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Abstract. Two types of marine geoid and the associated absolute dynamic ocean 10 

topography (referred as DOT) are presented. The first type is the average level of sea 

surface height (SSH) if the water is at rest (classical definition). The second type is 

determined by satellite observation under the condition that usually the water is not at 

rest. Its mean DOT (MDOT) is comparable to the first type DOT. Respective differences 

between the two geoids are that they exclude (include) the gravity anomaly and are non-15 

measurable (measurable) in the first (second) type marine geoid. The first type DOT is 

determined by a physical principle that the geostrophic balance takes the minimum 

energy state. On the base of that, a new elliptic equation is derived for the first type DOT. 

Continuation of geoid from land to ocean leads to an inhomogeneous Dirichlet boundary 

condition with the boundary values taking satellite observed second-type MDOT. This 20 

well-posed elliptic equation is integrated numerically on 1o grids for the world oceans 

with the forcing function computed from the World Ocean Atlas (T, S) fields and the sea-

floor topography obtained from the NOAA‘s ETOPO5 model. Between the first type 

DOT and second type MDOT, the relative root-mean square (RMS) difference (versus 

RMS of the first type DOT) is 38.6% and the RMS difference of the horizontal gradients 25 

(versus RMS of the horizontal gradient of the first type DOT) is near 100%.  The 

standard deviation of horizontal gradients of DOT is nearly twice larger in the second 
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type (satellite determined marine geoid with gravity anomaly) than in the first type 

(geostrophic balance without gravity anomaly). Such difference needs further attention 

from oceanographic and geodetic communities, especially the oceanographic 30 

representation of the horizontal gradients of the second type MDOT.    

1. Introduction  

Let a spherical harmonic reference model (flat-Earth approximation) be used with the 

coordinates (x, y, z) in zonal, latitudinal, and vertical directions for the gravity computation. 

The absolute dynamic ocean topography (hereafter referred as DOT) D̂ , is the sea surface 35 

height (SSH) (waves and tides filtered out) relative to the marine geoid (i.e., the 

equipotential surface), 

                                                    ˆ ˆD S N  ,                                                       (1) 

where S is the SSH; N̂  is the  marine geoid height above to the reference ellipsoid (Fig. 

1), respectively. D̂  is an important signal in oceanography; and N̂  is of prime interest in 40 

geodesy. The geoid height N̂ (x, y) and other associated measurable quantities such as 

gravity anomaly Δg(x, y) are related to the gravitational potential V(x, y, z) to a first 

approximation by Brun's formula, 

                                              
( , ,0)ˆ ( , )

V x y
N x y

g
  ,                                            (2) 

where g = 9.81 m/s2, is the globally mean normal  gravity, which is usually represented by 45 

g0 in geodesy. The gravity anomaly is the vertical derivative of the potential 

                                           
( , ,0)

( , )
V x y

g x y
z


  


 ,                                              (3) 

where the gravity potential V  satisfies the Laplace equation 
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2 2 2

2 2 2
0

V V V

x y z

  
  

  
 .                                                  (4) 

The vertical deflection is the slope of the geoid  50 

                                            
ˆ ˆ1 1

,   
N V N V

x g x y g y

   
 

   
                                          (5) 

which connects to the gravity anomaly by 

                                         
2 2

2 2

ˆ ˆ( )g N N
g

z x y

    
  

   
                                               (6) 

Eq(6) links the vertical gravity gradient to the horizontal Laplacian of the marine geoid 

height N̂  and serves as the basic principle in the satellite marine geodesy. Since D̂  is the 55 

difference of the two large fields S and N̂   (two orders of magnitude larger than D̂ ), it is 

extremely sensitive to any error in either S or N̂  – even 1% error in either field can lead 

to error in D̂  that is of the same order of magnitudes as D̂  itself [Wunsch and Gaposchkin, 

1980;  Bingham et al., 2008].  

