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Abstract. Two types of marine geoid exist with the  first type to be  the average level of 10 

sea surface height (SSH) if the water is at rest (classical definition), and the second type to 

be  satellite determined with the condition that the water is usually not at rest. Differences 

between the two are exclusion (inclusion) of the gravity anomaly and non-measurable 

(measurable) in the first (second) type. The associated absolute dynamic ocean topography 

(referred as DOT), i.e., SSH minus marine geoid, also has two types. Horizontal gradients 15 

of the first type DOT represent the absolute surface geostrophic currents due to water at 

rest on the first type marine geoid. Horizontal gradients of the second type DOT represent 

the surface geostrophic currents relative to the second type marine geoid due to water not 

at rest there. Difference between the two is quantitatively identified in this note through 

comparison between the first type DOT and the mean second type DOT (MDOT).  The 20 

first type DOT is determined by a physical principle that the geostrophic balance takes the 

minimum energy state. Based on that, a new elliptic equation is derived for the first type 

DOT. Continuation of geoid from land to ocean leads to an inhomogeneous Dirichlet 

boundary condition with the boundary values taking satellite observed second type MDOT. 

This well-posed elliptic equation is integrated numerically on 1o grids for the world oceans 25 

with the forcing function computed from the World Ocean Atlas (T, S) fields and the sea-

floor topography obtained from the NOAA‘s ETOPO5 model. Between the first type DOT 
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and second type MDOT, the relative root-mean square (RMS) difference (versus RMS of 

the first type DOT) is 38.6% and the RMS difference of the horizontal gradients (versus 

RMS of the horizontal gradient of the first type DOT) is near 100%.  The standard deviation 30 

of horizontal gradients of DOT is nearly twice larger for the second type (satellite 

determined marine geoid with gravity anomaly) than for the first type (geostrophic balance 

without gravity anomaly). Such difference needs further attention from oceanographic and 

geodetic communities, especially the oceanographic representation of the horizontal 

gradients of the second type MDOT (not the absolute surface geostrophic currents).    35 

1. Introduction  

Let the coordinates (x, y, z) be in zonal, latitudinal, and vertical directions. The absolute 

dynamic ocean topography (hereafter referred as DOT) D̂  is the sea surface height (SSH) 

(waves and tides filtered out) relative to the marine geoid (i.e., the equipotential surface), 

                                                    ˆ ˆD S N  ,                                                       (1) 40 

where S is the SSH; N̂  is the  marine geoid height above to the reference ellipsoid (Fig. 

1). D̂  is an important signal in oceanography; and N̂  is of prime interest in geodesy. Eq. 

(1) is also applicable if defined relative to the center of the Earth. The geoid height 

ˆ ( , )N x y  and other associated measurable quantities such as gravity anomaly Δg(x, y) are 

related to the anomaly of the gravitational potential V(x, y, z) to a first approximation by 45 

the well-known Brun's formula (e.g., Hofmann-Wellenhof and Moritz, 2005), 

                                              
( , ,0)ˆ ( , )

V x y
N x y

g
  ,                                                 (2) 

where g = 9.81 m/s2, is the globally mean normal  gravity, which is usually represented by 

g0 in geodesy. The gravity anomaly is the vertical derivative of the potential 
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where the anomaly of the gravity potential V  satisfies the Laplace equation 
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The vertical deflection is the slope of the geoid  
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which connects to the gravity anomaly by 55 
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                                               (6) 

Eq(6) links the vertical gravity gradient to the horizontal Laplacian of the marine geoid 

height N̂  and serves as the basic principle in the satellite marine geodesy. Since D̂  is the 

difference of the two large fields S and N̂   (two orders of magnitude larger than D̂ ), it is 

extremely sensitive to any error in either S or N̂  – even 1% error in either field can lead 60 

to error in D̂  that is of the same order of magnitudes as D̂  itself (Wunsch and Gaposchkin, 

1980;  Bingham et al., 2008).  

