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Abstract. The performance of short-range operational forecasts of significant wave height in the Baltic Sea 6 

is evaluated. Forecasts produced by a base configuration are inter-compared with forecasts from two 7 

improved configurations: one with improved horizontal and spectral resolution and one with ensembles 8 

representing uncertainties in the physics of the forcing wind field and the initial conditions of this field. 9 

Both the improved forecast classes represent an almost equal increase in computational costs. The inter-10 

comparison therefore addresses the question: would more computer resources most favorably be spent on 11 

enhancing the spatial and spectral resolution or, alternatively, on introducing ensembles? The inter-12 

comparison is based on comparisons with hourly observations of significant wave height from seven 13 

observation sites in the Baltic Sea during the three-year period 2015-2017. We conclude that for most wave 14 

measurement sites, the introduction of ensembles enhances the overall performance of the forecasts, 15 

whereas increasing the horizontal and spectral resolution does not. These sites represent offshore 16 

conditions, well exposed from all directions with a large distance to the nearest coast and with a large 17 

water depth. Therefore, the detailed shoreline and bathymetry is also a priori not expected to have any 18 

impact. Only for one site, we find that increasing the horizontal and spectral resolution significantly 19 

improved the forecasts. This site is situated in nearshore conditions, close to land, with a nearby island and 20 

therefore shielded from many directions. This study therefore concludes that to improve wave forecasts in 21 

offshore areas, ensembles should be introduced. For near shore areas, the study suggests that additional 22 

computational resources should be used to increase the resolution.. 23 

 24 

1 Introduction 25 

Severe surface waves affect ship navigation, offshore activities and risk management in coastal areas. 26 

Therefore, reliable forecasts of wave conditions are important for ship routing and planning purposes when 27 

constructing, maintaining and operating offshore facilities, such as wind farms and oil installations. 28 

Waves are generated by energy transfer from surface winds that act on the sea. The energy transfer is 29 

determined by the fetch (the distance, over which the wind acts), and by the duration of the wind. For deep 30 

water waves, defined as the wave height being much smaller than the water depth, dissipation of the wave 31 

energy occurs through internal dissipation mainly. For shallow water waves, defined as the wave height 32 

being comparable to the water depth, dissipation through bottom friction and through wave breaking over 33 

a shallow and sloping sea bed becomes important. Shallow water waves may also be refracted over a 34 

varying bathymetry Therefore, a correct and detailed description of the bathymetry is important for 35 

correctly forecasting waves in coastal areas and other shallow sea areas. Other factors with a potential 36 
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effect on the development of waves include nonlinear wave-wave interaction, ocean currents, time-varying 37 

water depth due to variations in sea level, and sea ice coverage. 38 

The Baltic Sea is connected to the world ocean through the Danish waters with shallow and narrow Straits 39 

(see Figure 1), and this allows virtually no external wave energy to be propagated into the area. The Baltic 40 

Sea consists of a number of basins with depths exceeding 100 m, separated by sills and water areas with 41 

more moderate water depths. Between Finland and Sweden lies an archipelago with complicated 42 

bathymetry on very small spatial scales. The wind is in general westerly over the area, and the most 43 

prominent cause for severe wind and wave conditions is low pressure systems passing eastward over 44 

central Scandinavia. Winter ice occurs in the northern and eastern parts of the Baltic Sea. There is no 45 

noticeable tidal amplitude or permanent current systems. 46 

Short-term forecasting of surface waves is done by a wave model, forced with forecasted wind from an 47 

atmospheric numerical weather prediction (NWP) model. The equations of the NWP model are discretized 48 

on a horizontal grid with a certain spatial resolution, which determines the maximum spatial resolution of 49 

the wave model. The available computer resources put a limit on the horizontal grid spacing, which can be 50 

afforded. 51 

Technical development has increased the computational resources, making possible to increase the 52 

horizontal spatial resolution of the NWP and wave models. This allows for an improved description and 53 

forecasting of the synoptic and mesoscale atmospheric systems, including the details of the associated 54 

wind field. In addition, a more detailed description of the bathymetry improves the correct description of 55 

dissipation and refraction of waves, as argued above. Additional computer resources may also be used to 56 

improve the spectral resolution in the wave model. This includes the directional resolution and the number 57 

of frequencies included. 58 

Increasing computer resources have also made ensemble NWP possible. The purpose of ensemble 59 

forecasts is to improve forecast skill by taking both the initial error of the forecast and the uncertainty of 60 

the model physics into account. Furthermore, ensemble forecast allows for probabilistic forecasts, 61 

identified as a priority for operational oceanography (She et al., 2016), and allows for quantifying forecast 62 

uncertainty. Ensemble wave forecast systems have been implemented at global scale (Alves et al., 2013; 63 

Cao et al., 2009; Saetra and Bidlot, 2002) and more regionally in the Norwegian Sea (Carrasco and Saetra, 64 

2008), and in the German Bight and Western Baltic (Behrens, 2015). 65 

From the above discussion it is evident that additional computer resources can be used in different ways to 66 

change the wave forecast setup, in order to increase the forecast quality. The purpose of the present study 67 

is to investigate the effect on forecast quality of increasing the horizontal resolution and the spectral 68 

resolution vs. introducing ensemble forecasts. This will be done by verifying the DMI operational 69 

forecasting of wave conditions in the Baltic Sea in different configurations against available observations of 70 

significant wave height. 71 

It should be mentioned that improving wave forecasts is not the only driving factor in reducing the grid size 72 

of the wave model. Coupling the wave model with atmosphere or ocean circulation models may give a 73 

better description of vertical fluxes of heat and momentum (Cavaleri et al., 2012). For instance, Alari et 74 

al.(2016) documented a significant improvement of modelled SSTs by the NEMO circulation model in the 75 
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Baltic Sea when a two-way coupling to the wave model WAM was introduced. Doing such couplings may 76 

demand a high horizontal resolution to describe the fluxes most satisfactorily. 77 

