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Abstract. When different tidal constituents propagate along an estuary, they interact because of

the presence of nonlinear terms in the hydrodynamic equations. In particular, due to the quadratic

velocity in the friction term, the effective friction experienced by both the predominant and the mi-

nor tidal constituents is enhanced. We explore the underlying mechanism with a simple conceptual

model by utilizing Chebyshev polynomials, enabling the effect of the velocities of the tidal con-5

stituents to be summed in the friction term and, hence, the linearized hydrodynamic equations to be

solved analytically in a closed form. An analytical model is adopted for each single tidal constituent

with a correction factor to adjust the linearized friction term, accounting for the mutual interactions

between the different tidal constituents by means of an iterative procedure. The proposed method

is applied to the Guadiana (southern Portugal-Spain border) and the Guadalquivir (Spain) estuaries10

for different tidal constituents (M2, S2, N2, O1, K1) imposed independently at the estuary mouth.

The analytical results appear to agree very well with the observed tidal amplitudes and phases of the

different tidal constituents. The proposed method could be applicable to other alluvial estuaries with

small tidal amplitude to depth ratio and negligible river discharge.

1 Introduction15

Numerous studies have been conducted in recent decades to model tidal wave propagation along an

estuary since an understanding of tidal dynamics is essential for exploring the influence of human-

induced (such as dredging for navigational channels) or natural (such as global sea level rises) inter-

ventions on estuarine environments (Schuttelaars et al., 2013; Winterwerp et al., 2013). Analytical
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models are invaluable tools and have been developed to study the basic physics of tidal dynamics20

in estuaries; for instance, to examine the sensitivity of tidal properties (e.g., tidal damping or wave

speed) to change in terms of external forcing (e.g., spring–neap variations of amplitude) and geom-

etry (e.g., depth or channel length). However, most analytical solutions developed to date, which

make use of the linearized Saint-Venant equations, can only deal with one predominant tidal con-

stituent (e.g., M2), which prevents consideration of the nonlinear interactions between different tidal25

constituents. The underlying problem is that the friction term in the momentum equation follows a

quadratic friction law, which causes a nonlinear behavior causing tidal asymmetry as
::
the

:
tide prop-

agates upstream. If the friction law were linear, one would expect that the effective frictional effect

for different tidal constituents (e.g., M2 and S2) could be computed independently (Pingree, 1983).

To explore the interaction between different constituents of the tidal flow, the quadratic velocity30

u|u| (where u is the velocity) is usually approximated by a truncated series expansion, such as a

Fourier expansion (Proudman, 1953; Dronkers, 1964; Le Provost, 1973; Pingree, 1983; Fang, 1987;

Inoue and Garrett, 2007). If the tidal current is composed of one dominant constituent and a much

smaller second constituent, it has been shown by many researchers (Jeffreys, 1970; Heaps, 1978;

Prandle, 1997) that the weaker constituent is acted on by up to 50% more friction than that of
:::
acts35

::
on

:
the dominant constituent. However, this requires the assumption of a very small value of the

ratio of the magnitudes of the weaker and dominant constituents, which indicates that this is only a

first-order estimation. Later, some researchers have extended the analysis to improve the accuracy

of estimates and to allow for more than two constituents (Pingree, 1983; Fang, 1987; Inoue and

Garrett, 2007). Pingree (1983) investigated the interaction between M2 and S2 tides, resulting in a40

second-order correction of the effective friction coefficient acting on the predominant M2 tide and a

fourth-order value for the weaker S2 constituent of the tide. Fang (1987) derived exact expressions

of the coefficients of the Fourier expansion of u|u| for two tidal constituents but did not provide ex-

act solutions for the case of three or more constituents. Later, Inoue and Garrett (2007) used a novel

approach to determine the Fourier coefficients of u|u|, which allows the magnitude of the effective45

friction coefficient to be determined for many tidal constituents. For the general two-dimensional

tidal wave propagation, the expansion of quadratic bottom friction using a Fourier series was first

proposed by Le Provost (1973) and subsequently applied to spectral models for regional tidal cur-

rents (Le Provost et al., 1981; Le Provost and Fornerino, 1985; Molines et al., 1989). Building on the

previous work by Le Provost (1973), the importance of quadratic bottom friction in tidal propagation50

and damping was discussed by Kabbaj and Le Provost (1980) and reviews of friction term
:::::
terms in

models were presented by Le Provost (1991).

In contrast, as noted by other researchers (Doodson, 1924; Dronkers, 1964; Godin, 1991, 1999),

the quadratic velocity u|u| is, mathematically, an odd function, and it is possible to approximate it

by using a two- or three-term expression, such as αu+βu3 or αu+βu3 + ξu5, where α, β, and ξ55

are suitable numerical constants. The linear term αu represents the linear superposition of different
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constituents, while the nonlinear interaction is attributed to a cubic term βu3 and a fifth-order term

ξu5. It is to be noted that such a method has the advantage of keeping the hydrodynamic equations

resolvable
::::::
solvable

:
in a closed form (Godin, 1991, 1999).

Previous studies explored the effect of frictional interaction between different tidal constituents by60

quantifying a friction correction factor only (e.g., Dronkers, 1964; Le Provost, 1973; Pingree, 1983;

Fang, 1987; Godin, 1999; Inoue and Garrett, 2007). In this study, for the first time, the mutual inter-

actions between tidal constituents in the frictional term were explored using a conceptual analytical

model. Specifically, a friction correction factor for each constituent was defined by expanding the

quadratic velocity using a Chebyshev polynomials approach. The model has subsequently been ap-65

plied to the Guadiana and the Guadalquivir estuaries in southern Iberian Peninsula
:::::
Iberia, for which

case
::::
cases

:
the mutual interaction between the predominant M2 tidal constituent and other tidal con-

stituents (e.g., S2, N2, O1, K1) is explored.