Before satellites came into practice, S was measured from sparse surveying ships 

and tide gauge stations located along irregular local coastline. However, N̂  was not easy 

to observe. Without satellite measurements, the marine geoid is defined as the average 65 

level of SSH if the water is at rest and denoted here by N, which is called the classical 

marine geoid (or first type marine geoid) (Fig. 1a). The first type marine geoid can be taken 

as a standalone concept in oceanography since it is on the base of the hypothesis (mean 
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SSH when the water at rest) without using the gravity anomaly.  In this framework, the 

geostrophic balance  70 

                      
ˆ ˆ1 1

,      
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,                                           (8) 

and hydrostatic balance, 
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z


 


,                                                                 (9) 

are used for large-scale (i.e., scale > 100 km) processes. Here (ug, vg) are geostrophic 

current components; f is the Coriolis parameter; ( p̂ , ̂ ) are in-situ pressure and density, 75 

respectively, which can be decomposed into  

                  0 0
ˆ ˆ( ) ,      ( )z p gz p z p           .                        (10) 

Here, 0 = 1025 kg/m3, is the characteristic density; ( , p ) are horizontally uniform with 

   vertically increasing with depth (stable stratification)    

                                                  2
0/ [ ( )] /z n z g     ,                                  (11) 80 

where n(z) is the buoyancy frequency (or called the Brunt-Vaisala frequency); (p,  ) are 

anomalies of pressure and density. Near the ocean surface, it is common to use the 

characteristic density and corresponding pressure ( 0 0,p  ) to represent ( p̂ , ̂ ). Vertical 

integration of (9) from N to S after replacing ( p̂ , ̂ ) by ( 0 0,p  ) in (8) and (9) leads to   

                      ( ) ( ) ,      ( ) ( )g g g g

g D g D
u S u N v S v N

f y f x

 
    

 
,                 (12) 85 

where  

                                      D S N  ,                                                                  (13) 
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 is the first type  DOT. Since the first type marine geoid (N) is defined as the average level 

of SSH if the water is at rest,  

                                         ( ) 0,      ( ) 0g gu N v N  ,                                     (14) 90 

the horizontal gradient of D represents the absolute surface geostrophic currents.  

After satellites came into practice, SSH has been observed with high precision and 

unique resolution with altimetry above a reference ellipsoid (not geoid) (Fu and Haines 

2013).  Two Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 

2002, provide data to compute the marine geoid [called the GRACE Gravity Model 95 

(GGM)] (see website: http://www.csr.utexas.edu/grace/) (Tapley et al., 2003; Shum et al., 

2011). In addition, European Space Agency's GOCE mission data, along with the GRACE 

data, have produced the best mean gravity field or the geoid model at a spatial scale longer 

than 67 km half-wavelength (or spherical harmonics completed to degree 300). This marine 

geoid is the solution of Eq(6), 100 

                          
2 2

* *
2 2

1 ( )N N g

x y g z

   
 

  
                                           

where *N   is the  satellite  determined marine geoid from the measurable gravity anomaly	  

g , and called  the second type marine geoid (Fig. 1b), which is different from N, defined  

by (14). Correspondingly, the second type DOT is defined by 

                            * *( )D S N t  ,                                                          (15) 105 

where *( )N t   changes with time due to temporally varying gravity anomaly g . Thus, 

comparison between the first-type and second-type geoids should be conducted between N 

and  *N . Here, *N  is the temporally mean of *( )N t . As for DOT, the first type DOT (D) 

should be compared to the second type mean DOT (MDOT),  
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                                       * *D S N  .                                                               (16)     110 

The oceanic conditions at N and *N are different: water at rest on N [see Eq(14)], 

but in motion on *N . The oceanographic community ignores such a difference. The 

horizontal gradients of the second type DOT are also treated as the absolute surface 

geostrophic currents. For example, the second type MDOT ( *D ) data is posted at the 

NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/. 115 

Its horizontal gradients are also taken  as the absolute surface geostrophic currents.    

