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Abstract. Two types of marine geoid exist with the  first type being  the average level of 10 

sea surface height (SSH) if the water is at rest (classical definition), and the second type 

being satellite-determined with the condition that the water is usually not at rest. 

Differences between the two are exclusion (inclusion) of the gravity anomaly and non-

measurable (measurable) in the first (second) type. The associated absolute dynamic ocean 

topography (referred as DOT), i.e., SSH minus marine geoid, correspondingly also has two 15 

types. Horizontal gradients of the first type DOT represent the absolute surface geostrophic 

currents due to water being at rest on the first type marine geoid. Horizontal gradients of 

the second type DOT represent the surface geostrophic currents relative to flow on the 

second type marine geoid. Difference between the two is quantitatively identified in this 

note through comparison between the first type DOT and the mean second type DOT 20 

(MDOT).  The first type DOT is determined by a physical principle that the geostrophic 

balance takes the minimum energy state. Based on that, a new elliptic equation is derived 

for the first type DOT. Continuation of geoid from land to ocean leads to an inhomogeneous 

Dirichlet boundary condition with the boundary values taking satellite observed second 

type MDOT. This well-posed elliptic equation is integrated numerically on 1o grids for the 25 

world oceans with the forcing function computed from the World Ocean Atlas (T, S) fields 

and the sea-floor topography obtained from the NOAA‘s ETOPO5 model. Between the 
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first type DOT and second type MDOT, the relative root-mean square (RMS) difference 

(versus RMS of the first type DOT) is 38.6% and the RMS difference of the horizontal 

gradients (versus RMS of the horizontal gradient of the first type DOT) is near 100%.  The 30 

standard deviation of horizontal gradients of DOT is nearly twice larger for the second type 

(satellite determined marine geoid with gravity anomaly) than for the first type 

(geostrophic balance without gravity anomaly). Such difference needs further attention 

from oceanographic and geodetic communities, especially the oceanographic 

representation of the horizontal gradients of the second type MDOT (not the absolute 35 

surface geostrophic currents).    

1. Introduction  

Let the coordinates (x, y, z) be in zonal, latitudinal, and vertical directions. The absolute 

dynamic ocean topography (hereafter referred as DOT) D̂  is the sea surface height (SSH) 

(waves and tides filtered out) relative to the marine geoid (i.e., the equipotential surface), 40 

                                                    ˆ ˆD S N  ,                                                       (1) 

where S is the SSH; N̂  is the  marine geoid height above to the reference ellipsoid (Fig. 

1). D̂  is an important signal in oceanography; and N̂  is of prime interest in geodesy. Eq. 

(1) is also applicable if defined relative to the center of the Earth. The geoid height 

ˆ ( , )N x y  and other associated measurable quantities such as gravity anomaly Δg(x, y) are 45 

related to the anomaly of the gravitational potential V(x, y, z) to a first approximation by 

the well-known Brun's formula (e.g., Hofmann-Wellenhof and Moritz, 2005), 
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where g = 9.81 m/s2, is the globally mean normal  gravity, which is usually represented by 

g0 in geodesy. The gravity anomaly is the vertical derivative of the potential 50 
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where the anomaly of the gravity potential V  satisfies the Laplace equation 
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The vertical deflection is the slope of the geoid  
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which connects to the gravity anomaly by 
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                                               (6) 

Eq(6) links the vertical gravity gradient to the horizontal Laplacian of the marine geoid 

height N̂  and serves as the basic principle in the satellite marine geodesy. Since D̂  is the 

difference of the two large fields S and N̂   (two orders of magnitude larger than D̂ ), it is 60 

extremely sensitive to any error in either S or N̂  – even 1% error in either field can lead 

to error in D̂  that is of the same order of magnitudes as D̂  itself (Wunsch and Gaposchkin, 

1980;  Bingham et al., 2008).  

