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Abstract. When different tidal constituents propagate along an estuary, they interact because of

the presence of nonlinear terms in the hydrodynamic equations. In particular, due to the quadratic

velocity in the friction term, the effective friction experienced by both the predominant and the mi-

nor tidal constituents is enhanced. We explore the underlying mechanism with a simple conceptual

model by utilizing Chebyshev polynomials, enabling the effect of the velocities of the tidal con-5

stituents to be summed in the friction term and, hence, the linearized hydrodynamic equations to be

solved analytically in a closed form. An analytical model is adopted for each single tidal constituent

with a correction factor to adjust the linearized friction term, accounting for the mutual interactions

between the different tidal constituents by means of an iterative procedure. The proposed method

is applied to the Guadiana (southern Portugal-Spain border) and the Guadalquivir (Spain) estuaries10

for different tidal constituents (M2, S2, N2, O1, K1) imposed independently at the estuary mouth.

The analytical results appear to agree very well with the observed tidal amplitudes and phases of the

different tidal constituents.

1 Introduction

Numerous studies have been conducted in recent decades to model tidal wave propagation along an15

estuary since an understanding of tidal dynamics is essential for exploring the influence of human-

induced (such as dredging for navigational channels) or natural (such as global sea level rises) inter-

ventions on estuarine environments (Schuttelaars et al., 2013; Winterwerp et al., 2013). Analytical

models are invaluable tools and have been developed to study the basic physics of tidal dynamics
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in estuaries; for instance, to examine the sensitivity of tidal properties (e.g., tidal damping or wave20

speed) to change in terms of external forcing (e.g., spring–neap variations of amplitude) and geom-

etry (e.g., depth or channel length). However, most analytical solutions developed to date, which

make use of the linearized Saint-Venant equations, can only deal with one predominant tidal con-

stituent (e.g., M2), which prevents consideration of the nonlinear interactions between different tidal

constituents. The underlying problem is that the friction term in the momentum equation follows25

a quadratic friction law, which causes a nonlinear behavior causing tidal asymmetry as tide propa-

gates upstream. If the friction law were linear, one would expect that the effective frictional effect

for different tidal constituents (e.g., M2 and S2) could be computed independently (Pingree, 1983).

To explore the interaction between different constituents of the tidal flow, the quadratic velocity

u|u| (where u is the velocity) is usually approximated by a truncated series expansion, such as a30

Fourier expansion (Proudman, 1953; Dronkers, 1964; Le Provost, 1973; Pingree, 1983; Fang, 1987;

Inoue and Garrett, 2007). If the tidal current is composed of one dominant constituent and a much

smaller second constituent, it has been shown by many researchers (Jeffreys, 1970; Heaps, 1978;

Prandle, 1997) that the weaker constituent is acted on by up to 50% more friction than that of the

dominant constituent. However, this requires the assumption of a very small value of the ratio of the35

magnitudes of the weaker and dominant constituents, which indicates that this is only a first-order

estimation. Later, some researchers have extended the analysis to improve the accuracy of estimates

and to allow for more than two constituents (Pingree, 1983; Fang, 1987; Inoue and Garrett, 2007).

Pingree (1983) investigated the interaction between M2 and S2 tides, resulting in a second-order

correction of the effective friction coefficient acting on the predominant M2 tide and a fourth-order40

value for the weaker S2 constituent of the tide. Fang (1987) derived exact expressions of the coeffi-

cients of the Fourier expansion of u|u| for two tidal constituents but did not provide exact solutions

for the case of three or more constituents. Later, Inoue and Garrett (2007) used a novel approach

to determine the Fourier coefficients of u|u|, which allows the magnitude of the effective friction

coefficient to be determined for many tidal constituents. For the general two-dimensional tidal wave45

propagation, the expansion of quadratic bottom friction using a Fourier series was first proposed by

Le Provost (1973) and subsequently applied to spectral models for regional tidal currents (Le Provost

et al., 1981; Le Provost and Fornerino, 1985; Molines et al., 1989). Building on the previous work by

Le Provost (1973), the importance of quadratic bottom friction in tidal propagation and damping was

discussed by Kabbaj and Le Provost (1980) and reviews of friction term in models were presented50

by Le Provost (1991).

In contrast, as noted by other researchers (Doodson, 1924; Dronkers, 1964; Godin, 1991, 1999),

the quadratic velocity u|u| is, mathematically, an odd function, and it is possible to approximate it

by using a two- or three-term expression, such as αu + βu3 or αu + βu3 + ξu5, where α, β, and ξ

are suitable numerical constants. The linear term αu represents the linear superposition of different55

constituents, while the nonlinear interaction is attributed to a cubic term βu3 and a fifth-order term
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ξu5. It is to be noted that such a method has the advantage of keeping the hydrodynamic equations

resolvable in a closed form (Godin, 1991, 1999).

