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Better Baltic Sea wave forecasts: Improving resolution or
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Abstract. The performance of short-range operational forecasts of significant wave height in the Baltic Sea
is evaluated. Forecasts produced by a base configuration are inter-compared with forecasts from two
improved configurations: one with improved horizontal and spectral resolution and one with ensembles
representing uncertainties in the physics of the forcing wind field and the initial conditions of this field.
Both the improved forecast classes represent an almost equal increase in computational costs. The inter-
comparison therefore addresses the question: would more computer resources most favorably be spent on
enhancing the spatial and spectral resolution or, alternatively, on introducing ensembles? The inter-
comparison is based on comparisons with hourly observations of significant wave height from seven
observation sites in the Baltic Sea during the three-year period 2015-2017. We conclude that for most wave
measurement sites, the introduction of ensembles enhances the overall performance of the forecasts,
whereas increasing the horizontal and spectral resolution does not. These sites represent offshore
conditions, well exposed from all directions with a large distance to the nearest coast and with a large
water depth. Therefore, the detailed shoreline and bathymetry is also a priori not expected to have any
impact. Only at one site do we find that increasing the horizontal and spectral resolution significantly
improved the forecasts. This site is situated in nearshore conditions, close to land, with a nearby island and
therefore shielded from many directions. This study therefore concludes that to improve wave forecasts in
offshore areas, ensembles should be introduced. For near shore areas, the study suggests that additional
computational resources should be used to increase the resolution.

1 Introduction

Severe wave conditions affect ship navigation, offshore activities and risk management in coastal areas.
Therefore, reliable forecasts of wave conditions are important for ship routing and planning purposes when
constructing, maintaining and operating offshore facilities, such as wind farms and oil installations.

Waves are generated by energy transfer from surface winds that act on the sea. The energy transfer is
determined by the fetch (the distance, over which the wind acts), and by the duration of the wind. For deep
water waves, defined as the wave height being much smaller than the water depth, dissipation of the wave
energy mainly occurs through internal processes, e.g. whitecapping.. For shallow water waves, defined as
the wave height being comparable to the water depth, dissipation through bottom friction and through
wave breaking over a shallow and sloping sea bed becomes important. Shallow water waves may also be
refracted over a varying bathymetry Therefore, a correct and detailed description of the bathymetry is
important for correctly forecasting waves in coastal areas and other shallow sea areas. Other factors with a
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potential effect on the development of waves include nonlinear wave-wave interaction, ocean currents,
time-varying water depth due to variations in sea level, and sea ice coverage.

The Baltic Sea is connected to the world ocean through the Danish waters with shallow and narrow Straits
(see Figure 1), and this allows virtually no external wave energy to be propagated into the area. The Baltic
Sea consists of a number of basins with depths exceeding 100 m, separated by sills and water areas with
more moderate water depths. Between Finland and Sweden lies an archipelago with complicated
bathymetry on very small spatial scales. The wind is in general westerly over the area, and the most
prominent cause for severe wind and wave conditions is low pressure systems passing eastward over
central Scandinavia. Winter ice occurs in the northern and eastern parts of the Baltic Sea. There is no
noticeable tidal amplitude or permanent current systems.

Short-term forecasting of surface waves is done by a wave model, forced with forecasted wind from an
atmospheric numerical weather prediction (NWP) model. The equations of the NWP model are discretized
on a horizontal grid with a certain spatial resolution, which influences the maximum spatial resolution of
the wave model. The available computer resources limit the horizontal grid spacing, that can be afforded.

Over time, technical development has increased available computational resources, which traditionally
have been used to increase the horizontal spatial resolution of the NWP and wave models. This allows for
an improved description and forecasting of the synoptic and mesoscale atmospheric systems, including the
details of the associated wind field. In addition, a more detailed description of the bathymetry improves the
correct description of dissipation and refraction of waves, as argued above. Additional computer resources
may also be used to improve the spectral resolution in the wave model. This includes the directional
resolution and the number of frequencies included.

Increasing computer resources have also made ensemble NWP possible. The purpose of ensemble
forecasts is to improve forecast skill by taking both the initial error of the forecast and the uncertainty of
the model physics into account. Furthermore, ensemble forecast allows for probabilistic forecasts,
identified as a priority for operational oceanography (She et al., 2016), and allows for quantifying forecast
uncertainty. Ensemble wave forecast systems have been implemented at global scale (Alves et al., 2013;
Cao et al., 2009; Saetra and Bidlot, 2002) and more regionally in the Norwegian Sea (Carrasco and Saetra,
2008), and in the German Bight and Western Baltic (Behrens, 2015).

From the above discussion it is evident that additional computer resources can be used in different ways to
change the wave forecast setup, in order to increase the forecast quality. The purpose of the present study
is to investigate the effect on the forecast quality of increasing the horizontal resolution and the spectral
resolution vs. introducing ensemble forecasts. This will be done by verifying the DMI operational
forecasting of wave conditions in the Baltic Sea in different configurations against available observations of
significant wave height.

