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Abstract. When different tidal constituents propagate along an estuary, they interact because of
the presence of nonlinear terms in the hydrodynamic equations. In particular, due to the quadratic
velocity in the friction term, the effective friction experienced by both the predominant and the mi-
nor tidal constituents is enhanced. We explore the underlying mechanism with a simple conceptual

5 model by utilizing Chebyshev polynomials, enabling the effect of the velocities of the tidal con-
stituents to be summed in the friction term and, hence, the linearized hydrodynamic equations to be
solved analytically in a closed form. An analytical model is adopted for each single tidal constituent
with a correction factor to adjust the linearized friction term, accounting for the mutual interactions
between the different tidal constituents by means of an iterative procedure. The proposed method

10 is applied to the Guadiana (southern Portugal-Spain border) and the Guadalquivir (Spain) estuaries
for different tidal constituents (Ms, Sa, Na2, O1, K1) imposed independently at the estuary mouth.
The analytical results appear to agree very well with the observed tidal amplitudes and phases of the

different tidal constituents.

1 Introduction

15 Numerous studies have been conducted in recent decades to model tidal wave propagation along an
estuary since an understanding of tidal dynamics is essential for exploring the influence of human-
induced (such as dredging for navigational channels) or natural (such as global sea level rises) inter-
ventions on estuarine environments (Schuttelaars et al., 2013; Winterwerp et al., 2013). Analytical

models are invaluable tools and have been developed to study the basic physics of tidal dynamics
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20 in estuaries; for instance, to examine the sensitivity of tidal properties (e.g., tidal damping or wave
speed) to change in terms of external forcing (e.g., spring—neap variations of amplitude) and geom-
etry (e.g., depth or channel length). However, most analytical solutions developed to date, which
make use of the linearized Saint-Venant equations, can only deal with one predominant tidal con-
stituent (e.g., M>), which prevents consideration of the nonlinear interactions between different tidal

25 constituents. The underlying problem is that the friction term in the momentum equation follows
a quadratic friction law, which causes a nonlinear behavior causing tidal asymmetry as tide propa-
gates upstream. If the friction law were linear, one would expect that the effective frictional effect
for different tidal constituents (e.g., M2 and S2) could be computed independently (Pingree, 1983).

To explore the interaction between different constituents of the tidal flow, the quadratic velocity

30 wul|u| (where u is the velocity) is usually approximated by a truncated series expansion, such as a
Fourier expansion (Proudman, 1953; Dronkers, 1964; Le Provost, 1973; Pingree, 1983; Fang, 1987;
Inoue and Garrett, 2007). If the tidal current is composed of one dominant constituent and a much
smaller second constituent, it has been shown by many researchers (Jeffreys, 1970; Heaps, 1978;
Prandle, 1997) that the weaker constituent is acted on by up to 50% more friction than that of the

35 dominant constituent. However, this requires the assumption of a very small value of the ratio of the
magnitudes of the weaker and dominant constituents, which indicates that this is only a first-order
estimation. Later, some researchers have extended the analysis to improve the accuracy of estimates
and to allow for more than two constituents (Pingree, 1983; Fang, 1987; Inoue and Garrett, 2007).
Pingree (1983) investigated the interaction between M5 and S; tides, resulting in a second-order

40 correction of the effective friction coefficient acting on the predominant M5 tide and a fourth-order
value for the weaker S5 constituent of the tide. Fang (1987) derived exact expressions of the coeffi-
cients of the Fourier expansion of u|u| for two tidal constituents but did not provide exact solutions
for the case of three or more constituents. Later, Inoue and Garrett (2007) used a novel approach

to determine the Fourier coefficients of u|u

, which allows the magnitude of the effective friction

45 coefficient to be determined for many tidal constituents. For the general two-dimensional tidal wave
propagation, the expansion of quadratic bottom friction using a Fourier series was first proposed by
Le Provost (1973) and subsequently applied to spectral models for regional tidal currents (Le Provost
etal., 1981; Le Provost and Fornerino, 1985; Molines et al., 1989). Building on the previous work by
Le Provost (1973), the importance of quadratic bottom friction in tidal propagation and damping was

50 discussed by Kabbaj and Le Provost (1980) and reviews of friction term in models were presented
by Le Provost (1991).

In contrast, as noted by other researchers (Doodson, 1924; Dronkers, 1964; Godin, 1991, 1999),
the quadratic velocity w|u/| is, mathematically, an odd function, and it is possible to approximate it
by using a two- or three-term expression, such as au + Su® or au + fu? + £u®, where o, 3, and &

55 are suitable numerical constants. The linear term au represents the linear superposition of different

constituents, while the nonlinear interaction is attributed to a cubic term Su? and a fifth-order term
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&ud. Tt is to be noted that such a method has the advantage of keeping the hydrodynamic equations
resolvable in a closed form (Godin, 1991, 1999).