In this paper, a conceptual analytical model is presented to understand the propagation of different

tidal constituents that one might wish to treat independently. The key lies in the treatment of the60

quadratic velocity in the friction term. The model has subsequently been applied to the Guadiana

and the Guadalquivir estuaries in southern Iberian Peninsula, for which case the mutual interaction

between the predominant M2 tidal constituent and other tidal constituents (e.g., S2, N2, O1, K1) is

explored.

2 Materials and methods65

2.1 Hydrodynamic model

We are considering a semi-closed estuary that is forced by one predominant tidal constituent (e.g.,

M2) with the tidal frequency ω = 2π/T , where T is the tidal period. As the tidal wave propagates

into the estuary, it has a wave celerity of water level cA, a wave celerity of velocity cV , an amplitude

of tidal elevation η, a tidal velocity amplitude υ, a phase of water level ϕA, and a phase of velocity70

ϕV . The length of the estuary is indicated by Le.

The geometry of a semi-closed estuary is shown in Figure 1, where x is the longitudinal coor-

dinate, which is positive in the landward direction, and z is the free surface elevation. The tidally

averaged cross-sectional area A and width B are assumed to be exponentially convergent in the

landward direction, which can be described by75

A = A0 exp(−x/a) , (1)

B = B0 exp(−x/b) , (2)

where A0 and B0 are the respective values at the estuary mouth (where x=0), and a and b are the

convergence lengths of cross-sectional area and width, respectively. We also assume a rectangular80

cross-section, from which it follows that the tidally averaged depth is given by h = A/B. The

possible influence of storage area is described by the storage width ratio rS , defined as the ratio of

the storage width to the tidally averaged width (i.e., rS = BS/B).

With the above assumptions, the one-dimensional continuity equation reads

rS
∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
+

hu

B

dB

dx
= 0 , (3)85

where t is the time and h the instantaneous depth. Assuming negligible density effects, the one-

dimensional momentum equations can be cast as follows

∂u

∂t
+ u

∂u

∂x
+ g

∂z

∂x
+

gu|u|
K2h4/3

= 0 , (4)

where g is the acceleration due to gravity and K is the Manning-Strickler friction coefficient.
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In order to obtain an analytical solution, we assume that the tidal amplitude is small with respect90

to the mean depth and follow Toffolon and Savenije (2011) to derive the linearized solution of the

system of Eqs. (3) and (4). However, different from the standard linear solutions, we will retain

the mutual interaction among different harmonics originated by the nonlinear frictional term, which

contains two sources of nonlinearity: the quadratic velocity u|u| and the variable depth at the denom-

inator. While we neglect the latter factor, consistent with the assumption of small tidal amplitude,95

we will exploit Chebyshev polynomials to represent the harmonic interaction in the quadratic ve-

locity (see Section 3.1). For sake of clarity, we report here the linearized version of the momentum

equation

∂u

∂t
+ g

∂z

∂x
+ κu|u|= 0 , (5)

and the friction coefficient100

κ =
g

K2h
4/3

. (6)

Toffolon and Savenije (2011) demonstrated that the tidal hydrodynamics in a semi-closed estuary

are controlled by a few dimensionless parameters that depend on geometry and external forcing

(for detailed information about analytical solutions for tidal hydrodynamics, readers can refer to

Appendix A). These parameters are defined in Table 1 and can be interpreted as follows.105

The independent dimensionless parameters are: ζ0 is the dimensionless tidal amplitude (the sub-

script 0 indicating the seaward boundary condition); γ is the estuary shape number (representing

the effect of cross-sectional area convergence); χ0 is the friction number (describing the role of the

frictional dissipation); L∗e is the dimensionless estuary length. The dimensional quantities used in

the definition of the dimensionless parameters are: η0 is the tidal amplitude at the seaward boundary;110

c0 =
√

gh/rS is the frictionless wave celerity in a prismatic channel; L0 = c0/ω is the tidal length

scale related to the frictionless tidal wave length by a factor 2π.

The main dependent dimensionless parameters are also presented in Table 1, including: ζ is the

actual tidal amplitude; χ is the actual friction number; µ is the velocity number (the ratio of the actual

velocity amplitude to the frictionless value in a prismatic channel); λA and λV are, respectively,115

the celerity for elevation and velocity (the ratio between the frictionless wave celerity in a prismatic

channel and actual wave celerity); δA and δV are, respectively, the amplification number for elevation

and velocity (describing the rate of increase, δA (or δV ) > 0, or decrease, δA (or δV ) < 0, of the

wave amplitudes along the estuary axis); ϕ = ϕV −ϕA is the phase difference between the phases of

velocity and elevation.120

It is important to remark that several nonlinear terms are present both in the continuity and in the

momentum equations (Parker, 1991), which are responsible, for instance, of the internal generation

of overtides (e.g., M4). In this approximated approach, we disregard them and focus exclusively

on the mutual interaction among the external tidal constituents mediated by the quadratic velocity
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dependence in the frictional term. In fact, it crucially affects the propagation of the tidal waves125

associated with the different constituents that are already present in the tidal forcing at the estuary

mouth.