Also increasing the horizontal resolution of the NWP-system may lead to improved wind forecasts, due to 78 

in particular better descriptions of processes in extratropical cyclones. In these cases, where the wind field 79 

is strong and varying on a small spatial scale, also wave forecasts may be improved by running the wave 80 

model in a similarly high resolution.   81 

This paper is arranged as follows. Section 2 describes the model and setup, Section 3 describes the 82 

observations used and the verification methodology is described in Section 4. Verification of DMI-HIRLAM 83 

wind forecasts is in Section 5, and the SWH forecast verification is in Section 6. Results of the verification 84 

are discussed in Section 7 and conclusions made in Section 8. 85 

2 Model and setup 86 

The DMI operational wave forecasting system DMI-WAM uses the 3rd generation spectral wave 87 

model WAM Cycle4.5 (Günther et al., 1992) forced by the regional NWP model DMI-HIRLAM and the global 88 

NWP model ECMWF-GLM. WAM Cycle4.5 solves the spectral wave equation, and calculates the wave 89 

energy as a function of position, time, wave period and direction. Derived variables, such as the significant 90 

wave height (SWH), are calculated as suitable integrals of the wave energy spectrum. 91 

The DMI-WAM forecasts waves in a larger area than the Baltic Sea and therefore has a setup with two 92 

nested spatial domains of different geographical extent (see Figure 1): North Atlantic (NA) and North 93 

Sea/Baltic Sea (NSB), of which forecast results from the NSB-domain are analyzed in this study. The NA 94 

domain uses the JONSWAP wave spectrum for fully developed wind-sea (Hasselmann et al., 1973) along 95 

open model boundaries, while the NSB domain use modeled wave spectra from the NA domain at its open 96 

boundaries (one-way nesting). 97 

 98 

 99 

Figure 1 Nesting of domains in DMI-WAM. Outer frame is North Atlantic (NA) domain, inner frame is the North Sea/Baltic 100 
Sea(NSB)-domain. Dotted frame is the Transition Area. Only data from the NSB-domain are analyzed in this study. 101 

The wave energy is discretized into a number of wave directions and frequencies. To facilitate wave growth 102 

from calm sea, a lower limit is applied to the spectral energy. The resulting surface roughness 103 

parameterizes the effect of capillary waves, and corresponds to a minimum significant wave height of 7 cm. 104 

http://www.dmi.dk/laer-om/temaer/atmosfaeren/hirlam/
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The energy source is the surface wind. The sink terms are wave energy dissipation through wave breaking 105 

(white capping), wave breaking in shallow areas, and friction against the sea bed. Depth-induced wave 106 

breaking (Battjes and Janssen, 1978) is used in the NSB domain only, since in the NA domain, the depth 107 

maps are not detailed enough for activation of this effect. The wave energy is redistributed spatially by 108 

wave propagation and depth refraction, and spectrally by non-linear wave-wave interaction. Interaction 109 

with ocean currents and effects due to varying sea level caused by tides or storms are not incorporated. 110 

In addition to a land mask, we have a time-varying ice mask. Below ice 30% concentration, sea ice is 111 

assumed to have no effect. Above 30% ice concentration, no wave energy is generated or propagated, i.e. 112 

the effect is like that of land. The applied sea ice concentrations originate from OSISAF 113 

(http://osisaf.met.no/p/ice/) with a frequency of 24 hours and around 25 km true horizontal resolution, 114 

gridded to ~10 km horizontal resolution and interpolated to the WAM-grid. The ice cover is initialized every 115 

day at 00z, and kept constant throughout each forecast run. 116 

The surface wind forcing is provided by different atmospheric models for the two domains. For the NA 117 

domain, wind is provided by the ECMWF-HRES global weather forecast every 3 hours. For the NSB domain, 118 

the surface wind is provided every hour by DMI-HIRLAM. Setup details are summarized in Table 1 119 

 120 

Table 1 Specifications of DMI-WAM nested setup. 121 

Domain North Atlantic North Sea/Baltic Sea 

Longitude 69W-30E 13W-30E 

Latitude 30N-78N 47N-66N 

Atmospheric forcing ECMWF-HRES DMI-HIRLAM  

Boundary condition JONSWAP One-way nested 

Depth-induced wave 

breaking 
No Yes 

 122 

Each forecast runs is initialized using the sea state at analysis time, calculated by the previous run as a six 123 

hour forecast. The operational DMI-WAM suite is run four times a day to 48 h forecast range. Spatial fields 124 

of forecasted SWH and other variables are output in hourly time resolution. 125 

Historically, three different configurations of the DMI-WAM setup have been used, and data from these for 126 

the period 2015-2017 is the basis for the present verification. In the old LOW configuration, the horizontal 127 

resolution is around 50 km in the NA domain and around 10 km in the NSB domain, and the wave energy is 128 

resolved in 24 directions and at 32 frequencies, corresponding to wave periods of 1.25-23.94 s and wave 129 