2 Materials and methods

2.1 Hydrodynamic model70

We are considering a semi-closed estuary that is forced by one predominant tidal constituent (e.g.,

M2) with the tidal frequency ω = 2π/T , where T is the tidal period. As the tidal wave propagates

into the estuary, it has a wave celerity of water level cA, a wave celerity of velocity cV , an amplitude

of tidal elevation η, a tidal velocity amplitude υ, a phase of water level ϕA, and a phase of velocity

ϕV . The length of the estuary is indicated by Le.75

The geometry of a semi-closed estuary is shown in Figure 1, where x is the longitudinal coor-

dinate, which is positive in the landward direction, and z is the free surface elevation. The tidally

averaged cross-sectional area A and width B are assumed to be exponentially convergent in the

landward direction, which can be
::
as described by

A=A0 exp(−x/a) , (1)80

B =B0 exp(−x/b) , (2)

where A0 and B0 are the respective values at the estuary mouth (where x=0), and a and b are the

convergence lengths of cross-sectional area and width, respectively. We also assume a rectangular

cross-section, from which it follows that the tidally averaged depth is given by h=A/B. The85

possible influence of storage area is described by the storage width ratio rS , defined as the ratio

of the storage width BS (width of the channel at averaged high water level) to the tidally averaged

width B (i.e., rS =BS/B).

With the above assumptions, the one-dimensional continuity equation reads

rS
∂h

∂t
+u

∂h

∂x
+h

∂u

∂x
+

hu

B

dB

dx
= 0 , (3)90
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where t is the time and h the instantaneous depth. Assuming negligible density effects, the one-

dimensional momentum equations can be cast as follows

∂u

∂t
+u

∂u

∂x
+ g

∂z

∂x
+

gu|u|
K2h4/3

= 0 , (4)

where g is the acceleration due to gravity and K is the Manning-Strickler friction coefficient.

In order to obtain an analytical solution, we assume a negligible river discharge
:
, and that the tidal95

amplitude is small with respect to the mean depth
:
, and follow Toffolon and Savenije (2011) to derive

the linearized solution of the system of Eqs. (3) and (4). However, different from the standard linear

solutions, we will retain the mutual interaction among different harmonics originated by
:::::::::
originating

::::
from the nonlinear frictional term, which contains two sources of nonlinearity: the quadratic velocity

u|u| and the variable depth at
::
in the denominator. While we neglect the latter factor, consistent with100

the assumption of small tidal amplitude, we will exploit Chebyshev polynomials to represent the

harmonic interaction in the quadratic velocity (see Section 3.1). For sake of clarity, we report here

the linearized version of the momentum equation

∂u

∂t
+ g

∂z

∂x
+κu|u|= 0 , (5)

and the friction coefficient105

κ=
g

K2h
4/3

. (6)

Toffolon and Savenije (2011) demonstrated that the tidal hydrodynamics in a semi-closed estuary

are controlled by a few dimensionless parameters that depend on geometry and external forcing

(for detailed information about analytical solutions for tidal hydrodynamics, readers can refer to

Appendix A). These parameters
::::
They

:
are defined in Table 1 and can be interpreted as follows.110

The independent dimensionless parameters are: ζ0 is the dimensionless tidal amplitude (the sub-

script 0 indicating the seaward boundary condition); γ is the estuary shape number (representing

the effect of cross-sectional area convergence); χ0 is the friction number (describing the role of the

frictional dissipation); L∗
e is the dimensionless estuary length. The dimensional quantities used in

the definition of the dimensionless parameters are: η0 is the tidal amplitude at the seaward boundary;115

c0 =
√
gh/rS is the frictionless wave celerity in a prismatic channel; L0 = c0/ω is the tidal length

scale related to the frictionless tidal wave length by a factor 2π.

The main dependent dimensionless parameters are also presented in Table 1, including: ζ is the

actual tidal amplitude; χ is the actual friction number; µ is the velocity number (the ratio of the actual

velocity amplitude to the frictionless value in a prismatic channel); λA and λV are, respectively,120

the celerity for elevation and velocity (the ratio between the frictionless wave celerity in a prismatic

channel and actual wave celerity); δA and δV are, respectively, the amplification number for elevation

and velocity (describing the rate of increase, δA (or δV ) > 0, or decrease, δA (or δV ) < 0, of the

wave amplitudes along the estuary axis); ϕ= ϕV −ϕA is the phase difference between the phases of

velocity and elevation.125
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It is important to remark that several nonlinear terms are present both in the continuity and in

the momentum equations (Parker, 1991), which are responsible, for instance, of
:::
for the internal

generation of overtides (e.g., M4). In this approximated approach, we disregard them and focus

exclusively on the mutual interaction among the external tidal constituents mediated by the quadratic

velocity dependence in the frictional term. In fact, it
::
the

::::::::
nonlinear

::::::::
quadratic

:::::::
velocity

::::
term

:
crucially130

affects the propagation of the tidal waves associated with the different constituents that are already

present in the tidal forcing at the estuary mouth.

