NA domain and around 10 km in the NSB domain. The wave energy is 125 

resolved in 24 directions and at 32 frequencies, corresponding to wave periods between 1.25-23.94 s and 126 

wave lengths between 2.4-895 m (in deep water). Bathymetry is ETOPO (Amante and Eakins, 2009) in the 127 

NA domain, and the Baltic bathymetry from IOW (https://www.io-warnemuende.de/topography-of-the-128 

baltic-sea.html) supplemented by depth data from the Danish Geodata Agency (DGA) in the NSB domain. 129 

More recently, an ensemble configuration (LOWENS) has been introduced with characteristics identical to 130 

LOW, but using a parallel run of 11 ensemble members forced with perturbed atmospheric fields (initial 131 

conditions and physics). Finally, in the recently introduced HIGH configuration, the horizontal resolution is 132 

around 25 km in the NA domain and around 5 km in the NSB domain The wave energy is resolved in 36 133 

directions and 35 frequencies, corresponding to wave periods between  0.94-23.94 s, and wave lengths 134 

between 1.37-895 m (in deep water). Bathymetry is RTopo (Schaffer et al., 2016).  135 

http://osisaf.met.no/p/ice/
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All configurations are forced by winds from ECMWF-HRES in the NA domain and DMI-HIRLAM in the NSB 136 

domain. In the NSB domain, the LOW and HIGH are forced by the S03 version (3 km horizontal resolution), 137 

while LOWENS is forced by the S05 version (5 km horizontal resolution). The S03 and S05 versions of DMI-138 

HIRLAM were used operationally by DMI as deterministic and ensemble weather forecast models in the 139 

2015-17 period. While the better resolution of S03 might have an impact on forecasts where orographic 140 

effects matter, the impact on wind forecasts over sea is expected to be insignificant. The DMI-HIRLAM 141 

winds are interpolated to the WAM grids by bilinear interpolation. To diminish coastal effects, DMI-HIRLAM 142 

delivers a special water-wind to DMI-WAM, in which the surface roughness everywhere is assumed to be 143 

that of water. This enhances the wind speed in the coastal zone, most important in semi-enclosed areas 144 

(bays, fjords, etc.).  It is basically a way to sharpen the land/sea boundary, reducing influence of land 145 

roughness on near-shore winds. An overview of the DMI-WAM configurations is provided in Table 2. 146 

Table 2 Details of DMI-WAM configuration used in this study.  147 

 
  

DMI-WAM 
Horizontal 
resolution [km] 
 

# wave 
directions 

# wave 
spectral 
frequencies 

Bathymetry Atmospheric 
horizontal resolution 
[km] 
 

Ensemble 
members 

North 
Atlantic 

NSB  North 
Atlantic 

NSB North 
Atlantic 
(ECMWF) 

NSB 
(DMI-
HIRLAM) 

North 
Atlantic 

NSB 

LOW 50 10 24 32 ETOPO IOW/DGA 16 3 - - 

LOWENS 50 10 24 32 ETOPO IOW/DGA 16 5 - 11 

HIGH 25 5 36 35 RTopo RTopo 16 3  -  - 

 148 

When replacing the LOW forecast configuration with the HIGH configuration, the required computational 149 

resources for running DMI-WAM are increased by a factor of 22 (increase in horizontal resolution) × 1.75 150 

(effective decrease in time step) = 7 due to higher spatial resolution, and by a factor of  1.5 (increase of 151 

number of directions) × 35/32 (increase of number of spectral frequencies) = 1.6. This gives a total factor of 152 

7 × 1.6    ≈ 11.5.  From the LOW to the LOWENS configuration, it is increased by a factor of 11 (number of 153 

ensemble members). Since these increases in computational effort are very similar, an inter-comparison 154 

can contribute to answering the question: should additional computer resources be used for increasing the 155 

spatial and spectral resolution, or for sampling the uncertainty in meteorological conditions using 156 

ensembles. 157 

The LOW and HIGH configurations both produce a class of deterministic forecast, which are also named 158 

LOW and HIGH, respectively. The LOWENS configuration produces a class of probabilistic forecast, called 159 

