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Abstract.

The ice edge is a simple quantity in the form of a line that can be derived from a spatially varying sea ice concentration field.

Due to its long history and relevance for operations in the Arctic, the position of the ice edge should be an essential element

in any system that is designed to monitor or provide forecasts for the physical state of the Arctic Ocean and adjacent ocean

regions.5

Users of monitoring and forecast products for sea ice must be provided with complementary information of the expected

accuracy of the data or model results. Such information is traditionally available as a set of metrics that provide an assessment

of the information quality. In this study we provide a survey of metrics that are presently included in the product quality

assessment of the CMEMS Arctic Marine Forecasting Center sea-ice edge position forecast. We show that when ice edge

results from different products are compared, mismatching results for polynya and local freezing at the coasts of continents10

and archipelagos have a large impact on the quality assessment. Such situations, which occur regularly in the products we

examine, have not properly been acknowledged when a set of metrics for the quality of ice edge position results have been

constructed.

We examine the quality of ice edge forecasts using a total of 15 metrics for the ice edge position. These metrics are analyzed

in synthetic examples, as well as in selected cases of actual forecasts, and finally for a full year of weekly forecast bulletins.15

Using necessity and simplicity of information as a guideline, we recommend using a set of four metrics that sheds light on the

various aspects of product quality that we consider.

Moreover, any user is expected to be interested in a limited part of the geographical domain, so metrics derived as domain-

wide integrated quantities may be of limited value. Consequently, we recommend that metrics are also made available for

an appropriate set of subdomains. Furthermore, we find that the metrics’ decorrelation time scales are much longer than the20

present forecast range. Hence our final recommendation is to include depictions of gridded mismatching of ice edge positions

using maps for the integrated ice edge error.

Copyright statement. This work is distributed under the Creative Commons Attribution 4.0 License.
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1 Introduction

The ice edge location is a primary source of information for safe navigation in ice infested waters. The retreating sea ice in the

Arctic Ocean has given rise to increased naval traffic in the region. The navigation distance from Northern Europe to the Far

East is about 40% shorter using the northern sea route when compared to the length of the southern route via the Suez Canal.

Hence, commercial shipping is becoming viable from an economic perspective due to the changing physical conditions (Ho,5

2010; Schøyen and Bråthen, 2011). Our motivation is to provide the increasing number of operators in the Arctic region with

easily comprehensible and robust information about the quality of relevant forecasts.

Basic computations of ice edge displacement in operational sea ice forecasts relative to observational products have e.g. been

performed by Posey et al. (2015) and Melsom et al. (2011). Results for the ice edge position from seasonal ensemble forecasts

have been examined by Zampieri et al. (2018) and Palerme et al. (2019). Dukhovskoy et al. (2015) examined five metrics for10

ice edge displacement, and based on sensitivity tests for scale, rotation, translation, and noise, their recommendation is to apply

the Modified Hausdorff Distance.

Model results for sea ice concentration are frequently examined by presenting differences from corresponding observations,

or results from other models, as shaded contours on maps, see e.g. Johnson et al. (2007), Arzel et al. (2006). In these and other

studies, results for sea ice are often quantified by simple statistics for integrated quantities, notably sea ice extent (Massonnet15

et al., 2012). Statistics for sea ice extent is one of the quantities that can be derived from contingency tables for sea ice

concentration categories (Carrieres et al., 2017). A sophisticated approach to examinations of results for sea ice extent has been

proposed by Goessling et al. (2016) who introduced the integrated ice edge error (IIEE) as an objective score for differences

in the position of the ice edge. An extension relevant for ensemble predictions was recently published (Goessling and Jung,

2018). Using this extension, Palerme et al. (2019) find that ECMWF SEAS5 seasonal forecasts Johnson et al. (2019) that are20

initialized between April and September are more skillful than climatology for forecast ranges of 6-12 weeks.