In this paper, a conceptual analytical model is presented to understand the propagation of different

60 tidal constituents that one might wish to treat independently. The key lies in the treatment of the

quadratic velocity in the friction term. The model has subsequently been applied to the Guadiana

and the Guadalquivir estuaries in southern Iberian Peninsula, for which case the mutual interaction

between the predominant M tidal constituent and other tidal constituents (e.g., Sz, No, O, K1) is

explored.

65 2 Materials and methods
2.1 Hydrodynamic model

We are considering a semi-closed estuary that is forced by one predominant tidal constituent (e.g.,

M) with the tidal frequency w = 27 /T, where T is the tidal period. As the tidal wave propagates

into the estuary, it has a wave celerity of water level c4, a wave celerity of velocity ¢y, an amplitude

70 of tidal elevation 7, a tidal velocity amplitude v, a phase of water level ¢ 4, and a phase of velocity
¢y . The length of the estuary is indicated by L..

The geometry of a semi-closed estuary is shown in Figure 1, where z is the longitudinal coor-

dinate, which is positive in the landward direction, and z is the free surface elevation. The tidally

averaged cross-sectional area A and width B are assumed to be exponentially convergent in the

75 landward direction, which can be described by

A= Agexp(—z/a), (1

B = Byexp(—z/b), 2)

where A and By are the respective values at the estuary mouth (where x=0), and @ and b are the

80 convergence lengths of cross-sectional area and width, respectively. We also assume a rectangular
cross-section, from which it follows that the tidally averaged depth is given by h = A/B. The
possible influence of storage area is described by the storage width ratio rg, defined as the ratio of
the storage width to the tidally averaged width (i.e., rg = Bg /F).

With the above assumptions, the one-dimensional continuity equation reads

oh oh ou  hudB
—— —th—t =—= 3
85 r58t+u6z+ 81’+de 0, 3)

where ¢ is the time and A the instantaneous depth. Assuming negligible density effects, the one-
dimensional momentum equations can be cast as follows
Ou Ou 0z  gulul _

ot Vo T T rEpaE T

0, “

where g is the acceleration due to gravity and K is the Manning-Strickler friction coefficient.
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90 In order to obtain an analytical solution, we assume that the tidal amplitude is small with respect
to the mean depth and follow Toffolon and Savenije (2011) to derive the linearized solution of the
system of Eqgs. (3) and (4). However, different from the standard linear solutions, we will retain
the mutual interaction among different harmonics originated by the nonlinear frictional term, which
contains two sources of nonlinearity: the quadratic velocity u|u| and the variable depth at the denom-

95 inator. While we neglect the latter factor, consistent with the assumption of small tidal amplitude,
we will exploit Chebyshev polynomials to represent the harmonic interaction in the quadratic ve-
locity (see Section 3.1). For sake of clarity, we report here the linearized version of the momentum
equation
ou z

0
1 Tog, Trulul=0, ®)

100 and the friction coefficient

K= ﬁ . ©6)
Toffolon and Savenije (2011) demonstrated that the tidal hydrodynamics in a semi-closed estuary
are controlled by a few dimensionless parameters that depend on geometry and external forcing
(for detailed information about analytical solutions for tidal hydrodynamics, readers can refer to
105 Appendix A). These parameters are defined in Table 1 and can be interpreted as follows.

The independent dimensionless parameters are: (g is the dimensionless tidal amplitude (the sub-
script O indicating the seaward boundary condition); v is the estuary shape number (representing
the effect of cross-sectional area convergence); X is the friction number (describing the role of the
frictional dissipation); L} is the dimensionless estuary length. The dimensional quantities used in

110 the definition of the dimensionless parameters are: 7 is the tidal amplitude at the seaward boundary;
co = 1/ gh/rs is the frictionless wave celerity in a prismatic channel; Lo = co/w is the tidal length
scale related to the frictionless tidal wave length by a factor 2.

The main dependent dimensionless parameters are also presented in Table 1, including: ( is the

actual tidal amplitude; x is the actual friction number; p is the velocity number (the ratio of the actual
115 velocity amplitude to the frictionless value in a prismatic channel); A4 and Ay are, respectively,

the celerity for elevation and velocity (the ratio between the frictionless wave celerity in a prismatic

channel and actual wave celerity); d 4 and dy are, respectively, the amplification number for elevation

and velocity (describing the rate of increase, 04 (or dy) > 0, or decrease, d4 (or dy) < 0, of the

wave amplitudes along the estuary axis); ¢ = ¢y — ¢ 4 is the phase difference between the phases of
120 velocity and elevation.

