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Abstract. Possible mechanisms behind the longevity of intense Long Island Sound (LIS) water temperature 

events are examined using an event-based approach. By decomposing an LIS surface water temperature 

time series into negative and positive events, it is revealed that the most intense LIS water temperature 10 

event in the 1979-2013 period occurred around 2012, coinciding with the 2012 ocean heat wave across 

the mid-Atlantic Bight. The LIS events are related to a ridge-trough dipole pattern whose strength and 

evolution can be determined using a dipole index. The dipole index was shown to be strongly correlated 

with LIS water temperature anomalies, explaining close to 64% of cool-season LIS water temperature 

variability. Consistently, a major dipole pattern event coincided with the intense 2012 LIS warm event. 15 

A composite analysis revealed that long-lived intense LIS water temperature events are associated with 

tropical sea surface temperature (SST) patterns. The onset and mature phases of LIS cold events were 

shown to coincide with central Pacific El Niño events, whereas the termination of LIS cold events was 

shown to coincide possibly with canonical El Niño events or El Niño events that are a mixture of eastern 

and central Pacific El Niño flavors. The mature phase of LIS warm events was shown to be associated 20 

with negative SST anomalies across the central equatorial Pacific, though the results were not found to 

be robust. The dipole pattern was also shown to be related to tropical SST patterns and fluctuations in 

central Pacific SST anomalies were shown to evolve coherently with the dipole pattern and the strongly 

related East Pacific/North Pacific pattern on decadal time scales. The results from this study have 

important implications for seasonal and decadal prediction of the LIS thermal system. 25 
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1 Introduction  

Fluctuations in sea-surface temperature (SST) across coastal portions of the United States (U.S.) 

are driven by changes in oceanic and atmospheric circulation patterns. Changes in water temperature 

along the U.S. west coast are related to the Pacific Decadal Oscillation (PDO) and the North Pacific Gyre 

Oscillation, as well-documented (Mantua et al., 1997, Mantua and Hare, 2002, Di Lorenzo, 2008). For 5 

the U.S east coast, water temperature fluctuations are related to changes in the Gulf Stream position and 

variations in the Atlantic Multidecadal Oscillation, PDO, and East Pacific/North Pacific (EP/NP) pattern 

(Pershing et al., 2015, Schulte et al., 2017). Superimposed on the water temperature changes driven by 

natural modes of variability is background warming associated with anthropogenic climate change 

(Pershing et al., 2015).  10 

Although the mechanisms behind SST variability along the U.S. west coast are well-documented, 

comparatively fewer studies have focused on understanding SST variability across the mid-Atlantic Bight 

in the context of large-scale climate modes. Two recent studies put water temperature variability across 

the Gulf of Maine and the Long Island Sound (LIS) in a climate-mode context. The first study by Pershing 

et al. (2015) showed that the combination of Gulf Stream and PDO influences led to rapid warming of 15 

the Gulf of Maine that resulted in the collapse of the cod fishery.  

More recently, a second study by Schulte et al. (2018) found the EP/NP pattern to be a dominant 

pattern governing LIS water temperature variability. The EP/NP pattern was shown to be strongly 

correlated to LIS water temperature unlike the well-known North Atlantic Oscillation (NAO; Hurrell, 

1995), Pacific North American (PNA; Wallace and Gutzler, 1981, Svoma, 2011), Arctic Oscillation (AO; 20 

Thompson and Wallace, 1998), and West Pacific (WP; Barston and Livezey, 1987; Linkin and Nigam, 

2008) patterns. In fact, Schulte and Lee (2017) found that the EP/NP pattern is more strongly related to 

temperature variability across the Northeast U.S than the AO, which is often associated with colder-than-

normal conditions across the region (Wettstein and Mearns, 2002). Those results suggest that the EP/NP 

pattern is an important component to seasonal prediction of air and water temperature across the LIS 25 

region. Another important aspect of the EP/NP pattern is its strong decadal variability, which could enable 

decadal prediction of LIS water temperature. Schulte et al. (2018) termed the decadal component of the 

EP/NP pattern the quasi-decadal mode and showed that it fluctuates coherently with LIS water 
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temperature anomalies. The physical mechanism contributing to the EP/NP decadal variability was not 

identified, underscoring the need for an additional study to identify a possible source of the EP/NP decadal 

variability. Understanding the mechanisms behind the EP/NP decadal variability has implications for 

seasonal and decadal prediction of LIS water temperature.  

Improving the current understanding of the climatic mechanisms governing LIS water temperature 5 

variability also has important implications for managing fisheries. For example, Howell and Auster 

(2012), using finfish abundance indices, found shifts in spring community structures that are related to 

water temperature. The LIS American lobster, which is sensitive to water temperature, dramatically 

declined around 1997 (Pearce and Balcom, 2005), but managing the lobster harvests has failed to recover 

the lobster fishery. For the nearby Rhode Island Sound, biological communities are related to spring-10 

summer water temperature (Collie et al. 2008), suggesting that predicting spring-summer water 

temperature could aid the setting of fish harvest quotas. These studies underscore the need to better 

understand water temperature variability across the LIS region so that changes in biological communities 

can be better monitored and used to better manage fish harvests. 

Another reason that the LIS is important to study is that it is in a region where air temperature and 15 

precipitation are not strongly influenced by well-known climate modes such as the NAO, AO, PNA, and 

WP that are extracted from the widely used classical empirical orthogonal function analysis (EOF) 

method (Barston and Livezey, 1987). Schulte et al. (2016) found weak relationships between well-known 

climate indices and variability of precipitation and temperature across the Northeast U.S.  As shown by 

Schulte et al. (2018), LIS water temperature variability is strongly related to neither changes in the Gulf 20 

Stream position nor fluctuations in the NAO despite being located adjacent to the Atlantic Ocean. The 

weak Gulf Stream influence is likely the result of the LIS being a semi-enclosed water basin, whereas the 

general movement of weather systems from west to east may reflect the weak NAO influences because 

the NAO’s centers of action are located downstream of the LIS.  

Recognizing that well-known climate indices are weakly related to the salinity variability of 25 

Northeast U.S. estuaries, Schulte et al. (2017a) adopted a continuum approach (Franzke and Feldstein, 

2005; Johnson and Feldstein, 2010; Johnson et al., 2008) to teleconnection pattern extraction and 

identified an Eastern North American Sea Level Dipole (ENA) pattern that is more strongly correlated 
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with streamflow than the PNA and NAO indices. In a subsequent study, Schulte et al. (2017b) found the 

ENA pattern to be strongly related to Northeast U.S. precipitation and LIS salinity. Those results suggest 

that a continuum approach is better suited for understanding climate variability and associated LIS water 

temperature impacts than an EOF-based analysis. Although Schulte et al. (2018) did show that the EOF-

based EP/NP pattern is strongly correlated with LIS water temperature, the EP/NP pattern for December 5 

cannot be unambiguously extracted using the Rotated Principal Component analysis (RPCA) conducted 

by the Climate Prediction Center (CPC). Furthermore, EOF analysis assumes atmospheric patterns are 

orthogonal even though orthogonality does not hold for the real atmosphere. This orthogonality 

assumption can lead to the generation of unphysical modes (Tremblay, 2001). In contrast, clustering 

methods such as Self-Organizing Maps (SOMS) that view the atmospheric as a continuum more 10 

accurately produce patterns that are actually observed than EOF analysis (Liu et al., 2006; Johnson et al., 

2008, Yuan et al., 2015).Therefore, an additional study is needed to construct an atmospheric circulation 

index that is strongly related to LIS water temperature variability, physically based,  and unambiguously 

defined for all months.  

