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Abstract. Marine waters can be highly heterogeneous both on a spatial and temporal scale, yet monitoring programs are currently 

relying primarily on low-resolution methods. This potentially leads to undersampling. This study explores the potential of two high-15 

resolution methods for monitoring of phytoplankton dynamics; Fast Repetition Rate fluorometry for information on phytoplankton 

photosynthesis and productivity and automated scanning flowcytometry for information on phytoplankton abundance and 

community composition. These methods were tested in combination with an underway Ferrybox system during four cruises on the 

Dutch North Sea in April, May, June, and August of 2017. The high-resolution methods were able to visualize both spatial and 

temporal variability of the phytoplankton community in the Dutch North Sea. Spectral cluster analysis was applied to objectively 20 

interpret the multitude of parameters and visualize potential spatial patterns. This resulted in the identification of biogeographic 

regions with distinct phytoplankton communities, which varied per cruise. Our results clearly show that the sampling based on fixed 

stations does not give a good representation of the spatial patterns, showing the added value of underway high-resolution 

measurements. To fully exploit the potential of the tested high-resolution measurement set-up, methodological constraints need 

further research. Among these constraints are; accounting for the diurnal cycle in photophysiological parameters concurrent to the 25 

spatial variation, better predictions of the electron requirement for carbon fixation to estimate gross primary productivity, and the 

identification of more flowcytometer clusters with informative value. Nevertheless, the richness of additional information provided 

by high-resolution methods can improve existing low-resolution monitoring programs towards a more precise and ecosystemic 

ecological assessment of the phytoplankton community and productivity. 
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1 Introduction 

The Dutch North Sea is of major socio-economic importance because of its close proximity to densely populated areas and its 

intensive utilization for shipping, fishing, sand extraction and development of offshore windmill farms. Due to this high 

anthropogenic pressure, the North Sea has undergone considerable biogeochemical and biological changes in the past decades 

(Burson et al., 2016; Capuzzo et al., 2015 and 2017). For example, nutrient load and stoichiometry were fluctuating substantially 5 

due to the inflow of wastewater and agricultural run-off and subsequent mitigation efforts (Burson et al., 2016; Philippart et al., 

2000). Additionally, water clarity decreased in large parts of the North Sea during the 20th century (Capuzzo et al., 2015). These 

abiotic changes affect primary productivity and community composition shifts throughout the trophic levels, with large implications 

for ecosystem functioning and fisheries production (Capuzzo et al., 2017; Burson et al., 2016). Over time, further changes are 

expected due to the planned energy transition and under the impact of climate change. Anticipated climate change effects include 10 

increasing temperatures, sea level rise, and ocean acidification. Already, the North Sea is warming more rapidly than most other 

seas (Philippart et al., 2011).  These changing environmental conditions will have a big impact on marine biogeochemistry, 

phytoplankton community composition and primary productivity (Sarmiento et al., 2004; Behrenfeld et al., 2006; Marinov et al., 

2010). Changes in phytoplankton community composition and primary productivity affect the entire ecosystem and global 

biogeochemical cycles (Montes-Hugo et al., 2009; Falkowski et al., 1998; Schiebel et al., 2017). Systematic and sufficient 15 

monitoring of these changes is of crucial importance to recognize threats, and, once identified as such, develop mitigation actions. 

 

Although phytoplankton community composition and productivity can be highly variable on a spatial and temporal scale, 

governmental monitoring still consists mainly of low-resolution measurements (Baretta-Bekker et al., 2009; Kromkamp and van 

Engeland, 2010; Cloern et al., 2014; Rantajarvi et al., 1998). Currently, biological monitoring of phytoplankton in the Dutch North 20 

Sea is dictated by the requirements set by OSPAR and the EU Marine Strategy Framework Directive (MSFD 2008/56/EC). Samples 

are taken between March and October with a frequency of every two or four weeks. The phytoplankton analysis consists of HPLC 

analysis of Chl a concentration and microscopy counts of Phaeocystis cells and, at some stations, coccolithophore or toxic 

dinoflagellate cells. Sampling points were reduced from almost 70 in 1984 to less than 20 today, while strong seasonal patterns, 

high riverine input, and tidal forces make the Dutch North Sea a region with high spatiotemporal variability. Modern automated 25 

flow-through underway systems have the potential to be an effective addition to monitoring programs because they offer the 

opportunity to record the surface ocean with high spatial and temporal resolution. Such high-resolution methods are well established 

in physical oceanography but for biological parameters, the implementation has been lacking. This is mostly due to the complicated 

interpretation of biological parameters, resulting in high uncertainties in the current global estimates of net primary productivity 

(Silsbe et al., 2016).  Underway measurements are not able to replace some more detailed low-resolution measurements, but their 30 

higher spatial and temporal resolutions provide the possibility to identify short-lived events, detect small-scale changes in 

phytoplankton dynamics, evaluate consequences of possible (spatial) undersampling, and act as an early warning system. 

Additionally, underway measurements acquire information on living organisms and samples unaffected by transport, storage or 

conservation. Two non-invasive, high-resolution methods with the potential to be implemented in phytoplankton monitoring 

programs are scanning flowcytometry (FCM) for information on phytoplankton abundance and community composition and Fast 35 

Repetition Rate fluorometry (FRRf) to give information on phytoplankton photophysiology. Scanning flowcytometry is a method 

for counting and pulse-shape recording of phytoplankton cells informative on size, fluorescence and scattering properties per algal 

cell. Based on these characteristics cluster analysis allows for division into groups of similar pigment characteristics and size classes 

(Thyssen et al., 2015; Rijkeboer, 2018). The FRRf uses active fluorescence to gain insight into phytoplankton photophysiology. 

This technique is an alternative to the traditional production-light curves (PE-curves) by estimating the photosynthetic electron 40 

transport rate (or gross photosynthesis) at increasing ambient light levels (Suggett et al., 2009a; Silsbe and Kromkamp, 2012). 

Electron transport rate per unit volume is estimated based on the fluorescence response to a series of single turnover light flashes 

that cumulatively close all photosystems (Kromkamp and Forster, 2003; Suggett et al., 2003). This single turnover technique allows 
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for the calculation of the effective absorption cross-section and, in combination with an instrument-specific calibration coefficient, 

the number of reaction centers per volume (Kolber et al, 1998; Kromkamp and Forster, 2003; Oxborough et al., 2012; Silsbe et al., 

2015). Electron transport rate per volume can be used to estimate gross primary productivity (Kromkamp et al., 2008; Smyth et al., 

2004; Suggett et al., 2009a). These two methods are supplementary because the interaction of phytoplankton with their environment 

is always a sum of the community composition and their physiology. For instance, if waters become more turbid, phytoplankton 5 

can acclimate by increasing their effective absorption cross section, but it could also lead to a shift in community composition 

toward species with higher light use efficiency (Moore et al., 2006). Thererfore, the combination of these two instruments allows 

for more in-depth analysis and understanding of ecosystem processes. 