It is important to remark that several nonlinear terms are present both in the continuity and in the
momentum equations (Parker, 1991), which are responsible, for instance, of the internal generation
of overtides (e.g., My). In this approximated approach, we disregard them and focus exclusively

on the mutual interaction among the external tidal constituents mediated by the quadratic velocity
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125 dependence in the frictional term. In fact, it crucially affects the propagation of the tidal waves
associated with the different constituents that are already present in the tidal forcing at the estuary

mouth.
2.2 Study areas

Both the Guadiana and the Guadalquivir estuaries are located in the southwest part of the Iberian
130 Peninsula. These systems are good candidates for the application of a 1D hydrodynamic model
of tidal propagation. Both estuaries are featured with a simple geometry, consisting of a single,
narrow and moderately deep channel with relatively smooth bathymetric variations. Moreover, their
tidal prism exceeds their average freshwater inputs by several orders of magnitude due to strong
regulation by dams. Under these largely predominant low river discharge conditions, both estuaries
135 are well-mixed, and the water circulation is mainly driven by tides.
The Guadiana estuary, at the southern border between Spain and Portugal, connects the Guadiana
River to the Gulf of Cadiz. Tidal water level oscillations are observed along the channel until a weir
located 78 km upstream of the river mouth (Garel et al., 2009). Both the cross-sectional area and the
channel width are convergent and can be described by an exponential function, with convergence
140 lengths of a=31 km and b=38 km, respectively (Figure 2). The flow depth is generally between 4 m
and 8 m, with a mean depth of about 5.5 m (Garel, 2017).
The tidal dynamics in the Guadiana estuary are derived from records obtained using eight pressure
transducers deployed for a period of 2 months (31 July to 25 September 2015) approximately every
10 km along the estuary (from the mouth to ~ 70 km upstream). For each station, the amplitude
145 and phase of elevation of the tidal constituents were obtained from standard harmonic analysis of
the observed pressure records using the “t-tide” Matlab toolbox (Pawlowicz et al., 2002). The har-
monic results are displayed in Table 2. Near the mouth, the largest diurnal (X), semi-diurnal (Ms)
and quarter-diurnal (M,) frequencies are similar to those previously reported at the same location
based on pressure records taken over ~ 9 months (see Garel and Ferreira, 2013). In particular, the
150 value (nx, +n0,)/(Ma, + 1s,) is less than 0.1 at the sea boundary, which indicates that the tide is
dominantly semi-diurnal.
The Guadalquivir estuary is located in southern Spain, at ~ 100 km to the east of the Guadiana
River mouth. The estuary has a length of 103 km starting from the mouth at Sanlucar de Barrameda
to the Alcala del Rio dam. The geometry of the Guadalquivir estuary can be approximated by
155 exponential functions with convergence length of a=60 km for the cross-sectional area and b=66 km
for the width (see Diez-Minguito et al., 2012). The flow depth is more or less constant (7.1 m).
Tidal dynamics along the Gualdalquivir estuary was analysed by Diez-Minguito et al. (2012)
based on harmonic analyses of field measurements collected from June to December 2008. The
amplitude and phase of tidal constituents near the mouth are highly similar to those at the entrance

160 of the Guadiana estuary (Table 2), producing a semi-diurnal and mesotidal signal with a mean spring
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tidal range of 3.5 m. In this paper, the tidal observations of the Guadalquivir estuary are directly

taken from Diez-Minguito et al. (2012).

3 Conceptual model
3.1 Representation of quadratic velocity u|u| using Chebyshev polynomials approach

165 The Chebyshev polynomials can be used to approximate the quadratic dependence of the friction
term on the velocity, u|u|. Adopting a two-term approximation, it is known that (Godin, 1991,
1999)

ulu| = 57 [a(%) +[3(%)3} : @

where U is the sum of the amplitudes of all the harmonic constituents. The Chebyshev coefficients
170 were determined as o = 16/(157), and 3 = 32/(157) (Godin, 1991, 1999). It is important to note
that, unlike series developments (e.g., Fourier expansion), the Chebyshev coefficients « and (3 vary
with the number of terms that are used in the development. Godin (1991) already showed that a
two-term approximation (such as Eq. 7) is adequate to satisfactorily account for the friction.