2.2 Study areas

Both the Guadiana and the Guadalquivir estuaries are located in the southwest part of the Iberian

Peninsula. These systems are good candidates for the application of a 1D hydrodynamic model130

of tidal propagation. Both estuaries are featured with a simple geometry, consisting of a single,

narrow and moderately deep channel with relatively smooth bathymetric variations. Moreover, their

tidal prism exceeds their average freshwater inputs by several orders of magnitude due to strong

regulation by dams. Under these largely predominant low river discharge conditions, both estuaries

are well-mixed, and the water circulation is mainly driven by tides.135

The Guadiana estuary, at the southern border between Spain and Portugal, connects the Guadiana

River to the Gulf of Cadiz. Tidal water level oscillations are observed along the channel until a weir

located 78 km upstream of the river mouth (Garel et al., 2009). Both the cross-sectional area and the

channel width are convergent and can be described by an exponential function, with convergence

lengths of a=31 km and b=38 km, respectively (Figure 2). The flow depth is generally between 4 m140

and 8 m, with a mean depth of about 5.5 m (Garel, 2017).

The tidal dynamics in the Guadiana estuary are derived from records obtained using eight pressure

transducers deployed for a period of 2 months (31 July to 25 September 2015) approximately every

10 km along the estuary (from the mouth to ∼ 70 km upstream). For each station, the amplitude

and phase of elevation of the tidal constituents were obtained from standard harmonic analysis of145

the observed pressure records using the “t-tide” Matlab toolbox (Pawlowicz et al., 2002). The har-

monic results are displayed in Table 2. Near the mouth, the largest diurnal (K1), semi-diurnal (M2)

and quarter-diurnal (M4) frequencies are similar to those previously reported at the same location

based on pressure records taken over ∼ 9 months (see Garel and Ferreira, 2013). In particular, the

value (ηK1 + ηO1)/(ηM2 + ηS2) is less than 0.1 at the sea boundary, which indicates that the tide is150

dominantly semi-diurnal.

The Guadalquivir estuary is located in southern Spain, at ∼ 100 km to the east of the Guadiana

River mouth. The estuary has a length of 103 km starting from the mouth at Sanlucar de Barrameda

to the Alcala del Rio dam. The geometry of the Guadalquivir estuary can be approximated by

exponential functions with convergence length of a=60 km for the cross-sectional area and b=66 km155

for the width (see Diez-Minguito et al., 2012). The flow depth is more or less constant (7.1 m).

Tidal dynamics along the Gualdalquivir estuary was analysed by Diez-Minguito et al. (2012)

based on harmonic analyses of field measurements collected from June to December 2008. The

amplitude and phase of tidal constituents near the mouth are highly similar to those at the entrance

of the Guadiana estuary (Table 2), producing a semi-diurnal and mesotidal signal with a mean spring160
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tidal range of 3.5 m. In this paper, the tidal observations of the Guadalquivir estuary are directly

taken from Diez-Minguito et al. (2012).

3 Conceptual model

3.1 Representation of quadratic velocity u|u| using Chebyshev polynomials approach

The Chebyshev polynomials can be used to approximate the quadratic dependence of the friction165

term on the velocity, u|u|. Adopting a two-term approximation, it is known that (Godin, 1991,

1999)

u|u|= υ̂2

[
α

(u

υ̂

)
+ β

(u

υ̂

)3
]

, (7)

where υ̂ is the sum of the amplitudes of all the harmonic constituents. The Chebyshev coefficients

were determined as α = 16/(15π), and β = 32/(15π) (Godin, 1991, 1999). It is important to note170

that, unlike series developments (e.g., Fourier expansion), the Chebyshev coefficients α and β vary

with the number of terms that are used in the development. Godin (1991) already showed that a

two-term approximation (such as Eq. 7) is adequate to satisfactorily account for the friction.

For a single harmonic

u = υ1 cos(ω1t) , (8)175

where υ1 is the velocity amplitude and ω1 its frequency, Eq. (7) can be expressed by exploiting

standard trigonometric relations as

u|u| ∼= υ2
1

[
8
3π

cos(ω1t)+
8

15π
cos(3ω1t)

]
. (9)

Focusing only on the original harmonic constituent leads to

u|u| ∼= 8
3π

υ2
1 cos(ω1t) , (10)180

which coincides exactly with Lorentz’s classical linearization (Lorentz, 1926) or a Fourier expansion

of u|u| (Proudman, 1953).