 In this paper, we use an event-based approach to identify LIS water temperature relationships with 15 

atmospheric and oceanic patterns. More specifically, the main objectives of the study are the following: 

(1) identify the atmospheric circulation patterns associated with LIS water temperature events; (2) create 

a simple atmospheric index that is strongly correlated with LIS water temperature variability; and (3) use 

the simple atmospheric index to better understand LIS water temperature variability. Because tropical 

Pacific SST patterns are often used in seasonal forecasting over North America, in this study we also 20 

explore if there is a SST-pattern precursor to LIS temperature events. 

2 Data 

In this paper, SST fields from 1870 to 2013 are based on the Hadley Centre Global Sea Ice and 

Sea Surface Temperature (HadISST1) data set (Rayner et al., 2016). Atmospheric fields were analyzed 

using 500-hPa geopotential height and sea-level pressure (SLP) fields based on the National Oceanic 25 

Atmospheric Administration’s 20th century Reanalysis (Compo et al., 2011) and the National Center for 

Atmospheric Prediction (NCEP; Kalnay et al., 1996) Reanalysis. The 20th century Reanalysis product 
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was used because the product extends back to 1851, whereas the NCEP Reanalysis product only extends 

back to 1948. Mean monthly air temperature data from 1979 to 2013 were based on the observed U.S 

climate divisional data set (Guttman and Quayle, 1996). The data set comprises average monthly 

temperature data for 344 climate regions (Figure 1a) that partition the U.S into homogeneous climate 

zones. The annual cycles were removed from the data by subtracting the mean monthly values for each 5 

month from the monthly values of the corresponding month for each grid point or climate division.  

LIS surface water temperature data used in this study were generated from the New York Harbor 

Observing Prediction System (NYOPS; Georgas et al., 2016) model. Model generated data were preferred 

to observational data in this study because observations are temporally sparse and continuous data are 

needed for the methods adopted in this study. The NYHOPS model is a three-dimensional hydrodynamic 10 

model with 11 vertical levels. Following Schulte et al. (2018), water temperature computed on the 1st 

vertical level was considered surface water temperature. The LIS is a well-mixed estuary, so the choice 

of vertical level is not critical to the results presented in this study. To obtain a single time series 

representing LIS surface water temperature (for brevity, referred to as LIS temperature, hereafter), water 

temperature was averaged over the gray-shaded region shown in Figure 1b. The annual cycle in the 15 

resulting LIS temperature time series was removed using 1979-2013 monthly means.  

The LIS temperature time series and the SST fields were detrended to remove the long-term trend. 

The time series were detrended by fitting a least-square fit of a line to the time series and subtracting the 

line from the time series. To check the sensitivity of results to detrending, the analyses were conducted 

using both the detrended and non-detrended data. Results for the detrended analysis are shown unless 20 

otherwise specified. The reason for showing the detrended results is that the study is focused on 

interannual variability rather than long-term trends.  

 Indices for the NAO, AO, EP/NP, PNA and the WP were obtained from the CPC and were based 

on the 1979-2013 period. The NAO, WP, PNA, and EP/NP indices obtained from the CPC were 

calculated from a RPCA of 500-hPa geopotential height anomalies poleward of 20°N. The AO index was 25 

calculated from a rotated RPCA analysis of 1000-hPa geopotential height anomalies. Data for the 1950-

2013 period were also used for the EP/NP index.   
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The Niño 3 and Niño 4 indices from 1870 to 2013 (available at 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/) were used to measure the strength and evolution 

of the El-Niño/Southern Oscillation (ENSO). Whereas the Niño 3 index better describes the evolution of 

canonical ENSO, the Niño 4 index better describes the evolution of central Pacific ENSO events (Kao 

and Yu, 2009; Lee and McPhaden, 2010) Thus, using these two indices, we accounted for two different 5 

flavors of ENSO. The annual cycles from these ENSO metrics were removed using the long-term (1870-

2013) monthly means.  

3 Methods 

3.1 Event Decomposition  

To better understand the characteristics of climate time series, time series were decomposed into 10 

negative and positive events. More specifically, let a time series X be a sequence of N data points 

𝑥1, 𝑥2, . . . , 𝑥𝑁 at the time points 𝑡1, 𝑡2, . . . , 𝑡𝑁, where the data points were assumed to be equally spaced. 

Data points were based on monthly anomalies so that they were both positively and negatively valued. 

Thus, a complete sequence 𝑥1, 𝑥2, . . . , 𝑥𝑁  was partitioned into subsequences comprising adjacent data 

points whose values are of similar sign. Such subsequences were termed positive or negative events 15 

depending on the values of the data points.  

The onset and decay of events were defined as follows. A negative event 𝐸𝑛𝑒𝑔 was said to begin 

at 𝑡𝑗 if 𝑥𝑗 < 0 and 𝑥𝑗−1 > 0. A negative event beginning at 𝑡𝑗 was said to terminate at 𝑡𝑘 ≥ 𝑡𝑗  if 𝑥𝑘 < 0, 

𝑥𝑘+1 > 0, and 𝑥𝑖 < 0 for all i such that 𝑗 ≤ 𝑖 ≤ 𝑘. A similar definition was used to define positive events, 

but the sign conventions were reversed. The time point 𝑡𝑗 was termed the onset phase and the time point 20 

𝑡𝑘  was termed the decay phase. The peak intensity of a negative (positive) event was deemed the 

minimum (maximum) value obtained by a data point within the event period [𝑡𝑗  𝑡𝑘]. If the peak intensity 

of an event occurred at 𝑡𝑝, then 𝑡𝑝 was termed the mature phase.   

Given this definition of an event, an event occurring over the time period [𝑡𝑗  𝑡𝑘] contained M = 

𝑡𝑘 − 𝑡𝑗 + 1 data points, where the integer M was regarded as the persistence of the event. The cumulative 25 

intensity (referred to as the intensity, hereafter) of an event E was defined as 
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𝐼 =  ∑ 𝑦𝑖
𝑀
𝑖=1 ,                                                                (1) 

where the 𝑦𝑖 are data points composing the event E. The absolute value of intensity was deemed the 

magnitude of an event. The duration and intensity of events were depicted using an event spectrum. The 

event spectrum was comprised of line segments beginning at the onset phases and ending at the 

termination phases of the events. That is, for each event, a line segment was drawn from the point (𝑡𝑗 , 𝐼) 5 

to the point (𝑡𝑘, 𝐼) so that the length of the line segment represented the event duration. 