LOWENS. In addition, the ensemble mean defines a class of deterministic forecasts, called LOWENSMEAN. 160 

To illustrate differences to be expected among the deterministic forecasts, we show 48 h forecasts of SWH 161 

valid at the peak of the ‘Toini’ storm on 10 January 2017. 162 

  163 
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 164 

   
Figure 2 Forecasted (48h) SWH at the peak of ‘Toini’ storm 10 january 2017 00z for LOW (left), LOWENSMEAN (middle) and HIGH 165 
(right) forecasts. 166 

All three forecasts agree in the gross features of the forecasted SWH field. However, there are differences,  167 

e.g., northeast of the island of Gotland, the area with SWH above 6 m extends further southward in the 168 

LOWNSMEAN forecast, than in the LOW and HIGH forecasts. 169 

3 Observations 170 

Observed series of SWH from wave measurement sites in the Baltic Sea, obtained from the Copernicus 171 

Marine Environmental Monitoring System (CMEMS) database, are used. None of the series has a 172 

continuous record over the three-year period 2015 – 2017. Data gaps may be due to malfunction, 173 

maintenance or withdrawal of the instrument. The latter occur during winter due to the possibility of ice. 174 

We selected sites with valid observations that covered more than 40% and were distributed reasonably 175 

throughout the study period. To avoid biases in the verification measures due to under- or 176 

overrepresentation of particular seasons, we also aimed at having an approximately even coverage 177 

throughout the year. 178 

Figure 3 and Table 3 show the positions and water depths of the wave measurement sites together with 179 

the bathymetry of the Baltic Sea. Some sites did not observe at the full hour. Observations from these sites 180 

were ascribed to the nearest full hour, if the time distance between the observation time and the full hour 181 

was less than 15 min, otherwise not used. All observation series used are shown in Figure S1. The frequency 182 

of observed SWH in different intervals for each site is given in Table 4 183 
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 184 

Figure 3 Map of the Baltic Sea with bathymetry and positions of wave measurement sites marked with crosses. For details about 185 
sites, see Table 3. Meterological stations used in the wind verification of DMI-HIRLAM are marked with circles. 186 

Table 3 Details of wave measurement sites. 187 

  Observation site   Lon   Lat    Depth [m] 

                                 Model Actual 

A Arkona WR         13.9  54.9     46     45 

B Bothnian Sea      20.2  61.8    118   ~120 

D Darsser Sill WR   12.7  54.7     20     21 

F Finngrundet WR    18.6  60.9     56     67 

K Knolls Grund      17.6  57.5     63     90 

N Northern Baltic   21.0  59.2     68   ~100 

V Vahemadal         24.7  59.5     18      5 

 188 

 189 

Table 4 Observed frequency of SWH in different bins for wave measurement sites.  190 

       SWH [m]         0-1   1-2   2-3   3-4   4-5   >5 

Arkona WR             0.47  0.39  0.12  0.01 <0.01 <0.01 

Bothnian Sea          0.46  0.38  0.12  0.02  0.01 <0.01 

Darsser Sill WR       0.67  0.31  0.02 <0.01 <0.01 <0.01 

Finngrundet WR        0.69  0.27  0.04  0.01 <0.01 <0.01 

Knolls Grund          0.62  0.31  0.06  0.01 <0.01 <0.01 

Northern Baltic       0.39  0.37  0.18  0.05  0.01 <0.01 

Vahemadal             0.78  0.20  0.02 <0.01 <0.01 <0.01 

 191 

4 Verification methodology 192 

In this section, a short overview of the verification procedure will be given. For background and more 193 

details regarding the verification measures, we refer to (Jolliffe and Stephenson, 2003) 194 
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For each measurement series of SWH, the corresponding forecast series for all forecast classes and for 195 

forecast range zero to 48 h for the grid point nearest to the position of the wave measurement site was 196 

extracted from the model output.  197 

For the deterministic and continuous forecast classes (LOW, LOWENSMEAN and HIGH), we use the 198 

conventional performance measures root mean square error (RMSE), defined as the square root of the time 199 

average of the sum of squared differences between forecast and observation: 200 

𝑅𝑀𝑆𝐸(𝜏) = 〈(ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏 − ℎ𝑠,𝑜𝑏𝑠)