The fractions skill score (FSS) metric was developed for small scale features in forecast systems, originally applied to

convective precipitation in weather forecasting (Roberts and Lean, 2008). One purpose of the FSS is to provide an objective

analysis of how the forecast skill changes as a function of horizontal scales, which is potentially relevant for skill assessments

of the ice edge position. The FSS was designed for features whose spatiotemporal evolution can’t be forecasted exactly but25

rather in a statistical sense.

The present examination of validation metrics for the ice edge position has been performed with an aim of improving the

information of product quality for users of products available from the Copernicus Marine Environment Monitoring Service

(CMEMS). CMEMS is the marine component of the European Union’s Earth Observation Programme. CMEMS has been

set up to meet today’s climate and marine challenges by providing the public with observational multiyear and near real-30

time products, and reanalyses and forecasts from ocean circulation models, sea ice models, wave models and biogeochemical

models. The information is integrated into an open and free catalog of products that is available from http://marine.copernicus.

eu/.
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CMEMS is presently organized as 15 production centers, eight of which process observational data from satellite and in

situ platforms, and the remaining seven centers run and process results from numerical models. These groups of centers are

referred to as thematic data assembly centers (TACs) and monitoring and forecast centers (MFCs), respectively.

One of the TACs is dedicated to observations of sea ice, mainly based on data from satellite-born instruments. Furthermore,

three of the MFCs’ model systems have their ocean circulation model coupled to sea ice models. These are the centers re-5

sponsible for forecasts and reanalyses in the Baltic Sea (BAL MFC), the Arctic Ocean (ARC MFC), and the global oceans

(GLO MFC). Sea ice can also occur in the Black Sea, but the relevant forecast center (BS MFC) presently has no sea ice

product.

Information about the product quality is available for all CMEMS model products, provided as statistics for a variety of

metrics which are calculated by comparing results with observational products. Relevant data for sea ice concentration and the10

position of the ice edge is available from satellite-born instruments. In this study we assess the quality of forecasted ice edge

positions using a large number of metrics. The sensitivity of the metrics due to differences in observational products is also

considered.

The present examination is organized as follows. In Sect. 2 we introduce the metrics used in our analysis: ice edge displace-

ment metrics in 2.1, IIEE and derived metrics in 2.2, and FSS metrics in 2.3. Next, an idealized situation which is constructed15

to shed light on situations which lead to large differences between model results and observations is explored in Sect. 3. This

issue is investigated in the context of sea ice forecasts from CMEMS ARC MFC in Sect. 4, where results for two forecast

bulletins with different error characteristics are presented. Then, results for a full year of sea ice forecasts are given in Sect. 5.

These results are discussed in Sect. 6, and our examination concludes with a recommended best practice for validation of sea

ice edge forecasts in 6.3.20

2 Definition of metrics

We consider metrics for offsets in ice edge position between two gridded products, e.g. with one product derived from obser-

vations and with the other from simulation results from a numerical coupled sea ice-ocean circulation model. In this section,

the two products are referred to as O and M , respectively. Below we associate grid cell quantities by lower-case indices, and

integral properties by upper-case indices. Analogously, we separate Euclidean grid cell distance values and integral distance25

metrics’ values by denoting these as d and D, respectively.

Note that in our approach, ice edges are associated with areas due to their composition of sets of grid cells, rather than

curves. The definitions that lead to edge displacement metrics below do not directly apply to one-dimensional curves. Several

displacement metrics between pairs of curves are given by Dukhovskoy et al. (2015).

2.1 Ice edge displacement metrics30

In order to compute ice edge displacement metrics the first step is to find the grid cells which constitute the ice edge in the

gridded observations as well as in the model product. Let c be the sea ice concentration, and let ce be the sea ice concentration
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value that defines the ice edge (usually set to 0.15). Then, we take the ice edge to be constituted by the grid cells [i, j] that meet

the condition

c[i, j]≥ce ∧ min
(
c[i− 1, j], c[i+ 1, j], c[i, j− 1], c[i, j+ 1]

)
< ce (1)

where ∧ is the logical AND operator. Let E be the ice edge. Ice edges EO and EM then correspond to the set of grid cells

eo and em that are returned by this algorithm step when applied to products O and M , respectively. We also introduce the5

coordinate position of grid cell [i, j] as [x,y], and letNO be the number of edge grid cells in productO, andNM be the number

of cells in product M .