There are several advantages to using the event decomposition approach. The first advantage is 

that the autocorrelation of the data is accounted for by grouping the data into events. The second advantage 

is that persistence of individual events can be readily defined, whereas the lag-1 autocorrelation 

coefficient measure of persistence needs to be calculated using a data interval so that the lag-1 10 

autocorrelation coefficient may not reflect the persistence of an individual event. A third advantage is that 

potential nonlinearities are accounted for by analyzing negative and positive events separately.   

3.2 Wavelet Analysis  

To extract time-frequency information from a time series 𝑋, a wavelet analysis (Torrence and 

Compo, 1998) was implemented. The wavelet transform of X is given by 15 

𝑊𝑛
𝑋(s) = √

2𝛿𝑡

𝑠
∑ 𝑥𝑛′

𝑁
𝑛′=1 𝜓∗ [

(𝑛′−𝑛)𝛿𝑡

𝑠
],                                      (2) 

where 𝜓 is the Morlet wavelet given by  

𝜓(𝜂) =  𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−
1

2
𝜂2

,                                               (3) 

𝜔0 = 6 is the dimensionless frequency, t is time, s is wavelet scale, 𝛿𝑡 is a time step (1 month in this 

study), 𝜂 = 𝑠 ⋅ 𝑡, and the asterisk denotes the complex conjugate (Torrence and Compo, 1998).  20 

To quantify the relationships between climate modes and water temperature as a function of 

frequency and time, a wavelet coherence analysis was conducted. Following Grinsted et al. (2004), the 

(local) wavelet squared coherence between two time series X and Y is given by 

 
𝑅𝑛

2(𝑠) =
|𝑆(𝑠−1𝑊𝑛

𝑋𝑌(𝑠)|
2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|

2
)∙𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|
2

)
 , 

(4) 

where 𝑊𝑛
𝑋𝑌(𝑠) is the cross-wavelet transform defined as the product of the wavelet transform of X and 

the complex conjugate of the wavelet transform of Y. In Eq. (4), S is a smoothing operator that smooths 25 
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coherence in time and in wavelet scale (Grinsted et al., 2004). Using Monte Carlo methods, the statistical 

significance of wavelet squared coherence was assessed by generating 10000 pairs of surrogate red-noise 

time series with the same lag-1 autocorrelation coefficients as the input time series and computing the 

wavelet squared coherence between each pair (Grinsted et al., 2004).  

To reduce the number of false positive results arising from the simultaneous testing of multiple 5 

hypotheses (Maraun and Kurths, 2004; Maraun et al., 2007, Schulte et al., 2015; Schulte, 2016), the 

cumulative area-wise test developed by Schulte (2016) was applied. The test tracked how the areas of 

contiguous regions of pointwise significance (significance patches) changed as the pointwise significance 

level was altered. The test was applied by computing the normalized areas of pointwise significance 

patches over a discrete set of pointwise significance levels. The normalized area of a patch was defined 10 

as the patch area divided by the square of its centroid’s scale coordinate (Schulte et al., 2015; Schulte. 

2016). In this study, the normalized areas were computed using pointwise significance levels ranging 

from 𝛼 = 0.02 to 𝛼 = 0.18. The spacing between adjacent pointwise significance levels was set to 0.02.  

The strength of coherence was also measured using global coherence (Schulte et al., 2016), the 

time-averaged representation of local wavelet squared coherence. Global coherence is given by 15 

𝐺𝐶(𝑠) =  
|𝑊𝑋𝑌(𝑠)|

2

(∑ |𝑊𝑛
𝑋(𝑠)|

2𝑁
𝑛=1 )(∑ |𝑊𝑛

𝑌(𝑠)|
2𝑁

𝑛=1 )
,                                             (6) 

where   

    𝑊𝑋𝑌(𝑠) =  ∑ 𝑊𝑛
𝑋(𝑠)𝑊𝑛

𝑌∗(𝑠)𝑁
𝑛=1 .                                                (7)                                

(Schulte et al., 2016). The statistical pointwise significance of 𝐺𝐶(𝑠) was computed using Monte Carlo 

methods in a similar manner to local wavelet squared coherence.   20 

A lower dimensional version of the cumulative area-wise test was applied to the global coherence 

spectra to reduce the number of false positive results (Schulte et al., 2018). The test assessed the statistical 

significance of one-dimensional arcs using arc length, which is an integrated metric accounting for the 

width of the peak in wavelet scale (frequency) and the extent to which the peak is above the critical level 

of the pointwise test. To track how the arc length of a given pointwise significance peak changed as the 25 

pointwise significance level was altered, the arc length of the pointwise significance peak was computed 

at pointwise significance levels ranging from 0.02 to 0.18. The test statistic in this case is cumulative arc 
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length. Normalized arc lengths were used to account for how peaks widen with wavelet scale. This 

normalization was achieved by computing the logarithm (base 2) of the wavelet scales. To further 

normalize, global coherence values at each wavelet scale were divided by the critical level of the test 

associated with the pointwise significance level 0.02 at each wavelet scale. The null distribution for the 

cumulative arcwise test was obtained by generating surrogate red-noise timeseries in the same manner as 5 

the cumulative area-wise test. For reference, we also plotted the traditional 5% pointwise significance 

bounds on all global spectra plots in this study. The reader is referred to Schulte et al. (2018) for more 

details regarding the cumulative arcwise test.  

4 Results  

4.1 LIS Temperature Time Series 10 

The time series of detrended LIS temperature anomalies is shown in Figure 2a. Some notable 

features are the cool periods around 1982,1996, 2003 (thick blue lines) and the warm events around 1991, 

2001, and 2012. The 1982 cool period is rather intense, with LIS temperature anomalies approaching -

2°C. In contrast, the 2012 event is associated with a maximum temperature anomaly of approximately 

3°C, making this water temperature anomaly the largest in the 1979-2013 period.  15 

Unlike the simple time series shown in Figure 2a, the event spectrum shown in Figure 2b clearly 

distinguishes the intense LIS events from the weak short-lived events. For example, both the cool period 

around 1982 and the warm episode around 2012 emerge as the most intense cool and warm events in the 

1979-2013 period. The 1996, 2003, and 2011 cold events are nearly as intense as the 1982 event (Table 

1). It is interesting to note that the most intense negative events shown in Table 1 peak in winter 20 

(December-February). This tendency for negative events to peak in winter was confirmed by computing 

the number of times a negative event peaked in a given month for a larger set of events (32 events) whose 

intensities fall below the median of all negative event intensities. A similar but weaker tendency was 

found for positive events, with a majority of the most intense (greater than 50th percentile) positive events 

peaking in January and February.  25 

The event spectrum also allows for the clear comparison of event persistence. An inspection of 

Figure 2b shows that the intense events are generally more persistent than less intense events. In fact, 
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Table 1 shows that all the most intense events have persistence of at least 5 months, exceeding the average 

persistence of 3 months calculated using all events. Negative and positive events were found to have 

similar average persistence. Given that the average persistence is 3 months, the 1982, 1991, 1996, 2003, 

and 2012 LIS temperature events are unusually persistent compared to other events in the study period. 