2.2 Study areas

Both the Guadiana and the Guadalquivir estuaries are located in the southwest part of the Iberian

Peninsula. These systems are good candidates for the application of a 1D hydrodynamic model of135

tidal propagation. Both estuaries are featured with
:::::
feature

:
a simple geometry, consisting of a single,

narrow and moderately deep channel with relatively smooth bathymetric variations. Moreover, their

tidal prism exceeds their average freshwater inputs by several orders of magnitude due to strong

regulation by dams. Under these largely predominant low river discharge conditions, both estuaries

are well-mixed, and the water circulation is mainly driven by tides.140

The Guadiana estuary, at the southern border between Spain and Portugal, connects the Guadiana

River to the Gulf of Cadiz. Tidal water level oscillations are observed along the channel until a

weir located
::
as

::
far

:::
as

::
a

::::
weir

:
78 km upstream of the river mouth (Garel et al., 2009). Both the

cross-sectional area and the channel width are convergent and can be described by an exponential

function, with convergence lengths of a=31 km and b=38 km, respectively (Figure 2). The flow145

depth is generally between 4 m and 8 m, with a mean depth of about 5.5 m (Garel, 2017).

The tidal dynamics in the Guadiana estuary are derived from records obtained using eight pressure

transducers deployed for a period of 2 months (31 July to 25 September 2015) approximately every

10 km along the estuary (from the mouth to ∼ 70 km upstream). The data were collected during an

extended (months-long) period of drought with negligible river discharge (e.g., always < 20 m3/s150

over the preceding 5 months). For each station, the amplitude and phase of elevation of the tidal

constituents were obtained from standard harmonic analysis of the observed pressure records using

the “t-tide” Matlab toolbox (Pawlowicz et al., 2002). The harmonic results are displayed in Table 2.

Near the mouth, the largest diurnal (K1), semi-diurnal (M2) and quarter-diurnal (M4) frequencies

are similar to those previously reported at the same location based on pressure records taken over ∼155

9 months (see Garel and Ferreira, 2013). In particular, the value (ηK1
+ ηO1

)/(ηM2
+ ηS2

) is less

than 0.1 at the sea boundary, which indicates that the tide is dominantly semi-diurnal.

The Guadalquivir estuary is located in southern Spain, at ∼ 100 km to the east of the Guadiana

River mouth. The estuary has a length of 103 km starting from the mouth at Sanlucar de Barrameda

to the Alcala del Rio dam. The geometry of the Guadalquivir estuary can be approximated by160

exponential functions with convergence length of a=60 km for the cross-sectional area and b=66 km
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for the width (see Diez-Minguito et al., 2012). The flow depth is more or less constant (7.1 m).

Tidal dynamics along the Gualdalquivir estuary was analysed by Diez-Minguito et al. (2012)

based on harmonic analyses of field measurements collected from June to December 2008. The

amplitude and phase of tidal constituents near the mouth are highly similar to those at the entrance165

of the Guadiana estuary (Table 2), producing a semi-diurnal and mesotidal signal with a mean spring

tidal range of 3.5 m. In this paper, the tidal observations of the Guadalquivir estuary are directly

taken from Diez-Minguito et al. (2012). The results apply to the low river discharge conditions (<

40 m3/s) that usually predominate at
:
in

:
the estuary.

3 Conceptual model170

3.1 Representation of quadratic velocity u|u| using Chebyshev polynomials approach

The Chebyshev polynomials can be used to approximate the quadratic dependence of the friction

term on the velocity, u|u|. Adopting a two-term approximation, it is known that (Godin, 1991,

1999)

u|u|= υ̂2

[
α
(u
υ̂

)
+β

(u
υ̂

)3
]
, (7)175

where υ̂ is the sum of the amplitudes of all the harmonic constituents. The Chebyshev coefficients

α= 16/(15π) and β = 32/(15π) were determined by the expansion of cos(nx) (n=1,2,. . . ) in pow-

ers of cos(x) (Godin, 1991, 1999). It is important to note that, unlike series developments (e.g.,

Fourier expansion), the Chebyshev coefficients α and β vary with the number of terms that are used

in the development. Godin (1991) already showed that a two-term approximation (such as Eq. 7) is180

adequate to satisfactorily account for the friction.

For a single harmonic

u= υ1 cos(ω1t) , (8)

where υ1 is the velocity amplitude and ω1 its frequency, Eq. (7) can be expressed by exploiting

standard trigonometric relations as185

u|u| ∼= υ2
1

[
8

3π
cos(ω1t)+

8

15π
cos(3ω1t)

]
. (9)

Focusing only on the original harmonic constituent leads to

u|u| ∼=
8

3π
υ2
1 cos(ω1t) , (10)

which coincides exactly with Lorentz’s classical linearization (Lorentz, 1926) or a Fourier expansion

of u|u| (Proudman, 1953).190

Considering a second tidal constituent, the velocity is given by

u= υ1 cos(ω1t)+ υ2 cos(ω2t) = υ̂ [ε1 cos(ω1t)+ ε2 cos(ω2t)] , (11)
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where υ2 and ω2 are the amplitude and frequency of the second constituent, ε1 = υ1/υ̂ and ε2 =

υ2/υ̂ are the ratios of the amplitudes to that of the maximum possible velocity υ̂ = υ1 + υ2. Note

that the possible phase lag between the two constituents is neglected assuming a suitable time shift195

(Inoue and Garrett, 2007). In this case, the truncated Chebyshev polynomials approximation of u|u|
(focusing on two original tidal constituents) is expressed as (see also Godin, 1999)

u|u| ∼=
8

3π
υ̂2 [F1ε1 cos(ω1t)+F2ε2 cos(ω2t)] , (12)

with

F1 =
3π

8

[
α+β

(
3

4
ε21 +

3

2
ε22

)]
=

1

5
(2+3ε21 +6ε22) =

1

5

(
8+9ε21 − 12ε1

)
, (13)200

F2 =
3π

8

[
α+β

(
3

4
ε22 +

3

2
ε21

)]
=

1

5
(2+3ε22 +6ε21) =

1

5

(
5+9ε21 − 6ε1

)
, (14)

where F1 and F2 represent the effective friction coefficients caused by the nonlinear interactions

between tidal constituents. The last equality in Eqs. (13) and (14) is due to the fact that ε1+ ε2 = 1.