 

The aim of this study is to test two high-resolution methods, a pulse shape recording flowcytometer and an FRR fluorometer, on 10 

their potential to be developed into a novel phytoplankton monitoring method. The two instruments were deployed concurrently on 

four 4-day cruises in April, May, June, and August to meet a wide range of environmental conditions and phytoplankton community 

states. These measurements allow for quantification of temporal and mesoscale spatial patterns in phytoplankton abundance, 

photophysiology, and gross primary production. In this paper we provide an overview of the acquired results, use spectral cluster 

analysis to visualize spatial heterogeneity and we evaluate the potential of these methods to optimize current monitoring programs. 15 

 

 

2 Methods 

2.1 Study site and sampling 

The Dutch North Sea is a shallow tidal shelf sea in the southern part of the North Sea. The main water flow is northward. Atlantic 20 

water enters the North Sea from the south via the Channel and from the northeast where it curves around Scotland. Both currents 

meet north of the Dutch coast forming the Frisian Front. For a detailed description on the North Sea physical oceanography, see 

Sündermann and Pohlman (2011). Along the Dutch coast, high river input from especially the Rhine River decreases the salinity 

and loads the coastal zone with high nutrient concentrations (Burson et al., 2016). Anthropogenic pressure is high in the Dutch 

North Sea resulting in a history of large shifts in nutrient concentrations and water clarity (Capuzzo et al., 2015; Burson et al., 2016). 25 

The monitoring of the Dutch North Sea is performed by the Dutch government (Rijkswaterstaat) in a monitoring program called 

MWTL (Monitoring Waterstaatkundige Toestand des Lands, freely translated as ‘Monitoring of the status of the governmental 

waters of the country’). The locations of the sampling stations of the program are organized along transects (Fig. 1). The stations 

are sampled between March and October with a frequency of every two or four weeks, dependent on the transect. 

 30 
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Figure 1: Sampling locations of the MWTL monitoring program referred to in this study. The stations are named according to the transect (Terschelling, 

Noordwijk and Walcheren), followed by the amount of kilometres from the coast (labels next to sampling points). The boundaries of the Exclusive Economic 

Zone (EEZ) are indicated by the grey dotted lines and the Dutch EEZ is coloured light blue. The locations of three major infows to the Dutch North Sea 

are named at the corresponding locations (Rhine river, Dutch Delta and the Wadden Sea). Insertion visualizes the location of the Dutch North Sea in a 5 
broader map of Europe. 

 

 

In 2017, four 4-day sampling surveys (10-13 April, 15-18 May 12-15 June and 14-17 August), were conducted for the JERICO-

NEXT project on board the RV Zirfaea during their regular monitoring cruises on the Dutch North Sea. To assess the heterogeneity 10 

of the Dutch North Sea and the benefits associated with high-resolution monitoring the four cruises were conducted in different 

months (April, May, June, and August), thereby aiming to cover different seasons and stages of the phytoplankton bloom (Baretta-

Bekker et al., 2009).  

 

The water inlet of the underway system was situated approximately 3.5 m below sea surface level. From the water inlet the sample 15 

water, with a flow rate of approximately 24 liters per minute, was split towards: 1) a flow-through -4H-JENA Ferrybox (-4H- JENA 

engineering GmbH, Germany) equipped with an FSI Excell® Thermosalinograph (Sea-Bird Scientific, USA) to measure 

temperature and salinity, and 2) a 230 cm3 flow through sampling chamber  (Cytobuoy BV, the Netherlands) where water was 

cleared from bubbles and sand (~ flow rate of 1 L per minute). The time from the water inlet to the sampling chamber was 

approximately 2 minutes. A FastOcean Fast Repetition Rate fluorometer (FRRf) with Act2-based laboratory flow-through system 20 

(Chelsea Technologies Group Ltd, UK) and a Cytosense scanning flowcytometer (Cytobuoy BV, the Netherlands) automatically 

sampled from the sampling chamber every 30 minutes. Since the average speed of the ship was 8 knots, the average spatial resolution 

of FCM and FRRf measurements was on average 7.5 kilometers. The Ferrybox sensors stored data every minute. During the cruises 

the high-resolution methods (FRRf, FCM, and Ferrybox) were combined with lower resolution methods, consisting of 

measurements at 13 to 19 stations. At these stations, surface samples were taken for nutrient and chlorophyll a analyses (see 2.2 25 

chemical analyses) using a rosette sampler equipped with a CTD and Niskin bottles. 

 

2.2 Chemical analyses 

Samples for nutrient analyses were filtered over Whatmann GF/F filters and kept frozen (-18 °C) until analyses. The analyses of 

ammonium (NH4
+), nitrite (NO2

-), nitrate (NO3
-), phosphate (PO4) and silicate (Si) concentrations were conducted by the 30 

Rijkswaterstaat laboratory (RWS; the Netherlands) according to ISO 13395, 15681, 16264 using a San++ Analyzer (Skalar 
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Analytical B.V., the Netherlands). In the RWS internal protocol, nitrite+nitrate is measured by first reducing nitrate to nitrite using 

a cadmium/copper column and addition of ammoniumchloride as a buffer. Thereafter, sulphanilamide, α-naphthyl ethylenediamine 

dihydrochloride and phosphoric acid are added and the extinction at 540 nm compared to a NaNO2 standard. For measurement of 

ammonium concentrations first EDTA was added to bind calcium and magnesium. Then, sodium salicylate, sodium nitroprusside 

and sodium hypochlorite were added and the extinction at 630 nm compared to a NH4Cl standard. Phosphate was measured by 5 

adding molybdate reagent and ascorbic acid to the sample and led through an oilbath at 37 ± 2 °C. Followed by measuring the 

extinction at 880 nm and comparing to a standard. Silicate concentration was measured by subsequent addition of molybdate reagent, 

oxalic acid and ascorbic acid. The silicate concentration was then determined by measuring the extinction at 810 nm and compared 

to a silicate standard. The detection limits of the nutrient analyses were NO3NO2: 0.7 µM, Si: 0.36 µM and PO4
3-: 0.03 µM. 

 10 

Chlorophyll a concentration (hereafter Chl a) was determined by filtering over Whatmann GF/C filters and freezing the filter at -80 

ºC. The Chl a was extracted in 20 ml 90% acetone and centrifuged for 15 minutes with glass pearls (1.00-1.05 mm) using a Bullet 

Blender Tissue homogenizer (Next Advance, Inc., Troy, USA) under cooling of solid CO2. The extract was analyzed in duplicates 

using Ultra High Performance Liquid Chromatography (UHPLC). The calibration of the UHPLC system is performed every analysis 

day by making a 12-point standards calibration curve calculated using quadratic regression with weighting method 1/A to better 15 

distinguish smaller peaks (R2>0.995). The injection volume was 20 µl unless the concentration was below the lowest standard, in 

which case a second injection of 40 µl was reanalyzed. The analysis was conducted by the MUMM laboratory (Belgium) according 

to RWS analysis protocol A200. Quality control was performed by the RWS laboratory (The Netherlands). 

 

 20 

2.3 High frequency methods 

2.3.1 Variable fluorescence 

Variable fluorescence was measured with a FastOcean Fast Repetition Rate fluorometer (FRRf) and Act2-based laboratory system 

(Chelsea Technologies Group Ltd, UK). The temperature was controlled by connecting a Lauda ecoline cooler (LAUDA-

Brinkmann, LP., USA) to the water jacket of the Act2 system. 25 

The acquisition protocol consisted of 100 excitation flashes with a flash pitch of 2 µs and 40 relaxation flashes with a flash pitch of 

60 µs. Excitation flashes were performed with the blue LED (450 nm) and strength of the LEDs was automatically adjusted to the 

phytoplankton concentration by the manufacturer’ FAstPro software. A loop of simultaneous blue and green flashes (450 

nm+530nm) was performed after the acquisition loop of only blue LEDs in case the blue LEDs were not able to reach saturation 

(for instance with high cyanobacteria concentrations), but as this was not the case, only the parameters measured by blue LEDs 30 

were used for further calculation. The sequence was repeated 20 times with a sequence interval of 100 ms. The sample was refreshed 

before each Fluorescent Light Curve (FLC) by flushing for 60 seconds and kept well-mixed by “flushing” for 200 ms between 

acquisition loops.  