Considering a second tidal constituent, the velocity is given by

u = υ1 cos(ω1t)+ υ2 cos(ω2t) = υ̂ [ε1 cos(ω1t)+ ε2 cos(ω2t)] , (11)

where υ2 and ω2 are the amplitude and frequency of the second constituent, ε1 = υ1/υ̂ and ε2 =185

υ2/υ̂ are the ratios of the amplitudes to that of the maximum possible velocity υ̂ = υ1 + υ2. Note

that the possible phase lag between the two constituents is neglected assuming a suitable time shift

(Inoue and Garrett, 2007). In this case, the truncated Chebyshev polynomials approximation of u|u|
(focusing on two original tidal constituents) is expressed as (see also Godin, 1999)

u|u| ∼= 8
3π

υ̂2 [F1ε1 cos(ω1t)+ F2ε2 cos(ω2t)] , (12)190
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with

F1 =
3π

8

[
α + β

(
3
4
ε2
1 +

3
2
ε2
2

)]
=

1
5
(2+ 3ε2

1 +6ε2
2) =

1
5

(
8+ 9ε2

1− 12ε1

)
, (13)

F2 =
3π

8

[
α + β

(
3
4
ε2
2 +

3
2
ε2
1

)]
=

1
5
(2+ 3ε2

2 +6ε2
1) =

1
5

(
5+ 9ε2

1− 6ε1

)
, (14)

where F1 and F2 represent the effective friction coefficients caused by the nonlinear interactions195

between tidal constituents. The last equality in Eqs. (13) and (14) is due to the fact that ε1 + ε2 = 1.

For illustration, approximations using Eqs. (7) and (12) for a typical tidal current with ε1 = 3/4

and ε2 = 1/4 are displayed in Figure 3 for the case of two tidal constituents. It can be seen that the

Chebyshev polynomials approximation (Eq. 7) matches the nonlinear quadratic velocity well, while

Eq. (12), retaining only the original frequencies (ω1 and ω2), is still able to approximately capture200

the first-order trend of the quadratic term.

It can be seen from Eqs. (13) and (14) that when ε2 ≪ 1 (hence, ε1 ≃ 1 for the dominant tidal

constituent), F1 ≃ 1, F2 ≃ 1.6, thus the weaker constituent experiences proportionately 60% more

friction than the dominant constituent, which is slightly larger than the classical result of 50% more

friction for the weaker tidal constituent. Figure 4 shows the solutions of effective friction coefficients205

F1 and F2 as a function of ε1 for the case of two constituents. As expected, we see a symmetric

response of these coefficients in the function of ε1 since ε1 + ε2 = 1. Specifically, we note that the

effective friction coefficient F1 reaches a minimum when ε1=2/3, when the velocity amplitude of

the dominant constituent is twice larger than the weaker constituent.

Similarly, we are able to extend the same approach to the case of a generic number n of astronom-210

ical tidal constituents (e.g., K1, O1, M2, S2, N2)

u =
n∑

i=1

υ1 cos(ωit) = υ̂

n∑

i=1

εi cos(ωit) , (15)

in which the subscript i represents the i-th tidal constituent. Considering only the original tidal

constituents, the quadratic velocity can be approximated as

u|u| ∼= 8
3π

υ̂2
n∑

i=1

Fiεi cos(ωit) , (16)215

and the general expression for the effective friction coefficients of j-th tidal constituents is given by

Fj =
3π

8



α + β




n∑

i=1,i̸=j

3
2
ε2

i −
3
4
ε2

j






 =

1
5


2+ 3ε2

j +
n∑

i=1,i̸=j

6ε2
i


 . (17)

We provide the complete coefficients for the cases of one to three constituents in Appendix B.

3.2 Effective friction in the momentum equation

For a single tidal constituent u = υ1 cos(ω1t), the quadratic velocity term u|u| is often approximated220

by adopting Lorentz’s linearization equation (Eq. 10) and thus the friction term in Eq. (5) becomes

κu|u|=
(

κ
8
3π

υ1

)
u = ru, (18)
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which is the “standard” case for a monochromatic wave, i.e. when we only deal with a predominant

tidal constituent (e.g., M2).