A question arises: Do the horizontal gradients of the second type MDOT ( *D ) 

represent the absolute surface geostrophic currents? This paper will answer the question 

using the temporally averaged SSH and marine geoid from NASA’s satellite altimetric and 

gravimetric measurements [i.e., the second type MDOT ( *D )], and solving a new elliptic 120 

equation of D numerically.  Given (S, *N , D) leads to the answer of the question. 

Rest of the paper is outlined as follows. Section 2 describes the change of DOT due 

to the change of marine geoid from first to second type. Section 3 describes geostrophic 

currents and energy related to the first type DOT. Section 4 presents the governing equation 

of the first type DOT with the boundary condition at the coasts. Section 5 shows the 125 

numerical solution for the world oceans. Section 6 evaluates the change of global DOT 

from first to second type with oceanographic implication. Section 7 concludes the studies. 

2.  Change of DOT from first to second type 

The second type MDOT ( *D ) data are downloaded from the NASA/JPL website: 

https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/. This dataset is 130 

subtraction of a second type marine geoid of GRACE (Bingham et al, 2011) from a mean 



 7

(1993 to 2006) altimetric sea surface. Change of marine geoid from first (N) to second ( *N ) 

type is represented by 

                               *N N N   .                                                                  (17) 

Correspondingly, change of DOT is given by  135 

                                 *D D D N                                                          (18) 

where (13) and (16) are used. ΔD is of interest in oceanography. ΔN is of interest in 

geodesy. Eq(18) shows that the key issue to evaluate D is to determine D (i.e., first type 

DOT).  

Conservation of potential vorticity for a dissipation-free fluid does not apply 140 

precisely to sea water where the density is a function not only of temperature and pressure 

but also of the dissolved salts. The effect of salinity on density is very important in the 

distribution of water properties. However, for most dynamic studies the effect of the extra 

state variable is not significant and the conservation of potential vorticity is valid (Veronis, 

1980). Based on the conservation of the potential vorticity, the geostrophic current reaches 145 

the minimum energy state (Appendix A). Due to the minimum energy state, an elliptic 

partial differential equation for D is derived with coefficients containing sea-floor 

topography H, and forcing function containing temperature and salinity fields.  

If ΔD is negligible in comparison to D, change of marine geoid from N to *N  does 

not change absolute DOT‘s oceanographic interpretation, i.e., the horizontal gradients of 150 

*D  also represent the absolute surface geostrophic currents. If ΔD is not negligible, the 

horizontal gradient of *D  does not represent the absolute surface geostrophic currents.  

3. Geostrophic currents and energy   
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Eq.(10) implies,  

                                    
ˆ ˆ
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,                                                    (19) 155 
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Using the first type marine geoid N, the horizontal gradients of D lead to the absolute 

surface geostrophic currents [see Eqs(12) and (14)]. Integration of the thermal wind 

relation  

                                    
0 0

,    g gu vg g

z f y z f x

 
 

  
  

   
,                              (21) 160 

from the ocean surface to depth z leads to depth-dependent geostrophic currents, 

                            ( ) ( ) ( ),    ( ) ( ) ( )g g BC g g BCu z u S u z v z v S v z                      (22) 

where 

                       
0 0

0 0

( ) ',    ( ) 'BC BC

z z

g g
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   ,                      (23) 

are the baroclinic geostrophic currents. Here, f = 2Ωsin (φ) is the Coriolis parameter; Ω = 165 

2π/(86400 s) is the mean Earth rotation rate; φ is the latitude.  