Increasing the horizontal resolution of the NWP-system may also lead to improved wind forecasts, due to in
particular better descriptions of processes in extratropical cyclones. In these cases, where the wind field is
strong and varying on a small spatial scale, wave forecasts may also be improved by running the wave
model in a similarly high resolution.
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This paper is arranged as follows. Section 2 describes the model and setup, Section 3 describes the
observations used and the verification methodology is described in Section 4. Verification of DMI-HIRLAM
wind forecasts is in Section 5, whilst verification of the significant wave height (SWH) is presented in
Section 6. Results of the verification are discussed in Section 7 and conclusions made in Section 8.

2 Model and setup

The DMI operational wave forecasting system DMI-WAM uses the 3rd generation spectral wave

model WAM Cycle4.5.1 (Glnther et al., 1992), with one minor change of source term functions. To speed
up wave growth from calm sea, the spectral energy has a lower limit corresponding to a wave height of 7
cm. It is forced by the regional NWP model DMI-HIRLAM and the global NWP model ECMWF-GLM. WAM
solves the spectral wave equation, and calculates the wave energy as a function of position, time, wave
period and direction. Derived variables, such as the significant wave height (SWH), are calculated as
suitable integrals of the wave energy spectrum.

The DMI-WAM model system forecasts waves in a larger area than the Baltic Sea and therefore has a setup
with two nested spatial domains of different geographical extent (see Figure 1): North Atlantic (NA) and
North Sea/Baltic Sea (NSB), of which forecast results from the NSB-domain are analyzed in this study. The
NA domain uses the JONSWAP wave spectrum for fully developed wind-sea (Hasselmann et al., 1973) along
open model boundaries, while the NSB domain use modeled wave spectra from the NA domain at its open
boundaries (one-way nesting).

Figure 1 Nesting of domains in DMI-WAM. Outer frame is North Atlantic (NA) domain, inner frame is the North Sea/Baltic
Sea(NSB)-domain. Dotted frame is the Transition Area. Only data from the NSB-domain are analyzed in this study.

The wave energy is discretized into a number of wave directions and frequencies. To facilitate wave growth
from calm sea, a lower limit is applied to the spectral energy. The resulting surface roughness
parameterizes the effect of capillary waves, and corresponds to a minimum significant wave height of 7 cm.

The energy source is the surface wind. The sink terms are wave energy dissipation through wave breaking
(white capping), wave breaking in shallow areas, and friction against the sea bed. Depth-induced wave
breaking (Battjes and Janssen, 1978) is used in the NSB domain only, since in the NA domain, the depth
maps are not detailed enough for activation of this effect. The wave energy is redistributed spatially by
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wave propagation and depth refraction, and spectrally by non-linear wave-wave interaction. Interaction
with ocean currents and effects due to varying sea level caused by tides or storms are not incorporated.

In addition to a land mask, we have a time-varying ice mask. Below ice 30% concentration, sea ice is
assumed to have no effect. Above 30% ice concentration, no wave energy is generated or propagated, i.e.
the effect is like that of land. The applied sea ice concentrations originate from OSISAF
(http://osisaf.met.no/p/ice/) with a frequency of 24 hours and around 25 km true horizontal resolution,
gridded to ~10 km horizontal resolution and interpolated to the WAM-grid. The ice cover is initialized every
day at 00z, and kept constant throughout each forecast run.

The surface wind forcing is provided by different atmospheric models for the two domains. For the NA
domain, wind is provided by the ECMWF-HRES global weather forecast every 3 hours. For the NSB domain,
the surface wind is provided every hour by DMI-HIRLAM. Setup details are summarized in Table 1

Table 1 Specifications of DMI-WAM nested setup.

Domain North Atlantic North Sea/Baltic Sea
Longitude 69W-30E 13W-30E
Latitude 30N-78N 47N-66N
IAtmospheric forcing ECMWF-HRES DMI-HIRLAM
Boundary condition JONSWAP One-way nested
Depth-induced wave

- No Yes
breaking

Each forecast run is initialized using the sea state at analysis time, calculated by the previous run as a six
hour forecast. The operational DMI-WAM suite is run four times a day to 48 h forecast range. This is also
true for the North Atlantic domain, even when new forcing is available twice per day only. This is for
practical reasons, since the North Atlantic domain is very cheap to run. Spatial fields of forecasted SWH and
other variables are output in hourly time resolution.