The FLC protocol consisted of 14 light steps of 100 s, of which the light intensity was automatically adjusted to get the optimal 

FLC shape based on the previous light curve. A pre-illumination step (55 seconds on 12 µmol photons m-2 s-1) was included before 35 

the FLC to low light acclimate the phytoplankton and to relax Non-Photochemical Quenching (NPQ) of diatoms and other 

chlorophyll a-c algae as they stay in the light activated state in the dark (Goss et al., 2006). After each light step, measurements 

were made in the dark for 18s to retain a value for F0’ (minimal fluorescence in light acclimated state). The data were corrected for 

the background fluorescence by taking sample blanks multiple times per day by filtration over a 0.45 µm filter and subtracting the 

last determined background fluorescence from the sample fluorescence. 40 
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An overview of the derived photosynthetic parameters can be found in Table 1. To derive values for the maximum photosynthetic 

electron transport rate (Pmax), minimum saturating irradiance (Ek) and the light utilisation efficiency (α) the relative electron transport 

rate (rETR) of the samples was fitted to the exponential model of (Webb et al. 1974), after normalizing the data to the irradiance as 

described by (Silsbe and Kromkamp, 2012): 

𝐹𝑞
′/𝐹𝑚′ =  

𝑃𝑚𝑎𝑥(1−exp(
−𝐸
𝐸𝑘

))

𝐸
          (1) 5 

 

where E is the irradiance in μmol photons m-2 s-1, Fq’/Fm’ the effective quantum efficiency of photosystem II (PSII), α is the initial 

slope of the rETR vs irradiance curve and Ek is the light saturation parameter (in μmol photons m-2 s-1). The relative maximum rate 

of photosynthetic electron transport (Pmax) was calculated as:  

𝑃𝑚𝑎𝑥 =  𝐸𝑘 ×  𝛼       (2) 10 

 

The PSII flux in μmol electrons m-3 h-1 was calculated as the product of the effective PSII efficiency (Fq’/Fm’), the optical absorption 

cross section of the light harvesting pigments of PSII (aLHII) and the irradiance (E): 

 

𝐽𝑉𝑃𝐼𝐼( 𝑖𝑛 𝜇𝑚𝑜𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 (𝑃𝑆𝐼𝐼 𝑚−3) ℎ−1) = 𝐹𝑞
′ 𝐹𝑚′⁄ ∗ 𝑎𝐿𝐻𝐼𝐼 ∗ 𝐸    (3) 15 

where  

𝐹𝑞
′/𝐹𝑚

′
=

𝐹𝑚
′−𝐹′

𝐹𝑚
′        (4) 

and 

                   𝑎𝐿𝐻𝐼𝐼 (𝑖𝑛 𝑚−1) =
𝐹0∗𝐹𝑚

𝐹𝑚−𝐹0

∗ 𝐾𝑎                           (5) 

 20 

 

Table 1: The derived photosynthetic parameters used in the text (see Oxborough et al. (2012) and Silsbe et al. (2015) for more information). 

Variables used in equation 1-8 are not included but discussed in the text. 

 Description unit 

Parameters derived from fluorescence induction curve 

F0 Minimum fluorescence, measured at zeroth  flashlet of an FRRf 

single turnover measurement when all PSII reaction centers 

(RCII) are open. Estimate for chlorophyll a concentration. 

Dimensionless 

Fm Maximum fluorescence, reached at nth  flashlet of an FRRf single 

turnover measurement when all PSII reaction centers are closed. 

Dimensionless 

1/τ Rate of re-opening of a closed RCII  ms-1 

σPSII Effective absorption cross section of PSII photochemistry nm2 PSII-1 

Parameters calculated from parameters derived from fluorescence induction curve 

JVPII PSII charge separation rate per unit volume (see eq. [3]) μmol electrons m-3 h-1 

Fv/Fm Quantum efficiency of PSII under dark conditions (see eq. [4]) Dimensionless 

aLHII Absorption coefficient of PSII light harvesting (see eq. [5]) m-1 

[RCII] Functional PSII reaction centers per volume (see eq. [6]) nmol RCII m-3 

Parameters derived from Fluorescence light curve (FLC) 

αPSII Initial slope of the FLC, an estimate of affinity for light μmol electrons (μmol photons) -1 

Ek Minimum saturating irradiance of fluorescence light curve μmol photons m-2 s-1 

Pmax Maximum photosynthetic electron transport rate μmol electrons m-2 s-1 

Parameters calculated from parameters derived from fluorescence light curve and irradiance 

Surface GPP Surface Gross Primary Productivity (see eq. [3]) calculated based 

on the FLC-parameters and incoming irradiance. 

µg C L-1 h-1 

 

 25 
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Ka (m-1) is an instrument specific factor necessary for obtaining absolutes rate of photosynthetic transport (see Oxborough et al. 

(2012) and Silsbe et al. (2015) for more information). The amount of reaction centres of PSII per cubic metre ([RCII]) was calculated 

as 

      [𝑅𝐶𝐼𝐼] (𝑖𝑛 𝑛𝑚𝑜𝑙 𝑚−3) = 𝐾𝑎 ∗
𝐹0

𝜎𝑃𝑆𝐼𝐼
            (6) 5 

 

for more information on the calculation of [RCII] and aLHII see Oxborough et al. (2012) and Silsbe et al. (2015). 

QA reoxidation or rate of re-opening of a closed RCII was calculated as 1 divided by the time constant of re-opening of a closed 

RCII with an empty QB site (τES) in ms-1. 

 10 

Standardized daily anomalies (Z-scores) were calculated for the photophysiological parameters as: 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥−𝑑𝑎𝑖𝑙𝑦 𝑚𝑒𝑎𝑛(𝑥0…𝑥24)

𝐷𝑎𝑖𝑙𝑦 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥0…𝑥24)
     (7) 

 Partial days were excluded because this could potentially offset the daily mean and standard deviation. 

 

Gross Primary Productivity (GPP) was estimated by fitting JVPII in μmol photons m-3 h-1 to equation 1 (the exponential model of 15 

Webb et al., 1974) to derive a volumetric Pmax and α. GPP in µg C L-1 h-1 was then calculated using equation 1 and incident surface 

irradiance. To avoid effects of changing incident surface irradiance (Esurface) on the spatial pattern and to be able to compare GPP 

between regions we used monthly average surface irradiances (Esurface) in our calculations of primary productivity. From 2010-

2016 irradiance (400-700 nm) was measured at the roof of the NIOZ building in Yerseke using a LI-190 quantum PAR sensor and 

hourly averages stored using a LI1000 datalogger. Esurface was then calculated by averaging all irradiance data from the years 20 

2010-2016 for the respective month. The primary productivity in electrons units was converted to carbon units by assuming 6 

moles of electrons were required to fix one mole of carbon, based on a study in the adjacent Oosterschelde and Westerschelde 

estuaries (Kromkamp et al., in prep.). 

 

2.3.2 CytoSense scanning flowcytometry 25 

Single cell measurements of the phytoplankton community were conducted using a bench-top scanning flowcytometer (Cytobuoy 

BV, the Netherlands) equipped with two lasers (488 nm and 552nm; 60mW each). Both laser beams were ca. 5 µm high and 300 

µm wide and focussed on the same spot in the middle of the flow-through chamber. The speed of the particles was ca. 2.2 m s-1. 