lengths of 2.4-895 m (in deep water). Bathymetry is ETOPO (Amante and Eakins, 2009) in the NA domain, 130 

and the Baltic bathymetry from IOW (https://www.io-warnemuende.de/topography-of-the-baltic-sea.html) 131 

supplemented by depth data from the Danish Geodata Agency (DGA) in the NSB domain. More recently, an 132 

ensemble configuration (LOWENS) has been introduced with characteristics identical to LOW, but with 133 

parallel run of 11 ensemble members forced with perturbed atmospheric fields (initial conditions and 134 

physics). Finally, in the also recently introduced HIGH configuration, the horizontal resolution is around 25 135 

km in the NA domain and around 5 km in the NSB domain, and the wave energy resolved in 36 directions 136 

and 35 frequencies, corresponding to wave periods of 0.94-23.94 s, and wave lengths of 1.37-895 m (in 137 

deep water). Bathymetry is RTopo (Schaffer et al., 2016).  138 

http://osisaf.met.no/p/ice/
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All configurations are forced by winds from ECMWF-HRES in the NA domain and DMI-HIRLAM in the NSB 139 

domain. In the NSB domain, the LOW and HIGH are forced by the S03 version (3 km horizontal resolution), 140 

while LOWENS is forced by the S05 version (5 km horizontal resolution). The DMI-HIRLAM winds are 141 

interpolated to the WAM grids by bilinear interpolation. To diminish coastal effects, DMI-HIRLAM delivers a 142 

special water-wind to DMI-WAM, in which the surface roughness everywhere is assumed to be that of 143 

water. This enhances the wind speed in the coastal zone, most important in semi-enclosed areas (bays, 144 

fjords, etc.).  It is basically a way to sharpen the land/sea boundary, reducing influence of land roughness 145 

on near-shore winds. An overview of the DMI-WAM configurations is provided in Table 2. 146 

Table 2 Details of DMI-WAM configuration used in this study.  147 

 
  

DMI-WAM 
Horizontal 
resolution [km] 
 

# wave 
directions 

# wave 
spectral 
frequencies 

Bathymetry Atmospheric 
horizontal resolution 
[km] 
 

Ensemble 
members 

North 
Atlantic 

NSB  North 
Atlantic 

NSB North 
Atlantic 
(ECMWF) 

NSB 
(DMI-
HIRLAM) 

North 
Atlantic 

NSB 

LOW 50 10 24 32 ETOPO IOW/DGA 16 3 - - 

LOWENS 50 10 24 32 ETOPO IOW/DGA 16 5 - 11 

HIGH 25 5 36 35 RTopo RTopo 16 3  -  - 

 148 

When replacing the LOW forecast configuration with the HIGH configuration, the required computational 149 

resources for running DMI-WAM are increased by a factor of 22 (increase in horizontal resolution) × 1.75 150 

(effective decrease in time step) × 1.5 (increase of number of directions) × 35/32 (increase of number of 151 

spectral frequencies) ≈ 11.5.  From the LOW to the LOWENS configuration, it is increased by a factor of 11 152 

(number of ensemble members). Since these increases in computational effort are very similar, an 153 

intercomparison can contribute to answering the question: should additional computer resources be used 154 

for increasing the spatial and spectral resolution, or for sampling the uncertainty in meteorological 155 

conditions using ensembles. 156 

The LOW and HIGH configurations both produce a class of deterministic forecast, which are also named 157 

LOW and HIGH, respectively. The LOWENS configuration produces a class of probabilistic forecast, called 158 

LOWENS. In addition, the ensemble mean defines a class of deterministic forecasts, called LOWENSMEAN. 159 

To illustrate differences to be expected among the deterministic forecasts, we show 48 h forecasts of SWH 160 

valid at the peak of the ‘Toini’ storm on 10 January 2017. 161 

  162 
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 163 

   
Figure 2 Forecasted (48h) SWH at the peak of ‘Toini’ storm 10 january 2017 00z for LOW (left), LOWENSMEAN (middle) and HIGH 164 
(right) forecasts. 165 

All three forecasts agree in the gross features of the forecasted SWH field. However, there are differences,  166 

e.g., northeast of the island of Gotland, the area with SWH above 6 m extend further southward in the 167 

LOWNSMEAN forecast, than in the LOW and HIGH forecasts. 168 

3 Observations 169 

Observed series of SWH from wave measurement sites in the Baltic Sea obtained from the Copernicus 170 

Marine Environmental Monitoring System (CMEMS) database are used. None of the series has a continuous 171 

record over the three-year period 2015 – 2017. Data gaps may be due to malfunction, maintenance or 172 

withdrawal of the instrument. The latter occur during winter due to the possibility of ice. We selected sites 173 

with valid observations that covered more than 40% and were distributed reasonably throughout the study 174 

period. Figure 3 and Table 3 show the positions and water depths of the wave measurement sites together 175 

with the bathymetry of the Baltic Sea. Some sites did not observe at the full hour. Observations from these 176 

sites were ascribed to the nearest full hour, if the time distance between the observation time and the full 177 

hour was less than 15 min, otherwise not used. All observation series used are shown in Figure S1. The 178 

frequency of observed SWH in different intervals for each site is given in Table 4 179 

 180 

Figure 3 Map of the Baltic Sea with bathymetry and positions of wave measurement sites marked with crosses. For details about 181 
sites, see Table 3. Meterological stations used in the wind verification of DMI-HIRLAM are marked with circles. 182 
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Table 3 Details of wave measurement sites. 183 

