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General	comments		
	
The	paper	describes	a	method	for	producing	efficient	estimates	of	skin	and	
subskin	SST	using	the	Canonical	Correlation	Analysis	(CCA)	statistical	technique.	
This	is	described	in	the	context	of	observation	operators	which	are	used	in	data	
assimilation	schemes	to	provide	information	about	the	model-observation	
misfits	in	order	to	correct	the	model.	The	aim	of	the	paper	is	to	make	better	use	
of	satellite	SST	observations	in	data	assimilation	systems	compared	to	most	
existing	operational	systems	by	improving	the	way	the	diurnal	cycle	of	SST	is	
represented.	The	work	is	therefore	valuable	and	the	paper	is	well	written.		
	
Near	the	end	of	the	last	section,	there	is	a	reference	to	another	paper	submitted	
by	Korres	et	al.	which	appears	to	address	a	very	similar	topic	by	the	same	list	of	
authors.	This	other	paper	should	be	referred	to	in	the	introduction	and	the	aims	
of	the	two	papers	differentiated	clearly.	It	might	not	be	possible	to	address	some	
of	the	comments	below	without	using	results	presented	in	the	Korres	et	al.	
paper.	If	that	is	the	case	perhaps	the	authors	should	consider	merging	the	papers	
or	having	a	two	part	paper.		
	
The	SOSSTA	project	is	presented	in	three	separate	papers.	The	first	
(Pimentel	et	al.	2019)	describes	the	modelling	of	the	diurnal	cycle	in	the	
Mediterranean	Sea.	The	second	(this	paper)	describes	the	method	of	
building	an	observation	operator	by	parameterising	the	results	of	an	
external	model.	It	uses	the	dataset	from	the	first	paper	as	an	example	to	
demonstrate	the	method.	The	third	paper	(Korres	et	al.,	2019)	uses	the	
GOTM	datasets	and	the	method	presented	in	this	paper	and	applies	it	in	the	
POSEIDON	data	assimilation	system.	We	believe	that	the	topics	are	
sufficiently	different	and	self-contained	to	warrant	publish	them	as	
separate	papers.	Moreover,	we	are	hoping	to	publish	additional	papers	
such	as	Korres	et	al.,	2019	that	document	the	application	of	the	SOSSTA	
operator	in	other	models/systems.	
	
Specific	comments		
	
1.	The	paper	describes	the	method	in	a	general	sense	with	SST	as	a	“use	case”.	It	
might	help	the	flow	of	the	paper	if	the	use	of	the	method	for	SST	was	more	
central	to	the	paper	so	that,	for	instance,	the	introduction	would	have	more	
information	about	the	literature	on	SST	analysis	and	data	assimilation.	The	way	
it	is	currently	structured,	more	review	is	needed	on	the	various	other	types	of	
meteorological	and	oceanographic	observation	operators	used,	for	instance	
radiative	transfer	models.		
	



The	technique	for	building	a	parameterisation	using	canonical	correlation	
analysis	on	an	existing	dataset	is	very	general	and	can	be	applied	in	many	
situations.	To	emphasise	the	general	nature	of	the	method	we	decided	to	
first	describe	the	method	and	then	focus	on	one	specific	application.	
	
2.	The	scheme	is	not	tested	in	a	data	assimilation	system	(although	that	appears	
to	be	done	in	the	Korres	et	al.	paper).	Would	the	aim	of	a	scheme	using	the	CCA	
method	be	to	correct	for	errors	in	the	diurnal	cycle	of	SST	at	1	m	depth	using	all	
available	satellite	SST	measurements,	or	to	correct	the	model’s	foundation	SST?		
	
The	aim	of	the	observation	operator	is	to	provide	the	best	possible	
estimate	of	SST	from	the	model	background,	based	on	the	actual	
atmospheric	conditions.	The	correction	to	the	model	temperature	depends	
somewhat	on	the	modelling	of	the	model	covariance	in	the	data	
assimilation	system.	In	general	the	correction	will	affect	all	the	layers	that	
in	turn	are	affected	by	diurnal	variability	
	
3.	There	are	shortcomings	in	the	design	of	the	experiments	to	test	the	
performance	of	the	CCA	method	in	section	4.3.	The	validation	is	performed	over	
the	same	period	as	the	model	data	used	to	generate	the	CCA	OO,	and	then	
compared	to	the	same	model	data.	There	is	no	comparison	of	the	CCA	results	to	
real	observations.		
	
The	purpose	of	Sect.	4.3	is	to	show	how	the	simplified	parameterisation	of	
the	CCA	method	is	able	to	approximate	the	full	GOTM	model.	As	the	
training	dataset	contains	O(1000)	profiles	and	the	parameterisation	has	
only	O(10)	parameters,	there	is	no	risk	of	overfitting.	
	
Nevertheless,	we	agree	that	a	demonstration	of	the	method	on	a	separate	
dataset	would	make	the	message	of	Sect.	4.3	stronger	and	remove	doubts	
that	people	may	have	about	the	method.	We	have	decided	to	revise	Sect.	4.3	
and	to	use	an	independent	dataset	for	the	comparisons.	This	independent	
dataset	is	obtained	by	withholding	every	other	profile	(along	the	zonal	
direction)	in	the	input	dataset	from	the	calculation	of	the	CCA	OO.	
	
4.	The	comparisons	with	other	SST	assimilation	methods	described	in	section	5	
assume	that	the	GOTM	model	and	the	atmospheric	forcing	driving	it	are	correct.	
If	the	skin	model	in	GOTM	had	a	bias	for	instance,	could	it	be	worse	to	use	the	
CCA	OO	based	on	that	model	than	the	other	methods	tested?	A	more	
independent	way	of	assessing	the	CCA	OO	method	based	on	GOTM	is	needed,	e.g.	
by	comparing	to	real	observations.		
	
This	is	a	valid	point	and	we	fully	agree.	We	have	revised	Sect.	5	of	the	paper	
and	the	comparison	with	other	methods	is	now	performed	using	the	SEVIRI	
L3C	dataset	of	subskin	temperature.	The	performance	metrics	are	
calculated	using	only	the	withheld	profiles,	as	described	above	at	point	3.	
	
5.	There	is	not	any	discussion	of	the	need	for	the	adjoint	of	the	observation	
operator	in	data	assimilation	(which	is	obviously	very	efficient	when	using	the	



CCA	method).		
	
We	have	rephrased	the	final	comment	of	Sect.	3	to	be	more	inclusive	of	4D	
variational	schemes:	"The	CCA	OO	is	straightforward	to	implement	in	this	
scheme,	since	for	H'	and	its	adjoint	H'T	it	follows	that:	H'	=	MT,	H'T	=	M"	
	
6.	The	GOTM	dataset	used	for	training	the	CCA	is	a	model	and	not	based	on	
observations.	The	work	of	Pimentel	et	al.	2018	describes	how	the	model	
represents	the	skin	and	subskin	SST,	but	some	more	information	is	required	
here	to	justify	its	use.	A	brief	description	of	how	the	model	has	been	made	to	
represent	the	skin	and	subskin	would	help	(the	highest	level	of	1.5	cm	is	not	at	
the	same	depth	as	the	skin	or	subskin).	A	summary	of	the	assessment	of	the	
model	compared	with	real	observations	is	also	needed	here,	otherwise	there	is	
no	link	to	the	real	world.		
	