The system contained 3 fluorescence detector channels separating fluoresced wavelengths of 550-600 nm (FLY; Phycoerythrin), 

600-650 nm (FLO; Phycocyanin) and above 650 nm (FLR; chlorophyll a). Additionally, the Forward Light Scatter (FWS) and 30 

Sideward Light Scatter (SWS) of all particles were measured. The FCM was equipped with a double set of detectors (PMT’s) for 

each of the three fluorescence channels to increase the dynamic range (Rutten, 2015). Per cell, the pulse shape of the parameters 

(FWS, SWS, FLR, FLO, and FLY) plus their affiliates (length, total and maximum values) were recorded and saved. The instrument 

was checked daily for drift using 3 µm Cyto-CalTM 488 nm alignments beads (Thermo Fisher Scientific Inc., USA). Additionally, 

the FCM was equipped with an Image-in-flow camera to take pictures of the nano- and micro-phytoplankton. This allows for linking 35 

pulse shape recordings to microscopy results and thereby identification of represented phytoplankton groups in respective clusters. 

 

Phytoplankton cells were clustered based on the pulse shape recording of the individually scanned phytoplankton. In this paper, we 

discriminate the phytoplankton groups based on their size (pico, nano, and micro) and Orange/Red fluorescence ratio (hereafter O/R 

ratio; Table 2). The chosen cluster criteria were based on expert judgment (SeaDataNet, 2018) and corresponding to other studies 40 

(Sieburth et al., 1978; Vaulot et al., 2008). The clustering was done using the software Easyclus 1.26 (ThomasRuttenProjects, The  
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Table 2: The phytoplankton groups distinguished in the current study.  

Name 

Cluster criteria Main corresponding taxonomic group(s) 

Length FWS O/R-ratio 

Pico-Red <4 µm* <1 Pico-eukaryotes 

Pico-Synecho <4 µm* >1 Synechococcus 

Nano-Crypto  4-20 µm >1 Cryptophycea 

Nano-Red 4-20 µm <1 Diatoms,Haptophytes, Dinoflagelates 

Micro-Red >20 µm <1 Diatoms,Haptophytes, Dinoflagelates 

 *In june <6 µm 

 

Netherlands) according to these criteria. Noise, air bubbles and other potential outliers were removed. The acceleration of the 5 

particles in the sheath fluid positions the cells along their long axis, which allows for size estimation based on the FWS pulse shape. 

A linear relation was found between Length FWS and measured length of diverse phytoplankton species (Length FWS = 

0.92*Measured length – 1.57; R2=0.98; Rijkeboer, 2018). Size estimation is limited by the width of the laser beam (5 µm) so 

estimations of cell sizes < 5 µm is not possible based on the FWS. 

 10 

2.4 Data analysis 

Outliers of the complete dataset were removed after visual inspection of pairplots made with the pairplot function of the 

HighstatLib.V4 script (Zuur et al., 2009). For the FRRf data, quality control of the FLC fits was done based on the quality ratio of 

the induction curve fit per FLC light step and the r2 of the FLC fit. The quality ratio of the induction curve fit was calculated as the 

ratio of Fv or Fv' to the standard error (SE) of the linear regression of the saturation phase. FLC fits with an r2 < 0.75, or with over 15 

30% of the data points with a quality ratio below 6, were visually inspected and removed based on expert judgment. This led to the 

removal of 1% to 7% of the FLC fits per month. Unsatisfactory fits occurred when the auto-LED settings misadjusted the maximum 

irradiance or when fluorescence was too low to retrieve a reliable fluorescence signal. Especially at low biomass FLCs became 

noisy, therefore a minimum fluorescence signal was set for calculations of photosynthetic parameters. Below this blank corrected 

instrument-specific fluorescence signal Fq’/Fm’ became noisy and often reached above the biologically unlikely limit of 0.65 (Kolber 20 

and Falkowski, 1993). The datasets of the high-resolution measurements (FRRf, FCM, and Ferrybox) were linked using 

corresponding timestamps. When multiple measurements were performed within one FLC, the average was used. To test whether 

environmental conditions (as present in the different months) had a significant effect on fluorescence as a predictor for Chl a 

concentration, an ANCOVA was performed with the month as a factorial predictor. To find regions with similar phytoplankton 

communities, data were spectrally clustered using the uHMM R package (Poisson-caillault and Ternynck, 2016) in the statistical 25 

software R (version 3.4.1, R Core Team, 2017). The package default settings normalize data before clustering and automatically 

find the number of clusters based on spectral classification and the geometry of the data. This new methodology is more robust than 

the classical hierarchical and k-means technics (Rousseeuw et al., 2015). Phytoplankton parameters were first tested for collinearity 

and predictors with a variance inflation factor (VIF) over 6 were removed (Zuur et al., 2009; see supplementary material for 

pairplots). This left for the cluster analysis FCM-parameters Pico-red, Nano-red, Micro-red, and Synechococcus and the FRRf-30 

parameters σPSII, Fv/Fm, aLHII, 1/τ, Ek. Datapoints were then per cluster labeled and plotted on a map to visually identify regions. 

Principal Component Analyses (PCA) were performed to find which variables contributed most to the cluster results. The PCA’s 

were based on correlation matrixes with scaled parameters to correct for unequal variances and was carried out with the prcomp() 

function in R (version 3.4.1, R Core Team, 2017). The PCA visualization was done using the supplemental R package factoextra 

(Kassambra and Mundt, 2017). Maps were made using QGIS v. 2.14.2 and other figures were made with ggplot2 in R (Wickham, 35 

2009). 
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3 Results 

3.1 Abiotic conditions 

Environmental conditions in the Dutch North Sea were spatially heterogeneous and differed strongly between months. Sea surface 

temperature increased from 9.5 ± 1.0 ºC in April to 19.0 ± 0.6 ºC in August (supplementary table S1). Differences in salinity between 

cruises were small with the highest monthly mean salinity in April (34.1 ± 1.8). Spatial variability of salinity was higher with river 5 

influx decreasing the salinity down to 26 in the coastal zone. The monthly average of turbidity was higher in April (2.3 ± 3.0 NTU) 

in comparison to other months. This was also reflected in the Kd values, which were highest in April (0.39 ± 0.28 m-1; supplementary 

table S1). It needs to be noted that monthly averages are not fully comparable, because of differences in sampling route and stations 

(Fig. 3). Dissolved Inorganic Nitrogen (DIN; Nitrate+Nitrite+Ammonium) and silicate (Si) concentrations showed spatial variability 

and varied per cruise (supplementary table S2). Spatially, two trends were distinguishable: a coastal-offshore gradient and a 10 

longitudinal gradient. Per cruise the strength and position of these spatial gradients changed. The coastal to offshore gradient moved 

shoreward from April to August and the southern stations were depleted earlier in the year in comparison to the more northerly 

stations. In April DIN and Si concentrations were on average higher and only potentially limiting (Si<1.8 μmol L-1, DIN<2 μmol L-

1; Peeters and Peperzak et al. (1990) and references therein) in the most Southerly part of the Dutch North Sea (Walcheren transect) 

and at offshore stations (>70 km offshore west of the Netherlands, >135 km North of the Netherlands). In later months, DIN and Si 15 

limitations gradually moved towards the coastal zone. Stations closest to freshwater influx (Noordwijk 2 and 10) became DIN and 

Si-limited later in the year (supplementary table S2). The increased DIN concentration at the transect close to the Rhine outflow 

was absent seventy kilometers offshore (Noordwijk 70), suggesting that the Rhine water remained close to the coast. Phosphate 

concentrations were low and possibly limiting throughout the Dutch North Sea (ortho-phosphate PO4
3--<0.5 μmol L-1; Peeters and 