It is worth noting that Eq. (12) is a reasonable approximation only if the amplitude of secondary205

constituent is much smaller than that of the dominant one.

For illustration, approximations using Eqs. (7) and (12) for a typical tidal current with ε1 = 3/4

and ε2 = 1/4 are displayed in Figure 3 for the case of two tidal constituents. It can be seen that the

Chebyshev polynomials approximation (Eq. 7) matches the nonlinear quadratic velocity well, while

Eq. (12), retaining only the original frequencies (ω1 and ω2), is still able to approximately capture210

the first-order trend of the quadratic term.

It can be seen from Eqs. (13) and (14) that when ε2 ≪ 1 (hence, ε1 ≃ 1 for the dominant tidal

constituent), F1 ≃ 1, F2 ≃ 1.6, thus the weaker constituent experiences proportionately 60% more

friction than the dominant constituent, which is slightly larger than the classical result of 50% more

friction for the weaker tidal constituent. Figure 4 shows the solutions of effective friction coefficients215

F1 and F2 as a function of ε1 for the case of two constituents. As expected, we see a symmetric

response of these coefficients in the function of ε1 since ε1 + ε2 = 1. Specifically, we note that the

effective friction coefficient F1 reaches a minimum when ε1=2/3, when the velocity amplitude of

the dominant constituent is twice larger than the weaker constituent.

Similarly, we are able to extend the same approach to the case of a generic number n of astronom-220

ical tidal constituents (e.g., K1, O1, M2, S2, N2)

u=

n∑
i=1

υ1 cos(ωit) = υ̂

n∑
i=1

εi cos(ωit) , (15)

in which the subscript i represents the i-th tidal constituent. Considering only the original tidal

constituents, the quadratic velocity can be approximated as

u|u| ∼=
8

3π
υ̂2

n∑
i=1

Fiεi cos(ωit) , (16)225
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and the general expression for the effective friction coefficients of j-th tidal constituents is given by

Fj =
3π

8

α+β

 n∑
i=1,i̸=j

3

2
ε2i −

3

4
ε2j

=
1

5

2+3ε2j +

n∑
i=1,i̸=j

6ε2i

 . (17)

We provide the complete coefficients for the cases of one to three constituents in Appendix B.

3.2 Effective friction in the momentum equation

For a single tidal constituent u= υ1 cos(ω1t), the quadratic velocity term u|u| is often approximated230

by adopting Lorentz’s linearization equation (Eq. 10) and thus the friction term in Eq. (5) becomes

κu|u|=
(
κ
8

3π
υ1

)
u= ru, (18)

which is the “standard” case for a monochromatic wave, i.e. when we only deal with a predominant

tidal constituent (e.g., M2).

For illustration of the method, we consider a tidal current that is composed of one dominant235

constituent (e.g., M2 with velocity u1) and a weaker constituent (e.g., S2 with velocity u2), which is

a simple but important example in estuaries, i.e., u= u1 +u2. In this case, combination of Eq. (5)

and the Chebyshev polynomials expansion of u|u| (Eq. 12) yields

∂u1

∂t
+

∂u2

∂t
+ g

∂z1
∂x

+ g
∂z2
∂x

+κ
8

3π
υ̂(F1u1 +F2u2) = 0 , (19)

where z1 is the free surface elevation for the dominant constituent and z2 for the secondary con-240

stituent. Exploiting the linearity of Eq. (19), we can solve the two problems independently. As a

result, we see that the actual friction term that is felt in Eq. (19) is different from that would be felt

by the single constituent alone (Eq. 18).

Introducing a general form of the linearized momentum equation for the generic i-th constituent

∂ui

∂t
+ g

∂zi
∂x

+ firiui = 0 , (20)245

with

ri = κ
8

3π
υi , (21)

as in the standard case, we see that the effective friction term contains a correction factor

fi =
Fi

εi
, (22)

through the coefficient Fi. Since the ratio εi can be quite small for a weaker constituent, the friction250

actually felt can be significantly stronger.
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4 Results

4.1 Hydrodynamic modeling incorporating the friction correction factor

If there are many tidal constituents, then the friction experienced by one is affected by the others.

As suggested by our conceptual model, the mutual effects can be incorporated by using the friction255

correction factor fn defined in Eq. (22) if the other (weaker) constituents are treated in the same way

as the predominant constituent. As a result, the friction number χn for each tidal constituent can be

modified as

χn = fnχ, (23)

where χ is the friction number (see definition in Table 1) experienced if only a single tidal constituent260

is considered.