Before satellites came into practice, S was measured from sparse surveying ships 

and tide gauge stations located along irregular local coastlines. However, N̂  was not easy 65 

to observe. Without satellite measurements, the marine geoid is defined as the average 

level of SSH if the water is at rest and denoted here by N, which is called the classical 

marine geoid (or first type marine geoid) (Fig. 1a). The first type marine geoid can be taken 
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as a standalone concept in oceanography since it is on the basis of the hypothesis (mean 

SSH when the water at rest) without using the gravity anomaly.  In this framework, the 70 

geostrophic balance  

                      
ˆ ˆ1 1

,      
ˆ ˆg g

p p
u v

f y f x 
 

  
 

,                                           (8) 

and hydrostatic balance, 

                                           
ˆ

ˆ
p

g
z


 


,                                                                 (9) 

are used for large-scale (i.e., scale > 100 km) processes. Here (ug, vg) are geostrophic 75 

current components; f is the Coriolis parameter; ( p̂ , ̂ ) are in-situ pressure and density, 

respectively, which can be decomposed into  

                  0 0
ˆ ˆ( ) ,      ( )z p gz p z p           .                        (10) 

Here, 0 = 1025 kg/m3, is the characteristic density; ( , p ) are horizontally uniform with 

   vertically increasing with depth (stable stratification)    80 

                                                  2
0/ [ ( )] /z n z g     ,                                  (11) 

where n(z) is the buoyancy frequency (or called the Brunt-Vaisala frequency); (p,  ) are 

anomalies of pressure and density. Near the ocean surface, it is common to use the 

characteristic density and corresponding pressure ( 0 0,p  ) to represent ( p̂ , ̂ ). Vertical 

integration of (9) from N to S after replacing ( p̂ , ̂ ) by ( 0 0,p  ) in (8) and (9) leads to   85 

                      ( ) ( ) ,      ( ) ( )g g g g

g D g D
u S u N v S v N

f y f x

 
    

 
,                 (12) 

where  

                                      D S N  ,                                                                  (13) 
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 is the first type  DOT. Since the first type marine geoid (N) is defined as the average level 

of SSH if the water is at rest,  90 

                                         ( ) 0,      ( ) 0g gu N v N  ,                                     (14) 

the horizontal gradient of D represents the absolute surface geostrophic currents.  

After satellites came into practice, SSH has been observed with uniquely sampled 

temporal and spatial resolutions by high-precision altimetry above a reference ellipsoid 

(not geoid) (Fu and Haines 2013).  Two Gravity Recovery and Climate Experiment 95 

(GRACE) satellites, launched in 2002, provide data to compute the marine geoid [called 

the GRACE Gravity Model (GGM)] (see website: http://www.csr.utexas.edu/grace/) 

(Tapley et al., 2003; Shum et al., 2011). In addition, European Space Agency's GOCE 

mission data, along with the GRACE data, have produced the best mean gravity field or 

the geoid model at a spatial scale longer than 67 km half-wavelength (or spherical 100 

harmonics completed to degree 300). This marine geoid is the solution of Eq(6), 

                          
2 2

* *
2 2

1 ( )N N g

x y g z

   
 

  
                                           

where *N   is the  satellite  determined marine geoid from the measurable gravity anomaly	  

g , and called  the second type marine geoid (Fig. 1b), which is different from N, defined  

by (14). Correspondingly, the second type DOT is defined by 105 

                            * *( )D S N t  ,                                                          (15) 

where *( )N t   changes with time due to temporal varying gravity anomaly g . Thus, 

comparison between the first-type and second-type geoids should be conducted between N 

and  *N . Here, *N  is the temporally mean of *( )N t . As for DOT, the first type DOT (D) 

should be compared to the second type mean DOT (MDOT),  110 
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                                       * *D S N  .                                                               (16)     

The oceanic conditions at N and *N are different: water is at rest on N [see Eq(14)], 

but in motion on *N . The oceanographic community ignores such a difference, treating 

horizontal gradients of the second type DOT also as the absolute surface geostrophic 

currents. For example, the second type MDOT ( *D ) data is posted at the NASA/JPL 115 

website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/; its 

horizontal gradients are also taken  as the absolute surface geostrophic currents.    