Historically, three different configurations of the DMI-WAM setup have been used, and data from these for
the period 2015-2017 is the basis for the present verification. In the old LOW configuration, the horizontal
resolution is around 50 km in the NA domain and around 10 km in the NSB domain. The wave energy is
resolved in 24 directions and at 32 frequencies, corresponding to wave periods between 1.25-23.94 s and
wave lengths between 2.4-895 m (in deep water). Bathymetry is ETOPO (Amante and Eakins, 2009) in the
NA domain, and the Baltic bathymetry from IOW (https://www.io-warnemuende.de/topography-of-the-
baltic-sea.html) supplemented by depth data from the Danish Geodata Agency (DGA) in the NSB domain.
More recently, an ensemble configuration (LOWENS) has been introduced with characteristics identical to
LOW, but using a parallel run of 11 ensemble members forced with perturbed atmospheric fields (initial
conditions and physics). Finally, in the recently introduced HIGH configuration, the horizontal resolution is
around 25 km in the NA domain and around 5 km in the NSB domain The wave energy is resolved in 36
directions and 35 frequencies, corresponding to wave periods between 0.94-23.94 s, and wave lengths
between 1.37-895 m (in deep water). Bathymetry is RTopo (Schaffer et al., 2016).


http://osisaf.met.no/p/ice/

136
137
138
139
140
141
142
143
144
145
146

147

148

149
150
151
152
153
154
155
156
157

158
159
160

161
162

163

All configurations are forced by winds from ECMWF-HRES in the NA domain and DMI-HIRLAM in the NSB
domain. In the NSB domain, the LOW and HIGH are forced by the S03 version (3 km horizontal resolution),
while LOWENS is forced by the SO5 version (5 km horizontal resolution). The S03 and SO5 versions of DMI-
HIRLAM were used operationally by DMI as deterministic and ensemble weather forecast models in the
2015-17 period. While the better resolution of SO3 might have an impact on forecasts where orographic
effects matter, the impact on wind forecasts over sea is expected to be insignificant. The DMI-HIRLAM
winds are interpolated to the WAM grids by bilinear interpolation. To diminish coastal effects, DMI-HIRLAM
delivers a special water-wind to DMI-WAM, in which the surface roughness everywhere is assumed to be
that of water. This enhances the wind speed in the coastal zone, most important in semi-enclosed areas
(bays, fjords, etc.). It is basically a way to sharpen the land/sea boundary, reducing influence of land
roughness on near-shore winds. An overview of the DMI-WAM configurations is provided in Table 2.

Table 2 Details of DMI-WAM configuration used in this study.

DMI-WAM # wave # wave Bathymetry Atmospheric Ensemble
Horizontal directions spectral horizontal resolution members
resolution [km] frequencies [km]
North NSB North NSB North NSB North NSB
Atlantic Atlantic Atlantic (DMI- Atlantic
(ECMWF) | HIRLAM)
LOW 50 10 24 32 ETOPO IOW/DGA 16 3 - -
LOWENS 50 10 24 32 ETOPO IOW/DGA 16 5 - 11
HIGH 25 5 36 35 RTopo RTopo 16 3 - -

When replacing the LOW forecast configuration with the HIGH configuration, the required computational
resources for running DMI-WAM are increased by a factor of 2° (increase in horizontal resolution) x 1.75
(effective decrease in time step) = 7 due to higher spatial resolution, and by a factor of 1.5 (increase of
number of directions) x 35/32 (increase of number of spectral frequencies) = 1.6. This gives a total factor of
7x1.6 =11.5. From the LOW to the LOWENS configuration, it is increased by a factor of 11 (number of
ensemble members). Since these increases in computational effort are very similar, an inter-comparison
can contribute to answering the question: should additional computer resources be used for increasing the
spatial and spectral resolution, or for sampling the uncertainty in meteorological conditions using
ensembles.

The LOW and HIGH configurations both produce a class of deterministic forecast, which are also named
LOW and HIGH, respectively. The LOWENS configuration produces a class of probabilistic forecast, called
LOWENS. In addition, the ensemble mean defines a class of deterministic forecasts, called LOWENSMEAN.

To illustrate differences to be expected among the deterministic forecasts, we show 48 h forecasts of SWH
valid at the peak of the ‘Toini’ storm on 10 January 2017.
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Figure 2 Forecasted (48h) SWH at the peak of ‘Toini’ storm 10 january 2017 00z for LOW (left), LOWENSMEAN (middle) and HIGH
(right) forecasts.

All three forecasts agree in the gross features of the forecasted SWH field. However, there are differences,
e.g., northeast of the island of Gotland, the area with SWH above 6 m extends further southward in the
LOWNSMEAN forecast, than in the LOW and HIGH forecasts.

3 Observations

Observed series of SWH from wave measurement sites in the Baltic Sea, obtained from the Copernicus
Marine Environmental Monitoring System (CMEMS) database, are used. None of the series has a
continuous record over the three-year period 2015 — 2017. Data gaps may be due to malfunction,
maintenance or withdrawal of the instrument. The latter occur during winter due to the possibility of ice.
We selected sites with valid observations that covered more than 40% and were distributed reasonably
throughout the study period. To avoid biases in the verification measures due to under- or
overrepresentation of particular seasons, we also aimed at having an approximately even coverage
throughout the year.