We	have	expanded	Sect.	4.1	and	included	the	following:	“The	subskin	SST	
represents	the	temperature	at	the	base	of	the	conductive	laminar	sub-layer	
of	the	ocean	surface;	for	practical	purposes	it	is	represented	by	the	
temperature	of	the	top	model	layer	of	GOTM	(1.5	cm).	The	conductive	sub-
layer	of	the	air-sea	interface,	associated	with	the	cool-skin	effect,	is	
parameterised	and	dynamically	computed	within	GOTM	to	produce	a	
modelled	skin	SST.	Further	details	are	provided	in	Pimentel	et	al.,	(2019)”	
	
Technical	comments		
	
1.	Pg	2,	line	5.	The	wording	“are	not	or	not	sufficiently	modelled”	is	a	bit	
confusing	on	first	reading.	This	lack	of	process	representation	in	the	model	is	
often	included	in	the	representation	error	in	data	assimilation	systems.	A	
discussion	on	the	relationship	between	the	complexity	of	the	observation	
operator,	and	the	inclusion	of	representation	error	in	the	R	matrix	would	be	
good	here.		
	
We	did	not	include	a	discussion	of	the	representation	error	as	we	felt	that	
this	would	be	beyond	the	scope	of	this	paper.	You	are	right	that	missing	or	
insufficiently	modelled	processes	should	be	taken	into	account	in	the	
covariance	matrix.	However,	increasing	the	uncertainty	is	not	an	
alternative	to	actually	modelling	the	missing	processes.	This	is	especially	
true	for	processes	that	are	not	random	but	that	create	strong	systematic	
biases,	such	as	the	diurnal	cycle	of	SST	that	we	discuss	in	Sect.	4.	
	
We	have	included	the	following	paragraph	in	Sect.	4:	“Errors	due	to	e.g.	
limited	spatial	resolution	or	unrepresented	processes	are	generally	
included	in	the	representation	error.	Representation	errors	have	been	
extensively	discussed	within	ocean	applications	(Oke	and	Sakov,	2008;	
Janjíc	et	al.,	2018).	However,	the	diurnal	variability	of	skin	SST	represents	a	
potentially	systematic	error	that	requires	a	proper	treatment	rather	than	
just	the	increase	the	representation	component	of	the	observational	
error.”	
	



2.	Pg	2,	line	6	-7.	Does	the	cost	of	the	“second”	model	depend	on	the	observation	
number	as	implied	here,	or	the	(horizontal)	model	grid	size?	The	cost	of	these	
models,	e.g.	a	diurnal	model,	is	cited	as	one	of	the	justifications	for	implementing	
the	CCA	method.	It	is	not	obvious	that	a	simple	diurnal	model	is	that	expensive	
compared	to	the	cost	of	the	full	GCM.		
	
The	use	of	an	observation	operator	scales	with	the	number	of	observations	
to	be	assimilated.	When	talking	about	the	computational	cost	we	are	
referring	to	state	of	the	art	diurnal	models	such	as	the	presently	used	
GOTM.	Of	course	simpler	models/parameterisations	exist	that	are	less	
costly	to	run,	in	fact	the	parameterisation	used	in	the	SOSSTA	operator	
could	be	regarded	as	such	a	model.	
	
3.	Pg2,	line	7.	“needs”	to	“need”.		
	
Thank	you,	it	has	been	corrected.	
	
4.	Pg	3,	eq	(3).	Normally	matrices	would	be	in	uppercase	but	here	you	start	using	
lowercase	letters.	This	is	particularly	confusing	when	you	use	uppercase	and	
lowercase	of	the	same	letters	(e.g.	u	and	v).		
	
Unfortunately,	the	common	notation	for	canonical	coordinates	and	for	
singular	value	decomposition	both	use	the	letter	v.	We	understand	that	this	
may	be	confusing	and	have	decided	to	rename	the	canonical	variables	F	
and	G.	This	removes	the	double	usage	of	letters	and	allows	us	to	capitalise	
all	matrices.		
	
5.	What	are	the	implications	of	eq	(11)?	It	is	taking	into	account	the	biases	in	the	
training	observations	and	model.	These	presumably	are	not	constant	in	time	so	
how	can	this	be	applied	in	practice?	There	is	no	description	of	how	these	values	
are	calculated	in	section	4,	or	their	magnitude.		
	
As	the	aim	of	CCA	is	to	find	correlations	between	datasets,	it	only	considers	
variations	of	the	variables	with	respect	to	their	mean	value.	The	CCA	
procedure	subtracts	the	mean	of	each	level,	so	the	matrix	M	by	itself	would	
only	relate	temperature	anomalies	to	each	other.	The	offset	factor	K	adds	
the	mean	values	in	order	to	relate	temperature	values	instead	of	
anomalies.	It	does	not	represent	a	form	of	bias,	even	in	a	perfect	world	K	is	
not	expected	to	be	0.	The	calculation	is	done	according	to	Eq.	11,	using	the	
mean	temperature	values	of	the	two	observation	levels	(!)	and	the	mean	
values	of	each	model	level	(!).	
	
6.	Pg	7.	Where	does	eq.	(14)	come	from?		
	
H’	is	the	tangent-linear	version	of	H,	as	defined	in	Eq.	13.	
	
7.	Pg	5,	1st	paragraph.	There	is	no	description	of	the	near-surface	temperature	
structure	to	introduce	the	reader	to	terms	like	“skin”	and	“subskin”.		
	



We	have	rephrased	and	expanded	the	second	paragraph	of	Sect.	4	to	make	
the	definition	of	skin	and	subskin	more	clear:	“The	different	types	of	
sensors	used	on	satellites	probe	the	ocean	temperature	at	different	depths.	
Infrared	(IR)	sensors	measure	the	temperature	at	about	10um,	a	layer	that	
is	referred	to	as	the	ocean	skin.	Microwave	(MW)	sensors	on	the	other	
hand	measure	the	temperature	of	the	layer	below	that,	the	subskin,	with	a	
depth	of	about	1mm.	This	is	well	below	the	vertical	resolution	of	an	OGCM,	
while	these	layers	are	strongly	affected	by	the	atmospheric	conditions.	[…]”	
	
8.	Pg	5,	line	11.	“At	the	same	time.	.	.”.	Not	always	at	the	same	time.		
	
Rephrased:	"At	the	same	time,	wind	can	mix	…"	
	
9.	Pg	5,	line	13.	“straightforward	assimilation”.	I	think	you	mean	here	that	it	is	a	
problem	when	the	observations	contain	significant	diurnal	cycle	changes	at	the	
skin	or	subskin,	and	that	is	not	accounted	for	when	comparing	the	observation	
with	the	model.	A	straightforward	approach	could	be	to	remove	those	
observations	from	the	assimilation	as	you	mention	later	on.		
	
By	"straightforward	assimilation"	we	mean	assimilating	the	observations	
into	the	model	without	rejecting	or	correcting	observations	that	are	
affected	by	the	diurnal	cycle.	
	
10.	Pg	6,	line	8.	You	take	the	daily	mean	value	for	wind	and	insolation.	How	good	
is	this	for	determining	the	magnitude	of	the	diurnal	cycle?		
	
Using	the	mean	values	is	of	course	an	approximation,	but	one	that	has	been	
used	throughout	the	literature	(e.g.	Gentemann,	2003)	for	describing	the	
diurnal	cycle.	The	dependence	of	the	magnitude	of	the	diurnal	signal	on	the	
wind	and	insolation	categories	of	the	CCA	OO	is	shown	in	Fig.	1.		
	
The	parameterisation	of	the	CCA	OO	bases	the	(sub)skin	temperature	
estimate	mostly	on	the	shape	of	the	temperature	profile	in	the	upper	ocean	
layers.	The	categorisation	in	wind	and	insolation	serves	to	group	together	
similar	profiles	to	allow	for	a	better	parameterisation.	The	use	of	the	mean	
values	is	of	course	an	approximation,	but	as	can	be	seen	from	Fig.	1	it	
works	reasonably	well	to	separate	the	different	magnitudes	of	the	SST	
diurnal	cycle.	
	
11.	Fig	1.	What	depth	is	the	diurnal	cycle	that	is	plotted?		
	
Added	"at	the	subskin	level".	
	