Next, for each edge grid cell in each product, we find the distance to the nearest edge grid cell in the other product. Consider

first the distance from an ice edge grid cell [i1m, j
1
m] in the model product at the coordinate position [x1m,y

1
m]. Then, the

displacement of the observed ice edge from this grid cell becomes10

d1m = min

(
∀eo ∈ EO :

[
(xo−x1m)2 + (yo− y1m)2

]1/2
)

(2)

where ∀ is the FOR ALL operator and [xo,yo] is the coordinate position of an ice edge grid cell in the observed product.

A variant is to consider any land/ocean boundary grid cell as included in the observed sea ice edge. When adopting this

variation we refer to the observational product as ÊO, constituted by grid cells êo. We note that EO ∈ ÊO. The corresponding

displacement becomes15

d̂1m = min

(
∀êo ∈ ÊO :

[
(x̂o−x1m)2 + (ŷo− y1m)2

]1/2
)

(3)

We compute the displacement d1o of a model ice edge from an ice edge grid cell in the observational product analogously.

This is also done for d̂1o after Em has been expanded to Êm by including all land/ocean boundary grid cells.

We can now define a set of symmetric ice edge position metrics expressed as functions of the edge displacements. Here, a

symmetric metric is a parameter whose value is independent of whether it is the observations or the model product that is the20

base of the analysis. We introduce four such metrics here, based on results for dm and do.

1. The root-mean-squared ice edge displacement:

D
IE

RMS
=

1

2

[(
1

NO

NO∑

n=1

(dno )2
)1/2

+

(
1

NM

NM∑

n=1

(dnm)2
)1/2

]
(4)

2. The average ice edge displacement:

D
IE

AV G
=

1

2

[
1

NO

NO∑

n=1

dno +
1

NM

NM∑

n=1

dnm

]
(5)25

3. The ice edge displacement bias, here defined as positive when the ice edge in the model product is on the open ocean

side of the ice edge in the observational product:

∆
IE

=
1

2

[
1

NO

NO∑

n=1

cm[ino , j
n
o ]− ce

‖cm[ino , j
n
o ]− ce‖

dno +
1

NM

NM∑

n=1

ce− co[inm, j
n
m]

‖ce− co[inm, j
n
m]‖d

n
m

]
(6)
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where ‖x‖ is the absolute value of x, and co, cm are the sea ice concentrations in the observations and model, respectively.

Also, [io, jo] and [im, jm] denotes ice edge grid cells in the observations and model, respectively. One may construct

situations where a denominator in Eq. 6 becomes 0. In reality, such cases will be very rare, and most of the time this will

occur when edge grid cells in the two products overlap, i.e., dn = 0. In these cases, we set the fraction to 0.

4. The extreme ice edge displacement, also known as the Hausdorff distance:5

D
IE

H
= max

(
max(do),max(dm)

)
(7)

where do,dm are the full sets of gridded displacements as given by Eq. 3.

Finally, substituting displacements d in Eq.s 4–7 by d̂ as given by Eq. 3 gives rise to a set of supplementary metrics D̂IE

RMS
,

D̂IE

AV G
, ∆̂IE , and D̂IE

H
. We note that e.g. D̂

IE

RMS
≤DIE

RMS
.