Figure 3 and Table 3 show the positions and water depths of the wave measurement sites together with
the bathymetry of the Baltic Sea. Some sites did not observe at the full hour. Observations from these sites
were ascribed to the nearest full hour, if the time distance between the observation time and the full hour
was less than 15 min, otherwise not used. All observation series used are shown in Figure S1. The frequency
of observed SWH in different intervals for each site is given in Table 4
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185 Figure 3 Map of the Baltic Sea with bathymetry and positions of wave measurement sites marked with crosses. For details about
186 sites, see Table 3. Meterological stations used in the wind verification of DMI-HIRLAM are marked with circles.

187 Table 3 Details of wave measurement sites.

Observation site Lon Lat Depth [m]
Model Actual

A Arkona WR 13.9 54.9 46 45
B Bothnian Sea 20.2 61.8 118 ~120
D Darsser Sill WR 12.7 54.7 20 21
F Finngrundet WR 18.6 60.9 56 67
K Knolls Grund 17.6 57.5 63 90
N Northern Baltic 21.0 59.2 68 ~100
V Vahemadal 24.7 59.5 18 5

188

189

190 Table 4 Observed frequency of SWH in different bins for wave measurement sites.

SWH [m] 0-1 1-2 2-3 3-4 4-5 >5
Arkona WR 0.47 0.39 0.12 0.01 <0.01 <0.01
Bothnian Sea 0.46 0.38 0.12 0.02 0.01 <0.01
Darsser Sill WR 0.67 0.31 0.02 <0.01 <0.01 <0.01
Finngrundet WR 0.69 0.27 0.04 0.01 <0.01 <0.01
Knolls Grund 0.62 0.31 0.06 0.01 <0.01 <0.01
Northern Baltic 0.39 0.37 0.18 0.05 0.01 <0.01
Vahemadal 0.78 0.20 0.02 <0.01 <0.01 <0.01

191

192 4 Verification methodology
193 In this section, a short overview of the verification procedure will be given. For background and more
194  details regarding the verification measures, we refer to (Jolliffe and Stephenson, 2003)
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For each measurement series of SWH, the corresponding forecast series for all forecast classes and for
forecast range zero to 48 h for the grid point nearest to the position of the wave measurement site was
extracted from the model output.

For the deterministic and continuous forecast classes (LOW, LOWENSMEAN and HIGH), we use the
conventional performance measures root mean square error (RMSE), defined as the square root of the time
average of the sum of squared differences between forecast and observation:

RMSE (¢) = ((h rest = hs,ons) )
the bias
BIAS(7) = (hg pest — hs,ons)
and the correlation coefficient
o= MBS pest = (A5 rese)) (Bs.obs — (hsn5)))

\/<(h§,fcst - <h§,fcst))2> ((hs,obs - (hs,obs>)2>

where hg o), is the observed SWH and hg (. is a corresponding forecast with forecast range .

The RMSE is a positive definite quantitative measure, and smaller values mean a better forecast. The bias
can take positive and negative values, and a good forecast has a numerically small value. The averaging,
indicated by (*), is found based on all available values during the three-year period. Also, the RMSE and
BIAS as function of h; .5, Will be considered.

A framework for verifying probabilistic forecasts is the continuous ranked probability score (CRPS), defined
as

CRPS(1) = (J[FT(hs) — H(hs — hs,ops)]” dhs),

where F*(hy) is the forecasted probability distribution, hg .5 is the observed value, and H (") is the
Heaviside step function. A small CRPS occurs when the median of the probabilistic forecasts are close to the
observed values. Also a sharp probabilistic forecast with a small spread favors a small CRPS. This means that
the best forecast is achieved when CRPS is small. CRPS can be applied to both the probabilistic forecast
class LOWENS, as well as the deterministic forecast classes, LOW, LOWENSMEAN and HIGH, since these
can be regarded as probabilistic forecasts with a step probability distribution. For the deterministic forecast
classes, the CPRS equals the mean absolute error.

Besides the continuous and probabilistic forecasts, also the binary forecast of the SWH exceeding a
specified threshold is considered. The performance measure used is the Brier Score, defined as

BS(7) =((p — 0)?),

where p is the forecasted probability with forecast range t of exceeding the threshold and x takes the
value of 1 or 0 dependent on whether the threshold actually was exceeded or not. The Brier Score is thus a
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positively definite measure, where values are between zero and one, and the lower the value, the better
the forecast.

4.1 Calculation of confidence bands

All the measures described above are subject to sampling uncertainty; if they had been calculated on data
from another time period than 2015-2017, they would have had different values. To estimate this sampling
uncertainty and thereby obtain confidence bands, we applied a block bootstrapping procedure, where a
large number of resampled series with the same length as the original series (three years) were created. A
blocking length of one month was chosen. This choice takes the atmospheric decorrelation time scale of a
few weeks into account and it allows a large number of different resampled series to be made.