2
〉 

the bias 201 

𝐵𝐼𝐴𝑆(𝜏) = 〈ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏 − ℎ𝑠,𝑜𝑏𝑠〉, 202 

and the correlation coefficient 203 

𝐶𝐶 =  
〈(ℎ𝑠,𝑓𝑐𝑠𝑡

𝜏 − 〈ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏 〉)(ℎ𝑠,𝑜𝑏𝑠 − 〈ℎ𝑠,𝑜𝑏𝑠〉)〉

√〈(ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏 − 〈ℎ𝑠,𝑓𝑐𝑠𝑡

𝜏 〉)
2

〉 〈(ℎ𝑠,𝑜𝑏𝑠 − 〈ℎ𝑠,𝑜𝑏𝑠〉)
2

〉

 

where  ℎ𝑠,𝑜𝑏𝑠  is the observed SWH and ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏  is a corresponding forecast with forecast range 𝜏 . 204 

The RMSE is a positive definite quantitative measure, and smaller values mean a better forecast. The bias 205 

can take positive and negative values, and a good forecast has a numerically small value. The averaging, 206 

indicated by 〈∙〉, is found based on all available values during the three-year period. Also, the RMSE and 207 

BIAS as function of ℎ𝑠,𝑜𝑏𝑠 will be considered. 208 

A framework for verifying probabilistic forecasts is the continuous ranked probability score (CRPS), defined 209 

as 210 

𝐶𝑅𝑃𝑆(𝜏) = 〈∫[𝐹𝜏(ℎ𝑠) − 𝐻(ℎ𝑠 − ℎ𝑠,𝑜𝑏𝑠)]
2

𝑑ℎ𝑠〉, 211 

where 𝐹𝜏(ℎ𝑠) is the forecasted probability distribution, ℎ𝑠,𝑜𝑏𝑠 is the observed value, and 𝐻(∙) is the 212 

Heaviside step function. A small CRPS occurs when the median of the probabilistic forecasts are close to the 213 

observed values. Also a sharp probabilistic forecast with a small spread favors a small CRPS. This means that 214 

the best forecast is achieved when CRPS is small. CRPS can be applied to both the probabilistic forecast 215 

class LOWENS, as well  as the deterministic forecast classes, LOW, LOWENSMEAN and HIGH, since these 216 

can be regarded as probabilistic forecasts with a step probability distribution. For the deterministic forecast 217 

classes, the CPRS equals the mean absolute error. 218 

Besides the continuous and probabilistic forecasts, also the binary forecast of the SWH exceeding a 219 

specified threshold is considered. The performance measure used is the Brier Score, defined as 220 

𝐵𝑆(𝜏) = 〈(𝑝 − 𝑥)2〉, 221 

where 𝑝 is the forecasted probability with forecast range 𝜏 of exceeding the threshold and 𝑥 takes the 222 

value of 1 or 0 dependent on whether the threshold actually was exceeded or not. The Brier Score is thus a 223 
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positively definite measure, where values are between zero and one, and the lower the value, the better 224 

the forecast. 225 

4.1 Calculation of confidence bands 226 

All the measures described above are subject to sampling uncertainty; if they had been calculated on data 227 

from another time period than 2015-2017, they would have had different values. To estimate this sampling 228 

uncertainty and thereby obtain confidence bands, we applied a block bootstrapping procedure, where a 229 

large number of resampled series with the same length as the original series (three years) were created. A 230 

blocking length of one month was chosen. This choice takes the atmospheric decorrelation time scale of a 231 

few weeks into account and it allows a large number of different resampled series to be made. 232 

Each resampled series is constructed as follows: The resampled series will contain three January months, 233 

and each of these is randomly chosen, with replacement, of the three January months from the original 234 

series. A similar procedure applies for February, etc. In this way, the resampled series are most likely 235 

different but the annual cycle is preserved. Both the observed series and the forecast series are resampled. 236 

For each pair of resampled series bootstrapped value of the performance measures are calculated. 237 