Moreover, not only is the 2012 event among the most persistent, but also its magnitude far exceeds that 5 

of any other event even with the removal of the long-term trend. This result suggests that atmospheric 

variability may have contributed strongly to that event. 

4.2 LIS Events and Atmospheric Patterns 

To diagnose a possible mechanism behind the occurrence of the intense LIS events, the correlation 

between 500-hPa geopotential height anomalies and detrended LIS temperature anomalies was computed. 10 

We used this one-point correlation approach to extract a relevant teleconnection pattern from a continuum 

of patterns, much like how the PNA pattern was originally derived (Wallace and Gutzler, 1981). For this 

analysis, we focused on the December-February (DJF) season because atmospheric circulation anomalies 

are generally most pronounced during the DJF season and because the peak of events tends to occur in 

the winter.  15 

Shown in Figure 3a is the correlation between DJF LIS temperature anomalies and 500-hPa 

geopotential height anomalies. The positive correlation between LIS temperature anomalies and 500-hPa 

geopotential height anomalies over the eastern U.S. suggest that warmer-than-normal LIS temperature 

conditions are associated with a jet stream ridge, which is consistent with how jet stream configurations 

can influence the temperature in the coastal ocean off the northeastern U.S. (Chen et al., 2014). Similarly, 20 

the negative correlations with 500-hPa geopotential height anomalies across Alaska indicate that LIS 

warm events are associated with an anomalous trough over Alaska. Thus, it appears that LIS temperature 

events are related to a ridge-trough dipole pattern, an anomalously amplified wave pattern across the U.S.  

For comparison, the 500-hPa geopotential height anomaly field for the March 2012 event is shown 

in Figure 4a. Negative 500-hPa geopotential height anomalies are seen across Alaska, and positive 500-25 

hPa geopotential height anomalies are seen across the eastern U.S. and across the central North Pacific. 

This 500-hPa geopotential height anomaly configuration is consistent with the results presented in Figure 
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3a, suggesting that the ridge-trough dipole pattern was an important contributor to the March 2012 LIS 

temperature event.  

A physical mechanism behind the ridge-trough dipole-LIS temperature association can be better 

diagnosed by examining the relationship between DJF SLP anomalies and LIS temperature anomalies. 

As shown in Figure 3b, DJF LIS temperature anomalies are negatively correlated with DJF SLP anomalies 5 

across north western Canada. Thus, positive LIS temperature anomalies are associated with anomalous 

cyclonic flow, whereas negative LIS temperature anomalies are associated with anomalous anticyclonic 

flow. These relationships are physically consistent with findings from previous works showing how 

upstream (relative to the LIS) surface anti-cyclones play a crucial role in the occurrence of cold 

temperature extremes across the Northeast U.S. (Konrad, 1996, Konrad, 1998). Such surface anti-10 

cyclones have been shown to be dynamically supported by a ridge-trough wave pattern in the middle 

troposphere (Konrad, 1998; Jones and Cohen 2011), in agreement with the results shown in Figure 3a. At 

the surface, the anti-cyclone results in cold advection from a high latitude source region into the LIS 

region (Figure 5a). Cyclones are also typically present along the East Coast U.S. during cold temperature 

events (Konrad, 1998), which could explain the positive correlation between LIS temperature anomalies 15 

and SLP anomalies along the East Coast U.S. Features associated with positive LIS temperature 

anomalies are opposite to those found for negative LIS temperature anomalies (Figure 5b).  

As a specific example, consider the SLP anomaly pattern for March 2012 (Figure 4b). Negative 

SLP anomalies are seen to extend from western Alaska to central Canada, indicative of anomalously 

strong cyclonic flow and warm air advection across the eastern U.S. The location of the negative SLP 20 

anomalies generally coincide where SLP anomalies are correlated to LIS temperature anomalies (Figure 

3b), again suggesting that the ridge-trough pattern played an important role in the March 2012 LIS 

temperature event.  

To better understand LIS water temperature variability, a ridge-trough dipole index was created 

based on the pattern identified in Figure 3a. The dipole index was constructed by first locating the grid 25 

point for which the correlation between LIS temperature and 500-hPa geopotential height anomalies is 

minimum. This grid point is located at 70°N and 157.5°W and is marked by a cyan cross in Figure 3a. 

Next, the grid point for which the correlation between LIS temperature and 500-hPa geopotential height 
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anomalies is maximum was located. This grid point is located at 42.5°N and 75°W and is marked with a 

magenta cross in Figure 3a. Following Wang et al. (2014), the dipole index for a given month was defined 

as the 500-hPa geopotential height anomaly at 42.5°N and 75°W minus the 500-hPa geopotential height 

anomaly at 70°N and 157.5°W. Thus, the dipole index measures the intensity of the ridge-trough dipole 

pattern such that positive phases generally indicate that an anomalously strong ridge over the eastern U.S 5 

is accompanied by an anomalous trough over Alaska. Correlating the dipole index with SLP anomalies 

(not shown) reveals that negative (positive) phases of the dipole pattern are associated with positive 

(negative) SLP anomalies across north western Canada and cold (warm) air advection to the east of the 

anomaly center (Figure 5).  

The time series for the 3-month running mean of the dipole index is shown in Figure 6. The time 10 

series is rather noisy, but notable features can still be identified. The dipole pattern, as indicated by 

positive dipole indices, is seen to be in a persistent positive phase around the 2012 LIS warm event. The 

positive dipole event around 2012 is quite intense but not as intense as the 1882 positive dipole event that 

persists for 11 months (Table 2). The most intense negative dipole event occurs around 1977. A 

comparison of Tables 1 and 2 shows that the second most intense negative dipole event calculated using 15 

the raw monthly dipole index time series coincides with the second most intense LIS cold event that 

occurred around 2003 (Table 1).  

Although a comparison of Tables 1 and 2 shows that the 2012 LIS warm event coincides with the 

third most intense positive dipole event, the relationship strength between LIS temperature anomalies and 

the dipole pattern cannot be inferred. How strongly related is the dipole index to LIS water temperature 20 

anomalies? To assess the strength of the dipole index relationship with LIS water temperature anomalies, 

seasonally averaged detrended LIS temperature anomalies were correlated with the seasonally averaged 

dipole index. As shown in Figure 7, the dipole index is strongly correlated with LIS temperature 

anomalies for the October-December (OND), November-January (NDJ), DJF, and January-March (JFM) 

seasons. The relationships are generally stronger if the dipole index leads by 1 month, as indicated by the 25 

dotted line in Figure 7. The lagged correlation coefficients approach 0.8 for the DJF season, suggesting 

that DJF LIS temperature anomalies are strongly influenced by the dipole pattern in the NDJ season. 