For illustration of the method, we consider a tidal current that is composed of one dominant225

constituent (e.g., M2 with velocity u1) and a weaker constituent (e.g., S2 with velocity u2), which is

a simple but important example in estuaries, i.e., u = u1 + u2. In this case, combination of Eq. (5)

and the Chebyshev polynomials expansion of u|u| (Eq. 12) yields

∂u1

∂t
+

∂u2

∂t
+ g

∂z1

∂x
+ g

∂z2

∂x
+ κ

8
3π

υ̂(F1u1 + F2u2) = 0 , (19)

where z1 is the free surface elevation for the dominant constituent and z2 for the secondary con-230

stituent. Exploiting the linearity of Eq. (19), we can solve the two problems independently. As a

result, we see that the actual friction term that is felt in Eq. (19) is different from that would be felt

by the single constituent alone (Eq. 18).

Introducing a general form of the linearized momentum equation for the generic i-th constituent

∂ui

∂t
+ g

∂zi

∂x
+ firiui = 0 , (20)235

with

ri = κ
8
3π

υi , (21)

as in the standard case, we see that the effective friction term contains a correction factor

fi =
Fi

εi
, (22)

through the coefficient Fi. Since the ratio εi can be quite small for a weaker constituent, the friction240

actually felt can be significantly stronger.

4 Results

4.1 Hydrodynamic modeling incorporating the friction correction factor

If there are many tidal constituents, then the friction experienced by one is affected by the others.

As suggested by our conceptual model, the mutual effects can be incorporated by using the friction245

correction factor fn defined in Eq. (22) if the other (weaker) constituents are treated in the same way

as the predominant constituent. As a result, the friction number χn for each tidal constituent can be

modified as

χn = fnχ, (23)

where χ is the friction number (see definition in Table 1) experienced if only a single tidal constituent250

is considered.
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We note that the modified friction number χn in Eq. (23) contains the friction coefficient K. In

many applications, K is calibrated separately for each tidal constituent to account for the different

friction exerted due to the combined tide, either changing K directly or through calibration of the

different correction friction factors fn (see, e.g., Cai et al., 2015, 2016). The current study aims at255

avoiding the need to adjust K individually, so that only a single value of K can be calibrated, which

is based on the physical consideration that friction mostly depends on bottom roughness, and the

other factors (tide interaction) are to be correctly modelled.

4.2 Procedure to study the propagation of the different constituents

With a hydrodynamic model for a single constituent (see Appendix A), an iterative procedure can260

be designed to study the propagation of the different constituents by calibrating a single value of the

Manning-Strickler friction parameter K. The flow chart illustrating the computation process is pre-

sented in Figure 5. Initially, we assume the friction correction factor fi=1 for each tidal constituent,

and compute the first tentative values of velocity amplitude υi along the channel using the hydrody-

namic model. This allows defining υ̂ and, hence, εi. Taking into account the frictional interaction265

between tidal constituents, the revised fi is calculated using Eqs. (17) and (22). Subsequently, using

the updated fi, the new velocity amplitude υi along the channel can be computed using the hydro-

dynamic model. This process is repeated until the result is stable. In this paper, two examples of

Matlab scripts are provided together with the observed tidal data in the Guadiana and Guadalquivir

estuaries (see Supporting Information).270

It is worth stressing that the single constituents are not calibrated independently, as was done

in previous analyses (e.g., Cai et al., 2015). Conversely, only a single friction parameter, K, is

calibrated or estimated based on the physical knowledge of the system (bed roughness). This feature

represents a major advantage of the proposed method because the frictional interaction is modelled

in mechanistic terms using Eq. (22).275

4.3 Application to the Guadiana and Guadalquivir estuaries

In this study, the analytical model for a semi-closed estuary presented in Section 2.1 was applied to

the Guadiana and Guadalquivir estuaries to reproduce the correct tidal behavior for different tidal

constituents. The analytical results were compared with observed tidal amplitude η and associated

phase of elevation ϕA.280

The morphology of the Guadiana estuary was represented in the model with a constant depth

(5.5 m), an exponentially converging width (length scale, 38 km) and a constant storage ratio of

1 representative of the limited salt marsh areas (about 20 km2, see Garel (2017)). The Manning-

Strickler friction coefficient (K = 42 m1/3s−1) was determined by calibrating the model outputs

(obtained using the iterative procedure presented in section 4.2) with observations. It can be seen285

from Figure 6 that the computed tidal amplitude and phase of elevation are in good agreement with
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the observed values for different tidal constituents in the Guadiana estuary. The N2 amplitude is

slightly overestimated in the central part of the estuary, which may suggest that the harmonic analysis

has some difficulties to resolve this constituent in relation to the length of the considered time series

(54 days). In support, the N2 amplitude (0.16 m) from a longer time series (85 days) collected in290

2017 at 58 km from the mouth matches better the model output, while results for other constituents

are similar in 2015 and 2017 (Garel, unpublished data). Otherwise, the correspondence is poorest for

the semi-diurnal constituents at the most upstream station, owing to truncation of the lowest water

levels by a sill located at about 65 km from the river mouth (Garel, 2017). Table 3 displays the mean

friction correction coefficient f obtained from the iterative procedure to account for the nonlinear295

interaction between different tidal constituents. In particular, the mean friction correction factors f

for the minor constituents S2, N2, O1, and K1 are 4.6, 8.1, 41.1, and 49.8, respectively.