  Observation site   Lon   Lat    Depth [m] 

                                 Model Actual 

A Arkona WR         13.9  54.9     46     45 

B Bothnian Sea      20.2  61.8    118   ~120 

D Darsser Sill WR   12.7  54.7     20     21 

F Finngrundet WR    18.6  60.9     56     67 

K Knolls Grund      17.6  57.5     63     90 

N Northern Baltic   21.0  59.2     68   ~100 

V Vahemadal         24.7  59.5     18      5 

 184 

 185 

Table 4 Observed frequency of SWH in different bins for wave measurement sites.  186 

       SWH [m]         0-1   1-2   2-3   3-4   4-5 

Arkona WR             0.47  0.39  0.12  0.01  0.00 

Bothnian Sea          0.46  0.38  0.12  0.02  0.01 

Darsser Sill WR       0.67  0.31  0.02  0.00  0.00 

Finngrundet WR        0.69  0.27  0.04  0.01  0.00 

Knolls Grund          0.62  0.31  0.06  0.01  0.00 

Northern Baltic       0.39  0.37  0.18  0.05  0.01 

Vahemadal             0.78  0.20  0.02  0.00  0.00 

 187 

4 Verification methodology 188 

In this section, a short overview of the verification procedure will be given. For background and more 189 

details regarding the verification measures, we refer to (Jolliffe and Stephenson, 2003) 190 

For each measurement series of SWH, the corresponding forecast series for all forecast classes and for 191 

forecast range zero to 48 h for the grid point nearest to the position of the wave measurement site was 192 

extracted from the model output.  193 

For the deterministic and continuous forecast classes (LOW, LOWENSMEAN and HIGH), we use the 194 

conventional performance measures root mean square error (RMSE), defined as the square root of the time 195 

average of the sum of squared differences between forecast and observation: 196 

𝑅𝑀𝑆𝐸(𝜏) = 〈(ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏 − ℎ𝑠,𝑜𝑏𝑠)

2
〉 

the bias 197 

𝐵𝐼𝐴𝑆(𝜏) = 〈ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏 − ℎ𝑠,𝑜𝑏𝑠〉, 198 

and the correlation coefficient 199 

𝐶𝐶 =  
〈(ℎ𝑠,𝑓𝑐𝑠𝑡

𝜏 − 〈ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏 〉)(ℎ𝑠,𝑜𝑏𝑠 − 〈ℎ𝑠,𝑜𝑏𝑠〉)〉

√〈(ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏 − 〈ℎ𝑠,𝑓𝑐𝑠𝑡

𝜏 〉)
2

〉 〈(ℎ𝑠,𝑜𝑏𝑠 − 〈ℎ𝑠,𝑜𝑏𝑠〉)
2

〉
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where  ℎ𝑠,𝑜𝑏𝑠  is the observed SWH and ℎ𝑠,𝑓𝑐𝑠𝑡
𝜏  is a corresponding forecast with forecast range 𝜏 . 200 

The RMSE is a positive definite quantitive measure, and smaller values mean a better forecast. The bias can 201 

take positive and negative values, and a good forecast has a numerically small value. The averaging, 202 

indicated by 〈∙〉, can be found based on all available values during the three-year period. Also, the RMSE 203 

and BIAS as function of ℎ𝑠,𝑜𝑏𝑠 will be considered. 204 

A framework for verifying probabilistic forecasts is the continuous ranked probability score (CRPS), defined 205 

as 206 

𝐶𝑅𝑃𝑆(𝜏) = 〈∫[𝐹𝜏(ℎ𝑠) − 𝐻(ℎ𝑠 − ℎ𝑠,𝑜𝑏𝑠)]
2

𝑑ℎ𝑠〉, 207 

where 𝐹𝜏(ℎ𝑠) is the forecasted probability distribution, ℎ𝑠,𝑜𝑏𝑠 is the observed value, and 𝐻(∙) is the 208 

Heaviside step function. A small CRPS occurs when the median of the probabilistic forecasts are close to the 209 

observed values. Also a sharp probabilistic forecast with a small spread favors a small CRPS. This means that 210 

the best forecast is achieved when CRPS is small. CRPS can be applied to both the probabilistic forecast 211 

class LOWENS, as well  as the deterministic forecast classes, LOW, LOWENSMEAN and HIGH, since these 212 

can be regarded as probabilistic forecasts with a step probability distribution. For the deterministic forecast 213 

classes, the CPRS equals the mean absolute error. 214 

Besides the continuous and probabilistic forecasts, also the binary forecast of the SWH exceeding a 215 

specified threshold is considered. The performance measure used is the Brier Score, defined as 216 

𝐵𝑆(𝜏) = 〈(𝑝 − 𝑥)2〉, 217 

where 𝑝 is the forecasted probability with forecast range 𝜏 of exceeding the threshold and 𝑥 takes the 218 

value of 1 or 0 dependent on whether the threshold actually was exceeded or not. The Brier Score is thus a 219 

positively definite measure, where values are between zero and one, and the lower the value, the better 220 

the forecast. 221 

4.1 Calculation of confidence bands 222 

All the measures described above are subject to sampling uncertainty; if they had been calculated on data 223 

from another time period than 2015-2017, they would have had different values. To estimate this sampling 224 

uncertainty and thereby obtain confidence bands, we applied a block bootstrapping procedure, where a 225 

large number of resampled series with the same length as the original series (three years) were created. A 226 

blocking length of one month was chosen. This choice takes the atmospheric decorrelation time scale of a 227 

few weeks into account and it allows a large number of different resampled series to be made. 228 