12.	Pg	6,	line	11.	How	do	you	get	skin	and	subskin	estimates	from	GOTM?		
	
The	subskin	SST	represents	the	temperature	at	the	base	of	the	conductive	
laminar	sub-layer	of	the	ocean	surface;	for	practical	purposes	we	have	
represented	this	by	the	temperature	of	the	top	model	layer	of	GOTM	
(1.5cm).		The	conductive	sub-layer	of	the	air-sea	interface,	associated	with	



the	cool-skin	effect,	is	parameterized	and	dynamically	computed	within	
GOTM	to	produce	a	modelled	skin	SST.		Further	details	are	provided	in	
Pimentel	et	al.,	2019.			
	
13.	Sec	4.3,	second	paragraph.	Wouldn’t	it	be	fairer	to	do	the	validation	of	the	
CCA	on	a	different	time-period	to	the	one	used	to	build	the	statistics	for	the	CCA	
OO?		
	
The	results	in	this	section	have	been	redone	using	profiles	that	were	
withheld	from	the	calculation	of	the	CCA.	See	also	the	answer	to	specific	
comment	3.	
	
14.	Section	5	is	a	comparison	of	the	CCA	OO	to	other	methods.	I	think	its	title	
should	be	changed.		
	
The	title	of	the	section	has	been	changed	to	"Performance	and	discussion"	
	
15.	Pg	10,	line	2.	Waters	et	al	(2015)	assimilate	data	during	the	day	where	the	
wind	speed	is	high.		
	
Indeed,	Waters	et	al.	(2015)	assimilates	at	nighttime	and	also	during	high	
winds.	We	have	clarified	this	in	the	text	and	included	also	a	figure	showing	
the	comparison	between	SOSSTA	and	the	upper	model	level	method	in	the	
afternoon.	
	
16.	Last	paragraph	section	5.	The	last	sentence	of	this	paragraph	describes	the	
method	that	should	be	used	in	the	paper	to	assess	the	performance	of	the	CCA	
OO.		
	
In	the	revised	version	of	the	manuscript	the	validation	and	comparison	
with	other	methods	is	only	done	using	profiles	that	are	withheld	from	the	
operator	calculation.	
	
17.	Pg	11,	line	24.	Can	you	include	a	reference	for	the	magnitude	of	the	diurnal	
cycle?	
	
In	this	location	we	have	added	a	reference	to	Pimentel	et	al.	2019.	The	
discrepancy	discussed	at	this	point	is	between	the	upper	model	level	and	
the	(sub)skin	temperature,	i.e.	!"#(!!"#$ − !!.!").	As	the	model	captures	
some	of	the	variability,	this	is	typically	smaller	than	the	magnitude	of	the	
diurnal	cycle	discussed	in	literature	!!"#$,!"# − !!"#$,!"#.	
	
Furthermore,	we	have	added	to	Sect.	4	where	the	amplitude	is	discussed:	
“Under	favourable	conditions	this	amplitude	is	typically	of	the	order	of	a	
few	degrees	(see	e.g	Flament	(1994)),	but	values	as	high	as	6˚C	have	been	
observed	(Merchant,	2008).”	
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GENERAL	COMMENTS	
	
This	paper	essentially	present	a	method	to	assimilate	satellite	SSTs	using	
canonical	correlation	analysis	(CCA);	a	statistical	technique	that	permits	to	
construct	an	appropriate	observation	operator	to	project	the	state	variables	of	a	
numerical	model	onto	observed	variables.	In	this	case	the	method	is	used	to	
correctly	assimilate	measurements	(satellite	skin	sea	surface	temperatures)	
which	are	not	included	in	the	set	of	those	simulated	by	the	model	(the	
temperature	of	the	first	model	layer)	but	which	are	physically	linked	to	them.	
Based	on	a	previous	paper	of	Pimentel	et	al	(2018)	a	1D	model	(GOTM)	is	used	to	
simulate	high-resolution	temperature	profiles	from	which	it	is	possible	to	extract	
temperature	at	the	model	levels	(the	state	variable	of	the	model)	and	“observed”	
temperatures	at	the	sub-skin	level.	The	skin	temperature	is	obtained,	from	the	
sub-skin	temperature,	using	the	Fairall	1996.	CCA	OO	is	based	on	these	simulate	
data	rather	than	on	real	measurements.		
	
Considering	that	skin	temperature	measurements	are	very	rare,	the	idea	to	build	
a	matchup	dataset	using	a	specialized	model	is	quite	interesting	and	represents	a	
good	compromise	between	the	two	extremes	of	using	only	very	few	in	situ	data	
or	assimilate	satellite	skin	or	sub-skin	SSTs	as	if	the	they	were	bulk	SSTs.		
	
The	validation	is	based	on	the	evaluation	of	ability	of	SOSSTA	in	reproducing	the	
GOTM	derived	skin	and	sub-skin	temperatures	(fig.	3).	SOSSTA	is	presented	in	
what	appears	to	be	the	companion	paper	of	this	paper	still	submitted	to	Ocean	
Sciences	by	the	same	authors.	Probably,	the	author	should	better	clarify	the	
relation	between	the	two	papers,	and	rather	than	merging	the	two,	indicate	in	
some	way	that	they	are	part	I	and	II	of	a	single	subject.		
	
The	SOSSTA	project	is	presented	in	three	separate	papers.	The	first	
(Pimentel	et	al.	2019)	describes	the	modelling	of	the	diurnal	cycle	in	the	
Mediterranean	Sea.	The	second	(this	paper)	describes	the	method	of	
building	an	observation	operator	by	parameterising	the	results	of	an	
external	model.	It	uses	the	dataset	from	the	first	paper	as	an	example	to	
demonstrate	the	method.	The	third	paper	(Korres	et	al.,	2019)	uses	the	
GOTM	datasets	and	the	method	presented	in	this	paper	and	applies	it	in	the	
POSEIDON	data	assimilation	system.	We	believe	that	the	topics	are	
sufficiently	different	and	self-contained	to	warrant	publish	them	as	
separate	papers.	Moreover,	we	are	hoping	to	publish	additional	papers	
such	as	Korres	et	al.,	2019	that	document	the	application	of	the	SOSSTA	
operator	in	other	models/systems.	
	
One	last,	more	general	comment	is	about	the	fact	that	implications	for	the	



diurnal	cycle	are	well	discussed	in	the	paper	also	in	relation	with	satellite	data	in	
section	4	but	geo-stationary	satellite,	and	SEVIRI	in	particular,	are	never	
mentioned	while	they	should	represent	an	interesting	source	of	information	for	
the	assessment	of	the	proposed	assimilation	procedure.	However	Seviri	SSTs	are	
distributed	as	subskin-sst.	This	is	clearly	declared	in	the	MSG	SST	reprocessing	
ATBD	v1.1,	31/5/2016	Algorithm	Theoretical	Basis:	“Since	the	coefficient	of	the	
SST	algorithm	are	established	using	in-situ	measurements,	the	retrieved	SST	is	
considered	to	be	the	sub-skin	SST.	One	could	apply	a	-0.17C	(Donlon	et	al.,	2002)	
to	get	the	skin	SST.	However	this	offset	is	only	a	very	rough	conversion	term	
valid	at	largescale	for	wind	speed	exceeding	6	m/sec.”	(osi-saf	v1.1,	31/5/2016).	
If	this	sentence	is	correct	one	should	verify	if	IR	SSTs	are	to	be	considered	skin	or	
sub-skin	SSTs.		
	
Donlon,	C.	J.,	Minnett,	P.	J.,	Gentemann,	C.,	Nightingale,	T.	J.,	Barton,	I.	J.,	Ward,	B.,	
and	Murray,	M.	J.	(2002).	Toward	improved	and	validation	of	satellite	and	sea	
surface	and	skin	temperature	and	measurements	and	for	climate	and	research.	
Journal	of	Climate,	15:353–359.		
	