For a single harmonic
175 u=wv; cos(wit), ®

where v, is the velocity amplitude and w; its frequency, Eq. (7) can be expressed by exploiting

standard trigonometric relations as

ulu| =2 v? 3% cos(wit) + 15% cos(3w1t) | . )

Focusing only on the original harmonic constituent leads to

8 o

180 = — t), 10

ulu| 3.1 cos(wrt) (10
which coincides exactly with Lorentz’s classical linearization (Lorentz, 1926) or a Fourier expansion
of u|u| (Proudman, 1953).

Considering a second tidal constituent, the velocity is given by
u = v cos(w1t) + v cos(wat) = T [e1 cos(wrt) + €2 cos(wat)] , (11)

185 where vo and wo are the amplitude and frequency of the second constituent, €1 = v1 /0 and €9 =
v2/0 are the ratios of the amplitudes to that of the maximum possible velocity U = v; + vg. Note
that the possible phase lag between the two constituents is neglected assuming a suitable time shift
(Inoue and Garrett, 2007). In this case, the truncated Chebyshev polynomials approximation of u|u|

(focusing on two original tidal constituents) is expressed as (see also Godin, 1999)

8 .
190 wfu| & 3—1}2 [Fie1 cos(wit) + Faeg cos(wat)] , (12)
7
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with
3 3, 3 1 1

F=""la+B( 224+ 2e2) | =2(2+3e2+46c2) == (8+9e2—12¢y) (13)
8 41T 5 5
3 3, 3 1 1

Fp= @W {aﬂi(ze%ésfﬂ = £ (24334 6cf) = £ (5+9¢1 — 61) (14)

195 where F; and F5 represent the effective friction coefficients caused by the nonlinear interactions
between tidal constituents. The last equality in Eqs. (13) and (14) is due to the fact thate; +e2 = 1.

For illustration, approximations using Eqs. (7) and (12) for a typical tidal current with €; = 3/4
and €5 = 1/4 are displayed in Figure 3 for the case of two tidal constituents. It can be seen that the
Chebyshev polynomials approximation (Eq. 7) matches the nonlinear quadratic velocity well, while

200 Eq. (12), retaining only the original frequencies (w; and ws), is still able to approximately capture
the first-order trend of the quadratic term.

It can be seen from Eqs. (13) and (14) that when €9 < 1 (hence, €1 ~ 1 for the dominant tidal
constituent), Fy ~ 1, F; ~ 1.6, thus the weaker constituent experiences proportionately 60% more
friction than the dominant constituent, which is slightly larger than the classical result of 50% more

205 friction for the weaker tidal constituent. Figure 4 shows the solutions of effective friction coefficients
Fy and F5 as a function of €, for the case of two constituents. As expected, we see a symmetric
response of these coefficients in the function of €; since €1 + €9 = 1. Specifically, we note that the
effective friction coefficient F3 reaches a minimum when €,=2/3, when the velocity amplitude of
the dominant constituent is twice larger than the weaker constituent.

210 Similarly, we are able to extend the same approach to the case of a generic number n of astronom-

ical tidal constituents (e.g., K;, O1, Mg, Sa, N2)
u= Zvl cos(w;t) :GZE,; cos(w;t), 15)
i=1 i=1

in which the subscript ¢ represents the ¢-th tidal constituent. Considering only the original tidal
constituents, the quadratic velocity can be approximated as
8 n
215 wulu| & 37@2;F1-5,- cos(w;t), (16)

and the general expression for the effective friction coefficients of j-th tidal constituents is given by

F-:?)—7T a+pf Zn: §82,§52 =1 2432+ 2”: 67 | . (17)
78 L 27F 4 5 7L T
i=1,i#j i=1,i#j

We provide the complete coefficients for the cases of one to three constituents in Appendix B.
3.2 Effective friction in the momentum equation

220 For a single tidal constituent u = vy cos(w1 t), the quadratic velocity term u|u| is often approximated

by adopting Lorentz’s linearization equation (Eq. 10) and thus the friction term in Eq. (5§) becomes

8
Kulu| = (ff—vl)u:ru, (18)
3T
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which is the “standard” case for a monochromatic wave, i.e. when we only deal with a predominant
tidal constituent (e.g., M>).