A question arises: Do the horizontal gradients of the second type MDOT ( *D ) 

represent the absolute surface geostrophic currents? This paper will answer the question 

using the temporally averaged SSH and marine geoid from NASA’s satellite altimetric and 120 

gravimetric measurements [i.e., the second type MDOT ( *D )], and solving a new elliptic 

equation of D numerically.  Given (S, *N , D) leads to the answer of the question. 

Rest of the paper is outlined as follows. Section 2 describes the change of DOT due 

to the change of marine geoid from first to second type. Section 3 describes geostrophic 

currents and energy related to the first type DOT. Section 4 presents the governing equation 125 

of the first type DOT with the boundary condition at the coasts. Section 5 shows the 

numerical solution for the world oceans. Section 6 evaluates the change of global DOT 

from first to second type with oceanographic implications. Section 7 concludes the studies. 

2.  Change of DOT from first to second type 

The second type MDOT ( *D ) data are downloaded from the NASA/JPL website: 130 

https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/. This dataset is 

subtraction of a second type marine geoid of GRACE (Bingham et al, 2011) from a mean 
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(1993 to 2006) altimetric sea surface. Change of marine geoid from first (N) to second ( *N ) 

type is represented by 

                               *N N N   .                                                                  (17) 135 

Correspondingly, change of DOT is given by  

                                 *D D D N                                                          (18) 

where (13) and (16) are used. ΔD is of interest in oceanography. ΔN is of interest in 

geodesy. Eq(18) shows that the key issue to evaluate D is to determine D (i.e., first type 

DOT).  140 

Conservation of potential vorticity for a dissipation-free fluid does not apply 

precisely to sea water where the density is a function not only of temperature and pressure 

but also of the dissolved salts. The effect of salinity on density is very important in the 

distribution of water properties. However, for most dynamic studies the effect of the extra 

state variable is not significant and the conservation of potential vorticity is valid (Veronis, 145 

1980). Based on the conservation of the potential vorticity, the geostrophic current reaches 

the minimum energy state (Appendix A). Due to the minimum energy state, an elliptic 

partial differential equation for D is derived with coefficients containing sea-floor 

topography H, and forcing function containing temperature and salinity fields.  

If ΔD is negligible in comparison to D, change of marine geoid from N to *N  does 150 

not change absolute DOT‘s oceanographic interpretation, i.e., the horizontal gradients of 

*D  also represent the absolute surface geostrophic currents. If ΔD is not negligible, the 

horizontal gradient of *D  does not represent the absolute surface geostrophic currents.  

3. Geostrophic currents and energy   
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Eq.(10) implies,  155 
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Using the first type marine geoid N, the horizontal gradients of D lead to the absolute 

surface geostrophic currents [see Eqs(12) and (14)]. Integration of the thermal wind 

relation  160 

                                    
0 0

,    g gu vg g

z f y z f x

 
 

  
  

   
,                              (21) 

from the ocean surface to depth z leads to depth-dependent geostrophic currents, 

                            ( ) ( ) ( ),    ( ) ( ) ( )g g BC g g BCu z u S u z v z v S v z                      (22) 

where 

                       
0 0

0 0
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   ,                      (23) 165 

are the baroclinic geostrophic currents. Here, f = 2Ωsin (φ) is the Coriolis parameter; Ω = 

2π/(86400 s) is the mean Earth rotation rate; φ is the latitude.  

The volume integrated total energy, i.e., sum of kinetic energy of the geostrophic 

currents and the available potential energy (Oort et al., 1989), for an ocean basin (W) is 

given by  170 
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2 2
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 .                                    (24) 

Substitution of (22) and (23) into (24) leads to 
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4. Governing equation of D 175 

For a given density field, the second integration in the right side of (25) is known.  The 

geostrophic currents taking the minimum energy state provides a constraint for D,   

2 2 2( , ) 2 2 / minBC BC
x y x y x y

W

fv fu
G D D D D D D f dxdydz

g g

  
      

  
 .      (26) 

The three-dimensional integration (26) over the ocean basin is conducted by 

                                            
0

... ...
W R H

dxdydz dz dxdy


 
  

 
                              (27) 180 

where R is the horizontal area of the water volume, H is the water depth. Thus, Eq(26) 

becomes 

                                   ( , ) ( , ) minx y x y

R

G D D L D D dxdy  ,                            (28) 