It has been a long history to observe S.  The (absolute) DOT ( D̂ ) is distinguished 60 

from the relative dynamic ocean topography ( ˆ
relD ),  

                                      ˆ
rel rD S H  .                                                    (7) 

which is the SSH relative to a certain reference depth (Hr). Tapley et al. [2003] computed 

ˆ
relD with a reference depth Hr (4000 m or 3000 m if the water depth is less than 4000 m at 

the grid).  However, (absolute) DOT ( D̂ ) [Eq(1)] and relative dynamic ocean topography 65 

( ˆ
relD ) [Eq(7)] are different. Discussion on difference between D̂  and ˆ

relD is beyond the 

scope of this paper.  
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Before satellite came into practice, S was measured from sparse surveying ships 

and tide gauge stations located along irregular local coastline. However, N̂  was not easy 

to observe. Without satellite measurements, the marine geoid is defined as the average 70 

level of SSH if the water is at rest and denoted here by N, which is called the classical 

marine geoid (or first type marine geoid) (Fig. 1a).  

The first type marine geoid can be taken as a standalone concept in oceanography 

since it is on the base of the hypothesis (mean SSH when the water at rest) without using 

the gravity anomaly.  In this framework, the ocean is geostrophically balanced  75 

                      
ˆ ˆ1 1

,      
ˆ ˆ

g g

p p
u v

f y f x 

 
  

 
,                                           (8) 

and hydrostatically balanced, 

                                           
ˆ

ˆ
p

g
z




 


,                                                                 (9) 

for large-scale (i.e., scale > 100 km) processes. Here (ug, vg) are geostrophic current 

components; f is the Coriolis parameter; ( p̂ , ̂ ) are in-situ pressure and density, 80 

respectively, which can be decomposed into  

                  0 0
ˆ ˆ( ) ,      ( )z p gz p z p           .                        (10) 

Here, 0 = 1025 kg/m3, is the characteristic density; (  , p ) are horizontally uniform with 

   vertically increasing with depth (stable stratification)    

                                                  
2

0/ [ ( )] /z n z g     ,                                  (11) 85 

where n(z) is the buoyancy frequency (or called the Brunt-Vaisala frequency); (p,  ) are 

anomalies of pressure and density. Near the ocean surface, it is common to use the 
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characteristic density and corresponding pressure ( 0 0,p  ) to represent ( p̂ , ̂ ). Vertical 

integration of (9) from N to S after replacing ( p̂ , ̂ ) by ( 0 0,p  ) in (8) and (9) leads to   

                      ( ) ( ) ,      ( ) ( )g g g g

g D g D
u S u N v S v N

f y f x

 
    

 
,                 (12) 90 

where  

                                      D S N  ,                                                                  (13) 

 is the first type  DOT. Since the first type marine geoid (N) is defined as the average level 

of SSH if the water is at rest,  

                                         ( ) 0,      ( ) 0g gu N v N  ,                                     (14) 95 

the horizontal gradient of D represents the absolute surface geostrophic currents.  

After satellites came into practice, SSH has been observed with high precision and 

unique resolution with altimetry above a reference ellipsoid (not geoid) (Fu and Haines 

2013).  Two Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 

2002, provide data to compute the marine geoid [called the GRACE Gravity Model 100 

(GGM)] (see website: http://www.csr.utexas.edu/grace/) [Tapley et al., 2003; Shum et al., 

2011]. This marine geoid is the solution of Eq(6), 

                          
2 2

* *

2 2

1 ( )N N g

x y g z

   
 

  
                                           

where *N   is the  satellite  determined marine geoid from the measurable gravity anomaly   

g , and called  the second type marine geoid (Fig. 1b), which is different from N, defined  105 

by (14). Correspondingly, the second type DOT is defined by 

                            * *( )D S N t  ,                                                          (15) 
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where *( )N t   changes with time due to temporally varying gravity anomaly g . Thus, 

comparison between the first-type and second-type geoids should be conducted between N 

and  *N . Here, *N  is the temporally mean of *( )N t . As for DOT, the first type DOT (D) 110 

should be compared to the second type mean DOT (MDOT),  

                                       * *D S N                                                                 (16) 

The second type marine geoid can be taken as a standalone concept in marine 

geodesy since it is on the base of the equipotential surface using the gravity anomaly. 

Melnichenko et al. [2010] produced high-resolution mean (1993-2002) second type MDOT 115 

(i.e., 
*D ) using the combined data of surface drifters, satellite altimetry, NCEP reanalysis 

wind, and GRACE satellite mission-based product and distributed at the website: 

http://apdrc.soest.hawaii.edu/projects/DOT/.  