225 For illustration of the method, we consider a tidal current that is composed of one dominant
constituent (e.g., M with velocity u1) and a weaker constituent (e.g., So with velocity us), which is
a simple but important example in estuaries, i.e., « = uj + us. In this case, combination of Eq. (5)

and the Chebyshev polynomials expansion of u|u| (Eq. 12) yields

Oup  Ous 021 029 8 _
W W 967 +967+H37U(F1U1+F2U2)70, (19)

230 where z; is the free surface elevation for the dominant constituent and z5 for the secondary con-
stituent. Exploiting the linearity of Eq. (19), we can solve the two problems independently. As a
result, we see that the actual friction term that is felt in Eq. (19) is different from that would be felt
by the single constituent alone (Eq. 18).

Introducing a general form of the linearized momentum equation for the generic -th constituent

235 riu; =0, 20
ot T 9ay T @0)
with
8
i =R Vi, 21
T /<a37rv 21)

as in the standard case, we see that the effective friction term contains a correction factor

fi=—, (22)

240 through the coefficient F;. Since the ratio €; can be quite small for a weaker constituent, the friction

actually felt can be significantly stronger.

4 Results
4.1 Hydrodynamic modeling incorporating the friction correction factor

If there are many tidal constituents, then the friction experienced by one is affected by the others.
245 As suggested by our conceptual model, the mutual effects can be incorporated by using the friction
correction factor f,, defined in Eq. (22) if the other (weaker) constituents are treated in the same way
as the predominant constituent. As a result, the friction number Y, for each tidal constituent can be

modified as

Xn = faX, (23)

250 where  is the friction number (see definition in Table 1) experienced if only a single tidal constituent

is considered.
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We note that the modified friction number Y, in Eq. (23) contains the friction coefficient K. In
many applications, K is calibrated separately for each tidal constituent to account for the different
friction exerted due to the combined tide, either changing K directly or through calibration of the

255 different correction friction factors f,, (see, e.g., Cai et al., 2015, 2016). The current study aims at
avoiding the need to adjust K individually, so that only a single value of K can be calibrated, which
is based on the physical consideration that friction mostly depends on bottom roughness, and the

other factors (tide interaction) are to be correctly modelled.
4.2 Procedure to study the propagation of the different constituents

260 With a hydrodynamic model for a single constituent (see Appendix A), an iterative procedure can
be designed to study the propagation of the different constituents by calibrating a single value of the
Manning-Strickler friction parameter K. The flow chart illustrating the computation process is pre-
sented in Figure 5. Initially, we assume the friction correction factor f;=1 for each tidal constituent,
and compute the first tentative values of velocity amplitude v; along the channel using the hydrody-

265 namic model. This allows defining ¥ and, hence, ¢;. Taking into account the frictional interaction
between tidal constituents, the revised f; is calculated using Egs. (17) and (22). Subsequently, using
the updated f;, the new velocity amplitude v; along the channel can be computed using the hydro-
dynamic model. This process is repeated until the result is stable. In this paper, two examples of
Matlab scripts are provided together with the observed tidal data in the Guadiana and Guadalquivir

270 estuaries (see Supporting Information).

It is worth stressing that the single constituents are not calibrated independently, as was done
in previous analyses (e.g., Cai et al., 2015). Conversely, only a single friction parameter, K, is
calibrated or estimated based on the physical knowledge of the system (bed roughness). This feature
represents a major advantage of the proposed method because the frictional interaction is modelled

275 in mechanistic terms using Eq. (22).
4.3 Application to the Guadiana and Guadalquivir estuaries

In this study, the analytical model for a semi-closed estuary presented in Section 2.1 was applied to
the Guadiana and Guadalquivir estuaries to reproduce the correct tidal behavior for different tidal
constituents. The analytical results were compared with observed tidal amplitude 7 and associated

280 phase of elevation ¢ 4.
The morphology of the Guadiana estuary was represented in the model with a constant depth
(5.5 m), an exponentially converging width (length scale, 38 km) and a constant storage ratio of
1 representative of the limited salt marsh areas (about 20 km?, see Garel (2017)). The Manning-
Strickler friction coefficient (K = 42 m'/3s~!) was determined by calibrating the model outputs
285 (obtained using the iterative procedure presented in section 4.2) with observations. It can be seen