Lagged correlations are also strong (r > 0.6) for the OND, NDJ, and JFM seasons. The relationships are 
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generally weaker in the warm seasons possibly because teleconnection patterns are generally of the 

weakest amplitude in the warm season. Another reason is that LIS temperature anomalies in the winter 

can persist into the summer (Schulte et al., 2018), weakening the simultaneous relationships between LIS 

temperature anomalies and the dipole pattern for non-winter seasons. However, the weaker relationships 

between air temperature and the dipole index in the summer (not shown) likely contribute to the seasonal 5 

cycle in relationship strength shown in Figure 7.  

The relationship strength found between the dipole index and LIS temperature anomalies is 

consistent with results found in prior work because the dipole index is strongly correlated with the EP/NP 

index for most months (Table 3) and because the EP/NP index is strongly correlated with LIS temperature 

anomalies (Schulte et al., 2018). However, Schulte et al. (2018) used an ad hoc approach to construct the 10 

December EP/NP index using linear regression. Thus, one may ask: is the EP/NP pattern a wintertime 

pattern? To answer the question, it is first noted that the relationship strength between EP/NP and dipole 

indices increases nearly monotonically from August to November, decreases almost monotonically from 

January to August, and peaks in January. With a such clear seasonal cycle, it is natural to infer that the 

December dipole pattern is largely the December EP/NP pattern despite how the CPC suggests that the 15 

EP/NP pattern is inactive in winter. Because the 500-hPa geopotential height anomaly structure associated 

with the dipole pattern is the same from November to March (not shown), one can deduce that December 

ridge-trough pattern is largely the December EP/NP pattern given the strong relationship between EP/NP 

and dipole indices during those months. More specifically, we compared the December dipole pattern to 

the January dipole pattern (Figure 8) and found them to be similar in terms of 500-hPa geopotential height 20 

anomalies. Thus, because the January dipole and EP/NP indices are strongly correlated, the December 

dipole pattern must also be EP/NP like. The strong relationships (r > 0.8) between air temperature and 

the dipole pattern in winter suggests that the dipole pattern (or EP/NP pattern) is particularly active in the 

winter. It also has a strong physical basis because negative phases are associated with 500-hPa western 

North America and Arctic ridging, and eastern U.S. 500-hPa troughing (Figure 8), all features associated 25 

with eastern U.S. cold temperature events (Konrad, 1998). Although Schulte et al. (2018) used the EP/NP 

index to diagnose historical LIS temperature variability, our dipole index is defined in all months and is 

easy to calculate, making it more practical in an operational forecasting setting.  
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While the December dipole index is well-correlated with December indices for the AO, NAO, and 

WP, a close examination of the 500-hPa geopotential height anomaly fields (not shown) associated with 

those patterns reveals that those patterns are quite different from the dipole pattern found in this study. 

For example, the NAO and AO indices are correlated 500-hPa geopotential height around the dipole 

pattern’s eastern center of action (green cross in Figure 3a) but are practically uncorrelated with 500-hPa 5 

geopotential height anomalies around the western center of action. The NAO and AO are also much more 

strongly correlated with 500-hPa geopotential height anomalies across the North Atlantic than the dipole 

pattern. The WP index is only weakly correlated with 500-hPa geopotential height around both dipole 

pattern’s centers of actions and much more strongly corelated with 500-hPa geopotential height anomalies 

across the western North Pacific Ocean.  Our results suggest that the reason why the wintertime AO, 10 

NAO, and WP patterns are not strongly related with wintertime LIS temperature anomalies as shown by 

Schulte et al. (2018) is that these patterns are not related to northern Alaskan jet-stream ridging that is 

important to LIS temperature variability (Figure 3a).   

The fact that the dipole index is correlated with multiple large-scale indices (Table 3) suggests 

that the dipole pattern falls on a continuum of teleconnection patterns (Franzke and Feldstein, 2005) such 15 

that the dipole pattern is strongly EP/NP-like. Although we found by conducting our own EOF analysis 

of 500-hPa geopotential height anomalies that the AO pattern is the leading mode of variability, the EP/NP 

pattern appears to be consistently the 5th to 7th leading mode of variability. Thus, although the EP/NP 

pattern is not as dominant as the AO pattern, the dipole pattern tends to more closely resemble it than the 

AO pattern. Furthermore, the continuum-based extraction of a dipole pattern with a strong relationship to 20 

LIS temperature anomalies supports the idea that the continuum approach is useful for understanding 

climate variability across the Northeast U.S., a finding like that found in previous work focusing on 

precipitation in the Northeast U.S. (Schulte et al. 2017a, b). In particular, our results show that the one-

point correlation map approach used by Wallace and Gutzler (1981) is a powerful but simple tool for 

understanding regional climate variability.  25 

Given that LIS water temperature is strongly correlated with air temperature (Schulte et al., 2018), 

it is hypothesized that the dipole index is related to air temperature across the U.S., especially around the 

LIS. To confirm a dipole index-air temperature relationship, the dipole index was correlated with average 
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monthly air temperature anomalies for the 1979-2013 period (Figure 9). The results for the NDJ season 

are only displayed because the strongest correlation found in Figure 7 is between the NDJ dipole index 

DJF LIS water temperature anomalies.  

As shown in Figure 9, the dipole index is, indeed, strongly correlated with air temperature 

anomalies across a large region of the U.S. Correlation coefficients exceed 0.8 and approach 0.9 across 5 

the Northeast U.S. and LIS region. The strong relationships extend to the southern U.S., and the 

relationships generally weaken equatorward. The relationships displayed in Figure 9 are generally 

stronger than those associated with the AO and NAO (not shown) whose influence on eastern U.S 

temperature has been well-studied (Hurrell and van Loon 1997, Wettstein and Mearns, 2002). Thus, our 

dipole index is useful for diagnostic studies of cold outbreaks across the eastern U.S. The results for the 10 

other seasons are similar, but the relationships for seasons not comprising November, December, January, 

February (e.g. June-August) are generally weaker than those identified for the NDJ season. This result 

suggests that the dipole pattern is rather dominant in the winter. The strong relationship between the 

dipole index and U.S. air temperature anomalies is consistent with how the intense 2012 dipole event 

coincides with the record warm March 2012 (Dole et al., 2014), which resulted in a so-called false spring 15 

in which plants bloomed prematurely making them susceptible to drought and freezes (Ault, 2013). The 

results shown in Figure 9 suggest that the dipole pattern’s impact on LIS temperature is related to the 

dipole pattern’s influence on air temperature.  