To understand the tidal dynamics between different tidal constituents along the Guadiana estuary,

the longitudinal variations of the tidal damping/amplification number δA and celerity number λA (see

their definitions in Table 1) are shown in Figure 7 where similar minor constituents in semidiurnal300

(S2, N2) and diurnal (O1, K1) band behave more or less the same. As shown in Figure 7a, the

minor constituents S2, N2, O1, and K1 experience more friction compared with the predominant

M2 tide. Interestingly, we observe a stronger damping (δA < 0) of semidiurnal constituents (S2,

N2) than those of diurnal constituents (O1, K1) in the seaward part of the estuary (around x=0-40

km) although the amplitudes of the diurnal constituents are less than those of the semidiurnal ones.305

In contrast, the amplification (δA > 0) of semidiurnal constituents (S2, N2) is more apparent than

those of diurnal constituents (O1, K1) in the landward part of the estuary. For the wave celerity, as

expected the dominant M2 tide travels faster (smaller λA) than minor tidal constituents. In addition,

we observe that the wave celerity of semidiurnal tidal constituents is larger than those of diurnal

constituents in the seaward reach (around x=0-30 km), while it is the opposite in the landward reach,310

which suggests a complex relation between tidal damping/amplification and wave celerity due to the

combined impacts of channel convergence, bottom friction and reflected wave.

For the Guadalquivir estuary, the geometry can be approximated as a converging estuary with

a width convergence length of b=65.5 km and a constant stream depth of about 7.1 m. A linear

reduction of the storage width ratio of 1.5-1 was adopted over the reach 0-103 km. The observed315

tidal amplitudes and phases are best reproduced by using the model for K = 46 m1/3s−1 (see Figure

8). In general, the observed tidal properties (tidal amplitude and phase) of different constituents are

well reproduced. The enhanced frictional coefficient f for minor constituents S2, N2, O1, and K1

are 5.4, 9.7, 40.7, and 43.7, respectively (Table 3).

Figure 9 shows the longitudinal variations of tidal damping/amplification and wave celerity for320

the Guadalquivir estuary. Similar to the Guadiana estuary, we observe that the dominant M2 tide

experiences less tidal damping and travels faster than other minor tidal constituents. It can be seen

from Figure 9 that the magnitude of tidal damping is approximately one order larger than that in
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the Guadiana estuary (Figure 9a) and hence the wave celerity is comparatively smaller (larger λA,

Figure 9b). Unlike the Guadiana estuary, the damping experienced by the minor semidiurnal tides325

is less than those of diurnal constituents in the seaward reach (around x=0-55 km), while the wave

celerity is consistently larger for the whole channel.

5 Conclusions

In this study, we provide insight into the mutual interactions between one predominant (e.g., M2)

and other tidal constituents in estuaries and the role of quadratic friction on tidal wave propagation.330

An analytical method exploiting the Chebyshev polynomials was developed to quantify the effec-

tive friction experienced by different tidal constituents. Based on the linearization of the quadratic

friction, the conceptual model has been used to explore the nonlinear interaction of different tidal

constituents, which enables them to be treated independently by means of an iterative procedure.

Thus, an analytical hydrodynamic model for a single tidal constituent can be used to reproduce the335

correct wave behavior for different tidal constituents. In particular, it was shown that a correction

of the friction term needs to be used to correctly reproduce the tidal dynamics for minor tidal con-

stituents. The application to the Guadiana and the Guadalquivir estuaries shows that the conceptual

model can interpret the nonlinear interaction reasonably well when combined with an analytical

model for tidal hydrodynamics.340

A crucial feature of the proposed approach is the deterministic description of the mutual frictional

interaction among tidal constituents, which avoids the need of an independent calibration of the

friction parameter for the single constituent. In this respect, further work is required to explore

whether a reliable value of the friction coefficient estimated through this method can be parametrized

based on observations of the bottom roughness of the estuary.345

Appendix A

Analytical solutions of tidal hydrodynamics for a single tidal constituent

In this paper, analytical solutions for a semi-closed estuary proposed by Toffolon and Savenije (2011)

were used to reproduce the longitudinal tidal dynamics along the estuary axis. The solution makes

use of the parameters that are defined in Table 1.350

The analytical solutions for the tidal wave amplitudes and phases are given by:

η = ζ0 h0 |A∗| , υ = rS ζ0 c0 |V ∗| , (A1)

tan(ϕA) =
ℑ(A∗)
ℜ(A∗)