Following	your	suggestion	we	have	included	a	paragraph	about	SEVIRI	in	
the	introduction	of	Sect.	4:	“One	of	the	most	important	sources	of	SST	
observations	is	the	Spinning	Enhanced	Visible	and	Infrared	Imager	
(SEVIRI)	instrument	onboard	the	Meteosat	satellites	of	the	second	
generation.	As	these	are	geostationary	satellites,	SEVIRI	can	provide	
continuous	measurements	of	the	same	area	with	a	15-minute	temporal	
resolution.	Although	the	IR	imager	is	sensitive	to	skin	temperature,	the	
calibration	algorithm	of	SEVIRI	corrects	for	the	cool	skin	bias	and	the	
resulting	SST	products	should	be	considered	as	subskin	temperature	
(Saux-Picart	et	al.,	2018).	For	wind	speeds	greater	than	6	m/s	the	skin	
temperature	may	be	calculated	as	Tskin	=	Tsubskin	–	0.17˚C	(Donlon,	
2002),	but	this	is	only	an	approximation.”	
	
Overall	I	would	say	that	it	is	a	good	paper	that	deserves	to	be	published	on	Ocean	
Sciences	doing	some	minor	revisions	as	suggested	in	this	review.		
	
SPECIFIC	COMMENTS:		
	
Page	5,	section	4	Use	case:	satellite	SST,	The	authors	write:	“Although	diurnal	
variability	is	included	to	some	extent	(Marullo	et	al.,	2014),	the	vertical	
resolution	of	the	OGCMs	is	still	insufficient	to	fully	resolve	the	variability	of	the	
skin	and	subskin	ocean	temperature”,	To	resolve	Skin	a	sub-skin	is	only	matter	
of	resolution	or	some	more	physics	is	still	needed?		
	
Vertical	resolution	is	of	key	importance,	but	more	physics	is	also	needed.		
For	example,	the	physics	of	the	conductive	skin-layer	is	diffusion-
dominated.	Pimentel	et	al,	2019,	also	explore	the	influence	of	the	
penetration	of	solar	radiation	within	the	near	surface	as	well	as	the	sea	
surface	albedo.		There	are	feedbacks	in	that	an	improved	resolution	of	SST	
improves	air-sea	heat	flux	calculations.			
	



Page	5	section	4.1:	“The	top	75	m	of	the	water	column	is	resolved	using	122	
vertical	layers	with	fine	resolution	near	the	surface	and	gradually	becoming	
coarser	with	depth.	The	uppermost	1	m	contains	a	total	of	21	layers,	with	the	
highest	level	at	1.5	cm	depth”.	Considering	that	1.5	cm	is	not	enough	to	resolve	
the	skin	and	sub-skin	can	the	author	justify	the	choice	of	122	vertical	levels	with	
the	highest	level	at	1.5	cm	depth?	Is	this	due	to	computation	capabilities	or,	for	
some	numerical	or	physical	reason,	it	makes	no	sense	to	use	higher	resolutions?		
	
The	subskin	SST	represents	the	temperature	at	the	base	of	the	conductive	
laminar	sub-layer	of	the	ocean	surface;	for	practical	purposes	we	have	
represented	this	by	the	temperature	of	the	top	model	layer	of	GOTM	
(1.5cm).		The	conductive	sub-layer	of	the	air-sea	interface,	associated	with	
the	cool-skin	effect,	is	parameterized	and	dynamically	computed	within	
GOTM	to	produce	a	modelled	skin	SST.		Further	details	are	provided	in	
Pimentel	et	al.,	2019.			
	
There	is	flexibility	within	GOTM	to	explore	even	higher	resolution,	
although	it	is	not	clear	whether	this	would	be	justified.		Additional	model	
layers	can	be	included,	although	this	increases	data	handling	and	storage	
needs.		
	
Page	6	section	4.2:	“Under	certain	conditions	the	ocean	skin	may	even	cool	down	
below	the	bulk	temperature.	“.	“certain	conditions”	are	related	to	latent	heat	loss.		
	
Rephrased	"Due	to	latent	heat	loss,	the	ocean	skin	may	even	cool	down	
below	the	bulk	temperature"	
	
Page	10,	section	5,	lines	7-8.	“This	can	be	explained	by	the	cool-skin	effect	that	is	
included	in	GOTM	and	which	plays	a	role	also	at	nighttime”.	Here	you	can	cite	
figure	4	of	Donlon	et	al	2002	(see	reference	above),		
	
In	the	revised	version	the	comparison	with	skin	temperature	has	been	
removed,	as	SEVIRI	provides	only	subskin.	
	
Section	6,	Discussion.	The	skill	of	CCA	OO	respect	to	some	other	method	is	
measured	using	GOTM	as	a	reference.	As	I	already	noted	in	the	general	
comments	this	choice	is,	in	some	sense,	obliged	by	the	scarcity	of	in	situ	skin	or	
sub-skin	SST	measurements.	But,	what	about	the	possibility	to	use	meteosat	data	
as	a	reference?		
	
In	the	revised	version	of	the	paper	we	are	calculating	the	skill	of	the	CCA	
OO	compared	to	other	methods	using	the	SEVIRI	L3C	dataset	of	subskin	
temperature.	To	obtain	an	independent	dataset	we	withhold	every	other	
profile	(along	the	zonal	direction)	in	the	input	dataset	from	the	calculation	
of	the	CCA	OO.	The	performance	metrics	are	calculated	using	only	the	
withheld	profiles.	
	
Bulk	SSTs	at	about	20	cm	of	depth	are	routinely	measured	by	drifters.	Drifter	
SSTs	are	used	to	continuously	assess	the	validity	of	satellite	SST	products,	



distributed	by	agencies	or	the	Copernicus	Marine	Service	(CMEMS).	Can	the	
proposed	CCA	OO	method	also	contribute	to	adjust	drifter	SSTs	to	skin	or	sub-
skin	temperature	making	more	correct	the	comparison	with	the	satellite	
estimates?		
	
We	have	shown	that	the	CCA	OO	method	can	be	used	to	project	modelled	
upper-ocean	temperature	profiles	onto	the	skin	and	subskin	temperature.	
We	believe	that	the	same	approach	could	also	be	applied	to	temperature	
profiles	measured	by	drifters.	
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Abstract. Observation operators (OOs) are a central component of any data assimilation system. As they project the state

variables of a numerical model into the space of the observations, they also provide an ideal opportunity to correct for effects

that are not or not sufficiently described by the model. In such cases a dynamical OO, an OO that interfaces to a secondary and

more specialised model, often provides the best results. However, given the large number of observations to be assimilated in

a typical atmospheric or oceanographic model, the computational resources needed for using a fully dynamical OO mean that5

this option is usually not feasible. This paper presents a method, based on canonical correlation analysis (CCA), that can be

used to generate highly-efficient statistical OOs that are based on a dynamical model. These OOs can provide an approximation

to the dynamical model at a fraction of the computational cost.

One possible application of such an OO is the modelling of the diurnal cycle of sea surface temperature (SST) in ocean

general circulation models (OGCMs). Satellites that measure SST measure the temperature of the thin uppermost layer of the10

ocean. This layer is strongly affected by the atmospheric conditions and its temperature can differ significantly from the water

below. This causes a discrepancy between the SST measurements and the upper layer of the OGCM, which typically has a

thickness of around 1 m. The CCA OO method is used to parametrise the diurnal cycle of SST. The CCA OO is based on

an input dataset from the General Ocean Turbulence Model (GOTM), a high-resolution water column model that has been

specifically tuned for this purpose. The parameterisations of the CCA OO are found to be in good agreement with the results15

from GOTM and improve upon existing parameterisations, showing the potential of this method for use in data assimilation

systems.

1 Introduction

Data assimilation (DA) strives to improve the forecast skill of a numerical model by combining the model with observations.