                          2 2 2( , ) ( ) 2 2 /x y x y x yL D D H D D D Y D X f                            (29) 

where the parameters (X, Y) are given by 185 
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which represent vertically integrated baroclinic geostrophic currents scaled by the factor 

f/g (unit: m). Here, Eq.(19) is used (i.e., horizontal gradient of in-situ density is the same 

as that of density anomaly).   190 

  The Euler-Lagragian equation of the functional (28) is given by 

                                           0
x y

L L L

D x D y D

      
             

.                           (32) 

Substitution of (29) into (32) gives an elliptic partial differential equation (i.e., the 

governing equation) for the first type DOT (i.e., D), 

                                             2 2/ ,f H f D F                                           195 

or 

                                
2 ( ) ( ) 2( / )x yD D D

H D r r f F
x y y


   
         

,                    (33) 

where 

                                       ,     
Y X

F
x y x y

    
         

i j                                      (34) 

                            ( ) ( )1 1 2
,   ,   cos( )x yH H

r r
H x H y a

   
  

 
,                              (35) 200 

where a = 6,370 km, is the mean earth radius. The geostrophic balance does not exist at the 

equator. The Coriolis parameter f needs some special treatment for low latitudes. In this 

study, f is taken as 2 sin(5 /180)  if latitude between 10oN to 0o; and as 

2 sin(5 /180)   if latitude between 0o to 10oS. 

Let Γ be the coastline of ocean basin. Continuation of geoid from land to oceans 205 

gives 
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                     *| | ,   | |l lN N N N     ,                                                     (36) 

which leads to 

      *| |N N  .                                                                       (37) 

Here, Nl is the geoid over land.  The boundary condition (37) can be rewritten as  210 

                               * *| ( ) | ( ) | |D S N S N D                                               (38) 

which is boundary condition of D.  

5. Numerical solution of D 

The well-posed elliptic equation (33) is integrated numerically on 1o 1o grids for the world 

oceans with the boundary values [i.e., (38)] taken from the MDOT (1993-2006) field (i.e., 215 

*D ), at the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-

typography/ (0.5o interpolated into 1o resolution). The forcing function F is calculated on 

1o 1o  grid from the World Ocean Atlas 2013  (WOA13) temperature and salinity fields, 

which was downloaded from  the NOAA National Centers for Environmental Information 

(NCEI)  website: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html. The three 220 

dimensional density was calculated using the international thermodynamic equation of 

seawater -2010, which is downloaded from the website:  

http://unesdoc.unesco.org/images/0018/001881/188170e.pdf. The ocean bottom 

topography data H was downloaded from the NECI 5-Minute Gridded Global Relief Data 

Collection at the website: https://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html. 225 

Discretization of the elliptic equation (33) and numerical integration are given in Appendix 

B.  

6. Difference between the Two DOTs  
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The first type global DOT (Dij) (Fig. 2a) is the numerical solution of the elliptic equation 

(33) with the boundary condition (38). The second type global MDOT ( *  i jD ) (Fig. 2b) is 230 

downloaded from the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-

data/dynamic-ocean-typography/. Difference between the two DOTs, 

                                *ij ij ijD D D   ,                                                      (39) 

is evident in the world oceans (Fig. 2c). Here, (i, j) denote the horizontal grid point. The 

relative root-mean-square (RMS) of ΔD is given by 235 

                                 

2

2

1
( )

RRMS( ) 0.386
1

( )

ij
i j

ij
i j

D
M

D

D
M


  




.                      (40) 

where M = 38,877 is the number of total grid points. Both D and *D  have positive and 

negative values. The arithmetic mean values (0.524 cm, -3.84 cm) are much smaller than 

the RMS mean values. They are an order of magnitude smaller than the corresponding 

standard deviations (54.9 cm, 71.2 cm) (see Figs. 2d and 2e). The magnitudes of D and *D  240 

are represented by their root-mean squares, which are close to their standard deviations.   