The volume integrated total energy, i.e., sum of kinetic energy of the geostrophic 

currents and the available potential energy (Oort et al., 1989), for an ocean basin (W) is 

given by  

            
2 2

2 2
2 2
0

1
( )

2 2g gW

g
E u v dxdydz

n




 
   

 
 .                                    (24) 170 

Substitution of (22) and (23) into (24) leads to 
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4. Governing equation of D 

For a given density field, the second integration in the right side of (25) is known.  The 175 

geostrophic currents taking the minimum energy state provides a constraint for D,   

2 2 2( , ) 2 2 / minBC BC
x y x y x y

W

fv fu
G D D D D D D f dxdydz

g g

  
      

  
 .      (26) 

The three-dimensional integration (26) over the ocean basin is conducted by 

                                            
0

... ...
W R H

dxdydz dz dxdy


 
  

 
                              (27) 

where R is the horizontal area of the water volume, H is the water depth. Thus, Eq(26) 180 

becomes 

                                   ( , ) ( , ) minx y x y

R

G D D L D D dxdy  ,                            (28) 

                          2 2 2( , ) ( ) 2 2 /x y x y x yL D D H D D D Y D X f                            (29) 

where the parameters (X, Y) are given by 
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                                (30) 185 
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which represent vertically integrated baroclinic geostrophic currents scaled by the factor 

f/g (unit: m). Here, Eq.(19) is used (i.e., horizontal gradient of in-situ density is the same 

as that of density anomaly).   

  The Euler-Lagragian equation of the functional (28) is given by 190 

                                           0
x y

L L L

D x D y D

      
             

.                           (32) 

Substitution of (29) into (32) gives an elliptic partial differential equation (i.e., the 

governing equation) for the first type DOT (i.e., D), 

                                             2 2/ ,f H f D F                                           

or 195 

                                
2 ( ) ( ) 2( / )x yD D D

H D r r f F
x y y


   
         

,                    (33) 

where 

                                       ,     
Y X

F
x y x y

    
         

i j                                      (34) 

                            ( ) ( )1 1 2
,   ,   cos( )x yH H

r r
H x H y a

   
  

 
,                              (35) 

where a = 6,370 km, is the mean earth radius. The geostrophic balance does not exist at the 200 

equator. The Coriolis parameter f needs some special treatment for low latitudes. In this 

study, f is taken as 2 sin(5 /180)  if latitude between 10oN to 0o; and as 

2 sin(5 /180)   if latitude between 0o to 10oS. 

Let Γ be the coastline of ocean basin. Continuation of geoid from land to oceans 

gives 205 
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                     *| | ,   | |l lN N N N     ,                                                     (36) 

which leads to 

      *| |N N  .                                                                       (37) 

Here, Nl is the geoid over land.  The boundary condition (37) can be rewritten as  

                               * *| ( ) | ( ) | |D S N S N D                                               (38) 210 

which is boundary condition of D.  

5. Numerical solution of D 

The well-posed elliptic equation (33) is integrated numerically on 1o 1o grids for the world 

oceans with the boundary values [i.e., (38)] taken from the MDOT (1993-2006) field (i.e., 

*D ), at the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-215 

typography/ (0.5o interpolated into 1o resolution). The forcing function F is calculated on 

1o 1o  grid from the World Ocean Atlas 2013  (WOA13) temperature and salinity fields, 

which was downloaded from  the NOAA National Centers for Environmental Information 

(NCEI)  website: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html. The three 

dimensional density was calculated using the international thermodynamic equation of 220 

seawater -2010, which is downloaded from the website:  

http://unesdoc.unesco.org/images/0018/001881/188170e.pdf. The ocean bottom 

topography data H was downloaded from the NECI 5-Minute Gridded Global Relief Data 

Collection at the website: https://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html. 

Discretization of the elliptic equation (33) and numerical integration are given in Appendix 225 

B.  

6. Difference between the Two DOTs  



 12

The first type global DOT (Dij) (Fig. 2a) is the numerical solution of the elliptic equation 

(33) with the boundary condition (38). The second type global MDOT ( *  i jD ) (Fig. 2b) is 

downloaded from the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-230 

data/dynamic-ocean-typography/. Difference between the two DOTs, 

                                *ij ij ijD D D   ,                                                      (39) 

is evident in the world oceans (Fig. 2c). Here, (i, j) denote the horizontal grid point. The 

relative root-mean-square (RMS) of ΔD is given by 

                                 

2

2

1
( )

RRMS( ) 0.386
1

( )

ij
i j

ij
i j

D
M

D

D
M


  