4.3 Intense LIS Events and SST Patterns 

SST patterns are often used in seasonal forecasting and, thus, identifying an SST pattern precursor 20 

to LIS temperature events has implications for seasonal prediction of LIS temperature anomalies. To 

identify SST patterns associated with LIS temperature events, a lagged SST composite analysis was 

conducted using detrended LIS warm and cool events separately. The SST composite plots for the warm 

events were constructed using the LIS warm events whose intensities are greater than or equal to the 50th 

percentile of all warm event intensities (32 events). Similarly, the SST composite plots for the cold events 25 

were constructed using LIS cold events whose intensities are less than or equal to the 50th percentile of 

all LIS cold event intensities (32 events). The composite mean SST patterns were computed at the onset, 



16 

 

mature, and decay phases of the LIS events. Because intense LIS events tend to peak in winter, the 

composite plots for mature phases mainly reflect wintertime conditions.  

The results for the LIS cold events are shown in Figure 10. The composite plot shown in Figure 

10a indicates that the onset of LIS cold events is associated with positive SST anomalies across the central 

equatorial Pacific. The results suggest that LIS cold events could be initiated by central Pacific El Niño 5 

events (Lee and McPhaden, 2010). A few examples of central Pacific El Niño events (based on the 

December-March season) are the 1991–92, 1994–95, 2002–03, 2004–05, and 2009-2010 events (Table 

5), but a more complete list can be found in Johnson and Kosaka (2016). The 2002-2003, 2004-2005, and 

2009-2010 events all appear to occur around LIS cold periods (Figure 2a). Note that there could be lags 

between the onset of central Pacific El Niños and LIS temperature anomalies because of the lagged 10 

response of water temperature to atmospheric forcing (Schulte et al., 2018). In addition, pre-existing 

positive water temperature anomalies may need time to degrade.  

The SST anomaly pattern for the mature phases of LIS cold events features positive SST 

anomalies across the central equatorial Pacific (Figure 10b). However, the mature-phase composite mean 

SST anomaly pattern is more pronounced across the North Pacific Ocean than it is for the onset phase. A 15 

region of positive SST anomalies is seen to be horseshoe-shaped, with positive SST anomalies extending 

from the central equatorial Pacific to the U.S. west coast. Although Hartmann (2015) found an SST pattern 

resembling that shown in Figure 9b to be a contributor to the February 2015 eastern U.S. cold event, only 

a single event was considered. In this study, we show that the pattern is associated with numerous LIS 

negative temperature events (and thus eastern U.S. air temperature events), many of which persist for 20 

more than 5 months. Thus, we show here that the SST pattern influences both the intensity and persistence 

of events. It is noted that the pattern shown in Figure 10b resembles the DJF SST pattern of 1996, which 

is consistent with how 1996 was a cooler-than-normal period for much of the U.S. (Haplert and Bell, 

1997) and the LIS (Table 1).   

Unlike the composite mean SST pattern corresponding to the onset phase, negative SST anomalies 25 

are present along the U.S. east coast and across the Gulf of Mexico during mature phases. These results 

are consistent with how LIS temperature anomalies are strongly associated with the dipole pattern that 

influences air temperature across regions adjacent to the Gulf of Mexico and U.S. east coast. This 
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relationship between the dipole index and SST anomalies was confirmed by correlating the dipole index 

with SST anomalies for different seasons (not shown).  

The tropical SST pattern associated with the decay phase of LIS cold events is different from those 

associated with the onset and mature phases (Figure 10c). The composite mean SST anomaly pattern most 

closely resembles the first leading mode of SST variability called the canonical ENSO pattern (Hartmann, 5 

2015), though the most intense positive SST anomalies are still confined to the central equatorial Pacific. 

This result suggests that there may be a tendency for the decay of LIS cold events to coincide with 

canonical ENSO patterns or an SST pattern that is a mixture of central and eastern Pacific El Niño flavors 

lying on a continuum of ENSO flavors (Johnson, 2013). 

The tendency for the decay of LIS cold events to coincide with canonical ENSO patterns is more 10 

evident when constructing SST composites using the 10th percentile (Figure 11) instead of the 50th 

percentile used to construct the composite shown in Figure 10. However, possibly because of small 

sample sizes (7 events), the results generally lack statistical significance. Nonetheless, the event spectrum 

depicted in Figure 2b indicates that the major cool period around 1982 and 1997, for example, terminate 

around the major 1982/83 (Ramusson and Wallace, 1983; Quiroz, 1983) and 1997/1998 (McPhaden, 15 

1999) El Niño events. Although Schulte et al. (2018) showed that LIS temperature anomalies are 

associated with a single SST pattern, we show in this study that predicting the evolution of LIS 

temperature events may require knowledge of several ENSO flavors.  

The SST pattern across the Atlantic Ocean shown in Figure 11 resembles a well-documented 

North Atlantic tripole mode (Deser and Blackmon, 1993, Fan and Schneider, 2011), which comprises 20 

three anomaly centers, one located off the south eastern U.S coast, a second one located east of 

Newfoundland, and a third one located in the tropical east Atlantic. This tripolar SST mode has been 

shown to be related to ENSO, the NAO, and local wind forcing (Fan and Schneider, 2011). The 

association between the tripole pattern and the LIS water temperature could reflect weak influences of 

the NAO on LIS water temperature. This interpretation is consistent with how the NAO and dipole 25 

patterns are related in the winter (Table 3). However, these Atlantic SST anomalies generally lack 

statistical significance, and this finding is consistent with how the LIS water temperature anomalies are 

only weakly related to the NAO.  
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The composite analysis was also conducted for LIS warm events, and the results revealed that LIS 

warm events are also associated with SST modes of variability (Figure 12).  The onset of LIS warm events 

appears not to be associated with any coherent SST pattern. For the mature phase, statistically significant 

negative SST anomalies are seen across the central equatorial Pacific and positive SST anomalies are seen 5 

across the eastern equatorial Pacific. Like the SST anomaly pattern associated with mature phases of LIS 

cold events (Figures 10b and 11b), the pattern shown in Figure 12b generally resembles the 3rd leading 

mode of SST variability (Hartman, 2015). The SST pattern corresponds well with the SST anomaly 

pattern associated with March 2012 (Figure 4c), a month in which record warmth was experienced across 

the central and eastern U.S. (Dole et al., 2014). Mature phases are also associated with positive SST 10 

anomalies along the U.S. east coast and across the Gulf of Mexico like March 2012 (Figure 4c). Decay 

phases (Figure 12c) appear to be associated with negative SST anomalies across the eastern and central 

equatorial Pacific, but the results were not found to be statistically significant.  

The findings for the warm LIS events were found to be sensitive to the threshold used to construct 

the composites. For example, if we only considered the LIS warm events whose intensities were greater 15 

than or equal to the 90th percentile of LIS warm event intensities, then all phases of LIS warm events 

would resemble the pattern shown in Figure 12b. In general, the positive SST anomalies across the eastern 

Pacific were found to become more intense as the percentile used to establish the threshold was increased 

from 50 to 90. Despite the lack of statistical significance in the composite plots, statistically relationships 

with SST anomalies were found when correlating DJF LIS temperature anomalies with DJF SST 20 

anomalies (Figure 3c). The identified correlation pattern was found to resemble the pattern shown in 

Figures 10b and 11b.  