Histograms of for Dij (Fig. 2d) and *ijD (Fig. 2e) are both non-Gaussian and negatively 

skewed. The major difference between the two is the single modal form of  Dij with a peak 

at around 20 cm and the bi-modal form of *ijD with a high peak at around 30 cm and a low 

peak at -140 cm. The statistical parameters are different, e.g.,  mean value and standard 245 

deviation are (0.524 cm, 54.9 cm) for Dij, and (-3.84 cm, 71.2 cm) for *ijD . Skewness and 

kurtosis are   (-0.83, 3.01) for Dij, and (-0.87, 2.80) for *ijD .      
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Horizontal gradients of the DOT, (∂Dij/∂x, ∂Dij/∂y) and ( * */ , /ij ijD x D y    ), have 

oceanographic significance (related to the geostrophic currents). They are calculated using 

the central difference scheme at inside-domain grid points and the first order 250 

forward/backward difference scheme at grid points next to the boundary.  Difference in 

global ∂Dij/∂x (Fig. 3a) and * /ijD x   (Fig. 3b) is evident with much smaller-scale 

structures in * /ijD x  . The difference between the two gradients (Fig. 3c),  

                      *( / ) / /ij ij ijD x D x D x                                              (41) 

has the same order of magnitudes as the gradients themselves with the relative root-mean-255 

square (RMS) of ( / )D x   ,  

                     

2

2

1
( / )

RRMS ( / ) 1.04
1

( / )

ij
i j

ij
i j

D x
M

D x

D x
M

    
    

 




,         (42) 

which implies that the non-surface latitudinal geostrophic current component of the second 

type MDOT has the same order of magnitude as the surface latitudinal geostrophic current 

component of the first type DOT.  Histograms of for ∂Dij/∂x (Fig. 3d) and * /ijD x  (Fig. 260 

3e) are near symmetric with mean values around (-1.29, -0.78)×10-8 and standard 

deviations (2.69, 4.95)×10-7. The standard deviation of * /ijD x  is almost twice that of  

∂Dij/∂x.  

Similarly, difference in global ∂Dij/∂y (Fig. 4a) and * /ijD y   (Fig. 4b) is evident with 

much smaller-scale structures in * /ijD y  . The difference between the two gradients (Fig. 265 

4c),  
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                      *( / ) / /ij ij ijD y D y D y                                                (43) 

has the same order of magnitudes as the gradients themselves with the relative root-mean-

square (RMS) of ( / )D y   ,  
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1
( / )

RRMS ( / ) 0.98
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( / )

ij
i j

ij
i j

D y
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D y

D y
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,           (44) 270 

which implies that the non-surface zonal geostrophic current component of the second type 

MDOT has the same order of magnitude as the surface zonal geostrophic current 

component of the first type  DOT.    Histograms of ∂Dij/∂y (Fig. 4d) and * /ijD y   (Fig. 

4e) are also near symmetric with the mean values around (2.32, 1.18)×10-7 and standard 

deviations (1.20, 2.44)×10-6 .   The standard deviation of * /ijD y  is twice that of ∂Dij/∂y. 275 

The denominators of (42) and (44) represent the magnitudes of the horizontal gradients of 

the first type DOT. 

7. Conclusions  

Change of marine geoid from classically defined (first type, standalone concept in 

oceanography) to satellite determined (second type, standalone concept in marine geodesy) 280 

largely affects oceanography. With the classically defined marine geoid (average level of 

SSH if the water is at rest) the horizontal gradients of the first type DOT represent the 

absolute surface geostrophic currents. With the satellite determined (second type) marine 

geoid by Eq(6), the horizontal gradients of the second type MDOT don’t  represent the 

absolute surface geostrophic currents. The difference between the two types of DOT 285 

represents an additional component to the absolute surface geostrophic currents.  
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With conservation of potential vorticity, geostrophic balance represents the 

minimum energy state in an ocean basin where the mechanical energy is conserved. A new 

governing elliptic equation of first type DOT is derived with water depth (H) in the 

coefficients and the three dimensional temperature and salinity in the forcing function.  290 

This governing elliptic equation is well posed.   Continuation of geoid from land to ocean 

leads to an inhomogeneous Dirichlet boundary condition.   