A question arises: Are the two types of DOT (D, 
*D ) or marine geoid (N, *N ) the 

same? This paper will answer the question using the temporally averaged SSH and marine 120 

geoid from NASA’s satellite altimetric and gravimetric measurements [i.e., the second type 

MDOT (
*D )], and solving a new elliptic equation of D numerically.  Given (S, 

*N , D) 

leads to the answer of the question. 

Rest of the paper is outlined as follows. Section 2 describes the change of DOT due 

to the change of marine geoid from first to second type. Section 3 describes geostrophic 125 

currents and energy related to the first type DOT. Section 4 presents the governing equation 

of the first type DOT with the boundary condition at the coasts. Section 5 shows the 

numerical solution for the world oceans. Section 6 evaluates the change of global DOT 

from first to second type with oceanographic implication. Section 7 concludes the studies. 
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2.  Change of DOT from first to second type 130 

The second type MDOT (
*D ) data were downloaded from the NASA/JPL website: 

https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/. This dataset was 

subtraction of a  second type marine geoid of GRACE [Bingham et al, 2011] from a mean 

(1993 to 2006) altimetric sea surface. Change of marine geoid from first type (N) to second 

type (
*N ) is represented by 135 

                               *N N N                                                                     (17) 

Correspondingly, change of DOT is given by  

                                 *D D D N                                                         (18) 

where (13) and (16) are used. ΔD is of interest in oceanography. ΔN is of interest in 

geodesy. Eq(18) shows that the key issue to evaluate D is to determine D (i.e., first type 140 

DOT).  

When the frictional force is negligible, the potential vorticity (PV) is conserved. 

The geostrophic current reaches the minimum energy state (Appendix A). On the base of 

the minimum energy state, an elliptic partial differential equation for D is derived with 

coefficients containing sea-floor topography H, and forcing function containing 145 

temperature and salinity fields.  

If ΔD is negligible in comparison to D, change of marine geoid from N to 
*N  does 

not change absolute DOT‘s oceanographic interpretation, i.e., the horizontal gradient of 

*D  also represents the absolute surface geostrophic currents. If ΔD is not negligible, the 

horizontal gradient of 
*D  does not represent the absolute surface geostrophic currents.  150 

3. Geostrophic currents and energy   

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-51
Manuscript under review for journal Ocean Sci.
Discussion started: 23 May 2018
c© Author(s) 2018. CC BY 4.0 License.



 8 

Eq.(10) implies,  

                                    
ˆ ˆ

,   
x x y y

      
 

   
,                                                    (19) 

                                      
ˆ ˆ

,   
p p p p

x x y y

   
 

   
.                                                    (20) 

Using the first type marine geoid N, the horizontal gradient of D leads to the surface 155 

geostrophic currents [see Eqs(12) and (14)]. Integration of the thermal wind relation  

                                    
0 0

,    
g gu vg g

z f y z f x

 

 

  
  

   
,                              (21) 

from the ocean surface to depth z leads to depth-dependent geostrophic currents, 

                            ( ) ( ) ( ),    ( ) ( ) ( )g g BC g g BCu z u S u z v z v S v z                      (22) 

where 160 

                       
0 0

0 0

( ) ',    ( ) 'BC BC

z z

g g
u z dz v z dz

f y f x

 

 

 
  

   ,                      (23) 

are the baroclinic geostrophic currents. Here, f = 2Ωsin (φ) is the Coriolis parameter; Ω = 

2π/(86400 s) is the mean Earth rotation rate; φ is the latitude.  

The volume integrated total energy, i.e., sum of kinetic energy of the geostrophic 

currents and the available potential energy [Oort et al., 1989], for an ocean basin (W) is 165 

given by  

            
2 2

2 2

2 2

0

1
( )

2 2
g g

W

g
E u v dxdydz

n





 
   

 
 .                                    (24) 

Substitution of (22) and (23) into (24) leads to 

     
2 2

2 2 2 2

2 2

0

( , , ) ( ) / ( ) /
2

BC BC
x y y x

W

fu fvg
E D D D f D f dxdydz

g g n






 
      

 
                                    
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2
2 2 2 2

2 2
2 2

2 2

0

/ / 2 2
2

1

2

BC BC
x y x y

W

BC BC

W

v ug
D f D f D D dxdydz

fg fg

g
u v dxdydz

n





 
    