Peperzak et al, 1990). With exceptions in April north of Terschelling between 50 and 100 km offshore and in May at Noordwijk 2, 20 

a region with the high freshwater influx. In June and August, phosphate concentrations recovered in the Southern part of the Dutch 

North Sea reaching up to 0.6 µM (supplementary table S2).   
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Figure 2: linear regression of the natural logarithms of Chl a concentration in µg L-1 as determined by HPLC (y-axis) and on the x-axis 

the natural logarithm of; FCM-derived total red fluorescence (in relative fluorensence units (RFU), left panel) and FRRf-derived 30 
minimum fluorescence (F0 in RFU, right panel). Both FCM red fluorescence (p<0.01, adjusted R2=0.90) and the FRRF F0 (p<0.01, adjusted 

R2=0.66) are significant predictors for Chl a concentrations. The months (April, May, June and August) were a significant predictor of 

Chl a concentration for both the FRRf (p<0.05) and the FCM (p<0.01). The interaction between the x and y axis was only significant for 

the FCM data (p<0.05). 
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3.2 Phytoplankton abundance and fluorescence 

Before the ANCOVA analysis, natural logarithm transformations were required to correct for inhomogeneity of the residuals and 

unequal variances between months. Both the FRRf F0 (p<0.01, adjusted R2=0.66) and FCM total red fluorescence (p<0.01, adjusted 

R2=0.90) provided significant predictors of HPLC-derived Chl a concentration (Fig. 2). The ANCOVA with the FRRf-derived F0 

as Chl a predictor revealed that the slope did not differ per month, but the intercept did (p<0.01). The ANCOVA with the FCM-5 

derived TFLR as Chl a predictor resulted not only in a significant difference of the Chl a concentration per month (p<0.01) but also 

in a significantly different slope (p<0.05), suggesting that other predictors that differ per month were influencing the fluorescence 

per Chl a molecule (Fig. 2).  

 

3.3 Phytoplankton community composition 10 

In April the northern part of the Dutch North Sea was numerically dominated by picoplankton whereas the southern part and the 

north coastal area of the Dutch EEZ were numerically dominated by nanophytoplankton. The taxa with high phycoerythrin content 

(Synechococcus and Cryptophycea) made up only a small proportion of the total phytoplankton community in April (generally less 

than 10%) and were most abundant in the northern part of the Dutch North Sea (Fig. 3e). Microphytoplankton represented always 

less than 3% of the total community. Highest microphytoplankton abundance was found close to the Dutch Delta and along the 15 

Noordwijk transect. The spatial patterns of the phytoplankton community in May were smaller in comparison to April (Fig. 3, 

second column). Picophytoplankton abundance was highest offshore (60-80%), whereas the highest percentage of 

nanophytoplankton was observed north of Terschelling 100 and in the coastal zone (Fig. 3f).  Between May and June the community 

composition shifted and phytoplankton cell numbers increased. Both groups of picophytoplankton (Synechococcus and Pico-red) 

increase in relative abundance between May and June, while the nano-phytoplankton shows a strong decrease (Fig. 3). The highest 20 

abundance of pico-phytoplankton was observed offshore. The microphytoplankton was the largest contributor to red fluorescence 

in the coastal region, although this group does not increase in relative abundance in comparison to May (Fig. 3). In August the pico-

phytoplankton was dominating the phytoplankton communities with an average contribution to total cell numbers of over 80% and 

only slightly lower values were observed (but still > 70%) along the southern Dutch coast, where the abundance of nano-

phytoplankton was higher. Micro-phytoplankton was hardly observed, although their high per cell red fluorescence, they contributed 25 

to up to half of the total red fluorescence in coastal regions.  

 

3.4 Photophysiology  

In April, the photophysiology of the phytoplankton communities in the Dutch North Sea showed low variability. The Fv/Fm values 

stayed above 0.5 in northern regions and above 0.4 in southern regions (Fig. 4a). The σPSII stayed in a narrow range between 2.5-4 30 

nm2 PSII-1 (Fig. 4e). The Ek in April showed more variability in comparison to the Fv/Fm and σPSII. In the coastal zone, the Ek was 

lower off the coast from Walcheren and higher off the coast from Noordwijk. In offshore regions, no clear spatial patterns were 

present (Fig. 4i). In May photophysiological parameters of the phytoplankton communities in the Dutch North Sea were strongly 

heterogeneous with only smaller scale spatial patterns (Fig. 4b,f,j). Fv/Fm was in general lower in May (0.1-0.5) than in April (>0.4) 

across most of the Dutch EEZ (Fig. 4b). In May the σPSII was high (average 5.9 nm2 PSII-1) across the Dutch North Sea, except near 35 

the coast of Noordwijk (Fig. 4f). In the same region, the Ek was high (> 450 μmol photons m-2 s-1), but this concurrent signal (high 

Ek, low σPSII) did not occur in other regions of the Dutch North Sea. The Ek across the Dutch North Sea in May was heterogeneous 

without large-scale spatial patterns. In June the spatial patterns in the photophysiology of the phytoplankton in the Dutch North Sea 

were less heterogeneous and larger mesoscale spatial patterns could be identified. The Fv/Fm values recovered in comparison to May 

to above 0.4 in the coastal zone, but not in offshore regions in the Southern North Sea. The Fv/Fm of the southern offshore  40 
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 Figure 3: Relative phytoplankton community composition using FCM-derived total red fluorescence (first row; a-d) and cell numbers 

(second row, e-h) in April, May, June and August (from left to right). The groups are clustered according to table 2. 

 

phytoplankton, between Walcheren 70 and Noordwijk 70 (Fig. 1), remained low (<0.2; Fig. 4c). The σPSII was lower in comparison 5 

to May across the Dutch North Sea, apart from the southern offshore region (Fig. 4g). In a small region around Noordwijk 70, the 

phytoplankton community had a particularly low σPSII (<2.5 nm2 PSII-1) which did not present itself in anomalies in the other 

photophysiological parameters. The Ek in June was low in the Northern coastal zone and higher in offshore regions (Fig. 4k). In 

August the Fv/Fm recovered across the Dutch North Sea (Fig. 4d). The σPSII was high in the northern offshore region, and comparable 

to June in the rest of the Dutch North Sea (Fig. 4h). In August the regions of the Noordwijk coast and the of the Wadden Island 10 

coast were sampled twice, on two different times of the day. This repeated measurement resulted in a higher Ek, suggesting diurnal 

variability. To further investigate daily patterns standardized daily anomalies (z-scores) were calculated. These show a clear diurnal 

trend in photosynthetic activity (Fig. 5). The Fv/Fm was lowest during the middle of the day, while Ek, σPSII, and 1/τ peaked during 

the middle of the day. As Ek was strongly correlated to Pmax (Fig. S2); a clear diurnal pattern was also present in the photosynthetic 

electron transport rate. 15 
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Figure 4: Maps of the photophysiological parameters Fv/Fm (a-d), σPSII (e-h; in nm2 PSII-1) and Ek (i-l; in μmol photons m-2 s-1) per month (from left to 

right: April, May, June and August). For more details on the location see Fig. 1.  