Repeating the resampling procedure, we obtain 1000 resampled values of the measures, from which their 238 

approximate statistical distribution and confidence bands can be calculated. As a standard, confidence 239 

bands (5/95%) are calculated by the bootstrap procedure described above and this allows for a quantitative 240 

inter-comparison of the performance measures for the different forecast classes: if the confidence bands 241 

do not overlap then there is a significance difference. 242 

5 Verification of the wind forecasts 243 

In order to illustrate the benefit of the meteorological ensemble on wind forecasts the S03 deterministic 244 

and S05 ensemble mean have been verified against available wind observations for eight coastal 245 

meteorological stations around the Baltic Sea (Figure 3). The RMSE of all stations for the period 1 Jan 2015 - 246 

31 Dec 2017 is shown in Figure 4 as a function of forecast range. This reveals that the S05 ensemble mean is 247 

more accurate than S03, especially at the longer forecast ranges. Similar results are found for other 248 

verification scores, such as correlation and hit rate (not shown). 249 
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 250 

Figure 4  Verification of wind speed. Average RMSE between model and observations for eight coastal meteorological stations in 251 
the Baltic Sea area.  252 

 254 

6 Verification of forecasted SWH against observations 255 

6.1 Deterministic measures 256 

 257 

Figure 5 Scatter plot of 24 h forecasts and corresponding observations of significant wave height at site 258 
Bothnian Sea for the LOW, LOWENSMEAN and HIGH forecast classes. Dotted line is the diagonal, 259 
representing a 1:1 agreement between observations and model. 260 
 261 
To get an idea of the overall quality of the forecasts, Figure 5 shows scatter plots between 24 h forecasted 262 

and observed SWH for station Bothnian Sea. The points are distributed along the diagonal in all three 263 

configurations with correlation coefficients above 0.9. The RMSE is 0.33 m for both LOW and HIGH but is 264 

lower at 0.29 m for the LOWENSMEAN forecasts, which also have the numerically lowest bias. Also for 265 

other sites, such as Arkona WR (see Figure 6), the RMSE for LOWENSMEAN forecasts is lower than for the 266 

LOW and HIGH forecasts, and similarly for the bias. However, the scatter plot appears differently for this 267 

station, because there is a tendency for over-predicting high waves for all three forecast classes. 268 

 269 
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 270 

Figure 6 As Figure 5. Scatter plot of 24 h forecasts and corresponding observations of significant wave height at site Arkona WR 271 
for the LOW, LOWENSMEAN and HIGH forecast classes. Dotted line is the diagonal, representing a 1:1 agreement between 272 
observations and model. 273 

We now turn to the RMSE as function of forecast range, of which plots for all sites can be found in Figure 274 

S2. For all sites, the RMSE increases slightly as function of forecast range. All sites except Vahemadal exhibit 275 

qualitatively similar behavior: the RMSE for the LOW and HIGH forecasts are almost similar, while it is lower 276 

for the LOWENSMEAN forecasts.  Thus, for Arkona WR (shown in Figure 7), Bothnian Sea and Darss Sill WR, 277 

the RMSE of the LOW and the HIGH forecasts have overlapping confidence bands. The RMSE for 278 

LOWENSMEAN gradually diverges to a lower value (around 5 cm) and for large forecast ranges, the 279 

confidence bands do not overlap with those for the LOW and HIGH forecast classes. The remaining sites 280 

except Vahemadal behave similarly, but with overlapping confidence bands even for the largest forecast 281 

ranges.  282 

 283 

  
Figure 7 RMSE for selected forecast ranges for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and 284 
HIGH forecasts. Error bars show 5/95% confidence bands calculated by bootstrapping. 285 

 286 

The site Vahemadal (Figure 7) has a different behavior. For this site, the HIGH forecast class has a 287 

significantly smaller RMSE and with non-overlapping confidence bands with the RMSE of the LOW and 288 

LOWENSMEAN forecasts. This site also has a non-negligible bias of around 12 cm for the HIGH and around 289 

20 cm for the LOW and LOWENSMEAN forecasts; this bias is independent of forecast range (not shown). 290 
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6.1.1 Performance depending on observed SWH 291 