 

 
   

 





                            (25) 170 

4. Governing equation of D 

For a given density field, the second integration in the right side of (25) is known.  The 

geostrophic currents taking the minimum energy state provides a constraint for D,   

2 2 2( , ) 2 2 / minBC BC
x y x y x y

W

fv fu
G D D D D D D f dxdydz

g g

  
      

  
 .      (26) 

The three-dimensional integration (26) over the ocean basin is conducted by 175 

                                            
0

... ...
W R H

dxdydz dz dxdy


 
  

 
                              (27) 

where R is the horizontal area of the water volume, H is the water depth. Thus, Eq(26) 

becomes 

                                   ( , ) ( , ) minx y x y

R

G D D L D D dxdy  ,                            (28) 

                          2 2 2( , ) ( ) 2 2 /x y x y x yL D D H D D D Y D X f                            (29) 180 

where the parameters (X, Y) are given by 

                             
0 0

0

0 ˆ1
( , ) 'BC

H H z

f
X x y u dz dz dz

g y




 


  

                                (30) 

                             
0 0

0

0 ˆ1
( , ) 'BC

H H z

f
Y x y v dz dz dz

g x




 


 

   ,                                 (31) 

which represent vertically integrated baroclinic geostrophic currents scaled by the factor 

f/g (unit: m). Here, Eq.(19) is used (i.e., horizontal gradient of in-situ density is the same 185 

as that of density anomaly).   
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  The Euler-Lagragian equation of the functional (28) is given by 

                                           0
x y

L L L

D x D y D

      
             

.                           (32) 

Substitution of (29) into (32) gives an elliptic partial differential equation (i.e., the 

governing equation) for the first type DOT (i.e., D), 190 

                                             2 2/ ,f H f D F    
 

                                     

or 

                                
2 ( ) ( ) 2( / )x yD D D

H D r r f F
x y y


   
      

   
,                    (33) 

where 

                                       ,     
Y X

F
x y x y

    
     

    
i j                                      (34) 195 

                            ( ) ( )1 1 2
,   ,   cos( )x yH H

r r
H x H y a

 
  

  
 

,                              (35) 

where a = 6,370 km, is the mean earth radius. The geostrophic balance does not exist at the 

equator. The Coriolis parameter f needs some special treatment for low latitudes. In this 

study, f is taken as 2 sin(5 /180)  if latitude between 10oN to 0o; and as 

2 sin(5 /180)   if latitude between 0o to 10oS. 200 

Let Γ be the coastline of ocean basin. Continuation of geoid from land to oceans 

gives 

                     *| | ,   | |l lN N N N     ,                                                     (36) 

which leads to 

      *| |N N  .                                                                       (37) 205 
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Here, Nl is the geoid over land.  The boundary condition (37) can be rewritten as  

                               * *| ( ) | ( ) | |D S N S N D                                               (38) 

which is boundary condition of D.  

5. Numerical solution of D 

The well-posed elliptic equation (33) is integrated numerically on 1o 1o grids for the world 210 

oceans with the boundary values [i.e., (38)] taken from the MDOT (1993-2006) field (i.e., 

*D ), at the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-

typography/ (0.5o interpolated into 1o resolution). The forcing function F is calculated on 

1o 1o  grid from the World Ocean Atlas 2013  (WOA13) temperature and salinity fields, 

which was downloaded from  the NOAA National Centers for Environmental Information 215 

(NCEI)  website: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html. The three 

dimensional density was calculated using the international thermodynamic equation of 

seawater -2010, which is downloaded from the website:  

http://unesdoc.unesco.org/images/0018/001881/188170e.pdf. The ocean bottom 

topography data H was downloaded from the NECI 5-Minute Gridded Global Relief Data 220 

Collection at the website: https://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html. 

Discretization of the elliptic equation (33) and numerical integration are given in Appendix 

B.  