The SST composite analyses were also conducted using the dipole events for the 1979-2013, 1950-

2013, and 1870-2013 periods. The resulting SST patterns were found to be like those shown in Figures 

10, 11, and 12, which is not surprising given the strong correlation between the dipole index and LIS 25 

temperature anomalies. Thus, intense long-lived dipole patterns seem to have a tropical origin, suggesting 

that a key to better understanding LIS temperature events rests in a firmer understanding of tropical 

processes.  
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4.4 Decadal Variability  

The results of the composite analyses suggest that dipole events may be associated with tropical 

SST patterns, but the time scale at which the SST patterns are most strongly associated with the dipole 

pattern cannot be inferred from the analysis. Thus, a wavelet coherence analysis was conducted to 

determine if the SST modes fluctuate coherently with the dipole pattern at a preferred time scale. The 5 

wavelet squared coherence was computed between the dipole index and indices for Niño 3 and Niño 4 

metrics, but the results using the Niño 4 index were found to be most robust. As such, the results for the 

Niño 4 index analysis are only shown.  

The results shown in Figure 13a indicate that the dipole and Niño 4 indices fluctuate coherently 

in the 64- to 256-month period band after 1930. The results suggest that stronger decadal-scale 10 

fluctuations in central equatorial Pacific SSTs are associated with larger decadal fluctuations in the dipole 

pattern. Given that the decadal-scale fluctuations in the dipole pattern contribute to the overall variance 

of the dipole index around 2012, the decadal-scale fluctuations must contribute to some extent to the 

intense dipole event of 2012. The results from the coherence analysis thus suggest that central equatorial 

Pacific SST fluctuations may have contributed to that intense dipole event.  15 

The strong correlation between the EP/NP and dipole indices (Table 3) suggests that the coherence 

between the EP/NP and Niño 4 indices is also strong. The strong coherence was confirmed by computing 

the wavelet squared coherence between the EP/NP and Niño 4 indices for the 1950-2013 period. To 

perform the analysis, the missing values for the EP/NP index in December were filled by establishing a 

linear relationship between the EP/NP and dipole indices for all months but December. The linear 20 

relationship was obtained using a least-squares fit of a line, and it was used to fill missing EP/NP values 

based on the available December dipole index values.  

As shown in Figure 14, the EP/NP index does, indeed, fluctuate coherently with the Niño 4 index. 

The coherence appears to be strong, and the global coherence spectrum shows arcwise significant global 

wavelet coherence in the 64-256 month period band. As shown by Schulte et al. (2018), the EP/NP pattern 25 

fluctuates strongly on quasi-decadal time scales, but no possible source of the variability was identified. 

We show in Figure 14 that the EP/NP variability on quasi-decadal time scales may be related to quasi-

decadal fluctuations in central equatorial Pacific SSTs. Because the EP/NP pattern fluctuates coherently 
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with LIS water temperature on decadal time scales (Schulte et al. 2018), LIS water temperature should 

also fluctuate coherently with the Niño 4 index, though the LIS temperature time series is too short to 

draw strong conclusions.  

5 Conclusion  

This paper revealed that LIS events are associated with modes of tropical Pacific and North Pacific 5 

SST variability. The phases of the LIS events were found to depend on the spatial characteristics of the 

SST patterns. The onset of LIS cold events was shown to be associated with central equatorial Pacific 

SST anomalies, whereas the decay phase of such events was shown to coincide with canonical ENSO 

events. These results suggest that central Pacific El Niño events can be used to construct outlooks for the 

onset of major LIS cold events. Similarly, information regarding the formation of canonical ENSO events 10 

could prove useful as guidance for assessing how likely a LIS cold event will end. Conversely, major LIS 

cold events could be used to anticipate the formation of El Niño events.  

The strong relationships identified between the dipole index and LIS temperature anomalies 

suggest that the dipole index should be incorporated into LIS temperature outlooks and possibly 

temperature outlooks for other regions of the U.S. as well. The forecast skill associated with such outlooks 15 

will depend on the ability to predict the phase and intensity of the dipole pattern. The association between 

tropical SST patterns and the dipole pattern could prove useful in extended dipole pattern outlooks, 

contrasting with the AO index whose predictability is limited (Jung et al., 2011). The coherence between 

the Niño 4 index and indices for the EP/NP and dipole patterns supports the idea that extended dipole 

pattern outlooks based on tropical SST patterns may be possible. More research, however, is needed to 20 

quantify the ability of dynamical weather and seasonal forecasting models to predict the pattern.  

 Although not the focus of this paper, the dipole pattern may be an important temperature indicator 

for other estuaries across the Northeast U.S. The correlation pattern shown in Figure 9 suggests that the 

dipole pattern could be an important temperature indicator for the Delaware Bay and Chesapeake Bay 

estuaries. The strong correlation between air temperature and the dipole index across Maine also suggests 25 

that the dipole pattern may contribute significantly to the variability of water temperature across the Gulf 

of Maine. The Gulf of Maine has experienced rapid warming during the past decade (Pershing et al., 
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2015) and understanding the causes of the rapid warming has important implications for fisheries. Future 

work could therefore include understanding how the dipole pattern may have contributed to the rapid Gulf 

of Maine warming. 

The results from the present analysis are consistent with temperature events that occurred after the 

study period considered in this study. For example, the cold period around February 2015 transitioned 5 

into a record warm period for most of the U.S. The record warm period lasting from September 2015 to 

December 2015 coincided with an extreme El Niño event (Hu and Federov, 2017). In agreement with our 

results, the February 2015 SST pattern strongly resembled the SST pattern shown in Figure 10b, which 

our results suggest occurs at the peak of LIS cold events. Furthermore, the SST pattern and extreme cold 

across the eastern U.S. occurred before the El Niño formation, which is also in agreement with the results 10 

from the present study. These recent events support the results from our study that indicate extended LIS 

temperature outlooks may be possible if information regarding ENSO flavors are incorporated into such 

outlooks.  
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Data availability 

The 20th century reanalysis data is available at https://www.esrl.noaa.gov/psd/data/20thC_Rean/ and 

NCEP reanalysis data are available at 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. The Hadley SST data are 

available at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. Monthly indices for the 5 

atmospheric climate modes can be found at https://www.esrl.noaa.gov/psd/data/climateindices/list/, while 

the long-term Nino 3.4 and Nino 4 indices are available at 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/. The Long Island Sound data is available at 

https://www.researchgate.net/publication/306256135_LIS_tmp_8113. The dipole index and forecasting 

tools are available at http://justinschulte.com/forecasting/dipole.html.  10 
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Figure 1: (a) 344 U.S climate divisions and (b) the LIS study region. Gray shading delineates the region used to calculate the LIS surface 

water temperature time series.  
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Figure 2: (a) The LIS surface temperature anomaly time series and (b) the corresponding event spectrum. Central Pacific El 

Nino events are indicated by CP and eastern Pacific El Nino Events are indicated by EP. Blue curves represent the 5 most 

intense negative LIS temperature events, while red curves represent the 5 most intense positive LIS temperature events. The 5 

length of the line segments in (b) represents the persistence of the LIS temperature events. The vertical axis corresponds to the 

intensity of the event.  
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Figure 3: Correlation between LIS temperature anomalies and anomalies for (a) DJF 500-hPa geopotential height, (b) SLP, and (c) SST. 