Each resampled series is constructed as follows: The resampled series will contain three January’s, and each 229 

of these is randomly chosen, with replacement, of the three January’s from the original series. A similar 230 

procedure applies for February, etc. In this way, the resampled series are most likely different but the 231 

annual cycle is preserved. Both the observed series and the forecast series are resampled. For each pair of 232 

resampled series bootstrapped value of the performance measures are calculated. Repeating the 233 

resampling procedure, we obtain 1000 resampled values of the measures, from which their approximate 234 

statistical distribution and confidence bands can be calculated. As a standard, confidence bands (5/95%) 235 

are calculated by the bootstrap procedure described above and this allows for a quantitative inter-236 
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comparison of the performance measures for the different forecast classes: if the confidence bands do not 237 

overlap then there is a significance difference. 238 

5 Verification of the wind forecasts 239 

The two configurations of DMI-HIRLAM used (see Table 2) have been verified against available wind 240 

observations from Danish coastal stations, i.e. covering the western part, of the Baltic Sea, for the period 1 241 

January 2015– 31 December 2017. For the S05 configuration, the ensemble mean is verified.  242 

Table 5 Verification results for DMI-HIRLAM against Danish coastal stations for the period 1 January 2015– 31 December 2017. 243 
Positions of stations are marked on Figure 3 . 244 

  FCST      BIAS [ms-1]         RMSE [ms-1]          CC             Hit rate, 

                                                                 error ≤ 2 ms-1 

 RANGE    S05(EM)    S03     S05(EM)    S03    S05(EM)    S03    S05(EM)    S03 

 

 

Gedser (WMO 06149): 

    0       0.48   0.46        1.57   1.56       0.90   0.91       0.82   0.82 

    6       0.43   0.46        1.58   1.62       0.90   0.90       0.81   0.80 

   12       0.45   0.49        1.66   1.72       0.89   0.89       0.79   0.78 

   18       0.45   0.49        1.73   1.83       0.88   0.87       0.77   0.76 

   24       0.45   0.51        1.77   1.91       0.87   0.86       0.76   0.74 

   36       0.42   0.51        1.92   2.03       0.85   0.84       0.73   0.70 

   48       0.44   0.46        2.03   2.16       0.82   0.81       0.70   0.67 

 

Hammer Odde Lighthouse (WMO 06197): 

    0       0.31   0.19        1.24   1.24       0.92   0.91       0.90   0.90 

    6       0.22   0.12        1.28   1.33       0.91   0.90       0.88   0.87 

   12       0.24   0.13        1.34   1.42       0.90   0.88       0.87   0.85 

   18       0.25   0.15        1.38   1.48       0.89   0.87       0.86   0.84 

   24       0.26   0.14        1.43   1.57       0.88   0.86       0.84   0.82 

   36       0.24   0.11        1.53   1.67       0.86   0.84       0.82   0.79 

   48       0.23   0.10        1.62   1.80       0.85   0.81       0.80   0.77 

 

 245 

Table 5 summarizes verification results for 10m wind forecasts for the 3km-resolution S03 model and the 246 

ensemble mean of the 5km-resolution S05 model for two Danish coastal stations in the western part of the 247 

Baltic Sea. A comparison between the two model forecasts shows a small positive bias and RMS errors 248 

increasing with forecast range from approx. 1 ms-1 to approximately 2 ms-1 for 48h forecasts. The error of 249 

the ensemble mean forecasts generally increases less with forecast range than the error of the high-250 

resolution forecasts. Similarly, the correlation and the hit rate (error ≤ 2 ms-1) decrease with forecast 251 

range, but less so for the ensemble mean forecasts. That is, in terms of wind forcing the ensemble mean of 252 

the S05 model provides slightly more accurate forecasts than the higher resolution, deterministic S03 253 

model, especially for the longer forecast ranges. 254 
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6 Verification of forecasted SWH against observations 255 

6.1 Deterministic measures 256 

 257 

Figure 4 Scatter plot of 24 h forecasts and corresponding observations of significant wave height at site 258 
Bothnian Sea for the LOW, LOWENSMEAN and HIGH forecast classes. Dotted line is the diagonal, 259 
representing a 1:1 agreement between observations and model. 260 
 261 
To get an idea of the overall quality of the forecasts, Figure 4 shows scatter plots between 24 h forecasted 262 

and observed SWH for station Bothnian Sea. The points are distributed along the diagonal in all three 263 

configurations with correlation coefficients above 0.9. The RMSE is 0.33 m for both LOW and HIGH but is 264 

lower at 0.29 m for the LOWENSMEAN forecasts, which also have the numerically lowest bias. Also for 265 

other sites, such as Arkona WR (see Figure 5), the RMSE for LOWENSMEAN forecasts is lower than for the 266 

LOW and HIGH forecasts, and similarly for the bias. However, the scatter plot appears differently for this 267 

station, because there is a tendency for over-predicting high waves for all three forecast classes. 268 

 269 

 270 

Figure 5 As Figure 4 but for site Arkona WR. 271 

We now turn to the RMSE as function of forecast range, of which plots for all sites can be found in Figure 272 

S2. For all sites, the RMSE increases slightly as function of forecast range. All sites except Vahemadal exhibit 273 

qualitatively similar behaviour: the RMSE for the LOW and HIGH forecasts are almost similar, while it is 274 

lower for the LOWENSMEAN forecasts.  Thus, for Arkona WR (shown in Figure 6), Bothnian Sea and Darss 275 