6. Difference between the Two DOTs  

The first type global DOT (Dij) (Fig. 2a) is the numerical solution of the elliptic equation 225 

(33) with the boundary condition (38). The second type global MDOT ( *  i jD ) (Fig. 2b) is 
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downloaded from the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-

data/dynamic-ocean-typography/. Difference between the two DOTs, 

                                *ij ij ijD D D   ,                                                      (39) 

is evident in the world oceans (Fig. 2c). Here, (i, j) denote the horizontal grid point. The 230 

relative root-mean-square (RMS) of ΔD is given by 

                                 

2

2

1
( )

RRMS( ) 0.386
1

( )

ij

i j

ij

i j

D
M

D

D
M



  





.                      (40) 

where M = 38,877 is the number of total grid points. Both D and 
*D  have positive and 

negative values. The arithmetic mean values (0.524 cm, -3.84 cm) are much smaller than 

the RMS mean values. They are an order of magnitude smaller than the corresponding 235 

standard deviations (54.9 cm, 71.2 cm) (see Figs. 2d and 2e). The magnitudes of D and 
*D  

are represented by their root-mean squares, which are close to their standard deviations.   

Histograms of for Dij (Fig. 2d) and *ijD (Fig. 2e) are both non-Gaussian and negatively 

skewed. The major difference between the two is the single modal for Dij with a peak at 

around 20 cm and the bi-modal for *ijD with a high peak at around 30 cm and a low peak 240 

at -140 cm. The statistical parameters are different, such as mean value and standard 

deviation are (0.524 cm, 54.9 cm) for Dij, and (-3.84 cm, 71.2 cm) for *ijD . Skewness and 

kurtosis are   (-0.83, 3.01) for Dij, and (-0.87, 2.80) for *ijD .      

Horizontal gradients of the DOT, (∂Dij/∂x, ∂Dij/∂y) and ( * */ , /ij ijD x D y    ), have 

oceanographic significance (i.e., related to the geostrophic currents). They are calculated 245 
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using the central difference scheme at inside-domain grid points and the first order 

forward/backward difference scheme at grid points next to the boundary.  Difference in 

global ∂Dij/∂x (Fig. 3a) and * /ijD x   (Fig. 3b) is evident with much smaller-scale 

structures in * /ijD x  . The difference between the two gradients (Fig. 3c),  

                      *( / ) / /ij ij ijD x D x D x                                              (41) 250 

has the same order of magnitudes as the gradients themselves with the relative root-mean-

square (RMS) of ( / )D x   ,  

                     

2

2

1
( / )

RRMS ( / ) 1.04
1

( / )

ij

i j

ij

i j

D x
M

D x

D x
M

    

    

 




,         (42) 

which implies that the non-surface latitudinal geostrophic current component of the second 

type MDOT has the same order of magnitude as the surface latitudinal geostrophic current 255 

component of the first type DOT.  Histograms of for ∂Dij/∂x (Fig. 3d) and * /ijD x  (Fig. 

3e) are near symmetric with mean values around (-1.29, -0.78)×10-8 and standard 

deviations (2.69, 4.95)×10-7. The standard deviation of * /ijD x  is almost twice that of  

∂Dij/∂x.  

Similarly, difference in global ∂Dij/∂y (Fig. 4a) and 
* /ijD y   (Fig. 4b) is evident with 260 

much smaller-scale structures in 
* /ijD y  . The difference between the two gradients (Fig. 

4c),  

                      *( / ) / /ij ij ijD y D y D y                                                (43) 
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has the same order of magnitudes as the gradients themselves with the relative root-mean-

square (RMS) of ( / )D y   ,  265 

                     

2

2

1
( / )

RRMS ( / ) 0.98
1

( / )

ij

i j

ij

i j

D y
M

D y

D y
M

    

    

 




,           (44) 

which implies that the non-surface zonal geostrophic current component of the second type 

MDOT has the same order of magnitude as the surface zonal geostrophic current 

component of the first type  DOT.    Histograms of ∂Dij/∂y (Fig. 4d) and 
* /ijD y   (Fig. 

4e) are also near symmetric with the mean values around (2.32, 1.18)×10-7 and standard 270 

deviations (1.20, 2.44)×10-6 .   The standard deviation of 
* /ijD y  is almost twice that of 

∂Dij/∂y. The denominators of (42) and (44) represent the magnitudes of the horizontal 

gradients of the first type DOT. 