Observations are incorporated into the model by applying a series of corrections to the internal state of the model. As the20

state variables of a numerical model are usually not observed directly, this procedure requires an observation operator (OO)

to project the model state variables onto the variable that is observed. The difference between the observation and the model

prediction, the so-called innovation, forms the basis for calculating the correction to the model state. The accuracy of the OO

1



is paramount in this process: any bias in the projection will lead to a bias in the innovation and therefore result in a biased

correction to the model state. For this reason, bias correction procedures have been built considering not only systematic errors

in observations but also in observation operators (see e.g. Harris and Kelly (2001), for satellite radiance data).

Many different types of OO exist. In its simplest form, an OO could just select one of the state variables in a point near to

the observation or, perhaps, perform an interpolation. More complex OOs may include corrections for processes that influence5

the observation, but are not or not sufficiently modelled. Ultimately one could even consider a dynamical OO that wraps a

second numerical model to locally refine the results of the parent model. The latter solution may very well provide the most

accurate results, but the vast number of observations that need to be assimilated in a typical atmospheric or oceanographic

model means that this approach would require a prohibitive amount of computing resources. This limits OOs in most practical

applications to relatively simple parameterisations in terms of the model state variables. Moreover, variational data assimilation10

requires observation operators to be linearised around the background within the inner loops (tangent-linear approximation).

This translates into the need of building OOs that can be formally and practically differentiated.

This paper presents a method of parametrising the results of a specialised model in such a way that it can be efficiently used

within an OO. The parameterisation is based on canonical correlation analysis (CCA), a well-established mathematical method

for finding cross-correlations between datasets. A new pseudo-dynamical OO is generated using the canonical correlation15

between the inputs and outputs of the specialised model on a large and representative dataset. Once this correlation has been

calculated, the application of the pseudo-dynamical OO involves only a matrix multiplication that can be performed at a

fraction of the computational cost of the dynamical OO. A similar method has been used previously to build reduced-order

OOs in atmospheric data assimilation (Haddad et al., 2015).

This work is part of the SOSSTA (Statistical-dynamical observation Operator for SST data Assimilation) project, funded20

by the EU Copernicus Marine Environment Monitoring Service (CMEMS) through the Service Evolution grants. The aim of

SOSSTA is to formulate an efficient OO for SST DA that accounts for the diurnal variability of the ocean skin temperature.

The project includes pilot studies in the Mediterranean Sea and the Aegean Sea.

The paper is organised as follows: Sect. 2 provides a quick review of CCA; Sect. 3 discusses how CCA can be used to

construct the OO matrix; Sect. 4 applies the CCA OO to the modelling of satellite sea surface temperature (SST) measurements25

in oceanographic models; and Sect. 5 discusses the performance of the method and other possible applications. Conclusions

are presented in Sect. 6.

2 The CCA method

CCA (Hotelling, 1936) is a method to find cross-correlations between two datasets X and Y. The datasets are considered to

be matrices structured such that the columns represent different variables and the rows represent the measurements of these30

variables. CCA then aims to find transformation matrices A and B that transform the anomaly of the variables of X and Y,

denoted X
0 and Y

0, into the set of canonical variables F and G:

F=X
0
A G=Y

0
B (1)

2



The structure of F and G matches that of X and Y. The canonical variables are constructed such that the variable Fi is

maximally correlated to the variable Gi. At the same time, both Fi and Gi are uncorrelated to Fj and Gj for i 6= j; therefore

each additional canonical variable describes the maximal remaining correlation between the two datasets. The number of

canonical variables that can be obtained with this procedure is limited to the smallest number of variables in X or Y.

The calculation of the matrices A and B is relatively straightforward using the algorithm of Björck and Golub (1973).5

Writing the requirements outlined above in equation form yields:

F
T
F=G

T
G= I (2a)

F
T
G=D (2b)

with I the unit matrix and D a diagonal matrix. The algorithm uses a QR-decomposition to decompose both X
0 and Y

0 into an

orthogonal matrix Q and an upper-triangular matrix R:10

X
0
=QxRx Y

0
=QyRy (3)

The algorithm proceeds by applying a Singular Value Decomposition (SVD) on the product QT
xQy:

Q
T
xQy =USV

T (4)

Trying the Ansatz:

A⌘R
�1
x U B⌘R

�1
y V (5)15

the orthonormality requirement of Eq. 2a becomes:

F
T
F=A

T
X

0T
X

0
A

=

⇣
U

T
�
R

�1
x

�T⌘�
R

T
xQ

T
x

�
(QxRx)

�
R

�1
x U

�

= I (6)

and an analogous result follows for GT
G. The orthogonality requirement of Eq. 2b becomes:20

D= F
T
G=A

T
X

0T
Y

0
B

=

⇣
U

T
�
R

�1
x

�T⌘�
R

T
xQ

T
x

�
(QyRy)

�
R

�1
y V

�

=U
T
⇣
USV

T
⌘
V = S (7)

Therefore the Ansatz of Eq. 5 is a valid solution for the matrices A and B. Moreover, by counting the number of degrees of

freedom in these matrices and the number of constraints provided by Eq. 2, it can be shown that all solutions are permutations25

of Eq. 5 (Press, 2011). The canonical basis is therefore uniquely defined. In case that X and Y contain different numbers of

variables Nx and Ny, the SVD of Eq. 4 selects the N largest correlations, with N =min(Nx,Ny).

As QR-decomposition and SVD are common matrix operations that are efficiently implemented in most numerical libraries,

this algorithm is straightforward to implement in most programming languages.
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3 Using CCA to construct an OO

The CCA method can be used to construct an OO. Let X be a set of (possibly) relevant model state variables and Y the

corresponding observation values. Here Y could be obtained from a specialised model, but also from a historical dataset of

real observations. Applying the algorithm of Sec. 2 yields the matrices A, B and D. The first two convert the mean-subtracted

model states X0 and observation values Y0 into their canonical counterparts F and G. The diagonal matrix D holds for each5

pair of canonical variables i the best fit to the slope of the correlation: Dii = dGi/dFi.

Assuming that Nx �Ny —i.e. the number of model state variables is at least equal to the number of observed variables— it

is possible to calculate Y
0 from X

0 by passing through canonical space and applying the fitted slope D:

Y
0
=X

0
ADB

�1 ⌘X
0
M, (8)

defining the CCA OO matrix:10

M⌘ADB
�1, (9)

of size Nx ⇥Ny. As the CCA considers only the anomaly of X and Y, an additional offset term needs to be considered to

accommodate the mean values of X and Y in the input dataset. However, the mean values of X and Y can be combined by

applying the matrix M:

Y�Y =
�
X�X

�
M15

Y =XM+K (10)

with:

K ⌘Y�XM (11)

a combined offset vector of length Ny.

During the training-phase of the CCA OO, the datasets X and Y are used to calculate the matrix M and the offset K. Once20

computed, they can be used to form an observation operator H that transforms a state x as:

H(x) = xM+K (12)

Furthermore, the tangent-linear approximation used in variational DA schemes requires that:

H(x)⇠H(xb
)+H

0
dx (13)

where H
0 is the tangent-linear version of the OO, xb the background state and dx the deviation from the background. The25

CCA OO is straightforward to implement in this scheme, since
::
for

:::
H

0
:::
and

:::
its

::::::
adjoint

::::
H

0T
:
it
:::::::
follows

:::
that:

H
0
=M

T
H

0T
=M

::::::::
(14)
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4 Use case: satellite SST

One possible application of the new CCA OO is the assimilation of SST in Ocean General Circulation Models (OGCMs). In

recent years OGCMs have seen significant improvements in vertical resolution, particularly near the surface, where the first

layer has been reduced to a thickness of the order of 1 m or less. At this resolution, the diurnal cycle of SST should be taken into

account. Although diurnal variability is included to some extent (Marullo et al., 2014), the vertical resolution of the OGCMs is5

still insufficient to fully resolve the variability of the skin and subskin ocean temperature.