2.2 IIEE metrics10

Recently, the integrated ice edge error (IIEE) has been suggested as an alternative approach to quantifying the offsets between

two ice edges (Goessling et al., 2016). The IIEE is computed from the area between the ice edges in the two products. For a

gridded product with a grid cell size a, set

a+ =





a for grid cells where cm > ce ∧ co < ce

0 elsewhere

a− =





a for grid cells where co > ce ∧ cm < ce

0 elsewhere

(8)

Then, the area where the ice edge position in the model product is on the open ocean side of the observed ice edge is15

A+ =
∑

A

a+ (9)

whereas the complementary situation with the observed ice edge on the open ocean side of the model edge covers the area

A− =
∑

A

a− (10)

(an illustrated example is provided in Sect. 3). The ice edge is here the perimeter of the sea ice extent area. Thus, A+ is the

area where the ice extent in the model results overshoots the ice extent in the observations, and vice versa for A−.20

Two area metrics can then be constructed, as given by Goessling et al. (2016).

1. The integral score:

A
IIEE

=A+ +A− (11)
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2. The bias score:

α
IIEE

=A+−A− (12)

Note that Goessling et al. (2016) also introduced additional area metrics which are not considered here.

The IIEE metrics defined in Goessling et al. (2016) are all provided for areas of sea ice, while no displacement metrics

are introduced. Here, IIEE-based displacement metrics are derived by dividing the IIEE areas by an IIEE characteristic length5

scale. Below, we introduce two definitions of such a length scale.

Summary statistics in the form of a contingency table provide versatile information for validation of sea ice concentration

results (Carrieres et al., 2017). After categories have been defined by a set of ranges in sea ice concentration, table cells will

give areas with category match-ups. Here it is essential to have the sea ice concentration value that defines the ice edge as

a value that separates two categories. The sea ice extent for each product is then found as the sum of the relevant rows and10

columns, respectively. The differences in sea ice extent (quantities A+ and A−) emerge from adding the areas in cells that

corresponds to categories on different sides of the ice edge in the two products.

2.2.1 Edge length based IIEE displacement metrics

In order to provide scores that have the same dimension as those produced by the ice edge displacement metrics in Sect. 2.1,

we here introduce metrics that arise when dividing the area metrics given by Eq.s 11, 12 with the ice edge length. Presently, the15

ice edge is given as a set of grid cells that were identified from Eq. 1. For simplicity we consider the case where the resolution

in both horizontal directions is constant and equal, and write the grid cell size as s.

Consider the schematic example provided in Fig. 1. When calculating the length of the ice edge, we must account for the

presence of diagonal edge grid cells. This is performed by looping all edge grid cells e and counting the number of [i, j] edge

grid cell neighbours (i.e., among [i-1,j], [i+1,j], [i,j-1], [i,j+1]) in the same product. If there are two or more neighbours, the20

edge grid cell contributes with a length le = s (edge grid cells ec,ed in Fig. 1). If there are no such neighbours, the edge length is

set to the length of the diagonal, i.e., le =
√

2s (edge grid cell ea). If there is exactly one such edge neighbour, the contribution

becomes le = 0.5 · (s+
√

2s) (edge grid cells eb,ee). Note that by this definition “open ended” edge grid cells (e.g. adjacent to

land; ea,ee) will contribute with a diagonal representation towards the open end.

The ice edge length in the observational product becomes25

LO =
∑

e in EO

leo (13)

and the corresponding length in the model product is given analogously.

Two length metrics can now be derived from the corresponding area metrics.

1. The IIEE average displacement:

D
IIEE

AV G
=

2

LO +LM
A

IIEE

(14)30
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2. The IIEE bias:

∆
IIEE

=
2

LO +LM
α

IIEE

(15)

Note that if there are no overlapping ice edge grid cells in the two products and if no IIEE area is bounded by dry grid cells

or an open boundary, the length scale used for derivation of the displacement metrics given by Eq.s 14 and 15 is half the

circumference of the IIEE areas.5

2.2.2 Separation based IIEE displacement metrics

An alternative to the application of the scaling length (LO+LM )/2 in Sect. 2.2.1 is introduced in Sect. S1 in the Supplementary

Information document. The alternative expression for the scaling length is solely dependent on the geometry of the IIEE areas.