, tan(ϕV ) =
ℑ(V ∗)
ℜ(V ∗)

, (A2)
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where ℜ and ℑ are the real and image parts of the corresponding term, and A∗ and V ∗ are unknown355

complex functions varying along the dimensionless coordinate x∗ = x/L0:

A∗ = a∗1 exp(w∗
1x∗)+ a∗2 exp(w∗

2x∗) , (A3)

V ∗ = v∗1 exp(w∗
1x∗)+ v∗2 exp(w∗

2x∗) . (A4)

For a tidal channel with a closed end, the analytical solutions for the unknown variables in Eqs.360

(A3) and (A4) are listed in Table 4, where Λ is a complex variable, defined as

Λ =
√

γ2/4− 1+ iχ̂ , χ̂ =
8
3π

µχ, (A5)

where the coefficient 8/(3π) stems from the adoption of Lorentz’s linearization when considering

only one single predominant tidal constituent (e.g., M2).

Since the friction parameter χ̂ depends on the unknown value of µ (or υ), an iterative procedure365

was used to determine the correct wave behavior. In addition, to account for the longitudinal varia-

tion of the cross-section (e.g., estuary depth) a multi-reach technique was adopted by subdividing the

entire estuary into multiple sub-reaches and the solutions obtained by solving a set of linear equa-

tions with internal boundary conditions at the junction of the sub-reaches satisfying the continuity

condition (see details in Toffolon and Savenije, 2011).370

For given computed values of A∗ and V ∗, the dependent parameters defined in Table 1 can be

computed using the following equations:

µ = |V ∗| , ϕ = ϕV −ϕA , (A6)

δA = ℜ
(

1
A∗

dA∗

dx∗

)
, δV = ℜ

(
1

V ∗
dV ∗

dx∗

)
, (A7)375

λA =
∣∣∣∣ℑ

(
1

A∗
dA∗

dx∗

)∣∣∣∣ , λV =
∣∣∣∣ℑ

(
1

V ∗
dV ∗

dx∗

)∣∣∣∣ . (A8)

Appendix B

Coefficients of the Godin’s expansion

The following trigonometric equation380

cos3(ω1t) =
3
4

cos(ω1t)+
1
4

cos(3ω1t) , (B1)

is used to convert the third-order terms of Eq. (7) to the harmonic constituents. For a single harmonic,

it follows that
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u|u|= υ2
1

[(
α +

3
4
β

)
cos(ω1t)+

1
4
β cos(3ω1t)

]
. (B2)

For two harmonic constituents, the Chebyshev polynomials approximation of u|u| is expressed as385

u|u|= υ2
1

{
α [ε1 cos(ω1t)+ ε2 cos(ω2t)]+ β [ε1 cos(ω1t)+ ε2 cos(ω2t)]

3
}

. (B3)

In Eq. (B3), the cubic term can be expanded as

[ε1 cos(ω1t)+ ε2 cos(ω2t)]
3 =ε3

1 cos3(ω1t)+ 3ε1ε
2
2 cos(ω1t)cos2(ω2t)

+ 3ε2ε
2
1 cos(ω2t)cos2(ω1t)+ ε3

2 cos3(ω2t) .
(B4)

Making use of the trigonometric equations to expand the power of the cosine functions (e.g.,

cos3(ω1t) and cos2(ω1t)) and extracting only the harmonic terms with frequencies ω1 and ω2, Eq.390

(B3) can be reduced to Eq. (12).

For the case of many constituents, here we only provide the exact coefficients for n=3:

F1 =
3π

8

[
α + β

(
3
4
ε2
1 +

3
2
ε2
2 +

3
2
ε2
3

)]
=

1
5

(
2+ 3ε2

1 +6ε2
2 +6ε2

3

)
, (B5)

F2 =
3π

8

[
α + β

(
3
4
ε2
2 +

3
2
ε2
1 +

3
2
ε2
3

)]
=

1
5

(
2+ 3ε2

2 +6ε2
1 +6ε2

3

)
, (B6)395

F3 =
3π

8

[
α + β

(
3
4
ε2
3 +

3
2
ε2
1 +

3
2
ε2
2

)]
=

1
5

(
2+ 3ε2

3 +6ε2
1 +6ε2

2

)
. (B7)

Equations (B5) to (B6) reduce to Eqs. (13) and (14) when ε3 = 0 (i.e., υ3=0).
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Table 1. Definitions of dimensionless parameters.