Difference between the two types of DOT is evident with relative root-mean-square 

difference of 38.6%. Horizontal gradients (representing geostrophic currents) of the two 

type DOTs are different with much smaller-scale structures in the second type absolute 295 

DOT. Relative root-mean-square difference is near 1.0 in both (x, y) components of the 

DOT gradient, which implies that the non-absolute surface geostrophic currents identified 

from the second type has the same order of magnitudes as the absolute surface geostrophic 

currents identified by the first type DOT.  

The notable difference between the two types of DOT raises more questions in 300 

oceanography and marine geodesy: Is there any theoretical foundation to connect the 

classical marine geoid (standalone concept in oceanography using the principle of surface 

geostrophic currents without g ) to the satellite determined marine geoid (standalone 

concept in marine geodesy using g without the principle of surface geostrophic currents)? 

How can the satellite determined marine geoid using the gravity anomaly ( g ) be 305 

conformed to the basic physical oceanography principle of surface geostrophic currents? 

What is the interpretation of the horizontal gradients of the second type MDOT ( *D )? Is 

there any evidence or theory to show [ * *( ) 0,  ( ) 0g gu N v N  ] similar to Eq.(14)?  More 

observational and theoretical studies are needed in order to solve those problems.  The 
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main challenge for oceanographers is how to use the satellite altimetry observed SSH such 310 

as the Surface Water and Ocean Topography (SWOT, https://swot.jpl.nasa.gov/ ) to infer 

the ocean general circulations at the surface. A new theoretical framework rather than the 

geostrophic constraint needs to be established.   

The GOCE determined satellite data-only geoid model is more accurate and with 

higher resolution than GRACE. Change of GRACE to GOCE geoid model may increase 315 

the accuracy of the calculation of the second type DOT. However, such a replacement does 

not solve the fundamental problem presented here, i.e., incompatibility between satellite 

determined marine geoid using the gravity anomaly ( g ) and the classical marine geoid 

(mean SSH when the water at rest) on the basis of the basic physical oceanography 

principle of surface geostrophic currents.  320 

Finally, the mathematical framework described here [i.e., the elliptic equation (33) 

with boundary condition (38)] may lead to a new inverse method for calculating three-

dimensional absolute geostrophic velocity from temperature and salinity fields since the 

surface absolute geostrophic velocity is the solution of (33). This will be a useful addition 

to the existing β-spiral method (Stommel and Schott, 1977), box model (Wunsch, 1978), 325 

and P-vector method (Chu, 1995; Chu et al., 1998, 2000).  

Acknowledgments. The author thanks Mr. Chenwu Fan for invaluable comments and 

computational assistance, NOAA/NCEI for the WOA-2013 (T, S) and ETOPO5 sea-floor 

topography data, and NASA/JPL (second type) MDOT data.  

Appendix A. Geostrophic balance as a minimum energy state in an 330 

energy conserved basin 
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In large scale motion (small Rossby number) with the Boussinesq approximation, the 

linearized PV ( ) is given by  
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0 0ˆ
[ ( )] ( ) ( )
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f f

x y z g z g x y

       
        

     
.                   (A1) 

where, ρ0 = 1025 kg m-3 is the characteristic density.  Without the frictional force and zero 335 

horizontally integrated buoyancy flux at the surface and bottom, the energy (including 

kinetic and available potential energies) is conserved in a three dimensional ocean basin 

(V) 
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                                    0
dE
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                                                                                 (A3) 340 

The two terms of J are kinetic energy, and available potential energy.  

To show the geostrophic balance taking the minimum energy state for a given linear 

PV [see (A1)], the constraint is incorporated by extremizing the integral (see also in Vallis 

1992; Chu 2018) 
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               (A4) 345 

where ( , , )x y z  is the Lagrange multiplier, which is a function of space. If it were a 

constant, the integral would merely extremize energy subject to a given integral of PV, and 

rearrangement of PV would leave the integral unaltered. Extremization of the integral (A4) 

gives the three Euler-Lagrange equations,  
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where K is in the integrand appearing in (A4). Substitution of K into (A5), (A6), (A7) leads 

to              
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Differentiation of (A9) with respect to z and use of (A8) leads to  

                            
0 0

,    g gu vu g v g

z f y z z f x z

 
 

    
    

     
,                (A10) 

which shows that (u , v) = (ug, vg)  have the minimum energy state.   