Sill WR, the RMSE of the LOW and the HIGH forecasts have overlapping confidence bands. The RMSE for 276 
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LOWENSMEAN gradually diverges to a lower value (around 5 cm) and for large forecast ranges, the 277 

confidence bands do not overlap with those for the LOW and HIGH forecast classes. The remaining sites 278 

except Vahemadal behave similarily, but with overlapping confidence bands even for the largest forecast 279 

ranges.  280 

 281 

  
Figure 6 RMSE for selected forecast ranges for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and 282 
HIGH forecasts. Error bars show 5/95% confidence bands calculated by bootstrapping. 283 

 284 

The site Vahemadal (Figure 6) has a different behavior. For this site, the HIGH forecast class has a 285 

significantly smaller RMSE and with non-overlapping confidence bands with the RMSE of the LOW and 286 

LOWENSMEAN forecasts. This site also has a non-negligible bias of around 12 cm for the HIGH and around 287 

20 cm for the LOW and LOWENSMEAN forecasts; this bias is independent of forecast range (not shown). 288 

6.1.1 Performance depending on observed SWH 289 

 290 

  
Figure 7 RMSE as function of SWH for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and HIGH 291 
forecasts and forecast range 48 h. Error bars show 5/95% confidence bands calculated by bootstrapping. 292 

The RMSE of the forecasts depends on the magnitude of the SWH. Plots for all sites for 24 and 48 h forecast 293 

range of RMSE as function of the SWH can be found in Figures S3 and S4. The RMSE for Arkona WR and 294 
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Vahemadal as function of the SWH for forecast range 48 h is shown in Figure 7. The RMSE increases as 295 

function of the observed SWH for both sites. For Arkona WR, the LOWENSMEAN forecast class has the 296 

lowest RMSE, although with confidence bands overlapping with the other forecast classes. This behavior is 297 

seen at all sites, except Vahemadal. For Vahemadal, the HIGH forecast class has the lowest RMSE, and up to 298 

a SWH of 2 m, the confidence band is well separated from the confidence bands of the other forecast 299 

classes. 300 

Also the bias depends on the SWH. Plots for all sites for 24 and 48 h forecast range of the bias as function of 301 

the SWH are displayed in Figures S5 and S6. For small SWH, the bias is close to zero for most sites. For some 302 

sites, the bias remains close to zero for increasing SWH, as shown for Arkona WR in left panel of Figure 8, 303 

while for others it becomes different from zero for large values of SWH. The is no noticeable different in 304 

the bias of the different forecast classes, except for Vahemadal, shown in right panel of  Figure 8, where the 305 

HIGH forecast class has a significantly smaller bias than the other forecast classes. 306 

  
Figure 8 Bias as function of SWH for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN and HIGH 307 
forecasts and forecast range 24 h. Error bars show 5/95% confidence bands calculated by bootstrapping. 308 

6.1.2 Forecasts during ‘Toini’ storm 309 

The Toini storm on 11. January 2017, where a SWH of almost 8 m was recorded on Northern Baltic 310 

(Björkqvist et al., 2017a), is within our verification period. 311 
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 312 

 313 

Figure 9 Observed SWH for Northern Baltic during, 10-13 January 2017, including the Toini storm. Open circles are 48 h forecasts.  314 

Figure 9 shows the observed SWH at Northern Baltic during 10-13 January 2017, i.e. including the Toini 315 

storm, peaking in the early hours of 12 January, together with 48 h forecasts. In this case there is no 316 

apparent ‘best’ forecast. Near the peak, LOWENSMEAN performs best, but both before and after, the 317 

HIGH/LOW performs better. Further, that in most cases, the LOW and HIGH forecasts are very similar, 318 

indicating that the higher resolution does not improve the forecasts. 319 

6.2 Probabilistic metrics 320 

The 11 ensemble members of the LOWENS forecast class defines a statistical distribution function, which is 321 

a probabilistic forecast of the wave conditions. Besides, the deterministic forecast classes LOW, 322 

LOWENSMEAN and HIGH may be regarded as probabilistic forecasts with probability one for the 323 

deterministically forecasted future state and probability zero for all other states. 324 

As described in Section 4, we use CRPS to describe performance of probabilistic forecasts. CRPS for all sites 325 

for selected forecast ranges can be found in Figure S7. As typical examples, Figure 10 displays this plot for 326 

Arkona WR and Vahemadal. 327 
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Figure 10 CRPS for selected forecast ranges for Arkona WR (left panel) and Vahemadal (right panel) for LOW, LOWENSMEAN, 328 
LOWENS and HIGH forecasts. Error bars show 5/95% confidence bands calculated by bootstrapping. 329 

All sites except Vahemadal behave qualitatively as Arkona WR: the LOWENSMEAN forecast class has a 330 

lower CRPS compared to both the HIGH and LOW classes, although the difference is significant (non-331 

overlapping confidence bands) for Arkona WR, Bothnian Sea and Darsser Sill WR only, and only for the 332 

largest forecast ranges. Furthermore, for all these sites, the LOWENS forecast class has an even lower CRPS, 333 

with confidence bands separated from those of all other forecasts classes. Again, Vahemadal behaves 334 

differently; here the HIGH forecast class has the best performance in terms of CRPS. However, for large 335 

forecast ranges, the LOWENS forecast class tends to perform equally well. 336 

6.3 Binary forecasts 337 

For the probabilistic LOWENS forecast class, a binary forecast can be derived as the probability of exceeding 338 

a defined threshold of SWH. For the deterministic forecast classes: LOW, LOWENSMEAN and HIGH, this 339 

probability of exceedance is either zero or one. As described in Section 4, the Brier Score is used as 340 

performance measure for probabilistic, binary forecasts. 341 

The Brier Score as function of threshold is shown for all sites in Figures S7 and S8. Figure 11 shows the Brier 342 