We note that the modified friction number χn in Eq. (23) contains the friction coefficient K. In

many applications, K is calibrated separately for each tidal constituent to account for the different

friction exerted due to the combined tide, either changing K directly or through calibration of the

different correction friction factors fn (see, e.g., Cai et al., 2015, 2016). The current study aims at265

avoiding the need to adjust K individually, so that only a single value of K can
:::::
needs

::
to be calibrated,

which is based on the physical consideration that friction mostly depends on bottom roughness, and

the other factors (tide interaction) are to be correctly modelled.

4.2 Procedure to study the propagation of the different constituents

With a hydrodynamic model for a single constituent (see Appendix A), an iterative procedure can270

be designed to study the propagation of the different constituents by calibrating a single value of the

Manning-Strickler friction parameter K. The flow chart illustrating the computation process is pre-

sented in Figure 5. Initially, we assume the friction correction factor fi=1 for each tidal constituent,

and compute the first tentative values of velocity amplitude υi along the channel using the hydrody-

namic model. This allows defining υ̂ and, hence, εi. Taking into account the frictional interaction275

between tidal constituents, the revised fi is calculated using Eqs. (17) and (22). Subsequently, using

the updated fi, the new velocity amplitude υi along the channel can be computed using the hydro-

dynamic model. This process is repeated until the result is stable. In this paper, two examples of

Matlab scripts are provided together with the observed tidal data in the Guadiana and Guadalquivir

estuaries (see Supporting Information).280

It is worth stressing that the single constituents are not calibrated independently, as was done

in previous analyses (e.g., Cai et al., 2015). Conversely, only a single friction parameter, K, is

calibrated or estimated based on the physical knowledge of the system (bed roughness). This feature

represents a major advantage of the proposed method because the frictional interaction is modelled

in mechanistic terms using Eq. (22).285
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4.3 Application to the Guadiana and Guadalquivir estuaries

In this study, the analytical model for a semi-closed estuary presented in Section 2.1 was applied to

the Guadiana and Guadalquivir estuaries to reproduce the correct tidal behavior for different tidal

constituents. The analytical results were compared with observed tidal amplitude η and associated

phase of elevation ϕA.290

The morphology of the Guadiana estuary was represented in the model with a constant depth

(5.5 m), an exponentially converging width (length scale, 38 km) and a constant storage ratio of

1 representative of the limited salt marsh areas (about 20 km2, see Garel (2017)). The Manning-

Strickler friction coefficient (K = 42 m1/3s−1) was determined by calibrating the model outputs

(obtained using the iterative procedure presented in section 4.2) with observations. It can be seen295

from Figure 6 that the computed tidal amplitude and phase of elevation are in good agreement with

the observed values for different tidal constituents in the Guadiana estuary. The N2 amplitude is

slightly overestimated in the central part of the estuary, which may suggest that the harmonic analysis

has some difficulties to resolve this constituent in relation to the length of the considered time series

(54 days). In support, the N2 amplitude (0.16 m) from a longer time series (85 days) collected in300

2017 at 58 km from the mouth matches better the model output, while results for other constituents

are similar in 2015 and 2017 (Garel, unpublished data). Otherwise, the correspondence is poorest for

the semi-diurnal constituents at the most upstream station, owing to truncation of the lowest water

levels by a sill located at about 65 km from the river mouth (Garel, 2017). Table 3 displays the mean

friction correction coefficient f obtained from the iterative procedure to account for the nonlinear305

interaction between different tidal constituents. In particular, the mean friction correction factors f

for the minor constituents S2, N2, O1, and K1 are 4.6, 8.1, 41.1, and 49.8, respectively.

To understand the tidal dynamics between different tidal constituents along the Guadiana estuary,

the longitudinal variations of the tidal damping/amplification number δA and celerity number λA (see

their definitions in Table 1) are shown in Figure 7 where similar minor constituents in semidiurnal310

(S2, N2) and diurnal (O1, K1) band behave more or less the same. As shown in Figure 7a, the

minor constituents S2, N2, O1, and K1 experience more friction compared with the predominant

M2 tide. Interestingly, we observe a stronger damping (δA < 0) of semidiurnal constituents (S2,

N2) than those of diurnal constituents (O1, K1) in the seaward part of the estuary (around x=0-40

km) although the amplitudes of the diurnal constituents are less than those of the semidiurnal ones.315

In contrast, the amplification (δA > 0) of semidiurnal constituents (S2, N2) is more apparent than

those of diurnal constituents (O1, K1) in the landward part of the estuary. For the wave celerity, as

expected the dominant M2 tide travels faster (smaller λA) than minor tidal constituents. In addition,

we observe that the wave celerity of semidiurnal tidal constituents is larger than those of diurnal

constituents in the seaward reach (around x=0-30 km), while it is the opposite in the landward reach,320

which suggests a complex relation between tidal damping/amplification and wave celerity due to the

combined impacts of channel convergence, bottom friction and reflected wave. It is important to
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note that a standing wave pattern with celerity approaching infinity is produced near the sill due to

the superimposition of the incident and reflected waves (see also Garel and Cai, 2018).

For the Guadalquivir estuary, the geometry can be approximated as a converging estuary with325

a width convergence length of b=65.5 km and a constant stream depth of about 7.1 m. A linear

reduction of the storage width ratio of 1.5-1 was adopted over the reach 0-103 km. The observed

tidal amplitudes and phases are best reproduced by using the model for K = 46 m1/3s−1 (see Figure

8). In general, the observed tidal properties (tidal amplitude and phase) of different constituents are

well reproduced. The enhanced frictional coefficient f for minor constituents S2, N2, O1, and K1330

are 5.4, 9.7, 40.7, and 43.7, respectively (Table 3).