from Figure 6 that the computed tidal amplitude and phase of elevation are in good agreement with
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the observed values for different tidal constituents in the Guadiana estuary. The Ny amplitude is
slightly overestimated in the central part of the estuary, which may suggest that the harmonic analysis
has some difficulties to resolve this constituent in relation to the length of the considered time series
290 (54 days). In support, the N, amplitude (0.16 m) from a longer time series (85 days) collected in
2017 at 58 km from the mouth matches better the model output, while results for other constituents
are similar in 2015 and 2017 (Garel, unpublished data). Otherwise, the correspondence is poorest for
the semi-diurnal constituents at the most upstream station, owing to truncation of the lowest water
levels by a sill located at about 65 km from the river mouth (Garel, 2017). Table 3 displays the mean
295 friction correction coefficient f obtained from the iterative procedure to account for the nonlinear
interaction between different tidal constituents. In particular, the mean friction correction factors f
for the minor constituents So, No, O1, and K are 4.6, 8.1, 41.1, and 49.8, respectively.
To understand the tidal dynamics between different tidal constituents along the Guadiana estuary,
the longitudinal variations of the tidal damping/amplification number § 4 and celerity number A 4 (see
300 their definitions in Table 1) are shown in Figure 7 where similar minor constituents in semidiurnal
(S2, N») and diurnal (O, K;) band behave more or less the same. As shown in Figure 7a, the
minor constituents S, No, O1, and K experience more friction compared with the predominant
M5 tide. Interestingly, we observe a stronger damping (d4 < 0) of semidiurnal constituents (Ss,
Ns) than those of diurnal constituents (O, K1) in the seaward part of the estuary (around x=0-40
305 km) although the amplitudes of the diurnal constituents are less than those of the semidiurnal ones.
In contrast, the amplification (64 > 0) of semidiurnal constituents (S2, N2) is more apparent than
those of diurnal constituents (O;, K1) in the landward part of the estuary. For the wave celerity, as
expected the dominant M5 tide travels faster (smaller A 4) than minor tidal constituents. In addition,
we observe that the wave celerity of semidiurnal tidal constituents is larger than those of diurnal
310 constituents in the seaward reach (around 2=0-30 km), while it is the opposite in the landward reach,
which suggests a complex relation between tidal damping/amplification and wave celerity due to the
combined impacts of channel convergence, bottom friction and reflected wave.
For the Guadalquivir estuary, the geometry can be approximated as a converging estuary with
a width convergence length of =65.5 km and a constant stream depth of about 7.1 m. A linear
315 reduction of the storage width ratio of 1.5-1 was adopted over the reach 0-103 km. The observed
tidal amplitudes and phases are best reproduced by using the model for K = 46 m'/3s~! (see Figure
8). In general, the observed tidal properties (tidal amplitude and phase) of different constituents are
well reproduced. The enhanced frictional coefficient f for minor constituents S2, No, O1, and K3
are 5.4, 9.7, 40.7, and 43.7, respectively (Table 3).
320 Figure 9 shows the longitudinal variations of tidal damping/amplification and wave celerity for
the Guadalquivir estuary. Similar to the Guadiana estuary, we observe that the dominant M, tide
experiences less tidal damping and travels faster than other minor tidal constituents. It can be seen

from Figure 9 that the magnitude of tidal damping is approximately one order larger than that in

10
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the Guadiana estuary (Figure 9a) and hence the wave celerity is comparatively smaller (larger A 4,
Figure 9b). Unlike the Guadiana estuary, the damping experienced by the minor semidiurnal tides

is less than those of diurnal constituents in the seaward reach (around z=0-55 km), while the wave

In this study, we provide insight into the mutual interactions between one predominant (e.g., Ms)
and other tidal constituents in estuaries and the role of quadratic friction on tidal wave propagation.
An analytical method exploiting the Chebyshev polynomials was developed to quantify the effec-
tive friction experienced by different tidal constituents. Based on the linearization of the quadratic
friction, the conceptual model has been used to explore the nonlinear interaction of different tidal
constituents, which enables them to be treated independently by means of an iterative procedure.
Thus, an analytical hydrodynamic model for a single tidal constituent can be used to reproduce the
correct wave behavior for different tidal constituents. In particular, it was shown that a correction
of the friction term needs to be used to correctly reproduce the tidal dynamics for minor tidal con-
stituents. The application to the Guadiana and the Guadalquivir estuaries shows that the conceptual

model can interpret the nonlinear interaction reasonably well when combined with an analytical

A crucial feature of the proposed approach is the deterministic description of the mutual frictional
interaction among tidal constituents, which avoids the need of an independent calibration of the
friction parameter for the single constituent. In this respect, further work is required to explore

whether a reliable value of the friction coefficient estimated through this method can be parametrized

Analytical solutions of tidal hydrodynamics for a single tidal constituent

In this paper, analytical solutions for a semi-closed estuary proposed by Toffolon and Savenije (2011)

were used to reproduce the longitudinal tidal dynamics along the estuary axis. The solution makes

325
celerity is consistently larger for the whole channel.
5 Conclusions

330

335

340 model for tidal hydrodynamics.