 292 

  
Figure 8 RMSE as function of SWH for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and HIGH 293 
forecasts and forecast range 48 h. Error bars show 5/95% confidence bands calculated by bootstrapping. 294 

The RMSE of the forecasts depends on the magnitude of the SWH. Plots for all sites for the 24 h and 48 h 295 

forecast ranges of RMSE as function of the SWH can be found in Figures S3 and S4. The RMSE for Arkona 296 

WR and Vahemadal as a function of the SWH for the forecast range 48 h is shown in Figure 8. The RMSE 297 

increases as a function of the observed SWH for both sites. For Arkona WR, the LOWENSMEAN forecast 298 

class has the lowest RMSE, although with confidence bands overlapping with the other forecast classes. 299 

This behavior is seen at all sites, except Vahemadal. For Vahemadal, the HIGH forecast class has the lowest 300 

RMSE, and up to a SWH of 2 m, the confidence band is well separated from the confidence bands of the 301 

other forecast classes. 302 

Also the bias depends on the SWH. Plots for all sites for 24 and 48 h forecast range of the bias as function of 303 

the SWH are displayed in Figures S5 and S6. For small SWH, the bias is close to zero for most sites. For some 304 

sites, the bias remains close to zero for increasing SWH, as shown for Arkona WR in left panel of Figure 9, 305 

while for others it becomes different from zero for large values of SWH. There is no noticeable different in 306 

the bias of the different forecast classes, except for Vahemadal, shown in right panel of  Figure 9, where the 307 

HIGH forecast class has a significantly smaller under-prediction bias than the other forecast classes. 308 
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Figure 9 Bias as function of SWH for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and HIGH 309 
forecasts and forecast range 24 h. Error bars show 5/95% confidence bands calculated by bootstrapping. 310 

6.1.2 Forecasts during ‘Toini’ storm 311 

The Toini storm on 11. January 2017, where a SWH of 8.0 m was recorded at Northern Baltic (Björkqvist et 312 

al., 2017a), is within our verification period. 313 

 314 

 315 

Figure 10 Observed SWH for Northern Baltic during, 10-13 January 2017, including the Toini storm. Open circles are 48 h 316 
forecasts.  317 

Figure 10 shows the observed SWH at Northern Baltic during 10-13 January 2017, i.e. including the Toini 318 

storm, peaking in the early hours of 12 January, together with 48 h forecasts. In this case there is no 319 

apparent ‘best’ forecast. Near the peak, LOWENSMEAN performs best, but both before and after, the 320 

HIGH/LOW performs better. Furthermore,  the LOW and HIGH forecasts are very similar in most cases, 321 

indicating that the higher resolution does not improve the forecasts. Finally, we note that the observations 322 

generally are within or just a little outside the range of the ensemble forecast. 323 
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6.2 Probabilistic metrics 324 

The 11 ensemble members of the LOWENS forecast class defines a statistical distribution function, which is 325 

a probabilistic forecast of the wave conditions. The deterministic forecast classes LOW, LOWENSMEAN and 326 

HIGH may be regarded as probabilistic forecasts with probability one for the deterministically forecasted 327 

future state and probability zero for all other states. 328 

As described in Section 4, we use CRPS to describe performance of probabilistic forecasts. CRPS for all sites 329 

for selected forecast ranges can be found in Figure S7. As typical examples, Figure 11 displays this plot for 330 

Arkona WR and Vahemadal. 331 

  
Figure 11 CRPS for selected forecast ranges for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN, 332 
LOWENS and HIGH forecasts. Error bars show 5/95% confidence bands calculated by bootstrapping. 333 