Each resampled series is constructed as follows: The resampled series will contain three January months,
and each of these is randomly chosen, with replacement, of the three January months from the original
series. A similar procedure applies for February, etc. In this way, the resampled series are most likely
different but the annual cycle is preserved. Both the observed series and the forecast series are resampled.
For each pair of resampled series bootstrapped value of the performance measures are calculated.
Repeating the resampling procedure, we obtain 1000 resampled values of the measures, from which their
approximate statistical distribution and confidence bands can be calculated. As a standard, confidence
bands (5/95%) are calculated by the bootstrap procedure described above and this allows for a quantitative
inter-comparison of the performance measures for the different forecast classes: if the confidence bands
do not overlap then there is a significance difference.

5 Verification of the wind forecasts

In order to illustrate the benefit of the meteorological ensemble on wind forecasts the S03 deterministic
and SO5 ensemble mean have been verified against available wind observations for eight coastal
meteorological stations around the Baltic Sea (Figure 3). The RMSE of all stations for the period 1 Jan 2015 -
31 Dec 2017 is shown in Figure 4 as a function of forecast range. This reveals that the SO5 ensemble mean is
more accurate than S03, especially at the longer forecast ranges. Similar results are found for other
verification scores, such as correlation and hit rate (not shown).
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Figure 4 Verification of wind speed. Average RMSE between model and observations for eight coastal meteorological stations in
the Baltic Sea area.

6 Verification of forecasted SWH against observations

6.1 Deterministic measures
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Figure 5 Scatter plot of 24 h forecasts and corresponding observations of significant wave height at site
Bothnian Sea for the LOW, LOWENSMEAN and HIGH forecast classes. Dotted line is the diagonal,
representing a 1:1 agreement between observations and model.

To get an idea of the overall quality of the forecasts, Figure 5 shows scatter plots between 24 h forecasted
and observed SWH for station Bothnian Sea. The points are distributed along the diagonal in all three
configurations with correlation coefficients above 0.9. The RMSE is 0.33 m for both LOW and HIGH but is
lower at 0.29 m for the LOWENSMEAN forecasts, which also have the numerically lowest bias. Also for
other sites, such as Arkona WR (see Figure 6), the RMSE for LOWENSMEAN forecasts is lower than for the
LOW and HIGH forecasts, and similarly for the bias. However, the scatter plot appears differently for this
station, because there is a tendency for over-predicting high waves for all three forecast classes.
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Figure 6 As Figure 5. Scatter plot of 24 h forecasts and corresponding observations of significant wave height at site Arkona WR
for the LOW, LOWENSMEAN and HIGH forecast classes. Dotted line is the diagonal, representing a 1:1 agreement between
observations and model.

We now turn to the RMSE as function of forecast range, of which plots for all sites can be found in Figure
S2. For all sites, the RMSE increases slightly as function of forecast range. All sites except Vahemadal exhibit
qualitatively similar behavior: the RMSE for the LOW and HIGH forecasts are almost similar, while it is lower
for the LOWENSMEAN forecasts. Thus, for Arkona WR (shown in Figure 7), Bothnian Sea and Darss Sill WR,
the RMSE of the LOW and the HIGH forecasts have overlapping confidence bands. The RMSE for
LOWENSMEAN gradually diverges to a lower value (around 5 cm) and for large forecast ranges, the
confidence bands do not overlap with those for the LOW and HIGH forecast classes. The remaining sites
except Vahemadal behave similarly, but with overlapping confidence bands even for the largest forecast

ranges.
Arkona WR Vahemadal
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Figure 7 RMSE for selected forecast ranges for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and
HIGH forecasts. Error bars show 5/95% confidence bands calculated by bootstrapping.

The site Vahemadal (Figure 7) has a different behavior. For this site, the HIGH forecast class has a
significantly smaller RMSE and with non-overlapping confidence bands with the RMSE of the LOW and
LOWENSMEAN forecasts. This site also has a non-negligible bias of around 12 cm for the HIGH and around
20 cm for the LOW and LOWENSMEAN forecasts; this bias is independent of forecast range (not shown).
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6.1.1 Performance depending on observed SWH

Arkona WR, forecast range: 48 h Vahemadal, forecast range: 48 h
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Figure 8 RMSE as function of SWH for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and HIGH
forecasts and forecast range 48 h. Error bars show 5/95% confidence bands calculated by bootstrapping.

The RMSE of the forecasts depends on the magnitude of the SWH. Plots for all sites for the 24 h and 48 h
forecast ranges of RMSE as function of the SWH can be found in Figures S3 and S4. The RMSE for Arkona
WR and Vahemadal as a function of the SWH for the forecast range 48 h is shown in Figure 8. The RMSE
increases as a function of the observed SWH for both sites. For Arkona WR, the LOWENSMEAN forecast
class has the lowest RMSE, although with confidence bands overlapping with the other forecast classes.
This behavior is seen at all sites, except Vahemadal. For Vahemadal, the HIGH forecast class has the lowest
RMSE, and up to a SWH of 2 m, the confidence band is well separated from the confidence bands of the
other forecast classes.