345 based on observations of the bottom roughness of the estuary.
Appendix A

350 use of the parameters that are defined in Table 1.

The analytical solutions for the tidal wave amplitudes and phases are given by:

n=CoholA*], v=rgoco|V", (AD
_SAY) _ S
tan(¢a) = R(A)’ tan(¢y) = ROV’ (A2)
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355 where R and < are the real and image parts of the corresponding term, and A* and V* are unknown

complex functions varying along the dimensionless coordinate x* = x/Ly:

A* = alexp (wiz™) + ajexp (wiz™) , (A3)
V* = o] exp (wiz*) + v3 exp (wiz™) . (A4)
360 For a tidal channel with a closed end, the analytical solutions for the unknown variables in Egs.

(A3) and (A4) are listed in Table 4, where A is a complex variable, defined as

- 8
A= /4-1+iX,  X= -k, (A5)

3T
where the coefficient 8/(37) stems from the adoption of Lorentz’s linearization when considering
only one single predominant tidal constituent (e.g., M>).

365 Since the friction parameter ¥ depends on the unknown value of y (or v), an iterative procedure
was used to determine the correct wave behavior. In addition, to account for the longitudinal varia-
tion of the cross-section (e.g., estuary depth) a multi-reach technique was adopted by subdividing the
entire estuary into multiple sub-reaches and the solutions obtained by solving a set of linear equa-
tions with internal boundary conditions at the junction of the sub-reaches satisfying the continuity

370 condition (see details in Toffolon and Savenije, 2011).

For given computed values of A* and V*, the dependent parameters defined in Table 1 can be

computed using the following equations:

p=1V=, o=y —da, (A6)

375 5A:m(%j—’§), 5V:m<‘}*i‘;), (A7)
Db (). b
Appendix B

Coefficients of the Godin’s expansion

380 The following trigonometric equation

1
cos®(wit) = %cos(wlt) +7 cos(3wit), (B1)

is used to convert the third-order terms of Eq. (7) to the harmonic constituents. For a single harmonic,

it follows that

12
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) 3 1
ulu| =vi || a+ Zﬁ cos(w1t) + Zﬁcos(?;wlt) . (B2)

385

390

395

400

For two harmonic constituents, the Chebyshev polynomials approximation of u|u/| is expressed as

ulu| = v? {a [e1 cos(wit) 4 €2 cos(wat)] + Bler cos(wit) + 2 cos(wgt)]3} . (B3)
In Eq. (B3), the cubic term can be expanded as
[e1 cos(wit) + £2 cos(wat)]? =3 cos®(wit) + 32163 cos(wit) cos (wat) A
(B4)

+ 3967 cos(wat) cos® (wit) + &5 cos® (wat) .

Making use of the trigonometric equations to expand the power of the cosine functions (e.g.,
cos®(w;t) and cos?(w;t)) and extracting only the harmonic terms with frequencies w; and ws, Eq.
(B3) can be reduced to Eq. (12).

For the case of many constituents, here we only provide the exact coefficients for n=3:

3m [ 3, 3, 3,\] 1

Fl:% a+ﬂ(isf—&-§e§+55§) :5(24—35%4—6534—653), (B5)
3m [ 3, 3, 3,\] 1

ngg a+ﬂ(isg+55f+§£§) :5(2+3e§+6e§+ﬁe§), (B6)
3m [ 3, 3, 3,\] 1

ngg a+ﬂ(15§+isf+§52> :g(2+3s§+65§+653). (B7)

Equations (B5) to (B6) reduce to Egs. (13) and (14) when €3 = 0 (i.e., v3=0).
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Table 1. Definitions of dimensionless parameters.

Independent parameters Dependent parameters

Tidal amplitude at the mouth Tidal amplitude

Co=m0/ho ¢=n/h

Friction number at the mouth Friction number

X0 =rscoCog/ (KQWF04/3> x =rscolg/ <K2w54/3)
Estuary shape Velocity number

v =co/(wa) = wv/(rs¢eo) = vh/(rsnco)
Estuary length Damping number for water level
Li=L./Lo 04 = codn/(nwdz)

Damping number for velocity
oy = codv/(vwdz)

Celerity number for water level
Aa=cofca

Celerity number for velocity
Av =co/ev

Phase difference

=0V —¢a
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Table 2. Tidal elevation amplitudes (m) and phases (°) estimates (with 95% confidence intervals in brackets)

from harmonic analyses of pressure records along the Guadiana estuary (x: distance from the mouth, km).