All sites except Vahemadal behave qualitatively as Arkona WR: the LOWENSMEAN forecast class has a 334 

lower CRPS compared to both the HIGH and LOW classes, although the difference is significant (non-335 

overlapping confidence bands) for Arkona WR, Bothnian Sea and Darsser Sill WR only, and only for the 336 

largest forecast ranges. Furthermore, for all these sites, the LOWENS forecast class has an even lower CRPS, 337 

with confidence bands separated from those of all other forecasts classes. Again, Vahemadal behaves 338 

differently; here the HIGH forecast class has the best performance in terms of CRPS. However, for large 339 

forecast ranges, the LOWENS forecast class tends to perform equally well. 340 

6.3 Binary forecasts 341 

For the probabilistic LOWENS forecast class, a binary forecast can be derived as the probability of exceeding 342 

a defined threshold of SWH. For the deterministic forecast classes: LOW, LOWENSMEAN and HIGH, this 343 

probability of exceedance is either zero or one. As described in Section 4, the Brier Score is used as 344 

performance measure for probabilistic, binary forecasts. 345 

The Brier Score as a function of threshold is shown for all sites in Figures S7 and S8. Figure 12 shows the 346 

Brier Score as a function of threshold for Arkona WR and Vahemadal for 48 h forecast range. For Arkona 347 

WR, the Brier Score for the LOWENS forecast class is the smallest, however the confidence intervals overlap 348 

with confidence intervals from the other forecasts above the 2 m threshold. Also the LOWENSMEAN 349 

forecast class has a low Brier Score. This behavior is common to all sites except Vahemadal. For Vahemadal, 350 

the Brier Score is smallest for the HIGH forecasts for thresholds above 1 m.  351 
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Figure 12 Brier score for Arkona WR (left panel) and Vahemadal (right panel) for binary forecast for forecast range 48 h.                                                                                                                                                         352 

6.4  Rank histogram 353 

Rank histograms serve the purpose of illustrating the reliability of probabilistic ensemble forecasts. It is a 354 

histogram of the rank of the observation, when the observation and all ensemble members of the 355 

corresponding forecast are pooled together. If the observations and the ensemble members belong to the 356 

same distribution, then the rank histogram will be flat, while a U-shaped histogram indicates too small 357 

variance within the ensemble members. For more discussion, see Jolliffe and Stephenson (2003). 358 

Rank histograms for all wave measurement sites for forecast range 24 and 48 h are shown in Figure S10 and 359 

S11 for forecast range 24 h and 48 h respectively. We note that all histograms show the U-shape, indicating 360 

an unrealistically small variance within the ensembles. For most sites the U-shape is symmetric, except for 361 

Vahemadal, where the U-shape is strongly asymmetrical. This corresponds well with the bias mentioned in 362 

Section 6.1. 363 

7 Discussion 364 

Our main finding in the previous section is that for most wave measurement sites included in this study, the 365 

LOWENSMEAN and the LOWENS forecast classes in many cases have a better performance than the LOW 366 

and HIGH forecast classes. Only for one site results are different; namely that the HIGH forecast class has 367 

the superior performance. The conclusions hold, whether based on overall RMSE, CRPS or the Brier score.  368 

In the discussion below, it should be mentioned that improving wave forecasts is not the only driving factor 369 

in reducing the grid size of the wave model. Coupling the wave model with atmosphere or ocean circulation 370 

models may give a better description of vertical fluxes of heat and momentum (Cavaleri et al., 2012). For 371 

instance, Alari et al.(2016) documented a significant improvement of modelled sea-surface temperatures 372 

by the NEMO circulation model in the Baltic Sea when a two-way coupling to the wave model WAM was 373 

introduced. Introducing such coupling may demand a high horizontal resolution, in atmosphere, wave and 374 

ocean models, in order to describe the fluxes satisfactorily. Note also that the methodology applied in this 375 

study is a site-specific verification and inter-comparison of the different forecast families. This is a valid 376 

approach, since most uses of the wave forecasts are site-specific. However, it must be remembered, that 377 

the approach has a risk of under-estimating the overall performance due to double-counting errors in both 378 

space and time. We have made no attempt to assess the magnitude of this potential effect.  379 

 380 
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7.1 Comparison with other operational forecast systems 381 

Multi-year verification results from two operational deterministic wave forecast systems that covers the 382 

region in focus have been published, and can be compared to results from the present study. Both these 383 

systems are based on the third generation WAM;  the system described in (Tuomi et al., 2008) has about 22 384 

km horizontal resolution, while the system described in (Tuomi et al., 2017) has 1 naut. mile horizontal 385 

resolution. 386 

For certain sites, the RMSE of the 6 hour forecasts of SWH are available for at least one of the 387 

aforementioned forecast systems in addition to the DMI-WAM forecasts; thus comparison of the systems is 388 

possible. All sites have a water depth of more than 46 m and therefore represent offshore conditions. 389 

