Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-23-AC3, 2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.



OSD

Interactive comment

# Interactive comment on "Mesoscale processes regulating the upper layer dynamics of Andaman waters during winter monsoon" by Salini Thaliyakkattil Chandran et al.

#### Salini Thaliyakkattil Chandran et al.

salinitc@gmail.com

Received and published: 11 January 2019

Reviewer 1 1) Authors have mentioned the mixed layer depth and isothermal layer depth. It would be better to mention the method or criteria adopted in the manuscript Included the same in the revised manuscript 2) Authors need to discuss about the role of ENSO in modulating the oceanic eddies and planetary waves in the discussion section.

Chen et al. (2012) studied the interannual variability mechanism of the mesoscale eddies in BoB and pointed that the eddy activities do not directly link to El Nino Southern Oscillation (ENSO) events and are sensitive to the baroclinic instability of the back-



ground flow.

3) There are several methods to quantify the oceanic eddies (e.g Okubo-Weiss), please adopt any objective method, such that eddy identification and tracking can be done.

Adopted Okubo-Weiss parameter method to track the eddy and included in the revised manuscript.

4) Wind stress curl values over the locations can be provided in a tabular format

By adopting the Okubo-Weiss method we identified only one strong eddy. The wind stess curl values for CE2 and CE3 dropped from the revised manuscript

Please also note the supplement to this comment: https://www.ocean-sci-discuss.net/os-2018-23/os-2018-23-AC3-supplement.pdf

Interactive comment on Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-23, 2018.

# OSD

Interactive comment

Printer-friendly version





- Station Location of cruise 292 in November-December 2011
- Eddy stations
  Fig. 1 Station Location



Printer-friendly version

Discussion paper



Interactive comment





**Fig. 2.** Fig. 2 a) Sea Surface Height (cm- Aviso weekly) and geostrophic current (cm/s) and the eddy location b) Vertical temperature (ïĆřC), c) salinity and d) density (kg/m3) distribution at the

Printer-friendly version





Fig. 3 Horizontal current (m/s) structure at different depth at 8°N

Fig. 3. Fig. 3 Horizontal current (m/s) structure at different depths along 8°N

Printer-friendly version





Interactive comment

Fig. 4. Fig. 4 Hovmuller diagram of SSHA(m) (Aviso monthly) along 8°N

Printer-friendly version





Fig. 5. Wavelet spectra of SSHA (m- Aviso monthly from 2003-2013) along 8°N

Fig. 5. Fig. 5. Wavelet spectra of SSHA (m- Aviso monthly from 2003-2013) along 8°N

Printer-friendly version

Interactive comment





Printer-friendly version



Interactive comment



Fig. 7 Merged map of SSHA (m), Geostrophic current (cm/s) and Okubo-Weiss paremeter (Black contour of -2x10-11/s2) from Aviso during a) November b) December c) January d) February

**Fig. 7.** Fig. 7 Merged map of SSHA (m), Geostrophic current (cm/s) and Okubo-Weiss paremeter (Black contour of -2x10-11/s2) from Aviso during a) November b) December c) January d) February

Printer-friendly version







Printer-friendly version



Interactive

comment



Fig.9 Overlap map of SST (°C-monthly MODIS Aqua) and Chl a (mg/m<sup>3</sup>- monthly MODIS Aqua) during a) November, b) December, c) January, d) February

**Fig. 9.** Fig.9 Overlap map of SST (ïĆřC-monthly MODIS Aqua) and Chl a (mg/m3- monthly MODIS Aqua) during a) November, b) December, c) January, d) February

Printer-friendly version