Amplitude (m)

x (km) My O, K Ny My Sa My Ms
24 0.01 (0.03) 0.06 (0.01) 0.07(0.01) 0.23(0.01) 0.97(0.01) 0.37(0.02) 0.02(0.00) 0.01 (0.00)
10.7 0.01 (0.07)  0.06 (0.01) 0.07 (0.01) 0.22(0.01) 0.93(0.01) 0.34(0.01) 0.02(0.01) 0.01 (0.00)
22.8 0.03 (0.04) 0.06 (0.01) 0.07(0.01) 0.20(0.02) 0.86(0.02) 0.29 (0.02) 0.04(0.01) 0.02(0.01)
339 0.06 (0.05) 0.06 (0.01) 0.07(0.01) 0.20(0.02) 0.85(0.02) 0.27 (0.02) 0.04(0.01) 0.03(0.01)
43.6 0.06 (0.06) 0.06 (0.01) 0.07(0.01) 0.21(0.02) 0.87(0.02) 0.27 (0.02) 0.05(0.01) 0.03(0.01)
514 0.05 (0.05) 0.06(0.01) 0.07 (0.01) 0.22(0.02) 0.90(0.02) 0.28 (0.02) 0.07 (0.01) 0.03 (0.01)
60.1 0.07 (0.06)  0.06 (0.01) 0.07 (0.01) 0.22(0.02) 0.93(0.02) 0.30(0.02) 0.08 (0.01) 0.04 (0.01)
69.6 0.10 (0.06)  0.06 (0.01) 0.06 (0.01) 0.19(0.03) 0.78 (0.03) 0.24 (0.03) 0.16(0.03) 0.02(0.01)

Phase (°)
24 190 (149) 310 (6) 73 (5) 54 (4) 62 (1) 93 (2) 151 (8) 219 (18)
10.7 8 (190) 319 (7) 85 (6) 68 (3) 75 (1) 108 (3) 103 (14) 237 (15)
238 38 (66) 331 (9) 103 (7) 87 (4) 93 (1) 130 (3) 131 (12) 294 (16)
339 49 (56) 343 (7) 116 (6) 104 (5) 109 (1) 151 (4) 166 (8) 336 (11)
43.6 51(58) 348 (8) 123 (8) 116 (5) 121 (1) 166 (4) 189 (6) 12 (14)
514 48 (48) 352 (9) 128 (8) 123 (6) 128 (1) 175 (5) 203 (5) 43 (19)
60.1 53 (58) 356 (9) 133 (8) 131 (6) 135 (1) 184 (5) 219 (4) 69 (21)
69.6 51 (43) 709) 146 (8) 146 (9) 148 (2) 200 (7) 261 (11) 15 (18)

Table 3. Mean correction friction factor f for different tidal constituents along the Guadiana and the

Guadalquivir estuaries.

Tidal constituents M> Sy No K 01
Guadiana 1.1 46 81 41.1 498
Guadalquivir 1.1 54 97 407 437

Table 4. Analytical expressions for unknown complex variables for the case of a closed estuary.

ai, a3 vy, v3 wi, w3
—T Tk
* *\ A * — *
at = [l—i-exp(ALe) Af;j’;] ol = wi =7/2+A
* * * i(1—af *
a3 =1-aj U2:l/<\+j/12) wy =7/2—A
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Figure 1. Geometry of a semi-closed estuary and basic notation (after Savenije et al. (2008)). HW, high water;

LW, low water.
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Figure 2. Tidally averaged depth (m, black dots), width (m, blue dots) and cross-sectional area (m?, green dots)

along the Guadiana estuary. Red lines represent exponential fit curves for the width and cross-sectional area.
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Figure 3. Approximation to the quadratic velocity u|u| by the Chebyshev polynomials approach for the case

of two tidal constituents (i.e., M2 and K1). Here, u = 0.6 cos(w1t) + 0.2 cos(wat), where wq and wo represent

the tidal frequencies of M and K1, respectively.
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Figure 4. Computed effective friction coefficients F (a) and F» (b) from Eqgs. (13) and (14) as a function of

€1.
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Figure 6. Tidal constituents (a) Ma; (b) S2; (¢) N2; (d) K1; (e) O1: modelled against observed values of tidal

amplitude (m) and phase (°) of elevation along the Guadiana estuary.
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Figure 7. Longitudinal variations of tidal damping/amplification number d4 (a) and wave celerity number \ 4

(b) for different tidal constituents along the Guadiana estuary.
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Figure 9. Longitudinal variations of tidal damping/amplification number 04 (a) and wave celerity number \ 4

(b) for different tidal constituents along the Guadalquivir estuary.
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