Figure 9 shows the longitudinal variations of tidal damping/amplification and wave celerity for the

Guadalquivir estuary, which are similar to those in the Guadiana estuary. In general, we observe that

the dominant M2 tide experiences less friction than other secondary semidiurnal tidal constituents

although it travels at more or less the same speed in the seaward reach (x=0-35 km). Unlike the335

Guadiana estuary, the damping experienced by the secondary semidiurnal tides is less than those of

diurnal constituents near the estuary mouth (around x=0-7 km; Figure 9a), while the wave celerity is

consistently larger in the seaward reach (x=0-38 km; Figure 9b). Similar to the Guadiana estuary, we

observe that the tidal damping for the secondary semidiurnal tides is stronger than those of diurnal

constituents in the central parts of the estuary (around x=7-52 km), whereas their amplifications are340

larger in the landward part of the estuary although their wave speeds are less.

In particular, the tidal damping along the first half of these two estuaries is mainly due to the

damping of the dominant M2 wave owning to the fact that the impact of bottom friction dominates

over the channel convergence. Along the upper reach, enhanced morphological convergence and

reflection effects (that reduce the overall friction experienced by the propagating wave) result in the345

overall amplification of the tidal wave. For more details of the tidal hydrodynamics in these two

estuaries, readers can refer to Garel and Cai (2018) for the Guadiana estuary and Diez-Minguito

et al. (2012) for the Guadalquivir estuary.

In order to clarify the behavior of different tidal constituents, we present Figure 10 showing

the longitudinal variations of estuary shape number γ (representing the channel convergence) and350

friction number χn (representing the bottom friction), two major factors determining the tidal hy-

drodynamics, in both estuaries. Note that the variable estuary shape number γ observed in the

Guadalquivir estuary is due to the adoption of a variable storage width ratio rS in the analytical

model. On the one hand, the estuary shape numbers for diurnal tides are approximately twice
:::::
those

larger than those for semidiurnal tides (Figures 10a, d) due to the tidal frequency differences (see355

definition of γ in Table 1). On the other hand, the effective friction experienced by the diurnal

tides is much larger than those of the semidiurnal tides due to the mutual interaction between dif-

ferent tidal constituents (Figure 10b, e, see also Table 3). However, the propagation of different

tidal constituents mainly depends on the imbalance between channel convergence and friction, ex-
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cept for those reaches where wave reflection matters (generally close to the head). In particular, in360

the seaward reach the tidal damping for each tidal constituent can be approximately estimated by

δA = γ/2−χnµcos(ϕ)/(2λA) (see equation (20) by Cai et al., 2012). While the channel conver-

gence effect (represented by γ/2) is much stronger for diurnal tides than for semidiurnal tides, the

frictional effect (represented by χnµcos(ϕ)/(2λA)) is only slightly larger (Figure 10c, f). Hence,

diurnal tides experience a relatively lower
:::::::
generally

:::::::::
experience

::::::::
relatively

::::
less

:
damping in the sea-365

ward reach (Figures 7a and 9a). For instance, in
::
In the case of the Guadalquivir estuary, diurnal tides

are more damped than semidiurnal tides
::::
very near the estuary mouth (x=0-7 km). For the second

(landward) half of the estuary, the lower amplification experienced by diurnal tides is mainly due to

the wave reflection from the closed end (see Garel and Cai, 2018).

The importance of mutual interaction between different tidal constituents is illustrated with the370

iteratively refined model implemented at
:
in
:

both case studies (Figures 7 and 9). For comparison,

Figure 11 shows the analytically computed damping/amplification number δA and celerity number

λA without considering mutual interaction (by setting fn=1 in the model). In this case, the damping

experienced by both secondary diurnal and semidiurnal tides are apparently underestimated due to

the unrealistic friction adopted in the model (Figure 11a, c, see also Figures 7a and 9a, respectively).375

Similarly, the computed wave celerity
:::::::
celerities for secondary tidal constituents are apparently over-

estimated due to the underestimated bottom friction (Figure 11b, d, see also Figures 7b and 9b,

respectively). To correctly reproduce the main features of different tidal waves, it is required to use

the iteratively refined model proposed in this study.

5 Conclusions380

In this study, we provide insight into the mutual interactions between one predominant (e.g., M2)

and other tidal constituents in estuaries and the role of quadratic friction on tidal wave propagation.

An analytical method exploiting the Chebyshev polynomials was developed to quantify the effec-

tive friction experienced by different tidal constituents. Based on the linearization of the quadratic

friction, the conceptual model has been used to explore the nonlinear interaction of different tidal385

constituents, which enables them to be treated independently by means of an iterative procedure.

Thus, an analytical hydrodynamic model for a single tidal constituent can be used to reproduce the

correct wave behavior for different tidal constituents. In particular, it was shown that a correction

of the friction term needs to be used to correctly reproduce the tidal dynamics for minor tidal con-

stituents. The application to the Guadiana and the Guadalquivir estuaries shows that the conceptual390

model can interpret the nonlinear interaction reasonably well when combined with an analytical

model for tidal hydrodynamics.

A crucial feature of the proposed approach is the deterministic description of the mutual frictional

interaction among tidal constituents, which avoids the need of an independent calibration of the
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friction parameter for the single constituent. In this respect, further work is required to explore395

whether a reliable value of the friction coefficient estimated through this method can be parametrized

based on observations of the bottom roughness of the estuary.