We then derive a supplementary set of displacement metrics that is analogous to the D
IE

metrics defined by Eq.s 4-7.

The definitions of metrics in Sect. S1 take dry grid cells adjacent to IIEE areas into account, which the scaling length10

definition in Sect. 2.2.1 does not. Hence, we adopt here the hatted notation as introduced in Sect. 2.1. The resulting displacement

metrics defined in Sect. S1 are thus denoted as D̂IIEE

RMS
, D̂IIEE

AV G
, D̂IIEE

MAX
, and ∆̂IIEE .

2.3 Fractions skill score

We next consider the fractions skill score (FSS), as introduced by Roberts and Lean (2008). This metric was defined with the

purpose of providing information on the impact of differences on small scales that can appear in results from high resolution15

observations and models. The FSS is computed for binary results, such as gridded hits and misses due to a criterion, from a pair

of products (usually observations and model results). Values for FSS provide information of how the two products compare as

a function of resolution. Representation on different resolutions are computed by integration onto coarser (larger) grid cells,

and the binary results on the original grid become hit fractions on coarser grids. The FSS reaches its maximum value of 1 at

resolution(s) where the representation of the two products are identical, and has a minimum value of 0 when no grid cells have20

overlapping non-zero values.

In the present context, we define hits as grid cells which are part of the ice edge as defined by Eq. 1, in both products. The

probability of a grid cell-by-grid cell match up of the edge positions is expected to be reduced when the resolution is enhanced.

The presentation of FSS in this section is largely based on the Roberts and Lean (2008) article, adapted to representation of

lines of grid cells rather than areas. We provide a relevant schematic example as Fig. 2, and we use this to illustrate some of25

the quantities that are introduced below.

Recall from Sect. 2.1 that we identified the sets of NO and NM grid cells eo and em that constitute the ice edges EO and

EM in products O and M , respectively. We construct a binary gridded representation of the ice edge in product O as

λo[i, j] =





1 ∀eo ∈ EO

0 elsewhere
(16)
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so that
∑
λo =NO. The corresponding binary representation of the edge in product M , λm, is defined analogously. Next, for

product O we introduce the coarse grid cell ice edge fraction for a neighbourhood with an extent of n grid cells as

λn
o [in, j n] =

1

n2

n−1∑

k=0

n−1∑

l=0

λo

[
in + k− n− 1

2
, j n + l− n− 1

2

]
(17)

where n is an odd number. Again, we define λn
m analogously, and we note that λo = λ1

o . In the example in Fig. 2, a neighbour-

hood extent of 3 grid cells is indicated by the thick grid lines and for this case, we find5

λn=3
O =

1

9


 2 1

0 2


 ; λn=3

M =
1

9


 3 1

0 3


 (18)

The mean square edge fraction error for a neighbourhood extent of n grid cells becomes

MSEn =
1

N n
x N

n
y

N n
x∑

in=1

N n
y∑

j n=1

[
λn
m[in, j n]−λn

o [in, j n]
]2

(19)

where N n
x , N n

y are the number of the neighbourhood extent n grid cells in the x and y directions, respectively. Following

Roberts and Lean (2008) we introduce a reference MSE value as the largest possible with the present extent of the edge grid10

cells

MSEn
ref =

1

N n
x N

n
y

min

{[ N n
x∑

in=1

N n
y∑

j n=1

λn
o [in, j n]

2

+

N n
x∑

in=1

N n
y∑

j n=1

λn
m[in, j n]

2

]
,

[ N n
x∑

in=1

N n
y∑

j n=1

(
1−λn

o [in, j n]
)2

+

N n
x∑

in=1

N n
y∑

j n=1

(
1−λn

m[in, j n]
)2]
} (20)

This expression is a worst case arrangement of hits and misses that takes into account situations where hits outnumber misses.