Table 5 Comparison of RMSE for SWH of 6h forecast runs for selected sites. FIMR values are from (Tuomi et al., 2008) and FMI 390 
values are from (Tuomi et al., 2017) 391 

 FIMR FMI DMI LOW DMI 
LOWENSMEAN 

DMI HIGH 

Horizontal 
resolution WAM 

~ 22 km 1 naut. mile 10 km 10 km 5 km 

Horizontal 
resolution NWP 

~ 22 km 2.5 km 3 km 5 km 3 km 

Arkona WR - 0.28 0.26 0.24 0.26 

Bothnian Sea 
 

- 0.28 0.25 0.23 0.25 

Finngrundet WR 
 

- 0.27 0.24 0.22 0.23 

Helsinki Buoy 0.25 0.26 - - - 

Northern Baltic 0.31 0.26 0.24 0.23 0.24 

 392 

We remind the reader that the cases compared in Table 5 have different wind forcing and probably also 393 

different version of WAM. Therefore the figures cannot be directly compared and differences cannot with 394 

certainty be attributed to differences in horizontal resolution. 395 

From Table 5 one can see that for the sites considered, the LOWENSMEAN has the lowest RMSE. This 396 

supports the finding of this study that for offshore conditions there is no reason to improve the resolution 397 

further than that of the LOW configuration. In addition, the results emphasize the value of describing the 398 

uncertainties of in the atmospheric forcing by introducing ensembles, as this leads to a lower RMSE of the 399 

forecasts. This is also in line with our findings in the previous section.    400 

Test runs of a few months duration of deterministic and ensemble wave forecasts of SWH for the Baltic Sea 401 

(Behrens, 2015) also show slight improvement of ensemble mean forecasts, compared to deterministic 402 

forecasts, and thus support our findings. 403 

 404 
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7.2 Limitations of the study 405 

7.2.1  Length of verification period 406 

Operational centers typically renew their computer installations every 5-6 years with about an order of 407 

magnitude increase in performance. At DMI, a new installation was introduced early 2016, allowing the 408 

HIGH and LOWENS configurations to replace the LOW configuration. Presently (mid-2018) the system is 409 

mid-term upgraded and this makes it appropriate to do the inter-comparison now as a guidance for any 410 

changes in the operational setup. 411 

For this reason, the operational forecasts performed on the present system, supplemented by delayed-412 

mode forecasts has determined the three-year verification period used in our study. A longer verification 413 

period could evidently have reduced the sampling uncertainty in the analyses and thereby sharpened the 414 

conclusions. On the other hand, the three-year verification is not short compared to the study by Bunney 415 

and Saulter (2015) or the CMEMS verification report by Tuomi et al.(2017)  416 

7.2.2 Choice of observational base 417 

The present verification is based on observations at near-hourly resolution from a number of sites in the 418 

Baltic Sea. Therefore, in the majority of the Baltic Sea, verification is not possible, which limits the firmness 419 

of our conclusions. 420 

SWH derived from satellite-borne altimeters (Kudryavtseva and Soomere, 2016) offers an alternative, 421 

which could be pursued in a future study. These data have a fair spatial coverage but at the cost of a 422 

temporal resolution of one day or less. This means that maximum wave heights connected to severe storms 423 

may easily be missed. Nevertheless, these data has proven useful for verification in the Baltic Sea by (Tuomi 424 

et al., 2011) 425 

7.3 Effect of sea ice coverage 426 

The main effect of sea ice on formation of waves is to limit the fetch. Furthermore, when a developed wave 427 

field approaches an ice-covered area, the wind and the waves decouple, so that the waves act more like 428 

swell, propagating through ice-covered areas while losing energy by breaking up the ice cover. The WAM 429 

model does not account for such interactions, and sea ice, when dense enough, acts as a solid shield that 430 

effectively removes all local wave energy in the model. It is implicitly assumed that dense ice will also be 431 

thick enough for this to be approximately correct. In the Baltic Sea, that may not always be the case, and 432 

therefore sea ice occurrence may represent a systematic error source in the present study. Another effect 433 

of sea ice in the Baltic is that the wave observing systems are withdrawn when ice is expected. This may 434 

cause a systematic bias in the verification analysis if strong winds during winter are left out. 435 