This issue becomes particularly evident when assimilating satellite SST observations.
:::
The

::::::::
different

:::::
types

::
of

::::::
sensors

:::::
used

::
on

::::::::
satellites

:::::
probe

:::
the

:::::
ocean

::::::::::
temperature

::
at

:::::::
different

:::::::
depths.

:::::::
Infrared

::::
(IR)

::::::
sensors

:::::::
measure

:::
the

::::::::::
temperature

::
at
:::::
about

::::::
10 µm,

::
a

::::
layer

::::
that

::
is

::::::
referred

:::
to

::
as

:::
the

:::::
ocean

:::::
skin.

:::::::::
Microwave

::::::
(MW)

::::::
sensors

:::
on

:::
the

:::::
other

::::
hand

::::::::
measure

:::
the

::::::::::
temperature

::
of

:::
the

:::::
layer

:::::
below

::::
that,

:::
the

:::::::
subskin,

::::
with

::
a
:::::
depth

::
of

:::::
about

:::::
1 mm.

:::::
This

:
is
::::::

much
::::::::
shallower

::::
than

:::
the

::::::
vertical

:::::::::
resolution

::
of

::
a

::::::
typical

:::::::
OGCM,10

::::
while

:::::
these

:::::
layers

:::
are

:::::::
strongly

:::::::
affected

:::
by

:::
the

::::::::::
atmospheric

::::::::::
conditions. The ocean skin cools due to thermodynamic processes

at the air-sea interface, while the absorption of solar heat causes a warming of the subskin. At the same time,
::::
wind

:::
can

::::
mix the

skin and subskin with the water below, smoothing the temperature variations. During days of low wind and/or high insolation

conditions the amplitude of the SST diurnal cycle can be larger than the combined accuracy of the model and observations,

causing a straightforward assimilation of SST to degrade the performance of the model (Marullo et al., 2016).
:::::
Under

:::::::::
favourable15

::::::::
conditions

::::
this

::::::::
amplitude

::
is
::::::::
typically

::
of

:::
the

:::::
order

::
of

:
a
::::

few
:::::::
degrees

:::
(see

::::
e.g.

::::::::::::::::::
Flament et al. (1994)),

:::
but

::::::
values

::
as

::::
high

:::
as

::::
6� C

::::
have

::::
been

::::::::
observed

:::::::::::::::::::
(Merchant et al., 2008).

:::::
Errors

::::
due

::
to

:::
e.g.

:::::::
limited

::::::
spatial

::::::::
resolution

:::
or

:::::::::::
unrepresented

:::::::::
processes

:::
are

::::::::
generally

:::::::
included

:::
in

:::
the

::::::::::::
representation

:::::
error.

::::::::::::
Representation

:::::
errors

:::::
have

::::
been

::::::::::
extensively

::::::::
discussed

::::::
within

::::::
ocean

::::::::::
applications

:::::::::::::::::::::::::::::::::::
(Oke and Sakov, 2008; Janjić et al., 2018).

::::::::
However,

:::
the

::::::
diurnal

:::::::::
variability

::
of

::::
skin

::::
SST

:::::::::
represents

:
a
::::::::::

potentially
:::::::::
systematic

::::
error

::::
that

:::::::
requires

:
a
::::::

proper
::::::::
treatment

::::::
rather20

:::
than

::::
just

:::
the

:::::::
increase

:::
the

::::::::::::
representation

:::::::::
component

::
of

:::
the

:::::::::::
observational

:::::
error.

::
An

:::::::::
important

:::::
source

:::
of

::::
SST

:::::::::::
observational

::::
data

::
is

:::
the

:::::::
Spinning

:::::::::
Enhanced

::::::
Visible

:::
and

:::::::
Infrared

::::::
Imager

:::::::::
(SEVIRI)

:::::::::
instrument

:::::::
onboard

::
the

::::::::
Meteosat

::::::::
satellites

::
of

:::
the

::::::
second

:::::::::
generation.

:::
As

:::::
these

::
are

::::::::::::
geostationary

::::::::
satellites,

:::::::
SEVIRI

:::
can

::::::
provide

::::::::::
continuous

:::::::::::
measurements

:::
of

:::
the

::::
same

::::
area

::::
with

:
a
:::::::::
15-minute

::::::::
temporal

:::::::::
resolution.

::::::::
Although

:::
the

::
IR

::::::
imager

::
is

:::::::
sensitive

::
to
::::
skin

:::::::::::
temperature,

::
the

::::::::::
calibration

::::::::
algorithm

:::
of

:::::::
SEVIRI

:::::::
corrects

:::
for

::::
the

::::
cool

::::
skin

::::
bias

::::
and

:::
the

::::::::
resulting

::::
SST

:::::::
products

:::::::
should

::
be

::::::::::
considered25

::
as

::::::
subskin

:::::::::::
temperature

::::::::::::::::::::::::::::
(Saux Picart and Legendre, 2018).

:::
For

:::::
wind

::::::
speeds

::::::
greater

:::::
than

::::
6 m/s

::::
the

::::
skin

::::::::::
temperature

::::
may

:::
be

::::::::
calculated

::
as

::::::::::::::::::::::
Tskin = Tsubskin � 0.17� C

::::::::::::::::::
(Donlon et al., 2002),

:::
but

:::
this

::
is

::::
only

:::
an

::::::::::::
approximation.

This section will discuss how to use the output of a water column model specifically tuned for modelling the diurnal cycle

of SST together with the CCA OO to build an observation operator for SST that accounts for the diurnal variability.

4.1 General Ocean Turbulence Model30

The SST diurnal cycle is modelled using the General Ocean Turbulence Model (GOTM). GOTM is a one-dimensional water

column model that includes multiple turbulence closure schemes (Burchard et al., 1999; Umlauf et al., 2005). It has been suc-

cessfully adapted to model the near-surface variability of ocean temperature, including both the diurnal cycle and the cool-skin

5



effect (Pimentel et al., 2008a, b). Recently it has been used to systematically simulate the atmospheric and oceanographic con-

ditions in the Mediterranean Sea (Pimentel et al., 2019). The latter study has resulted in a multi-year dataset, modelling the

diurnal cycle in the Mediterranean Sea on a grid of 0.75� ⇥ 0.75� resolution and with hourly time resolution. For this dataset

GOTM is configured with the k-" turbulent kinetic energy parameterisation with internal waves. The top 75 m of the water

column is resolved using 122 vertical layers with fine resolution near the surface and gradually becoming coarser with depth.5

The uppermost 1 m contains a total of 21 layers, with the highest level at 1.5 cm depth. This dataset is used in the present paper

to build the CCA OO for SST.

:::
The

:::::::
subskin

:::
SST

:::::::::
represents

:::
the

::::::::::
temperature

::
at

:::
the

::::
base

::
of

::
the

::::::::::
conductive

::::::
laminar

::::::::
sub-layer

::
of

:::
the

:::::
ocean

:::::::
surface;

::
for

::::::::
practical

:::::::
purposes

::
it

:
is
::::::::::
represented

:::
by

::
the

::::::::::
temperature

:::
of

:::
the

:::
top

:::::
model

::::
layer

:::
of

::::::
GOTM

:::::::
(1.5 cm).

::::
The

:::::::::
conductive

::::::::
sub-layer

::
of

:::
the

::::::
air-sea

:::::::
interface,

:::::::::
associated

::::
with

:::
the

::::::::
cool-skin

:::::
effect,

::
is

:::::::::::
parameterised

::::
and

::::::::::
dynamically

::::::::
computed

::::::
within

::::::
GOTM

::
to

:::::::
produce

:
a
::::::::
modelled10

:::
skin

:::::
SST.

::::::
Further

::::::
details

:::
are

:::::::
provided

::
in

:::::::::::::::::::
Pimentel et al. (2019).