Independent parameters Dependent parameters

Tidal amplitude at the mouth Tidal amplitude

ζ0 = η0/h0 ζ = η/h

Friction number at the mouth Friction number

χ0 = rSc0 ζ0 g/
(
K2ωh0

4/3
)

χ = rSc0ζg/
(
K2ωh

4/3
)

Estuary shape Velocity number

γ = c0/(ωa) µ = υ/(rSζc0) = υh/(rSηc0)

Estuary length Damping number for water level

L∗e = Le/L0 δA = c0dη/(ηωdx)

Damping number for velocity

δV = c0dυ/(υωdx)

Celerity number for water level

λA = c0/cA

Celerity number for velocity

λV = c0/cV

Phase difference

ϕ = ϕV −ϕA
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Table 2. Tidal elevation amplitudes (m) and phases (◦) estimates (with 95% confidence intervals in brackets)

from harmonic analyses of pressure records along the Guadiana estuary (x: distance from the mouth, km).

Amplitude (m)

x (km) Msf O1 K1 N2 M2 S2 M4 M6

2.4 0.01 (0.03) 0.06 (0.01) 0.07 (0.01) 0.23 (0.01) 0.97 (0.01) 0.37 (0.02) 0.02 (0.00) 0.01 (0.00)

10.7 0.01 (0.07) 0.06 (0.01) 0.07 (0.01) 0.22 (0.01) 0.93 (0.01) 0.34 (0.01) 0.02 (0.01) 0.01 (0.00)

22.8 0.03 (0.04) 0.06 (0.01) 0.07 (0.01) 0.20 (0.02) 0.86 (0.02) 0.29 (0.02) 0.04 (0.01) 0.02 (0.01)

33.9 0.06 (0.05) 0.06 (0.01) 0.07 (0.01) 0.20 (0.02) 0.85 (0.02) 0.27 (0.02) 0.04 (0.01) 0.03 (0.01)

43.6 0.06 (0.06) 0.06 (0.01) 0.07 (0.01) 0.21 (0.02) 0.87 (0.02) 0.27 (0.02) 0.05 (0.01) 0.03 (0.01)

51.4 0.05 (0.05) 0.06 (0.01) 0.07 (0.01) 0.22 (0.02) 0.90 (0.02) 0.28 (0.02) 0.07 (0.01) 0.03 (0.01)

60.1 0.07 (0.06) 0.06 (0.01) 0.07 (0.01) 0.22 (0.02) 0.93 (0.02) 0.30 (0.02) 0.08 (0.01) 0.04 (0.01)

69.6 0.10 (0.06) 0.06 (0.01) 0.06 (0.01) 0.19 (0.03) 0.78 (0.03) 0.24 (0.03) 0.16 (0.03) 0.02 (0.01)

Phase (◦)

2.4 190 (149) 310 (6) 73 (5) 54 (4) 62 (1) 93 (2) 151 (8) 219 (18)

10.7 8 (190) 319 (7) 85 (6) 68 (3) 75 (1) 108 (3) 103 (14) 237 (15)

22.8 38 (66) 331 (9) 103 (7) 87 (4) 93 (1) 130 (3) 131 (12) 294 (16)

33.9 49 (56) 343 (7) 116 (6) 104 (5) 109 (1) 151 (4) 166 (8) 336 (11)

43.6 51 (58) 348 (8) 123 (8) 116 (5) 121 (1) 166 (4) 189 (6) 12 (14)

51.4 48 (48) 352 (9) 128 (8) 123 (6) 128 (1) 175 (5) 203 (5) 43 (19)

60.1 53 (58) 356 (9) 133 (8) 131 (6) 135 (1) 184 (5) 219 (4) 69 (21)

69.6 51 (43) 7 (9) 146 (8) 146 (9) 148 (2) 200 (7) 261 (11) 15 (18)

Table 3. Mean correction friction factor f for different tidal constituents along the Guadiana and the

Guadalquivir estuaries.

Tidal constituents M2 S2 N2 K1 O1

Guadiana 1.1 4.6 8.1 41.1 49.8

Guadalquivir 1.1 5.4 9.7 40.7 43.7

Table 4. Analytical expressions for unknown complex variables for the case of a closed estuary.

a∗1, a∗2 v∗1 , v∗2 w∗
1 , w∗

2

a∗1 =
[
1+ exp(ΛL∗e)

Λ+γ/2
Λ−γ/2

]−1

v∗1 =
−ia∗1

Λ−γ/2
w∗

1 = γ/2+Λ

a∗2 = 1− a∗1 v∗2 =
i(1−a∗1)

Λ+γ/2
w∗

2 = γ/2−Λ
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Figure 8. Tidal constituents (a) M2; (b) S2; (c) N2; (d) K1; (e) O1: modelled against observed values of tidal

amplitude (m) and phase (◦) of elevation along the Guadalquivir estuary.
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Figure 9. Longitudinal variations of tidal damping/amplification number δA (a) and wave celerity number λA

(b) for different tidal constituents along the Guadalquivir estuary.
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