Based on Copernicus sea ice charts produced by the Finnish Meteorological Institute the ice conditions for 436 

the Baltic have been evaluated. The Finnish ice charts are produced on a grid of approximately 1 km2 with a 437 

temporal resolution of approximately one day in the ice season. Data is available from 2010 onwards. The 438 

average ice conditions for February for all years and the three years in focus can be found in Figure S12. All 439 

three years 2015-2017, and in particular 2015, have a smaller ice cover relative to the period 2010-2018. 440 
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 441 

Figure 13 Integrated sea ice area of the Baltic Sea based on Finnish ice charts 442 

Another way to illustrate this is considering the Baltic Sea integrated sea ice area, depicted in Figure 13, 443 

which shows that the years 2015-2017 have the lowest sea ice area over the whole period 2010-2018. 444 

Therefore, we may anticipate that systematic errors arise from the occurrence of sea ice are relatively 445 

small. 446 

8 Conclusion 447 

For most sites, we find that the HIGH forecast class does not perform better than the LOW forecast class in 448 

forecasting SWH. These sites are all positioned well away from coasts in deep water and are thus freely 449 

exposed from all directions. This suggests that the resolution of the bathymetry and the spectral resolution 450 

are adequate. For these offshore sites, introducing ensembles increases the performance of the forecasts, 451 

whether as in the LOWENSMEAN deterministic forecasts and the LOWENS probabilistic forecasts. A similar 452 

conclusion generally holds for the binary forecast of exceeding a threshold. 453 

For one site, Vahemedal just outside Tallin, the HIGH forecast class performs better than the other classes. 454 

The bathymetry near Vahemedal is complex and relatively shallow, thus the bathymetry affects the wave 455 

field and an improved description will therefore improve the modelled wave field.  Further verification with 456 

near-coast stations may reveal whether this conclusion is general for coastal areas. 457 

For high wave heights, there are significant systematic biases for most sites shared among all three forecast 458 

configurations. These are most probably to be ascribed to model deficiencies and act to mask any 459 

differences in performance between the different forecast classes. Also the RMSE becomes large for large 460 

observed SWH. This is expected since small timing errors in the predicted wave time series will have larger 461 

impacts on the model-observation match-up when the SWH is large.The present study therefore suggests 462 

that for offshore conditions, there are no indications that a further increase of the resolution of the WAM 463 

model will result in enhanced forecast performance. In addition, the results show that introducing 464 

ensembles increases the performances. This is both true for deterministic forecast in the form of ensemble 465 

mean and for probabilistic forecast. For nearshore conditions conclusions are based on only one site, but 466 

results from this indicates that increasing the resolution gives better forecasts, while introducing ensembles 467 
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does not. This can be due to both enhanced spatial resolution, allowing a better representation of shadow 468 

and shallow water effects, and/or spectral resolution. 469 

The results of the present study thus underpins that a wave model setup with an equidistant grid cannot 470 

deliver optimal wave forecasts for both coastal and offshore conditions. This is particularly true for the 471 

Baltic Sea, where very small spatial scales are found in the archipelago near the coasts of Sweden and 472 

Finland (Björkqvist et al., 2017b). Besides implementing a 0.1 naut. miles model, these authors improved 473 

forecasts by introducing semi-empirical modifications to the wave model. Cavaleri et al.  (2018) also write 474 

about this and discuss other approaches. These include one-way nesting, used in the present study (see 475 

Section 2), multi-cell grids (Bunney and Saulter, 2015), and triangular unstructured grids (e.g. Zijlema, 476 

2010). These techniques may be worth testing for the Baltic Sea. 477 

Finally, we note the under-spread in the ensemble forecasts demonstrated in Section 6.4. This points to a 478 

potential for improving the combined weather-wave system. 479 

 480 
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