Appendix A

Analytical solutions of tidal hydrodynamics for a single tidal constituent

In this paper, analytical solutions for a semi-closed estuary proposed by Toffolon and Savenije (2011)400

were used to reproduce the longitudinal tidal dynamics along the estuary axis. The solution makes

use of the parameters that are defined in Table 1.

The analytical solutions for the tidal wave amplitudes and phases are given by:

η = ζ0h0 |A∗| , υ = rS ζ0 c0 |V ∗| , (A1)
405

tan(ϕA) =
ℑ(A∗)

ℜ(A∗)
, tan(ϕV ) =

ℑ(V ∗)

ℜ(V ∗)
, (A2)

where ℜ and ℑ are the real and image
::::::::
imaginary parts of the corresponding term, and A∗ and V ∗

are unknown complex functions varying along the dimensionless coordinate x∗ = x/L0:

A∗ = a∗1 exp(w
∗
1x

∗)+ a∗2 exp(w
∗
2x

∗) , (A3)
410

V ∗ = v∗1 exp(w
∗
1x

∗)+ v∗2 exp(w
∗
2x

∗) . (A4)

For a tidal channel with a closed end, the analytical solutions for the unknown variables in Eqs.

(A3) and (A4) are listed in Table 4, where Λ is a complex variable, defined as

Λ =
√
γ2/4− 1+ iχ̂ , χ̂=

8

3π
µχ, (A5)

where the coefficient 8/(3π) stems from the adoption of Lorentz’s linearization when considering415

only one single predominant tidal constituent (e.g., M2).

Since the friction parameter χ̂ depends on the unknown value of µ (or υ), an iterative procedure

was used to determine the correct wave behavior. In addition, to account for the longitudinal varia-

tion of the cross-section (e.g., estuary depth) a multi-reach technique was adopted by subdividing the

entire estuary into multiple sub-reachesand the solutions
:
;
:::
the

:::::::
solutions

:::::
were obtained by solving a420

set of linear equations with internal boundary conditions at the junction of the sub-reaches satisfying

the continuity condition (see details in Toffolon and Savenije, 2011).

For given computed values of A∗ and V ∗, the dependent parameters defined in Table 1 can be

computed using the following equations:
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µ= |V ∗| , ϕ= ϕV −ϕA , (A6)425

δA = ℜ
(

1

A∗
dA∗

dx∗

)
, δV = ℜ

(
1

V ∗
dV ∗

dx∗

)
, (A7)

λA =

∣∣∣∣ℑ(
1

A∗
dA∗

dx∗

)∣∣∣∣ , λV =

∣∣∣∣ℑ(
1

V ∗
dV ∗

dx∗

)∣∣∣∣ . (A8)

Appendix B430

Coefficients of the Godin’s expansion

The following trigonometric equation

cos3(ω1t) =
3

4
cos(ω1t)+

1

4
cos(3ω1t) , (B1)

is used to convert the third-order terms of Eq. (7) to the harmonic constituents. For a single harmonic,

it follows that435

u|u|= υ2
1

[(
α+

3

4
β

)
cos(ω1t)+

1

4
β cos(3ω1t)

]
. (B2)

For two harmonic constituents, the Chebyshev polynomials approximation of u|u| is expressed as

u|u|= υ2
1

{
α [ε1 cos(ω1t)+ ε2 cos(ω2t)]+β [ε1 cos(ω1t)+ ε2 cos(ω2t)]

3
}
. (B3)

In Eq. (B3), the cubic term can be expanded as

[ε1 cos(ω1t)+ ε2 cos(ω2t)]
3
=ε31 cos

3(ω1t)+ 3ε1ε
2
2 cos(ω1t)cos

2(ω2t)

+ 3ε2ε
2
1 cos(ω2t)cos

2(ω1t)+ ε32 cos
3(ω2t) .

(B4)440

Making use of the trigonometric equations to expand the power of the cosine functions (e.g.,

cos3(ω1t) and cos2(ω1t)) and extracting only the harmonic terms with frequencies ω1 and ω2, Eq.

(B3) can be reduced to Eq. (12).

For the case of many constituents, here we only provide the exact coefficients for n=3:

F1 =
3π

8

[
α+β

(
3

4
ε21 +

3

2
ε22 +

3

2
ε23

)]
=

1

5

(
2+3ε21 +6ε22 +6ε23

)
, (B5)445

F2 =
3π

8

[
α+β

(
3

4
ε22 +

3

2
ε21 +

3

2
ε23

)]
=

1

5

(
2+3ε22 +6ε21 +6ε23

)
, (B6)
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F3 =
3π

8

[
α+β

(
3

4
ε23 +

3

2
ε21 +

3

2
ε22

)]
=

1

5

(
2+3ε23 +6ε21 +6ε22

)
. (B7)

Equations (B5) to (B6) reduce to Eqs. (13) and (14) when ε3 = 0 (i.e., υ3=0).450
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Table 1. Definitions of dimensionless parameters.

Independent parameters Dependent parameters

Tidal amplitude at the mouth Tidal amplitude

ζ0 = η0/h0 ζ = η/h

Friction number at the mouth Friction number

χ0 = rSc0 ζ0 g/
(
K2ωh0

4/3
)

χ= rSc0ζg/
(
K2ωh

4/3
)

Estuary shape Velocity number

γ = c0/(ωa) µ= υ/(rSζc0) = υh/(rSηc0)

Estuary length Damping number for water level

L∗
e = Le/L0 δA = c0dη/(ηωdx)

Damping number for velocity

δV = c0dυ/(υωdx)

Celerity number for water level

λA = c0/cA

Celerity number for velocity

λV = c0/cV

Phase difference

ϕ= ϕV −ϕA
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Table 2. Tidal elevation amplitudes (m) and phases (◦) estimates (with 95% confidence intervals in brackets)

from harmonic analyses of pressure records along the Guadiana estuary (x: distance from the mouth, km).