4.2 Operator setup

The aim for the CCA OO is to parameterise the IR and MW satellite SST observations as a function of temperature in the water

column below. While the dataset of Pimentel et al. (2019) uses a fine vertical resolution to calculate the SST observations,

the CCA OO will consider only the levels of a typical OGCM. Within the SOSSTA project this OGCM is the CMEMS15

Mediterranean Forecasting System (MFS) (Simoncelli et al., 2014), but the parameterisation can be performed for any vertical

distribution of levels.

The magnitude of the diurnal signal depends strongly on the atmospheric conditions, most importantly the insolation and

wind speed. Insolation causes the ocean skin to heat up during the course of the day, while wind mixes the upper layers of the

ocean leading to dissipation of the heat.
:::
Due

::
to

:::::
latent

::::
heat

:::
loss, the ocean skin may even cool down below the bulk temperature.20

To accommodate non-linear dependence on the different insolation and wind scenarios in the CCA OO, the GOTM dataset is

divided into 12 insolation and 8 wind categories. Insolation and wind are defined in each location as the daily mean value

in local mean time (LMT). The category boundaries were chosen to equally divide the dataset. The magnitude of the diurnal

warming for the different categories is shown in Fig. 1.

:::
The

::::::
GOTM

::::::
dataset

:::
has

:::::
been

::::::::
compared

::
to

:::::::
SEVIRI

::::
data

:
at
:::
the

::::
skin

::::
level

::
in

::::::::::::::::::
Pimentel et al. (2019)

:::
and

::::
was

:::::
found

::
to

::
be

::
in

:::::
good25

::::::::
agreement

::::
over

:::
the

::::::
whole

::::::
period

::
of

::::
2013

::::
and

:::::
2014.

::::::::
However,

::::
after

::::::::
dividing

:::
the

::::::
dataset

::
in

::::::::::
atmospheric

:::::::::
categories

::
it

:
is
::::::

found

:::
that

:::::::::
categories

::::
with

::::
high

::::::
diurnal

::::::::
warming

::::
may

::::
have

::
a
:::::
warm

::::
bias

::
of

:::
up

::
to

:::::
0.5� C

::::
and

:::::::::
categories

::::
with

:::
low

:::::::
diurnal

:::::::
warming

::
a

:::
cold

::::
bias

::
of

::::::::
typically

::::::::::
0.1–0.2� C.

::::
This

:::::::
category

::::
bias

::
is

::::::::
corrected

:::
for

::
by

::::::::::
subtracting

:::
the

::::
mean

:::::::::
difference

:::::::
between

:::::::
SEVIRI

::::
and

::::::
GOTM

::
at

::::::
subskin

:::::
level

:::
for

::::
each

:::::::
category.

For each category of wind and insolation, and at hourly time resolution, the CCA OO is calculated to project the 10 uppermost30

levels of the MFS model onto the skin and subskin SST temperatures. The 10 levels extend down to a depth of approximately

40 m, which was chosen to be well below the depth influenced by the diurnal cycle of temperature. Figure 2(a) shows the

correlation between the model temperature at various depths and the two SST observation types. As expected, the SST is

strongly correlated to the highest levels and the correlation decreases with depth. It is important to note that in this case the

6



Figure 1. The magnitude of the diurnal warming
::
at

::
the

::::::
subskin

::::
level as a function of the time of the day for different wind and insolation

categories. The diurnal warming is measured with respect to the SST at local sunrise. The wind categories are represented by the different

panels, while the insolation categories are shown as different curves within each panel.

various levels are also strongly correlated to each other. Figure 2(b) shows the correlation after transforming to canonical

coordinates. It can be seen that the strongest correlation has not significantly changed, as the first canonical variable is very

similar to the highest model level. The second pair of canonical variables (F2,G2), however, describes an additional correlation

of around 60% between model water temperature and SST.

4.3 Validation5

The CCA OO is validated by comparing its performance to that of the full GOTM. To be able to use the operator effectively

in a DA system, it should be able to provide an accurate approximation of the GOTM results.
:::
The

:::::::::
validation

::
is

:::::::::
performed

::::::
against

::::::
GOTM

:::::::
profiles

::::
that

:::
are

::::::::
withheld

:::::
from

:::
the

:::::
CCA

:::
OO

::::::::::
calculation.

::::
The

:::::::
GOTM

::::::
dataset

::
is
:::::

split
::
in

::::
two,

:::::::::::
withholding

::::
every

:::::
other

::::::
profile

::
in

:::
the

:::::
zonal

::::::::
direction

::::
from

:::
the

::::::::::
calculation.

::::
The

::::::::
validation

::::
then

::::
uses

:::
the

::::::::
withheld

::::::
profiles and extracts the

depths corresponding to the MFS levels, mimicking the use of the operator inside a DA system. The CCA OO, based on the10

7



Figure 2. The correlation coefficients between the model variables and observations (left); and the canonical equivalent of these variables

(right).

atmospheric category and closest time, is subsequently applied to project the model temperature onto the skin and subskin SST.

The projected SST values are then compared to the values in the original GOTM profile.

Some examples of the validation are shown in Fig. 3. Each panel shows a profile from the GOTM dataset, together with the

model levels that were used as input to the CCA OO. The output of the CCA OO is superimposed onto the GOTM profile, so

that a comparison can be made. Figure 3(a) shows a temperature profile in the early morning, during a day of low wind and high5

insolation. At this time the diurnal warming is limited and due to the clear sky conditions the skin and subskin temperatures

have cooled down slightly below the temperature of the first model level. Figure 3(b) shows an afternoon profile on a similar

day. At this time the diurnal warming is around its maximum and the skin temperature has increased about 1� C above the first

level of the model. In case of high wind speed, the increased mixing of the upper layer of the ocean can completely cancel the

effect of the high insolation, as is shown in Fig. 3(c). In this situation the temperature in the upper 10 m of the ocean is almost10

constant. When high wind conditions coincide with low insolation, the surface can also cool quite significantly, as is shown in

Fig. 3(d). The CCA OO is able to reproduce correctly the GOTM skin and subskin temperature under different atmospheric

conditions. The atmospheric categories with strong diurnal warming have a Root Mean Square Error (RMSE) of up to 0.4�C,

for all other categories the RMSE is around 0.1�C. The bias of the CCA OO compared to GOTM was found to be negligible.

5
:::::::::::
Performance

::::
and discussion15

The performance of the GOTM-based CCA OO for SST is compared to other commonly used methods.
::
For

::::
this

::::::::::
comparison

::
the

:::::::
GOTM

::::::
dataset

::
is

:::::
again

::::
split

:::::
along

:::
the

:::::
zonal

::::::::
direction,

:::::
using

:::::
every

::::
other

::::::
profile

::
to

::::::::
calculate

:::
the

::::
CCA

::::
OO.

::::
The

:::::::::
remaining

::::::
profiles

:::
are

::::::::
matched

::
to

:::::::
SEVIRI

:::::::
subskin

:::::::::
retrievals,

:::::
using

:::::
only

::::::
profiles

::::::::
matched

::
to

::
a
:::::::::::
measurement

:::::
with

:::::::::
acceptable

:::
(4)

:::
or

8



(a) Low wind, high insolation, early morning (b) Low wind, high insolation, afternoon

(c) High wind, high insolation, afternoon (d) High wind, low insolation, afternoon

Figure 3. Examples of temperature profiles in various conditions and at different times. The GOTM profiles are shown by the red curve,

while the filled circles indicate the values used as input to the CCA OO. The output of the CCA OO is shown by the black triangles.
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::::
good

:::
(5)

:::::::
quality

::::::
control

:::::
level. The performance can be conveniently expressed in terms of the skill score (SS), defined

by Murphy (1988) as:

SS = 1� MSEmodel

MSEreference
(15)

The skill score is based on the mean square error (MSE) of the model under test and of a reference model. Specifically, it

expresses the difference in MSE as a fraction of the reference MSE. The skill score is straightforward to interpret: a perfect5

model (MSE = 0) results in a skill score of 1, while a model that shows no improvement over the reference model receives

a skill score of 0. Negative skill scores indicate that the model performs worse and its MSE has increased with respect to the

reference.