.                      (40) 235 

where M = 38,877 is the number of total grid points. Both D and *D  have positive and 

negative values. The arithmetic mean values (0.524 cm, -3.84 cm) are much smaller than 

the RMS mean values. They are an order of magnitude smaller than the corresponding 

standard deviations (54.9 cm, 71.2 cm) (see Figs. 2d and 2e). The magnitudes of D and *D  

are represented by their root-mean squares, which are close to their standard deviations.   240 

Histograms of for Dij (Fig. 2d) and *ijD (Fig. 2e) are both non-Gaussian and negatively 

skewed. The major difference between the two is the single modal for Dij with a peak at 

around 20 cm and the bi-modal for *ijD with a high peak at around 30 cm and a low peak 

at -140 cm. The statistical parameters are different, such as mean value and standard 

deviation are (0.524 cm, 54.9 cm) for Dij, and (-3.84 cm, 71.2 cm) for *ijD . Skewness and 245 

kurtosis are   (-0.83, 3.01) for Dij, and (-0.87, 2.80) for *ijD .      
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Horizontal gradients of the DOT, (∂Dij/∂x, ∂Dij/∂y) and ( * */ , /ij ijD x D y    ), have 

oceanographic significance (i.e., related to the geostrophic currents). They are calculated 

using the central difference scheme at inside-domain grid points and the first order 

forward/backward difference scheme at grid points next to the boundary.  Difference in 250 

global ∂Dij/∂x (Fig. 3a) and * /ijD x   (Fig. 3b) is evident with much smaller-scale 

structures in * /ijD x  . The difference between the two gradients (Fig. 3c),  

                      *( / ) / /ij ij ijD x D x D x                                              (41) 

has the same order of magnitudes as the gradients themselves with the relative root-mean-

square (RMS) of ( / )D x   ,  255 
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i j

D x
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D x

D x
M

    
    

 




,         (42) 

which implies that the non-surface latitudinal geostrophic current component of the second 

type MDOT has the same order of magnitude as the surface latitudinal geostrophic current 

component of the first type DOT.  Histograms of for ∂Dij/∂x (Fig. 3d) and * /ijD x  (Fig. 

3e) are near symmetric with mean values around (-1.29, -0.78)×10-8 and standard 260 

deviations (2.69, 4.95)×10-7. The standard deviation of * /ijD x  is almost twice that of  

∂Dij/∂x.  

Similarly, difference in global ∂Dij/∂y (Fig. 4a) and * /ijD y   (Fig. 4b) is evident with 

much smaller-scale structures in * /ijD y  . The difference between the two gradients (Fig. 

4c),  265 
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                      *( / ) / /ij ij ijD y D y D y                                                (43) 

has the same order of magnitudes as the gradients themselves with the relative root-mean-

square (RMS) of ( / )D y   ,  
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1
( / )

RRMS ( / ) 0.98
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( / )

ij
i j

ij
i j

D y
M

D y

D y
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,           (44) 

which implies that the non-surface zonal geostrophic current component of the second type 270 

MDOT has the same order of magnitude as the surface zonal geostrophic current 

component of the first type  DOT.    Histograms of ∂Dij/∂y (Fig. 4d) and * /ijD y   (Fig. 

4e) are also near symmetric with the mean values around (2.32, 1.18)×10-7 and standard 

deviations (1.20, 2.44)×10-6 .   The standard deviation of * /ijD y  is almost twice that of 

∂Dij/∂y. The denominators of (42) and (44) represent the magnitudes of the horizontal 275 

gradients of the first type DOT. 

7. Conclusions  

Change of marine geoid from classical defined (first type, standalone concept in 

oceanography) to satellite determined (second type, standalone concept in marine geodesy) 

largely affects oceanography. With the classical defined marine geoid (average level of 280 

SSH if the water is at rest) the horizontal gradients of the first type DOT represent the 

absolute surface geostrophic currents. With the satellite determined (second type) marine 

geoid by Eq(6), the horizontal gradients of the second type MDOT don’t  represent the 

absolute surface geostrophic currents. The difference between the two types of DOT 

represents an additional component to the absolute surface geostrophic currents.  285 
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With conservation of potential vorticity, geostrophic balance represents the 

minimum energy state in an ocean basin where the mechanical energy is conserved. A new 

governing elliptic equation of first type DOT is derived with water depth (H) in the 

coefficients and the three dimensional temperature and salinity in the forcing function.  