Amplitude (m)

x (km) Msf O1 K1 N2 M2 S2 M4 M6

2.4 0.01 (0.03) 0.06 (0.01) 0.07 (0.01) 0.23 (0.01) 0.97 (0.01) 0.37 (0.02) 0.02 (0.00) 0.01 (0.00)

10.7 0.01 (0.07) 0.06 (0.01) 0.07 (0.01) 0.22 (0.01) 0.93 (0.01) 0.34 (0.01) 0.02 (0.01) 0.01 (0.00)

22.8 0.03 (0.04) 0.06 (0.01) 0.07 (0.01) 0.20 (0.02) 0.86 (0.02) 0.29 (0.02) 0.04 (0.01) 0.02 (0.01)

33.9 0.06 (0.05) 0.06 (0.01) 0.07 (0.01) 0.20 (0.02) 0.85 (0.02) 0.27 (0.02) 0.04 (0.01) 0.03 (0.01)

43.6 0.06 (0.06) 0.06 (0.01) 0.07 (0.01) 0.21 (0.02) 0.87 (0.02) 0.27 (0.02) 0.05 (0.01) 0.03 (0.01)

51.4 0.05 (0.05) 0.06 (0.01) 0.07 (0.01) 0.22 (0.02) 0.90 (0.02) 0.28 (0.02) 0.07 (0.01) 0.03 (0.01)

60.1 0.07 (0.06) 0.06 (0.01) 0.07 (0.01) 0.22 (0.02) 0.93 (0.02) 0.30 (0.02) 0.08 (0.01) 0.04 (0.01)

69.6 0.10 (0.06) 0.06 (0.01) 0.06 (0.01) 0.19 (0.03) 0.78 (0.03) 0.24 (0.03) 0.16 (0.03) 0.02 (0.01)

Phase (◦)

2.4 190 (149) 310 (6) 73 (5) 54 (4) 62 (1) 93 (2) 151 (8) 219 (18)

10.7 8 (190) 319 (7) 85 (6) 68 (3) 75 (1) 108 (3) 103 (14) 237 (15)

22.8 38 (66) 331 (9) 103 (7) 87 (4) 93 (1) 130 (3) 131 (12) 294 (16)

33.9 49 (56) 343 (7) 116 (6) 104 (5) 109 (1) 151 (4) 166 (8) 336 (11)

43.6 51 (58) 348 (8) 123 (8) 116 (5) 121 (1) 166 (4) 189 (6) 12 (14)

51.4 48 (48) 352 (9) 128 (8) 123 (6) 128 (1) 175 (5) 203 (5) 43 (19)

60.1 53 (58) 356 (9) 133 (8) 131 (6) 135 (1) 184 (5) 219 (4) 69 (21)

69.6 51 (43) 7 (9) 146 (8) 146 (9) 148 (2) 200 (7) 261 (11) 15 (18)

Table 3. Mean correction friction factor f for different tidal constituents along the Guadiana and the

Guadalquivir estuaries.

Tidal constituents M2 S2 N2 K1 O1

Guadiana 1.1 4.6 8.1 41.1 49.8

Guadalquivir 1.1 5.4 9.7 40.7 43.7

Table 4. Analytical expressions for unknown complex variables for the case of a closed estuary.

a∗
1, a∗

2 v∗1 , v∗2 w∗
1 , w∗

2

a∗
1 =

[
1+ exp(ΛL∗

e)
Λ+γ/2
Λ−γ/2

]−1

v∗1 =
−ia∗

1
Λ−γ/2

w∗
1 = γ/2+Λ

a∗
2 = 1− a∗

1 v∗2 =
i(1−a∗

1)

Λ+γ/2
w∗

2 = γ/2−Λ
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Figure 1. Geometry of a semi-closed estuary and basic notation (after Savenije et al. (2008)). HW, high water;
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Figure 6. Tidal constituents (a) M2; (b) S2; (c) N2; (d) K1; (e) O1: modelled against observed values of tidal

amplitude (m) and phase (◦) of elevation along the Guadiana estuary.
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Figure 7. Longitudinal variations of tidal damping/amplification number δA (a) and wave celerity number λA

(b) for different tidal constituents along the Guadiana estuary.
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Figure 8. Tidal constituents (a) M2; (b) S2; (c) N2; (d) K1; (e) O1: modelled against observed values of tidal

amplitude (m) and phase (◦) of elevation along the Guadalquivir estuary.
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Figure 9. Longitudinal variations of tidal damping/amplification number δA (a) and wave celerity number λA

(b) for different tidal constituents along the Guadalquivir estuary.
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Figure 10. Longitudinal variations of estuary shape number γ (a, d), friction number χn (b, e) and

χnµcos(ϕ)/(2λA) (c, f) in the Guadiana estuary (a, b, c) and Guadalquivir estuary (d, e, f).
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Figure 11. Longitudinal variations of damping/amplification number δA (a, c) and celerity number λA (b, d)

in the Guadiana estuary (a, b) and Guadalquivir estuary (c, d) in the absence of mutual interaction between

different tidal constituents.
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