Score as function of threshold for Arkona WR and Vahemadal for 48 h forecast range. For Arkona WR, the 343 

Brier Score for the LOWENS forecast class is the smallest, however the confidence intervals overlap with 344 

confidence intervals from the other forecasts above 2 m threshold. Also the LOWENSMEAN forecast class 345 

has low Brier Score. This behavior is common to all sites except Vahemadal. For Vahemadal, the Brier Score 346 

is smallest for the HIGH forecasts for thresholds above 1 m.  347 

  
Figure 11 Brier score for Arkona WR (left panel) and Vahemadal (right panel) for binary forecast for forecast range 48 h.                                                                                                                                                         348 
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6.4  Rank histogram 349 

Rank histograms serve the purpose of illustrating the reliability of probabilistic ensemble forecasts. It is a 350 

histogram of the rank of the observation, when the observation and all ensemble members of the 351 

corresponding forecast are pooled together. If the observations and the ensemble members belong to the 352 

same distribution, then the rank histogram will be flat, while a U-shaped histogram indicates too small 353 

variance within the ensemble members. For more discussion, see Jolliffe and Stephenson (2003). 354 

Rank histograms for all wave measurement sites for forecast range 24 and 48 h are shown in Figure S10 and 355 

S11 for forecast range 24 resp. 48 h. We note that all histograms show the U-shape, indicating an 356 

unrealistically small variance within the ensembles. For most sites the U-shape is symmetric, except for 357 

Vahemadal, where the U-shape is strongly asymmetrical. This corresponds well with the bias mentioned in 358 

Section 6.1. 359 

7 Discussion 360 

Our main finding in the previous section is that for most wave measurement sites included in this study, the 361 

LOWENSMEAN and the LOWENS forecast classes have a performance superior to the LOW and HIGH 362 

forecast classes. Only for one site results are different; namely that the HIGH forecast class has the superior 363 

performance. These conclusion hold, whether based on overall RMSE, CRPS or the Brier score.    364 

7.1 Comparison with other operational forecast systems 365 

Multi-year verification results from two operational deterministic wave forecast systems have been 366 

published, and can be compared to results from the present study. Both these systems are based on the 367 

third generation WAM;  the system described in (Tuomi et al., 2008) has about 22 km horizontal resolution, 368 

while the system described in (Tuomi et al., 2017) has 1 naut. mile horizontal resolution. 369 

For certain sites, the RMSE of the 6 hour forecasts of SWH are available for at least one of the 370 

aforementioned forecast systems in addition to the DMI-WAM forecasts; thus comparison of the systems is 371 

possible. All sites have a water depth of more than 46 m and therefore represent offshore conditions. 372 

Table 6 Comparison of RMSE for SWH of 6h forecast runs for selected sites. FIMR values are from (Tuomi et al., 2008) and FMI 373 
values are from (Tuomi et al., 2017) 374 

 FIMR FMI DMI LOW DMI 
LOWENSMEAN 

DMI HIGH 

Horizontal 
resolution WAM 

~ 22 km 1 naut. mile 10 km 10 km 5 km 

Horizontal 
resolution NWP 

~ 22 km 2.5 km 3 km 5 km 3 km 

Arkona WR - 0.28 0.26 0.24 0.26 

Bothnian Sea 
 

- 0.28 0.25 0.23 0.25 

Finngrundet WR 
 

- 0.27 0.24 0.22 0.23 

Helsinki Buoy 0.25 0.26 - - - 

Northern Baltic 0.31 0.26 0.24 0.23 0.24 
 375 
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From Table 6 one can see that for the sites considered, the LOWENSMEAN has the lowest RMSE. This 376 

supports the finding of this study that for offshore conditions, there is no reason to improve the resolution 377 

further than that of the LOW configuration. In addition, the results emphasize the value of describing the 378 

uncertainties of in the atmospheric forcing by introducing ensembles, as this leads to a lower RMSE of the 379 

forecasts. This is also in line with our findings in the previous section.    380 

Test runs of a few months duration of deterministic and ensemble wave forecasts of SWH for the Baltic Sea 381 

(Behrens, 2015) also shows slight improvement of ensemble mean forecasts, compared to deterministic 382 

forecasts, and thus supports our findings. 383 

Fore completeness, we remind the reader that the cases compared in Table 6 have different wind forcing 384 

and probably also different version of WAM. Therefore the differences seen cannot with certainty be 385 

attributed to differences in horizontal resolution. 386 

7.2 Limitations of the study 387 

7.2.1  Length of verification period 388 

Operational centers typically renew their computer installations every 5-6 years with about an order of 389 

magnitude increase in performance. At DMI, a new installation was introduced primo 2016, allowing the 390 

HIGH and LOWENS configurations to replace the LOW configuration. Presently (medio 2018) the system is 391 

mid-term upgraded and this makes it appropriate to do the intercomparison now as a guidance for any 392 

changes in the operational setup. 393 

Thus, the operational forecasts performed on the present system, supplemented by delayed-mode 394 

forecasts has determined the three-year verification period used in our study. A longer verification period 395 

could evidently have reduced the sampling uncertainty in the analyses and thereby sharpened the 396 

conclusions. On the other hand, the three-year verification is not short compared to other studies, e.g. 397 