Also the bias depends on the SWH. Plots for all sites for 24 and 48 h forecast range of the bias as function of
the SWH are displayed in Figures S5 and S6. For small SWH, the bias is close to zero for most sites. For some
sites, the bias remains close to zero for increasing SWH, as shown for Arkona WR in left panel of Figure 9,
while for others it becomes different from zero for large values of SWH. There is no noticeable different in
the bias of the different forecast classes, except for Vahemadal, shown in right panel of Figure 9, where the
HIGH forecast class has a significantly smaller under-prediction bias than the other forecast classes.
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Figure 9 Bias as function of SWH for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and HIGH
forecasts and forecast range 24 h. Error bars show 5/95% confidence bands calculated by bootstrapping.

6.1.2 Forecasts during ‘Toini’ storm
The Toini storm on 11. January 2017, where a SWH of 8.0 m was recorded at Northern Baltic (Bjérkqvist et
al., 2017a), is within our verification period.

oW
LOWENSMEAN

10 11 12 13

Figure 10 Observed SWH for Northern Baltic during, 10-13 January 2017, including the Toini storm. Open circles are 48 h
forecasts.

Figure 10 shows the observed SWH at Northern Baltic during 10-13 January 2017, i.e. including the Toini
storm, peaking in the early hours of 12 January, together with 48 h forecasts. In this case there is no
apparent ‘best’ forecast. Near the peak, LOWENSMEAN performs best, but both before and after, the
HIGH/LOW performs better. Furthermore, the LOW and HIGH forecasts are very similar in most cases,
indicating that the higher resolution does not improve the forecasts. Finally, we note that the observations
generally are within or just a little outside the range of the ensemble forecast.
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6.2 Probabilistic metrics

The 11 ensemble members of the LOWENS forecast class defines a statistical distribution function, which is
a probabilistic forecast of the wave conditions. The deterministic forecast classes LOW, LOWENSMEAN and
HIGH may be regarded as probabilistic forecasts with probability one for the deterministically forecasted
future state and probability zero for all other states.

As described in Section 4, we use CRPS to describe performance of probabilistic forecasts. CRPS for all sites
for selected forecast ranges can be found in Figure S7. As typical examples, Figure 11 displays this plot for
Arkona WR and Vahemadal.

Arkona WR Vahemadal
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Figure 11 CRPS for selected forecast ranges for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN,
LOWENS and HIGH forecasts. Error bars show 5/95% confidence bands calculated by bootstrapping.

All sites except Vahemadal behave qualitatively as Arkona WR: the LOWENSMEAN forecast class has a
lower CRPS compared to both the HIGH and LOW classes, although the difference is significant (non-
overlapping confidence bands) for Arkona WR, Bothnian Sea and Darsser Sill WR only, and only for the
largest forecast ranges. Furthermore, for all these sites, the LOWENS forecast class has an even lower CRPS,
with confidence bands separated from those of all other forecasts classes. Again, Vahemadal behaves
differently; here the HIGH forecast class has the best performance in terms of CRPS. However, for large
forecast ranges, the LOWENS forecast class tends to perform equally well.

6.3 Binary forecasts

For the probabilistic LOWENS forecast class, a binary forecast can be derived as the probability of exceeding
a defined threshold of SWH. For the deterministic forecast classes: LOW, LOWENSMEAN and HIGH, this
probability of exceedance is either zero or one. As described in Section 4, the Brier Score is used as
performance measure for probabilistic, binary forecasts.

The Brier Score as a function of threshold is shown for all sites in Figures S7 and S8. Figure 12 shows the
Brier Score as a function of threshold for Arkona WR and Vahemadal for 48 h forecast range. For Arkona
WR, the Brier Score for the LOWENS forecast class is the smallest, however the confidence intervals overlap
with confidence intervals from the other forecasts above the 2 m threshold. Also the LOWENSMEAN
forecast class has a low Brier Score. This behavior is common to all sites except Vahemadal. For Vahemadal,
the Brier Score is smallest for the HIGH forecasts for thresholds above 1 m.
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Figure 12 Brier score for Arkona WR (left panel) and Vahemadal (right panel) for binary forecast for forecast range 48 h.

6.4 Rank histogram

Rank histograms serve the purpose of illustrating the reliability of probabilistic ensemble forecasts. It is a
histogram of the rank of the observation, when the observation and all ensemble members of the
corresponding forecast are pooled together. If the observations and the ensemble members belong to the
same distribution, then the rank histogram will be flat, while a U-shaped histogram indicates too small
variance within the ensemble members. For more discussion, see Jolliffe and Stephenson (2003).