 

 5 

 

Figure 5: Standardized daily anomalies (z-scores) of Fv/Fm, Ek, σPSII and 1/τ   showing the diurnal trends in photophysiological data. On 

the x-axis the time of the day and on the y-axis the z-score. 
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3.5 Gross primary productivity 

Gross primary productivity ranged from 0.35 µg C L-1 h-1 in June to 602 µg C L-1 h-1 in the coastal zone in May (Fig. 6). The average 

GPP was highest in April and lowest in August. Monthly averages ranged from 116 ± 59 µg C L-1 h-1 in April and 8.7 ± 8.3 µg C L-

1 h-1 in August, although these averages are not completely comparable due to different ship routes per month (Fig. 6). In April, 5 

spatial heterogeneity in GPP was low. Highest rates in April were measured offshore (> 250 µg C L-1 h-1) and in the coastal regions 

close to the Wadden Islands (Terschelling 10 in Fig. 1). In May, the GPP was heterogeneous without a clear spatial pattern. Most 

production rates stayed below 30 µg C L-1 h-1, with local GPP peak rates over 600 µg C L-1 h-1 in the southern coastal zone.  In June, 

the GPP was on average lower than in May and showed more large-scale spatial patterning.  Highest values in June were observed 

(30-40 µg C L-1 h-1) northwest of Noordwijk. In August, GPP was low throughout the Dutch North Sea with the majority of 10 

productivity rates staying below 10 µg C L-1 h-1. In the southern coastal zone, slightly higher rates were found, reaching up to 50 µg 

C L-1 h-1. 

 
Figure 6: Gross primary productivity of the surface (a-d; in µg C L-1 h1) per month (from left to right: April, May, June and August). 

Colors represent rates, where blue is low and red is high (see legend). 15 

 

3.5 Spatial clustering 

Strong collinearity between measured parameters was present. For spatial clustering these were removed based on the variable 

inflation factor (VIF>6; see supplementary material for pairplots), which resulted in the removal of the photophysiological 

parameters Pmax, α, aLHII, nPSII, the FCM-parameter of the total red fluorescence and the GPP. From the five defined phytoplankton 20 

groups (Table 2), the nano-crypto group was not used in the clustering because of collinearity (VIF>6). The remaining variables 

were the abundance of the remaining four FCM-defined phytoplankton groups (Pico-Red, Pico-Synecho, Nano-Red, and Micro-

Red), the total O/R ratio and five photophysiological parameters (Fv/Fm, σPSII, 1/τ, [RCII], and Ek). For an overview of the collinearity 

between variables, see the pairplots in the supplementary material.  

 25 

Spectral cluster analysis resulted in the identification of two to four clusters in each cruise. Most of these clusters were spatially 

separated and therefore, can be considered as regions with distinct phytoplankton communities (Fig. 7). In April, the clustering 

resulted in three clusters with a clear spatial pattern. In the PCA, the variables that contributed most to the first principal component 

were all biomass related; [RCII] and aLHII, related to the photosynthetic capacity per reaction center and per volume, and the 

abundance of the Nano-red group. The second principal component has photosynthetic parameters as two main contributors  30 
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Figure 7: Overview of the spectral cluster analysis based on the non-collinear phytoplankton parameters (FCM: Pico-red, Nano-red, 

Micro-red, Synechococcus. FRRf: σPSII, Fv/Fm, aLHII, 1/τ, Ek) separated per month (top to bottom: April, May, June and August). With on 

the left clusters visualized on maps and in the middle the bi-plots of the PCA of the data with confidence ellipses per cluster (confidence 

95%). In all graphics clusters are visualized by different colors as shown in the legend inset. Of the confidence ellipses the border lines 5 
(and not the fill) correspond to the clusters. In the bi-plot overlapping confidence ellipses suggest a high similarity between groups while 

the size of the ellipse is a measure of variability within the group. On the right the table of the PCA analysis with contribution in % of the 

different variables, in bold the three variables that contribute most to the principal component. 
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(σPSII and 1/τ; 51.5%). Cluster one covered most of the Northern part of the Dutch North Sea, and a small part of the Noordwijk 

transect to the coast. The bi-plot of the PCA showed that the first cluster was negatively correlated to the main contributors of PC1 

([RCII] and aLHII; Fig. 7), so this region consisted of a phytoplankton community with lower photosynthetic capacity per liter. The 5 

coastal region was separated into two clusters, 2 and 3, with overlapping confidences ellipses (Fig. 7). The confidence interval of 

cluster 2 is larger than cluster 3, suggesting that the phytoplankton community in cluster 2 was more heterogeneous. Both clusters 

are positively correlated to the main contributors to PC1 ([RCII] and aLHII), meaning these clusters consists of a community with 

higher photosynthetic capacity per volume. In May, the cluster analysis resulted in four different clusters, but without a well-defined 

spatial pattern. The PCA biplots showed that the confidence interval of cluster 5 overlaps most of the other clusters, indicating that 10 

this cluster has weak support. Ek was negatively correlated with cluster 4 and σPSII, suggesting that cluster 4 contained low light 

acclimated algae. In contrast, in June only two clusters with a distinct separation between coastal and offshore phytoplankton 

communities were found. The PCA showed that the offshore phytoplankton community was consisting of a diverse phytoplankton 

community while the coastal phytoplankton community with high Fv/Fm, aLHII and [RCII]. In August not all clusters were spatially 

separated (Fig. 7). Different clusters were appointed to the same region visited within a two-day time span twice; in the north-eastern 15 

coastal region and at the transect of Noordwijk. Both times, cluster 11 is one of the overlapping spatial clusters. Cluster 11 

corresponds to only night-time sampling periods and was defined by low Ek and low 1/τ, indicative of a low light acclimated 

phytoplankton community. This suggests that cluster 11 was a temporal cluster instead of a spatial cluster. To test this we repeated 

the analysis for the month of August but only including the measurements performed within an 8-hour timeframe around noon 

(12:00±4h; see supplementary material Fig. S4). In this timeframe, the southern coastal zone was distinct from the rest of the Dutch 20 

North Sea and corresponded to cluster 10 in the analysis of the complete dataset (Fig. 7d), so this cluster was defined by spatial 

variability. Cluster 12 and 13 were grouped together in the 12±4h timeframe as cluster 1. Cluster 11 was not recognized as a cluster 

within the 12±4h timeframe, so seemed indeed controlled by temporal rather than spatial variability. 

 

 25 

 

4 Discussion 

The objective of this study was to evaluate the added value of FRR fluorometry and flowcytometry for monitoring purposes. During 

four cruises spread over 5 months, a wide variety of environmental conditions and phytoplankton community states were sampled. 

Here, this data is used to evaluate the potential of this approach to be developed as a novel method to improve existing monitoring 30 

(OSPAR, MSFD).  

 

Biomass is an important parameter to understand the role of phytoplankton in the ecosystem and biogeochemical cycles. Its direct 

measurement using high-resolution methods is challenging. Chlorophyll a concentration is often used as an estimate for biomass, 

although the Carbon:Chl a ratio is dependent on abiotic conditions and species-specific phenotypic plasticity and chlorophyll a is 35 

therefore not directly related to biomass (Flynn, 1991, 2005; Geider et al., 1997; Alvarez-Fernandez and Riegman, 2014; Halsey 

and Jones, 2015). In this study, chlorophyll concentrations are estimated by red fluorescence, which results in a good fit for both 

the FRRf (adjusted R2=0.66) and the FCM (adjusted R2=0.90). The impact of abiotic conditions on fluorescence as a predictor for 

chlorophyll a content was tested by comparing the relationship in the different months. Only the flowcytometer data were 

significantly affected by environmental conditions. The different environmental conditions per month did not affect the regression 40 
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line of the FRRF data. Since the two instruments differ in optics as well as measurement set-up (measurements per cell vs bulk), 

differences are not surprising. The different measurement set-up, with the flowcytometer measuring the fluorescence per particle, 

while the FRRf does a measurement of the bulk sample, might blur the effect of environmental conditions. In a bulk measurement, 

other particles in solution scatter the excitation and emission photons, plus the emitted fluorescence of the phytoplankton is subject 

to reabsorption, especially at higher biomass densities. Yet, the difference most affected by environmental conditions is the 5 

fluorescent state of the photosystems. The strong laser of the flowcytometer can only measure the maximum fluorescence (Fm), 

which is a parameter more prone to quenching than the minimum fluorescence measured by the FRRf. The lower sensitivity to 

environmental conditions implies that the FRRf is better suited to estimate chlorophyll a concentration in comparison to the FCM. 