Bunney and Saulter (2015) or Tuomi et al.(2017)  398 

7.2.2 Choice of observational base 399 

The present verification is based on observation in near-hourly resolution from a number of sites in the 400 

Baltic Sea. Therefore, in the major parts of the Baltic Sea, verification is not possible, which puts a limit on 401 

how strong conclusions can be made. 402 

SWH derived from satellite-borne altimeters (Kudryavtseva and Soomere, 2016) offers an alternative, 403 

which could be pursued in a future study. These data has a fair spatial data coverage but at the cost of a 404 

temporal resolution of one day or less. This means that maximum wave heights connected to severe storms 405 

may easily be missed. Nevertheless, these data has proven useful for verification in the Baltic Sea by (Tuomi 406 

et al., 2011) 407 

7.3 Effect of sea ice coverage 408 

The main effect of sea ice on formation of waves is to limit the fetch. Furthermore, when a developed wave 409 

field approach an ice-covered area, the wind and the waves decouple, so that the waves act more like 410 

swell, propagating through ice-covered areas while losing energy by breaking up the ice cover. The WAM 411 

model does not account for such interactions, and sea ice, when dense enough, act as a solid shield that 412 

effectively remove all local wave energy in the model. It is implicitly assumed that dense ice will also be 413 
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thick enough for this to approximately correct. In the Baltic Sea, that may not always be the case, and 414 

therefore sea ice occurrence may represent a systematic error source in the present study. Another effect 415 

of sea ice in the Baltic is that the wave observing systems are withdrawn, when ice is expected. This may 416 

cause a systematic bias in the verification analysis, if strong winds during winter are left out. 417 

Based on Copernicus sea ice charts produced by the Finnish Meteorological institute the ice conditions for 418 

the Baltic have been evaluated. The Finnish ice charts are produced on a grid of approximately 1 km2 with a 419 

temporal resolution of approximately one day in the ice season. Data is available from 2010 onwards. The 420 

average ice conditions for February for all years and the three years in focus can be found in Figure S12. All 421 

three years 2015-2017, and in particular 2015, have a smaller ice cover relative to the period 2010-2018. 422 

 423 

Figure 12 Integrated sea ice area of the Baltic Sea based on Finnish ice charts 424 

Another way to illustrate this is considering the Baltic Sea integrated sea ice area, depicted in Figure 12, 425 

which shows that the years 2015-2017 have the lowest sea ice area over the whole period 2010-2018. 426 

Therefore, we may anticipate that systematic errors arise from the occurrence of sea ice are relatively 427 

small. 428 

8 Conclusion 429 

For most sites, we find that the HIGH forecast class does not perform superior to the LOW forecast class in 430 

forecasting SWH. These sites are all positioned well away from coasts in deep water and are thus freely 431 

exposed from all directions. This suggests that the resolution of the bathymetry and the spectral resolution 432 

are adequate. For these offshore sites, introducing ensembles increases the performance of the forecasts, 433 

whether as in the LOWENSMEAN deterministic forecasts or in the LOWENS probabilistic forecasts. A similar 434 

conclusion generally holds for the binary forecast of exceeding a threshold. 435 

For one site, Vahemedal just outside Tallin, the HIGH forecast class performs better than the other classes. 436 

The bathymetry near Vahemedal is complex and relatively shallow, thus the bathymetry affects the wave 437 

field and an improved description will therefore improve the modeled wave field. . Further verification with 438 

near-coast stations may reveal whether this conclusion holds in general for coastal areas. 439 
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For high wave heights, there are significant systematic biases for most sites shared among all three forecast 440 

configurations. These are most probably to be ascribed to model deficiencies and act to mask any 441 

differences in performance between the different forecast classes. Also the RMSE becomes large for large 442 

observed SWH. This is expected since small timing errors in the predicted wave time series will have larger 443 

impacts on the model-observation match-up when the SWH is large.The present study therefore suggests 444 

that for offshore conditions, there are no indications of further increase of the resolution of the WAM 445 

model will result in enhanced forecast performance. In addition, the results show that introducing 446 

ensembles increases the performances. This is both true for deterministic forecast in the form of ensemble 447 

mean and for probabilistic forecast.  448 

For nearshore conditions conclusions are based on only one site, but results from this indicates that 449 

increasing the resolution gives better forecasts, while introducing ensembles does not. This can be due to 450 

both enhanced spatial resolution, allowing a better representation of shadow and shallow water effects, 451 

and/or spectral resolution. 452 

The results of the present study thus underpins that a wave model setup with an equidistant grid cannot 453 

deliver optimal wave forecasts for both coastal and offshore conditions. This is particularly true for the 454 

Baltic Sea, where very small spatial scales are found in the archipelago near the coasts of Sweden and 455 

Finland (Björkqvist et al., 2017b). Besides implementing a 0.1 naut. miles model, these authors improved 456 

forecasts by introducing semi-empirical modifications to the wave model. The issue is described in Cavaleri 457 

et al.  (2018), where other approaches are discussed. These include one-way nesting, used in the present 458 

study (see Section 2), multi-cell grids (Bunney and Saulter, 2015), and triangular unstructured grids (e.g. 459 

Zijlema, 2010). These techniques may be worth testing for the Baltic Sea. 460 

 461 
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