Figure 4. Skill score of the CCA OO compared to upper model level for all wind and insolation categories at midnight (left) and in the

afternoon (right).

The simplest method of assimilating satellite SST observations in a model that insufficiently describes the diurnal cycle of

SST is to assimilate only at night
::
or

:::::
during

::::
high

:::::
wind, see for example Waters et al. (2015). During the night the cycle of SST10

is close to its minimum value and the temperature of the upper model layer forms a reasonable approximation for the skin

temperature. In this situation the assimilation is performed without additional corrections. Figure 4(a) shows the skill score of

the CCA OO at midnight local time, using as reference method the upper model layer. For both methods the MSE is calculated

with respect to the
:::::::
SEVIRI

::::::
subskin temperature.

:::::
Figure

::::
4(b)

::::::
shows

:::
the

::::
same

::::::::
situation,

:::
but

::
in

:::
the

:::::::::
afternoon.

:::
For

::::
high

::::
wind

::::
and

:::
low

::::::::
insolation

:::
the

:::::
CCA

:::
OO

::::::::
performs,

::
as

::::::::
expected,

::::::::
similarly

::
to

:::::
using

:::
the

:::::
upper

:::::
model

:::::
layer.

::::::::
However,

:::
for

:::
low

:::::
wind

:::::
speeds

::::
and15

::::
high

::::::::
insolation

:::
the

:::::
CCA

:::
OO

:::::
shows

::
a
::::
clear

::::::::::::
improvement,

::::
even

::
at

::::::::
midnight.

::::
This

::::
can

::
be

::::::::
explained

:::
by

:::
the

:::
fact

::::
that

::
at

::::::::
midnight

:::
still

:::::
some

::::::
diurnal

:::::
signal

:::::::
remains

::::
and,

::::
even

:::::
using

:::
the

:::::
wind

:::
and

:::::::::
insolation

:::::
values

::
of

:::
the

::::
next

::::
day,

::::
this

::
is

:::::::
correctly

::::::::
modelled

:::
by

::
the

:::::
CCA

::::
OO.

10



Figure 5. Skill score of the CCA OO compared to the parameterisation of Bernie et al. (2007).

A more advanced solution is the parameterisation of Bernie et al. (2007), which estimates the diurnal signal as a func-

tion of wind, insolation and time. This is a commonly used parameterisation, for example included with the NEMO ocean

model (Madec et al., 1998). Figure 5 shows the skill score for the CCA OO compared to the parameterisation of Bernie et al. (2007)

at the peak of the diurnal cycle
::
(a)

::::
and

::
in

:::
the

::::
early

:::::::
evening

:::
(b). It can be seen that for high insolation and low wind, conditions

for which the diurnal warming is largest, both methods perform similarly. However, the CCA OO is better at accommodat-5

ing different atmospheric conditions and shows significant improvements for
:::
the

::::::::::
intermediate

:::::::::
insolation

:::
and

:::::
wind

:::::::::
categories.

::::::::
Moreover,

::::
Fig.

::::
5(b)

:::::
shows

:::
that

:::
the

:::::
CCA

:::
OO

::
is

:::
able

::
to
:::::
better

::::::::::
parametrise

:::
the

::::::
cooling

::
of

:::
the

:::::::
subskin

::
in

:::
the

:::
late

:::::::::::::::
afternoon/evening

::::
after

:::
the

::::
peak

::
of

:::
the

::::::
diurnal

::::::::
warming

:::
has

::::::
passed.

Using the CCA OO to improve the description of SST has many potential applications. For example, the CCA OO could be

used as a parameterisation of diurnally varying skin SST within an OGCM as part of the air-sea flux calculations. The skin SST10

is the true interface temperature for air-sea fluxes, so this approach should result in improved air-sea heat transfer in OGCMs

and coupled ocean-atmosphere models. See for example Marullo et al. (2016). Another possibility would be the use of the

CCA OO as a parameterisation of diurnally varying SST within a climate model. The diurnal cycle is a fundamental signal of

the climate system, yet for climate models the lack of vertical structure (and temporal resolution) is even more critical. See for

example Large and Caron (2015).15

Due to the way in which it is constructed, the CCA OO is an inherently linear operator. This makes it straightforward to

implement in DA schemes that require linearised and differentiable OOs. However, non-linear effects can be accommodated

to some extent by constructing a series of CCA OOs conditioned on such a non-linear dependency. For example, in the case of

SST, this method has been used to condition the CCA OO on insolation, wind and time. The only requirement in this case is

that the datasets X and Y of Sec. 3 are sufficiently large to divide them by such a dependent variable.20
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The minimum size of the input dataset required depends ultimately on the number of model variables used (Nx) and the

number of observation variables to predict (Ny). The number of free parameters in the CCA OO matrix M and the offset K

equals (Nx+1)Ny. As each entry in the input dataset also provides Ny observation values, Eq. 4 requires a minimum of Nx+1

entries to be mathematically solvable. However, at this point the CCA OO will be overfitted. It will simply be able to memorise

the input datasets rather than being based on general characteristics of the data. Care has to be taken to avoid this situation,5

making sure the input dataset contains a number of entries n with n >>Nx. Whether a given size n is sufficient should be

tested using independent data. One possible method for this test is to withhold part of the input dataset from the CCA OO

calculation, then use this subset to calculate the CCA OO performance.

6 Conclusions

Observation operators (OOs) form a central component in any data assimilation (DA) system, as they transform the state10

variables of a numerical model into real-world observable variables. Often an OO also needs to correct for processes that are

not fully described by the parent model. Such processes may be best modelled by interfacing the OO to a specialised model,

but this is generally not feasible due to computational constraints.

The assimilation of satellite Sea Surface Temperature (SST) in ocean general circulation models (OGCMs) is a prime

example of a situation where insufficiently modelled processes play an important role. The diurnal cycle of SST causes a15

discrepancy in the temperature of the very thin upper layer measured by the satellite and the rather coarse upper layer in a typical

OGCM. On a clear summer day with low wind, this discrepancy can amount to as much as 2� C or more
::::::::::::::::::
(Pimentel et al., 2019).

The current paper presented a method, based on Canonical Correlation Analysis (CCA), to build parameterisations based

on an output dataset of a specialised model. These parameterisations, referred to as the CCA OO, can provide an efficient

approximation to the results of the specialised model and are therefore well-suited for use in DA systems.20

The case of SST assimilation has been used to demonstrate the new CCA OO. Using an output dataset of the General Ocean

Turbulence Model (GOTM), a high-resolution water column model specifically tuned for modelling the diurnal cycle of SST,

a new CCA OO has been derived. Subsequently, the operator has been applied to reduced-resolution temperature profiles from

GOTM to simulate its use in a DA system. The approximations provided by the CCA OO are found to be in good agreement

with the GOTM model at various times of the day and across all atmospheric conditions. The results indicate that the CCA25

OO could be used to enable the assimilation of SST under conditions where this was previously not possible. Moreover, the

atmospheric categories that were introduced in the construction of the CCA OO for SST show that the linear assumption

implicit in CCA can be partially relaxed. This makes the CCA OO versatile for any condition. Compared to commonly used

methods for SST assimilation, the CCA OO can provide substantial improvements. This is especially true for measurements

of the skin SST, since the CCA OO profits from the modelling of the cool-skin effect that is included in GOTM.30

The ability of the CCA OO to handle complicated physical models in a relatively simple way is attractive for a large number

of problems in DA, where reduced-order OOs are desirable due to computational constraints. Remotely sensed data are the

obvious target, given the complexity of their relationships with state variables. Observations in coupled assimilation (e.g.

12



ocean-atmosphere, ocean-sea-ice or ocean-biogeochemistry) are examples of challenging problems that could be investigated

in the future with the CCA OO.
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