Rank histograms for all wave measurement sites for forecast range 24 and 48 h are shown in Figure S10 and
S11 for forecast range 24 h and 48 h respectively. We note that all histograms show the U-shape, indicating
an unrealistically small variance within the ensembles. For most sites the U-shape is symmetric, except for
Vahemadal, where the U-shape is strongly asymmetrical. This corresponds well with the bias mentioned in
Section 6.1.

7 Discussion

Our main finding in the previous section is that for most wave measurement sites included in this study, the
LOWENSMEAN and the LOWENS forecast classes in many cases have a better performance than the LOW
and HIGH forecast classes. Only for one site results are different; namely that the HIGH forecast class has
the superior performance. The conclusions hold, whether based on overall RMSE, CRPS or the Brier score.

In the discussion below, it should be mentioned that improving wave forecasts is not the only driving factor
in reducing the grid size of the wave model. Coupling the wave model with atmosphere or ocean circulation
models may give a better description of vertical fluxes of heat and momentum (Cavaleri et al., 2012). For
instance, Alari et al.(2016) documented a significant improvement of modelled sea-surface temperatures
by the NEMO circulation model in the Baltic Sea when a two-way coupling to the wave model WAM was
introduced. Introducing such coupling may demand a high horizontal resolution, in atmosphere, wave and
ocean models, in order to describe the fluxes satisfactorily. Note also that the methodology applied in this
study is a site-specific verification and inter-comparison of the different forecast families. This is a valid
approach, since most uses of the wave forecasts are site-specific. However, it must be remembered, that
the approach has a risk of under-estimating the overall performance due to double-counting errors in both
space and time. We have made no attempt to assess the magnitude of this potential effect.
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7.1 Comparison with other operational forecast systems

Multi-year verification results from two operational deterministic wave forecast systems that covers the
region in focus have been published, and can be compared to results from the present study. Both these
systems are based on the third generation WAM; the system described in (Tuomi et al., 2008) has about 22
km horizontal resolution, while the system described in (Tuomi et al., 2017) has 1 naut. mile horizontal
resolution.

For certain sites, the RMSE of the 6 hour forecasts of SWH are available for at least one of the
aforementioned forecast systems in addition to the DMI-WAM forecasts; thus comparison of the systems is
possible. All sites have a water depth of more than 46 m and therefore represent offshore conditions.

Table 5 Comparison of RMSE for SWH of 6h forecast runs for selected sites. FIMR values are from (Tuomi et al., 2008) and FMI
values are from (Tuomi et al., 2017)

FIMR FMI DMI LOW DMI DMI HIGH
LOWENSMEAN

Horizontal ~22 km 1 naut. mile 10 km 10 km 5 km
resolution WAM
Horizontal ~22 km 2.5 km 3 km 5 km 3 km
resolution NWP
Arkona WR - 0.28 0.26 0.24 0.26
Bothnian Sea - 0.28 0.25 0.23 0.25
Finngrundet WR - 0.27 0.24 0.22 0.23
Helsinki Buoy 0.25 0.26 - - -
Northern Baltic 0.31 0.26 0.24 0.23 0.24

We remind the reader that the cases compared in Table 5 have different wind forcing and probably also
different version of WAM. Therefore the figures cannot be directly compared and differences cannot with
certainty be attributed to differences in horizontal resolution.

From Table 5 one can see that for the sites considered, the LOWENSMEAN has the lowest RMSE. This
supports the finding of this study that for offshore conditions there is no reason to improve the resolution
further than that of the LOW configuration. In addition, the results emphasize the value of describing the
uncertainties of in the atmospheric forcing by introducing ensembles, as this leads to a lower RMSE of the
forecasts. This is also in line with our findings in the previous section.

Test runs of a few months duration of deterministic and ensemble wave forecasts of SWH for the Baltic Sea
(Behrens, 2015) also show slight improvement of ensemble mean forecasts, compared to deterministic
forecasts, and thus support our findings.
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7.2 Limitations of the study

7.2.1 Length of verification period

Operational centers typically renew their computer installations every 5-6 years with about an order of
magnitude increase in performance. At DMI, a new installation was introduced early 2016, allowing the
HIGH and LOWENS configurations to replace the LOW configuration. Presently (mid-2018) the system is
mid-term upgraded and this makes it appropriate to do the inter-comparison now as a guidance for any
changes in the operational setup.

For this reason, the operational forecasts performed on the present system, supplemented by delayed-
mode forecasts has determined the three-year verification period used in our study. A longer verification
period could evidently have reduced the sampling uncertainty in the analyses and thereby sharpened the
conclusions. On the other hand, the three-year verification is not short compared to the study by Bunney
and Saulter (2015) or the CMEMS verification report by Tuomi et al.(2017)

7.2.2 Choice of observational base

The present verification is based on observations at near-hourly resolution from a number of sites in the
Baltic Sea. Therefore, in the majority of the Baltic Sea, verification is not possible, which limits the firmness
of our conclusions.