Appendix B. Numerical solution of the equation (33) 360 

Let the three axes (x, y, z) be discretized into local rectangular grids in horizontal and non-

uniform grids in vertical (xi,j, yi,j, zk) with cell sizes (1o×1o),                     

              1r ,  cos ,  ,
360 E j j k k ky x y z z z
           

                          ,  = 1, 2, ... , ;   = 1, 2, ..., ;  = 1, 2, ..., i ji I j J k K                             (B1) 

where k =1 for the surface, k = Kij for the bottom; ϕj is the latitude of the grid point; rE = 365 

6,371 km, is the earth radius; I = 360; J = 180. The subscripts in Ki,j in (B1) indicates non-

uniform water depth in the region.  
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The parameters (Xi,j, Yi,j) in (30) and (31) (in Section 4)  are calculated by   
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         (B3) 370 

which gives the discretized forcing function     
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The governing equation (33) is discretized by 
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                (B5) 

which is reorganized by 375 
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   (B6) 

The iteration method is used to solve the algebraic equation (B6) with large value of I×J. 

It starts from the 0-step,  

                                  (0) 0,    1,  2,  ... , ;   1,  2,  ... , ijD i I j J                                 (B7) 
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With the given boundary condition (38) (see Section 4) and forcing function (B4), the first 380 

type DOT at the grid points can be computed from steps n to n+1,  
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                                                                                                                                                                                                      (B8) 

Such iteration continues until the relative root-mean square difference reaching the 

criterion,  385 
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,                                         (B9) 

where M = 38,877,  is the total number of the grid points on the ocean surface.  
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Figure Captions 

Figure 1. Two types of marine geoid and DOT: (a) first type with N the average level of 
SSH if water at rest (classical definition), and (b) second type with satellite determined N* 
(water in motion on N*).   
 445 
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Figure 2. (a) First type DOT (i.e., D) which is the solution of (33) with boundary condition 
of (38) (unit: cm), (b) second type MDOT (1993-2006) (i.e., *D ) (unit: cm) downloaded 

from the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-
typography, (c) difference between the two DOTs (i.e., ΔD), (d) histogram of global  D, 
and (e) histogram of global *D .   450 

 
 
  
Figure 3. Derivatives in the x-direction of (a) the first type DOT (i.e., ∂D/∂x),  (b) the 

second MDOT (i.e., * /D x  ), (c) the difference  *( / ) / /D x D x D x        , (d) 455 

histogram of global  ∂D/∂x, and (e) histogram of global * /D x  .   

 
 
Figure 4. Derivatives in the y-direction of (a) the first type DOT (i.e., ∂D/∂y), (b) the second 

type MDOT (i.e., * /D y  ), and (c) the difference *( / ) / /D y D y D y        , (d) 460 

histogram of global  ∂D/∂y, and (e) histogram of global * /D y  .   
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Figure 2. (a) First type DOT (i.e., D) which is the solution of (33) with boundary condition 470 
of (38) (unit: cm), (b) second type MDOT (1993-2006) (i.e., *D ) (unit: cm) downloaded 

from the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-
typography, (c) difference between the two DOTs (i.e., ΔD), (d) histogram of global  D, 
and (e) histogram of global *D .   
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Figure 3. Derivatives in the x-direction of (a) the first type DOT (i.e., ∂D/∂x),  (b) the 

second MDOT (i.e., * /D x  ), (c) the difference  *( / ) / /D x D x D x        , (d) 

histogram of global  ∂D/∂x, and (e) histogram of global * /D x  .   480 
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 485 
Figure 4. Derivatives in the y-direction of (a) the first type DOT (i.e., ∂D/∂y), (b) the second 

type MDOT (i.e., * /D y  ), and (c) the difference *( / ) / /D y D y D y        , (d) 

histogram of global  ∂D/∂y, and (e) histogram of global * /D y  .   
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