7. Conclusions  

Change of marine geoid from classical defined (first type) to satellite determined (second 275 

type, standalone concept in marine geodesy) largely affects oceanography. With the 

classical defined marine geoid (average level of SSH if the water is at rest) the first type 

DOT represents the absolute geostrophic currents at the surface. With the satellite 

determined (second type) marine geoid by Eq(6), the second type MDOT might not 

represent the absolute geostrophic currents at the surface. The difference between the two 280 

types of DOT represents the component in addition to the absolute geostrophic currents at 

the surface.  

With conservation of potential vorticity, geostrophic balance represents the 

minimum energy state in an ocean basin where the mechanical energy is conserved. A new 
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governing elliptic equation of first type DOT is derived with water depth (H) in the 285 

coefficients and the three dimensional temperature and salinity in the forcing function.  

This governing elliptic equation is well posed.   Continuation of geoid from land to ocean 

leads to an inhomogeneous Dirichlet boundary condition.   

Difference between the two types of absolute DOT is evident with relative root-

mean-square difference of 38.6%. Horizontal gradients (representing geostrophic currents) 290 

of the two type DOTs are different with much smaller-scale structures in the second type 

absolute DOT. Relative root-mean-square difference is near 1.0 in both (x, y) components 

of the DOT gradient, which implies that the non-absolute surface geostrophic currents 

identified from the second type has the same order of magnitudes of the absolute surface 

geostrophic currents identified by the first type absolute DOT.  295 

The notable difference between the two types of absolute DOT raises more 

questions in oceanography and marine geodesy: Is there any theoretical foundation to 

connect the classical marine geoid (standalone concept in oceanography using the 

principle of surface geostrophic currents without g ) to the satellite determined marine 

geoid (standalone concept in marine geodesy using g without the principle of surface 300 

geostrophic currents)? How can the satellite determined marine geoid using the gravity 

anomaly ( g ) be conformed to the basic physical oceanography principle of surface 

geostrophic currents? What is the interpretation of the horizontal gradients of the second 

type MDOT (
*D )? Is there any evidence or theory to show [ * *( ) 0,  ( ) 0g gu N v N  ] 

similar to Eq.(14)?  More observational and theoretical studies are needed in order to solve 305 

those problems.  The main challenge for oceanography is how to use the satellite altimetry 

observed SSH and subtract the satellite gravimetry or gradiometry determined gravity field 
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(with gravity anomaly g ) to infer the ocean general circulations at the surface. A new 

theoretical framework rather than the geostrophic constraint needs to be established.   

The GOCE determined satellite data-only geoid model is more accurate and with 310 

higher resolution than GRACE. Change of GRACE to GOCE geoid model may increase 

the accuracy of the calculation of the second type absolute DOT. However, such a 

replacement does not solve the fundamental problem presented here, i.e., incompatibility 

between satellite determined marine geoid using the gravity anomaly ( g ) and the 

classical marine geoid (mean SSH when the water at rest) on the base of the basic physical 315 

oceanography principle of surface geostrophic currents.  

Finally, the mathematical framework described here [i.e., the elliptic equation (33)] 

may lead to a new inverse method for calculating three-dimensional absolute geostrophic 

velocity from temperature and salinity fields since the surface absolute geostrophic velocity 

is the solution of (33). This will be useful in addition to the existing β-spiral method 320 

[Stommel and Schott, 1977], box model [Wunsch, 1978], and P-vector method [Chu, 1995; 

Chu et al., 1998, 2000].  

Acknowledgments. The author thanks Mr. Chenwu Fan for invaluable comments and 
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Appendix A. Geostrophic balance as a minimum energy state in an 

energy conserved basin 

In large scale motion (small Rossby number) with the Boussinesq approximation, the 

linearized PV ( ) is given by  
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.                   (A1) 330 

where, ρ0 = 1025 kg m-3 is the characteristic density.  Without the frictional force and zero 

horizontally integrated buoyancy flux at the surface and bottom, the energy (including 

kinetic and available potential energies) is conserved in a three dimensional ocean basin 

(V) 

              
2 2

2 2 2

2 2

0

1
,     ( )

2 2V

g
E Jdxdydz J u v w

n




     ,                                  (A2) 335 

                                    0
dE

dt
                                                                                 (A3) 