SWH derived from satellite-borne altimeters (Kudryavtseva and Soomere, 2016) offers an alternative,
which could be pursued in a future study. These data have a fair spatial coverage but at the cost of a
temporal resolution of one day or less. This means that maximum wave heights connected to severe storms
may easily be missed. Nevertheless, these data has proven useful for verification in the Baltic Sea by (Tuomi
et al., 2011)

7.3 Effect of sea ice coverage

The main effect of sea ice on formation of waves is to limit the fetch. Furthermore, when a developed wave
field approaches an ice-covered area, the wind and the waves decouple, so that the waves act more like
swell, propagating through ice-covered areas while losing energy by breaking up the ice cover. The WAM
model does not account for such interactions, and sea ice, when dense enough, acts as a solid shield that
effectively removes all local wave energy in the model. It is implicitly assumed that dense ice will also be
thick enough for this to be approximately correct. In the Baltic Sea, that may not always be the case, and
therefore sea ice occurrence may represent a systematic error source in the present study. Another effect
of sea ice in the Baltic is that the wave observing systems are withdrawn when ice is expected. This may
cause a systematic bias in the verification analysis if strong winds during winter are left out.

Based on Copernicus sea ice charts produced by the Finnish Meteorological Institute the ice conditions for
the Baltic have been evaluated. The Finnish ice charts are produced on a grid of approximately 1 km” with a
temporal resolution of approximately one day in the ice season. Data is available from 2010 onwards. The
average ice conditions for February for all years and the three years in focus can be found in Figure S12. All
three years 2015-2017, and in particular 2015, have a smaller ice cover relative to the period 2010-2018.
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Figure 13 Integrated sea ice area of the Baltic Sea based on Finnish ice charts

Another way to illustrate this is considering the Baltic Sea integrated sea ice area, depicted in Figure 13,
which shows that the years 2015-2017 have the lowest sea ice area over the whole period 2010-2018.
Therefore, we may anticipate that systematic errors arise from the occurrence of sea ice are relatively
small.

8 Conclusion

For most sites, we find that the HIGH forecast class does not perform better than the LOW forecast class in
forecasting SWH. These sites are all positioned well away from coasts in deep water and are thus freely
exposed from all directions. This suggests that the resolution of the bathymetry and the spectral resolution
are adequate. For these offshore sites, introducing ensembles increases the performance of the forecasts,
whether as in the LOWENSMEAN deterministic forecasts and the LOWENS probabilistic forecasts. A similar
conclusion generally holds for the binary forecast of exceeding a threshold.

For one site, Vahemedal just outside Tallin, the HIGH forecast class performs better than the other classes.
The bathymetry near Vahemedal is complex and relatively shallow, thus the bathymetry affects the wave
field and an improved description will therefore improve the modelled wave field. Further verification with
near-coast stations may reveal whether this conclusion is general for coastal areas.

For high wave heights, there are significant systematic biases for most sites shared among all three forecast
configurations. These are most probably to be ascribed to model deficiencies and act to mask any
differences in performance between the different forecast classes. Also the RMSE becomes large for large
observed SWH. This is expected since small timing errors in the predicted wave time series will have larger
impacts on the model-observation match-up when the SWH is large.The present study therefore suggests
that for offshore conditions, there are no indications that a further increase of the resolution of the WAM
model will result in enhanced forecast performance. In addition, the results show that introducing
ensembles increases the performances. This is both true for deterministic forecast in the form of ensemble
mean and for probabilistic forecast. For nearshore conditions conclusions are based on only one site, but
results from this indicates that increasing the resolution gives better forecasts, while introducing ensembles
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does not. This can be due to both enhanced spatial resolution, allowing a better representation of shadow
and shallow water effects, and/or spectral resolution.

The results of the present study thus underpins that a wave model setup with an equidistant grid cannot
deliver optimal wave forecasts for both coastal and offshore conditions. This is particularly true for the
Baltic Sea, where very small spatial scales are found in the archipelago near the coasts of Sweden and
Finland (Bjorkqvist et al., 2017b). Besides implementing a 0.1 naut. miles model, these authors improved
forecasts by introducing semi-empirical modifications to the wave model. Cavaleri et al. (2018) also write
about this and discuss other approaches. These include one-way nesting, used in the present study (see
Section 2), multi-cell grids (Bunney and Saulter, 2015), and triangular unstructured grids (e.g. Zijlema,
2010). These techniques may be worth testing for the Baltic Sea.

Finally, we note the under-spread in the ensemble forecasts demonstrated in Section 6.4. This points to a
potential for improving the combined weather-wave system.

Data availability. Model data is available from the authors upon request, whereas wave observations can
be found on the CMEMS server.
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