This governing elliptic equation is well posed.   Continuation of geoid from land to ocean 290 

leads to an inhomogeneous Dirichlet boundary condition.   

Difference between the two types of DOT is evident with relative root-mean-square 

difference of 38.6%. Horizontal gradients (representing geostrophic currents) of the two 

type DOTs are different with much smaller-scale structures in the second type absolute 

DOT. Relative root-mean-square difference is near 1.0 in both (x, y) components of the 295 

DOT gradient, which implies that the non-absolute surface geostrophic currents identified 

from the second type has the same order of magnitudes of the absolute surface geostrophic 

currents identified by the first type DOT.  

The notable difference between the two types of DOT raises more questions in 

oceanography and marine geodesy: Is there any theoretical foundation to connect the 300 

classical marine geoid (standalone concept in oceanography using the principle of surface 

geostrophic currents without g ) to the satellite determined marine geoid (standalone 

concept in marine geodesy using g without the principle of surface geostrophic currents)? 

How can the satellite determined marine geoid using the gravity anomaly ( g ) be 

conformed to the basic physical oceanography principle of surface geostrophic currents? 305 

What is the interpretation of the horizontal gradients of the second type MDOT ( *D )? Is 

there any evidence or theory to show [ * *( ) 0,  ( ) 0g gu N v N  ] similar to Eq.(14)?  More 

observational and theoretical studies are needed in order to solve those problems.  The 
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main challenge for oceanographers is how to use the satellite altimetry observed SSH such 

as the Surface Water and Ocean Topography (SWOT, https://swot.jpl.nasa.gov/ ) to infer 310 

the ocean general circulations at the surface. A new theoretical framework rather than the 

geostrophic constraint needs to be established.   

The GOCE determined satellite data-only geoid model is more accurate and with 

higher resolution than GRACE. Change of GRACE to GOCE geoid model may increase 

the accuracy of the calculation of the second type DOT. However, such a replacement does 315 

not solve the fundamental problem presented here, i.e., incompatibility between satellite 

determined marine geoid using the gravity anomaly ( g ) and the classical marine geoid 

(mean SSH when the water at rest) on the base of the basic physical oceanography principle 

of surface geostrophic currents.  

Finally, the mathematical framework described here [i.e., the elliptic equation (33) 320 

with boundary condition (38)] may lead to a new inverse method for calculating three-

dimensional absolute geostrophic velocity from temperature and salinity fields since the 

surface absolute geostrophic velocity is the solution of (33). This will be a useful addition 

to the existing β-spiral method (Stommel and Schott, 1977), box model (Wunsch, 1978), 

and P-vector method (Chu, 1995; Chu et al., 1998, 2000).  325 

Acknowledgments. The author thanks Mr. Chenwu Fan for invaluable comments and 
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topography data, and NASA/JPL (second type) MDOT data.  

Appendix A. Geostrophic balance as a minimum energy state in an 

energy conserved basin 330 
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In large scale motion (small Rossby number) with the Boussinesq approximation, the 

linearized PV ( ) is given by  

               
2 2

0 0ˆ
[ ( )] ( ) ( )

n nv u v u
f f

x y z g z g x y

       
        

     
.                   (A1) 

where, ρ0 = 1025 kg m-3 is the characteristic density.  Without the frictional force and zero 

horizontally integrated buoyancy flux at the surface and bottom, the energy (including 335 

kinetic and available potential energies) is conserved in a three dimensional ocean basin 

(V) 
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                                    0
dE
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The two terms of J are kinetic energy, and available potential energy.  340 