Other studies that estimate chlorophyll a concentrations with FCM and fluorimeter also find better fits using the bulk measurements 

by a fluorimeter in comparison to the per cell flowcytometric measurements (Thyssen et al., 2015; Marrec et al., 2018). An 10 

alternative to the controversial use of chlorophyll a as an estimate for biomass is the derivation of biomass or biovolume from cell 

counts. This requires assumptions on cell size, cell shape and carbon content per biovolume (Tarran et al., 2006). Another alternative 

is to derive biovolume from scattering properties of the cell using a pulse shape recording flowcytometer as used in this study. This 

relationship appears to be taxon-specific (Rijkeboer, pers. comm.) and needs to be further explored by comparison of calculated 

biovolume (based on the Image in Flow pictures) and the flowcytometric properties of the cell. The FRRf offers the possibility to 15 

circumvent the use of phytoplankton biomass as a necessary parameter to estimate primary productivity altogether by estimating 

the amount of Photosystem II Reaction Centers or total absorption by the PSII concentration (i.e. aLHII; Oxborough et al., 2012). As 

long as there is no uncontroversial method to derive phytoplankton biomass, calculation of multiple parameters and critical 

evaluation remains necessary. 

 20 

The FCM was able to visualize the spatial variability of the phytoplankton community in the Dutch North Sea. The typical spring 

bloom was partly captured during the cruise of April, with high total fluorescence and high relative abundance of micro- and 

nanophytoplankton in comparison to other months. In contrast, in August the community was dominated by picophytoplankton with 

only sporadic observations of microphytoplankton.  In addition, spatial variability in size distribution was clearly visible as a stronger 

presence of microphytoplankton in coastal regions than offshore. Microphytoplankton are a better food source for higher trophic 25 

levels than picophytoplankton. Picophytoplankton is part of the microbial food web, with less trophic efficiency and low 

contribution to carbon export (Azam et al., 1983; Finkel et al., 2010). The shift from nanophytoplankton-dominated communities 

in April to picophytoplankton-dominated communities in August therefore implicates that over the year the tropic efficiency and 

carbon export decrease. These spatial and temporal changes are a yearly phenomenon, influenced by the strong seasonal dynamics 

in the Dutch North Sea that affects the spatial distribution and community composition of the phytoplankton community (Baretta-30 

Bekker et al., 2009; Brandsma et al., 2011). It is important to monitor interannual variability over the years to monitor changes in 

biogeochemical cycles and the carrying capacity of the ecosystem. To increase the informational value of the flowcytometry data 

beyond size, the FCM clusters would need to reflect taxonomic or functionally relevant groups. Interesting groups include calcifiers, 

silicifiers, DMS producers (such as Phaeocystis) or nitrogen fixers (le Quéré et al., 2005). The lack of identification of distinct 

clusters makes this so far impossible, although some species are recognizable as Phaeocystis sp. (Rijkeboer, unpublished). Marrec 35 

et al. (2018) manually separated up to 10 phytoplankton groups from the data of the Cytosense flowcytometer. Yet, most of these 

groups comprise many taxonomic genera and, apart from the size or pigment composition, hindering further interpretation of their 

role in the ecosystem or biogeochemical cycles. However, the distinction between different pigment groups can provide useful 

information on food web functioning. Chlorophyll-c containing algae (Chromista) contain long-chained essential fatty acids like 

docosahexaenoic acid (DHA) and eicosapenthic acid (EPA) which are lacking in green algae (some Prasinophycaea excepted) or 40 

cyanobacteria (Dijkman and Kromkamp, 2006). Thus, information about food quality can be obtained from FCM.  For detection of 

nuisance phytoplankton, distinct clusters are lacking. Yet, toxicity in phytoplankton can differ even between strains within one 

species, so finding a distinct cluster by flowcytometry is challenging (Tillman and Rick, 2003). However, the identification of 
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‘suspicious’ clusters with potential toxic species could already be helpful. These suspicious clusters can flag sampling points to be 

further inspected by a specialist using microscopy.  

 

Monitoring of the photophysiology of the phytoplankton by FRR fluorometry can supplement the flowcytometry measurements. 

For instance, the hypothesized spring bloom detected by the flowcytometer in April is confirmed by photophysiological parameters; 5 

photophysiology was uniform and primary productivity high. Between April and May, the efficiency of PSII (Fv/Fm; Fig. 4) 

decreased throughout the Dutch North Sea. A decreasing Fv/Fm is generally associated with limiting nutrient conditions or other 

abiotic, but can also reflect a change in community composition stressors (Suggett et al., 2009b; Kolber et al. 1988; Kolber and 

Falkowski, 1993; Beardall et al. 2001; Ly et al. 2014). Photophysiological parameters vary per taxonomic group; smaller taxa 

typically have lower Fv/Fm values and higher σPSII values (Kolber et al., 1988; Suggett et al., 2009b). No major shift in community 10 

composition was identified by flowcytometry between April and May. This suggests that an abiotic stressor, such as the nutrient 

limiting conditions in a large part of the Dutch North Sea, instead of the community composition was driving the decrease in 

efficiency of PSII. In contrast, the recovery of the Fv/Fm between May and June did coincide with a shift in community composition. 

In May the phytoplankton communities were mostly nanophytoplankton-dominated, while in June the communities were dominated 

by picophytoplankton (offshore) and microphytoplankton (coastal). So, although recovery of the Fv/Fm can also occur as an 15 

adaptation of the phytoplankton to nutrient limiting conditions (Kruskopf and Flynn, 2005), it seems that the shift in community 

composition was the major driver for the recovery of the Fv/Fm between May and June. These findings are a good example of how 

concurrent measurements by flowcytometry and Fast Repetition Rate fluorometry can supplementary improve ecosystem 

understanding. When including photophysiology (or photophysiology based GPP estimates) in a monitoring program, it is critical 

to consider methodological constraints (Hughes et al., 2018). For instance at low phytoplankton abundance, the fluorescence signal 20 

becomes too noisy for calculation of parameters. Moreover, blank correction is essential for retrieving accurate FRRf data (Cullen 

and Davis, 2003). FRRf measurements are affected by the interference of colored dissolved matter which can lead to under or 

overestimation of some parameters (like Fv/Fm; Cullen and Davis, 2003). The blank correction is a manual measurement and should 

be done regularly and at least when abiotic conditions change (Hughes et al., 2018). For monitoring purposes, it is important to take 

into account diurnal variability. Diurnal trends make extrapolation to daily rates challenging. Most photophysiological parameters 25 

we measured showed diurnal trends (Fig. 5). The diurnal trend is dictated by the phytoplankton cell cycle, a circadian oscillator and 

photophysiological response to varying irradiance (Suzuki and Johnson, 2001; Cohen and Golden, 2015; Schuback et al., 2016). 