The two terms of J are kinetic energy, and available potential energy. To show the 

geostrophic balance taking the minimum energy state for a given linear PV [see (A1)], the 

constraint is incorporated by extremizing the integral (see also in Vallis 1992) 
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where ( , , )x y z  is the Lagrange multiplier, which is a function of space. If it were a 

constant, the integral would merely extremize energy subject to a given integral of PV, and 

rearrangement of PV would leave the integral unaltered. Extremization of the integral (A4) 

gives the three Euler-Lagrange equations,  

                                              0,
z

K K
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 
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                                             (A5) 345 

                                               0,
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                                              0.
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where K is in the integrand appearing in (A4). Substitution of K into (A5), (A6), (A7) leads 

to              
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Differentiation of (A9) with respect to z and use of (A8) leads to  

                            
0 0
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z f y z z f x z
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,                (A10) 

which shows that (u , v) = (ug, vg)  have the minimum energy state.   

Appendix B. Numerical solution of the equation (33) 355 

Let the three axes (x, y, z) be discretized into local rectangular grids in horizontal and non-

uniform grids in vertical (xi,j, yi,j, zk) with cell sizes (1o×1o),                     

              
1r ,  cos ,  ,

360
E j j k k ky x y z z z


          

                          ,  = 1, 2, ... , ;   = 1, 2, ..., ;  = 1, 2, ..., i ji I j J k K                             (B1) 

where k =1 for the surface, k = Kij for the bottom; ϕj is the latitude of the grid point; rE = 360 

6,371 km, is the earth radius; I = 360; J = 180. The subscripts in Ki,j in (B1) indicates non-

uniform water depth in the region.  

The parameters (Xi,j, Yi,j) in (30) and (31) (in Section 4)  are calculated by   
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which gives the discretized forcing function     
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The governing equation (33) is discretized by 
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which is reorganized by 370 
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   (B6) 

The iteration method is used to solve the algebraic equation (B6) with large value of I×J. 

It starts from the 0-step,  

                                  
(0) 0,    1,  2,  ... , ;   1,  2,  ... , ijD i I j J                                 (B7) 
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With the given boundary condition (38) (see Section 4) and forcing function (B4), the first 375 

type DOT at the grid points can be computed from steps n to n+1,  
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Such iteration continues until the relative root-mean square difference reaching the 

criterion,  380 
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where M = 38,877,  is the total number of the grid points on the ocean surface.  
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Figure Captions 430 

Figure 1. Two types of marine geoid and DOT: (a) first type with N the average level of 

SSH if water at rest (classical definition), and (b) second type with satellite determined N* 

(water not at rest).   

 

Figure 2. (a) First type DOT (i.e., D) which is the solution of (33) with boundary condition 435 

of (38) (unit: cm), (b) second type MDOT (1993-2006) (i.e., 
*D ) (unit: cm) downloaded 

from the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-

typography, (c) difference between the two DOTs (i.e., ΔD), (d) histogram of global  D, 

and (e) histogram of global 
*D .   

 440 
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Figure 3. Derivatives in the x-direction of (a) the first type DOT (i.e., ∂D/∂x),  (b) the 

second MDOT (i.e., 
* /D x  ), (c) the difference  *( / ) / /D x D x D x        , (d) 

histogram of global  ∂D/∂x, and (e) histogram of global 
* /D x  .   

 445 

Figure 4. Derivatives in the y-direction of (a) the first type DOT (i.e., ∂D/∂y), (b) the second 

type MDOT (i.e., 
* /D y  ), and (c) the difference *( / ) / /D y D y D y        , (d) 

histogram of global  ∂D/∂y, and (e) histogram of global 
* /D y  .   

 

 450 

 

Figure 1. Two types of marine geoid and DOT: (a) first type with N the average level of 

SSH if water at rest (classical definition), and (b) second type with satellite determined N* 

(water not at rest).   
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 465 
Figure 3. Derivatives in the x-direction of (a) the first type DOT (i.e., ∂D/∂x),  (b) the 

second MDOT (i.e., 
* /D x  ), (c) the difference  *( / ) / /D x D x D x        , (d) 

histogram of global  ∂D/∂x, and (e) histogram of global 
* /D x  .   
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Figure 4. Derivatives in the y-direction of (a) the first type DOT (i.e., ∂D/∂y), (b) the second 

type MDOT (i.e., 
* /D y  ), and (c) the difference *( / ) / /D y D y D y        , (d) 475 

histogram of global  ∂D/∂y, and (e) histogram of global 
* /D y  .   
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