To show the geostrophic balance taking the minimum energy state for a given linear 

PV [see (A1)], the constraint is incorporated by extremizing the integral (see also in Vallis 

1992; Chu 2018) 
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               (A4) 

where ( , , )x y z  is the Lagrange multiplier, which is a function of space. If it were a 345 

constant, the integral would merely extremize energy subject to a given integral of PV, and 

rearrangement of PV would leave the integral unaltered. Extremization of the integral (A4) 

gives the three Euler-Lagrange equations,  
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where K is in the integrand appearing in (A4). Substitution of K into (A5), (A6), (A7) leads 

to              
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.                                    (A9) 355 

Differentiation of (A9) with respect to z and use of (A8) leads to  

                            
0 0

,    g gu vu g v g

z f y z z f x z

 
 

    
    

     
,                (A10) 

which shows that (u , v) = (ug, vg)  have the minimum energy state.   

Appendix B. Numerical solution of the equation (33) 

Let the three axes (x, y, z) be discretized into local rectangular grids in horizontal and non-360 

uniform grids in vertical (xi,j, yi,j, zk) with cell sizes (1o×1o),                     

              1r ,  cos ,  ,
360 E j j k k ky x y z z z
           

                          ,  = 1, 2, ... , ;   = 1, 2, ..., ;  = 1, 2, ..., i ji I j J k K                             (B1) 

where k =1 for the surface, k = Kij for the bottom; ϕj is the latitude of the grid point; rE = 

6,371 km, is the earth radius; I = 360; J = 180. The subscripts in Ki,j in (B1) indicates non-365 

uniform water depth in the region.  
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The parameters (Xi,j, Yi,j) in (30) and (31) (in Section 4)  are calculated by   
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which gives the discretized forcing function     370 
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The governing equation (33) is discretized by 
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which is reorganized by 
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   (B6) 375 

The iteration method is used to solve the algebraic equation (B6) with large value of I×J. 

It starts from the 0-step,  

                                  (0) 0,    1,  2,  ... , ;   1,  2,  ... , ijD i I j J                                 (B7) 
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With the given boundary condition (38) (see Section 4) and forcing function (B4), the first 

type DOT at the grid points can be computed from steps n to n+1,  380 
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                                                                                                                                                                                                      (B8) 

Such iteration continues until the relative root-mean square difference reaching the 

criterion,  
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,                                         (B9) 385 

where M = 38,877,  is the total number of the grid points on the ocean surface.  
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Figure Captions 440 

Figure 1. Two types of marine geoid and DOT: (a) first type with N the average level of 
SSH if water at rest (classical definition), and (b) second type with satellite determined N* 
(water in motion on N*).   
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Figure 2. (a) First type DOT (i.e., D) which is the solution of (33) with boundary condition 445 
of (38) (unit: cm), (b) second type MDOT (1993-2006) (i.e., *D ) (unit: cm) downloaded 

from the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-
typography, (c) difference between the two DOTs (i.e., ΔD), (d) histogram of global  D, 
and (e) histogram of global *D .   

 450 
 
  
Figure 3. Derivatives in the x-direction of (a) the first type DOT (i.e., ∂D/∂x),  (b) the 

second MDOT (i.e., * /D x  ), (c) the difference  *( / ) / /D x D x D x        , (d) 

histogram of global  ∂D/∂x, and (e) histogram of global * /D x  .   455 

 
 
Figure 4. Derivatives in the y-direction of (a) the first type DOT (i.e., ∂D/∂y), (b) the second 

type MDOT (i.e., * /D y  ), and (c) the difference *( / ) / /D y D y D y        , (d) 

histogram of global  ∂D/∂y, and (e) histogram of global * /D y  .   460 
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Figure 4. Derivatives in the y-direction of (a) the first type DOT (i.e., ∂D/∂y), (b) the second 485 

type MDOT (i.e., * /D y  ), and (c) the difference *( / ) / /D y D y D y        , (d) 

histogram of global  ∂D/∂y, and (e) histogram of global * /D y  .   
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