Phytoplankton use photophysiological plasticity to minimize photodamage and optimize growth under fluctuating irradiance 

(Schuback et al., 2016; Behrenfeld et al., 2002). The electron requirement for carbon fixation is also subject to diurnal variation 

(Schuback et al., 2016; Lawrenz et al., 2013; Raateoja, 2004). To interpret spatial variability separately from temporal variability 30 

and to provide a more reliable estimate of gross primary productivity, Schuback et al. (2016) suggest a correction with normalized 

Stern-Volmer quenching (NPQNSV). This approach needs further research, for example by using a Lagrangian approach where the 

photosynthetic activity of the same population is followed during the day. Until a reliable correction method has been established, 

a monitoring program including photophysiology should account for diurnal variability, for instance by using only measurements 

collected in a certain timeframe or from buoys. Despite the limitations of GPP estimates by variable fluorescence, our results clearly 35 

show large spatial variability in gross primary production that is not explained by diurnal variability. This spatial heterogeneity is 

not fully captured by sampling at the standard low-resolution monitoring stations, showing the added value of our approach.  

 

Phytoplankton biomass does not necessarily reflect primary productivity, as high grazing pressure can keep biomass low while 

production is high. This is clearly visualized by the lack of resemblance between patterns in cell numbers (Fig. 3 a-d) and gross 40 

primary productivity (Fig. 6). Gross primary productivity estimates by FRR fluorometry are based on measurements of the first step 

of photosynthesis; the efficiency at which photons are captured and electrons transferred. However, to interpret gross primary 

productivity in an ecological or biogeochemical meaningful way, the FRR units of electrons per unit time need to be converted to 
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carbon units. In general, gross photosynthesis correlates well with photosynthetic oxygen evolution (Suggett et al., 2003), and 

multiple studies have shown a good correlation between 14C-derived estimates of primary productivity and FRRf-derived estimates 

using a constant conversion factor (Melrose et al., 2006; Kromkamp et al., 2008). However, in reality, this parameter is not a 

constant, as along the pathway from electron to carbon atom electrons are consumed by other cell processes (Flameling and 

Kromkamp, 1998; Halsey and Jones, 2015; Schuback et al., 2016). As the cell processes from photon absorbance to carbon 5 

assimilation are known to vary with abiotic conditions, we expect that identification of biogeographic regions can aid in predicting 

regional Фe,C (Lawrenz et al., 2013).  Calibration with other methods, such as concurrent C14 of C13 incubations, could help to 

better understand the processes from electron excitation to carbon fixation. However, these methods introduce other uncertainties; 

they measure a productivity in between net and gross primary productivity, depending on the incubation time and growth rate of the 

phytoplankton (Halsey and Jones, 2015). For now, a reliable GPP estimate in carbon units from FRR fluorometry requires more 10 

research and estimates provide relative rather than qualitative values. Despite its limitations, the ability to study life phytoplankton 

rates without long-term incubation effects, makes the method promising. Additionally, the high sampling resolution allows for 

identification of extra sampling points based on real-time projections, opening up early warning methodologies. For example, in the 

April cruise both Noordwijk 70 and Terschelling 235 km show high gross primary productivity, but in between both high and low 

productivity rates occur which are not detected with the current sampling program (Fig. 6). Extrapolation of surface measurements 15 

to water column estimates is required to assess the carrying capacity of the ecosystem and the contributions to biogeochemical 

cycles. Surface water measurements are only a good reflection of the water column when mixed layer depth is deeper than the 

euphotic zone. Stratification or mixed layer depth shallower than the euphotic zone can result in subsurface chlorophyll maximum 

layers and significantly different phytoplankton community (Latasa et al., 2017). Only frequent CTD casts equipped with PAR 

sensor can determine the vertical heterogeneity, mixed layer depth and the light extinction in the water column.  20 

 

High-resolution methods such as the FRRf and the flowcytometer result in a multitude of parameters. Cluster methods can be helpful 

in bringing together these parameters for interpretation. The spectral clustering method used in this study was originally designed 

to detect phytoplankton blooms and understanding the involved dynamics (Rousseeuw et al., 2015; Lefebvre and Poisson-Caillault, 

2019). This spectral cluster analysis on parameters from the FRRf and the flowcytometer allowed for the identification of distinct 25 

phytoplankton communities or biogeographic regions that differed per cruise. A clear distinction between phytoplankton 

communities of the coastal zone and offshore regions could be made in all months, except May. In two cruises, in April and June, 

it was indeed possible to identify regions with distinct phytoplankton communities. During the cruise in May, the clustering did not 

result in clear mesoscale patterns but was heterogeneous over the whole Dutch North Sea. Unfortunately, the model was not able to 

visualize all spatial heterogeneity. For instance, in April off the coast from Terschelling a distinct community with a high abundance 30 

of phycoerythrin-containing taxa did not result in a separate cluster. Additionally, temporal variation (i.e. day-night differences) 

was interfering with the spatial clustering in August. So, although such models are useful for visualization and following changes 

in spatial heterogeneity, input and output need to be critically evaluated before implementation in monitoring programs. To test 

whether the differences between months result from seasonal variation or other factors, results over multiple years and additional 

seasonal cruises need to be made to better characterize the heterogeneity of the phytoplankton community structure.  35 

 

The purpose of a phytoplankton monitoring program is to monitor the presence of functional types of phytoplankton, including the 

harmful taxa, the carrying capacity of the ecosystem and changes in biogeochemical cycling. The objective of this study was to 

evaluate the use of FRR fluorometry and flowcytometry for such monitoring purposes. The four conducted cruises spread over 5 

months offered a wide variety of environmental conditions and phytoplankton community states, which the utilized methods were 40 

able to visualize. Inclusion of high-resolution methods in monitoring programs allows for analysis of finer scale events. Furthermore, 

it allows for analysis of living phytoplankton and is thereby able to measure rates and avoid effects of preservation and storage of 

samples. Another advantage is that high-resolution methods allow for easier comparison between countries, once common protocols 
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are established. Nevertheless, low-resolution methods remain a necessity for more detailed taxonomic analysis, extrapolation over 

the entire water column, to calibrate and to correct for blanks. Data analysis is a challenge when implementing high-resolution 

methods, where cluster methods could simplify and standardize analysis. The cluster analysis of flowcytometric data has potential 

for improvement to increase the informative value of the method. Especially identification of phytoplankton clusters with a 

functional quality, such as nitrogen fixers, calcifiers, DMS-producers or clusters with high food quality, would be helpful for 5 

interpretation of ecosystem dynamics and biogeochemical fluxes. Regarding the FRRf, the main challenge is converting the electron 

transport rate to gross primary productivity in carbon units. Further research in these topics would benefit the implementation of 

these methods into monitoring protocols. Furthermore, it is important to account for diurnal patterns in monitoring set-up to be able 

to distinguish between diurnal and spatial variability. Possibly the diurnal variability could be modeled, but more studies with a 

Langragian based approach are needed for a better understanding of the impact of diurnal variability in the data. The combination 10 

of high-resolution in situ methods with remote sensing has the potential to further increase the spatial and temporal scale. Estimating 

biological parameters using remote sensing is challenging, especially in turbid, case-2 waters (Gohin et al., 2005; van der Woerd et 

al., 2008). Therefore, in vivo measurements are required to calibrate remote sensing based models and we suggest that automated 

flowcytometry and production measurements based on FRRf methodology can fulfill this role. Overall, our proposed high-resolution 

measurement set-up has the potential to improve phytoplankton monitoring by supplementing existing low-resolution monitoring 15 

programs. 
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