Contours enclose regions of 5% statistical significance. Crosses in (a) mark the grid point locations used to construct the dipole index.  
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Figure 4: Anomalies for (a) 500-hPa geopotential height, (b) SLP, and (c) SST corresponding to the March 2012 LIS 

temperature event.   
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Figure 5: (a) Idealized schematic of atmospheric features occurring during negative LIS temperature events and negative 

phases of the dipole pattern. (b) Same as (a) but for positive LIS temperature events and positive phases of the dipole pattern. 5 

Thick blue curves represent the idealized Jetstream configuration, while the blue (red) arrow indicates the general movement 

of cold (warm) air masses. High pressure is indicated with an H and low pressure is indicated with an L.   
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Figure 6: 3-month running mean of the dipole index.  
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Figure 7: Lagged and simultaneous correlations between seasonally averaged LIS water temperature anomalies and the 

seasonally averaged dipole index. The dotted line represents the correlation between the dipole index of the prior season 

(dipole leads by 1 month) and water temperature anomalies for the season specified on the horizonal axis. 
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Figure 8: Correlation between 500-hPa geopotential height anomalies and indices for the (a) December dipole, (b) January 

dipole, and (c) January EP/NP patterns. Contours enclose regions of 5% statistical significance.   



37 

 

 

Figure 9: Correlation between the NDJ dipole index and NDJ temperature anomalies. Shaded climate divisions are those for 

which the corresponding correlation coefficients are statistically significant at the 5% significance level.  
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Figure 10: Composite mean SST anomalies corresponding to (a) onset, (b) mature, and (c) decay phases of negative LIS 

temperature events. Contours enclose regions of 5% statistical significance, as determined by a one sample t-test.   
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Figure 11: Same as Figure 10 but using the criterion that the LIS events fall below 1 one standard deviation from the mean 

intensity of all LIS cold events.  

  



40 

 

 

Figure 12: Same as Figure 10 except for positive LIS temperature events.  
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Figure 13: (a) Wavelet coherence between the dipole and Niño 4 indices. Contours enclose regions of 5% cumulative 

areawise significance. (b) The global coherence spectrum corresponding to (a). Dotted line is the 5% pointwise significance 

bound and the red curves indicate 5% arcwise significant coherence values.   
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Figure 14: Same as Figure 13 but for the wavelet coherence between the EP/NP and Niño 4 indices.  
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Table 1. 10 LIS detrended temperature events ranked by the magnitude of their intensities.  

Intensity (°C) Persistence (Months) Peak  Onset  Decay  

20 13 March 2012 October 2011 October 2012 

-13 14 January 1982 August 1981 September 1982 

13 15 May 1991 December 1990 February 1992 

-13 12 February 2003 November 2002 October 2003 

-12 14 January 1996 November 1995 December 1996 

11 6 December 2001 November 2001 April 2002 

10 7 January 1983 October 1982 April 1983 

9 14 February 1998 December 1998 January 2000 

-8 8 January 2011 September 2010 April 2011 

-8 5 January 1981 November 1980 March 1981 
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Table 2.  10 dipole events in the 1851-2013 period ranked by the magnitude of their intensities. Results 

are based on the raw monthly dipole index time series.  

Intensity (m) Persistence (Months) Peak  Onset  Decay  

847 11 February 1882 May 1881 March 1882 

844 9 January 1880 October 1879 June 1880 

805 9 March 2012 July 2011 March 2012 

-687 8 January 1977 July 1976 February 1977 

-666 9 January 2003 October 2002 June 2003 

-638 6 January 1978 December 1977 May 1978 

-616 7 September 1876  July 1876 January 1877 

-604 12 August 1927 May 1927 April 1928 

580 6 January 1863 December 1862 May 1863  

572 9 December 1889 November 1889 July 1890 
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Table 3 Correlation between the dipole index and indices for 5 major climate modes of variability for the 

1979-2013 period. Bold entries indicate 5% statistically significant correlation coefficients.  

  J F M A M J J A S O N D 

EPNP 0.74 0.67 0.67 0.66 0.56 0.52 0.47 0.26 0.43 0.66 0.66 ------- 

WP -0.28 -0.34 -0.19 -0.37 0.21 0.34 0.42 0.33 0.00 -0.31 -0.6 -0.56 

PNA 0.29 0.0 0.0 0.0 0.35 0.12 0.12 0.46 0.43 0.30 0.15 0.0 

AO -0.6 -0.18 -0.49 -0.21 -0.52 -0.40 -0.45 -0.40 -0.37 -0.65 -0.58 -0.62 

NAO -0.59 -0.15 -0.53 -0.13 -0.50 -0.40 -0.18 -0.13 -0.1 -0.55 -0.46 -0.59 
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Table 4. The mode number of the EOF pattern that most closely resembles the EP/NP pattern, the 

explained variance associated with the EOF pattern, and the correlation coefficient, r, computed between 

the corresponding principal component time series and the EP/NP index. The EOF pattern that most 

closely resembles the EP/NP pattern was determined by finding the EOF pattern whose principal 

component time series is most strongly correlated with the EP/NP index. The results are based on NCEP 5 

reanalysis for the 1979-2013 period.  

Quantity J F M A M J J A S O N D 

r 0.66 0.66 0.61 0.62 0.67 0.44 0.51 0.60 0.63 0.69 0.61 ----- 

Variance (%) 14.4 5.5 3.2 5.0 7.0 1.9 4.3 5.2 4.7 6.0 4.4 ----- 

EOF Number 2.0 6.0 7.0 6.0 4.0 11.0 5.0 5.0 6.0 5.0 7.0 ----- 
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Table 5 El Nino events partitioned into Central (CP) and Eastern (EP) pacific types based on the categorization method of Yu 

et al. (2012). El Nino Events are defined based on the DJFM season. Third column provides the corresponding DJFM LIS 

temperature anomaly. A more complete table of El Nino events can be found in Johnson and Kosoka (2016).  

El Niño years Event Type LIS Temperature Anomaly (°C) 

1982-1983 EP 1.9 

1986-1987 EP 0.2 

1987-1988 CP -0.2 

1991-1992 CP 0.3 

1994-1995 CP 0.7 

1997-1998 EP 0.9 

2002-2003 CP -1.5 

2004-2005 CP -0.4 

2006-2007 EP 0.7 

2009-2010 CP -0.6 
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