This is a modification of the corresponding definition in Roberts and Lean (2008) whose Eq. 7 allowed for situations with

MSEn
ref exceeding 1.15

For the skill score with the original 6×6 grid in Fig. 2 we have MSEn=1 = 6/62 and MSEn=1
ref = 12/62, while for the n= 3

neighbourhood displayed by the thick grid lines we have MSEn=3 = 2/(2 · 9)2 and MSEn=3
ref = 9/(2 · 9)2.

Now, the resolution-dependent fractions skill score is introduced as

FSSn = 1− MSEn

MSEn
ref

(21)

which has a value of 1 for a perfect forecast for neighbourhood extent n (λn
m = λn

o ∀ in, j n ⇒ MSEn = 0) and a value of 020

when λn
m ·λn

o = 0 ∀ in, j n (⇒ MSEn = MSEn
ref). Note that invoking the modified definition of MSEn

ref in Eq. 20 makes the

FSSn metric symmetric in the sense that reversing the definition of hits and misses does not affect the FSSn score.

For the sample case in Fig. 2 we then find that FSSn=1 = 1/2 and for the n= 3 neighbourhood displayed by the thick grid

lines we have FSSn=3 = 7/9≈ 0.78.
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Moreover, we note from Eq.s 19-21 that the FSS score will not change if we introduce a set of additional grid cells where

neither product has an ice edge, provided that non-events dominate events (i.e., the first term in Eq. 20 is used, here: that the

number of nodes without an ice edge is larger than the number of edge nodes). This observation has consequences for two

different aspects in the present study.

First, when modeling the ocean, dry nodes are usually not considered to be part of the computational domain, and are5

assigned a special value in numerical results. When integrating over a neighbourhood n > 1 one option would be to discard the

grid cells that are dry in the original representation. We will then be left with a result which has a non-constant neighbourhood

size where n2 if dry nodes are not present, and < n2 for neighbourhoods where dry nodes are present. Here, we choose to

avoid the problem of non-constant neighbourhood sizes by adopting λo = λm = 0 for dry grid cells.

Second, the grid for n= 3 indicated by thick lines in Fig. 2 is only one of nine possible configurations. Since the FSS results10

are not affected by additional grid cells where neither product has an ice edge, we can expand the original domain by adding

a padding region of n− 1 grid cells. In the case of n= 3 all configurations are attained by shifting the neighbourhood by 0, 1

and 2 original grid cells in both directions. The average FSS score from all of the configurations will be used henceforth in this

article, since the alternative is a set of results that will depended on an arbitrary configuration subset choice.

As an expansion of the FSS metrics, Skok and Roberts (2018) introduced the FSS displacement, which we will refer to as15

D
FSS

. An initial estimate for D
FSS

is derived by first determining for which neighbourhood size the FSS exceeds 0.5. The

full algorithm for computing this displacement metric is given at the end of Skok and Roberts (2018), and is not repeated here.

In most cases D
FSS

will become about half of the minimum metric neighbourhood size at which the FSS exceeds 0.5. The

reliability of D
FSS

decreases when the frequencies are biased (Skok and Roberts, 2018). Here, this translates to differences

in the number of ice edge grid cells in observations and in the forecast. In the present study we implement a reduction of the20

product with the longest ice edge by randomly removing ice edge grid cells from this product. Thus, an unbiased version of the

two grid cells is used when computing D
FSS

. The random removal of grid cells is repeated a number of times, and the average

value of the resulting displacements is taken to represent the D
FSS

.

3 Ice edge metrics in two synthetic cases

In order to illustrate the various sea ice metrics and to examine how the results for these metrics compare, we have constructed25

a set of synthetic distributions of sea ice concentrations. The distributions will serve as representing observations and model

results, respectively. The sea ice concentration distributions are introduced on a 200×200 grid, and they are displayed in Fig. 3.

We take the sea ice concentration field in Fig. 3a to represent a reference observation. One aspect of interest here is the effect

on the validation scores when ice is introduced or removed locally in one product, but not in the other. In order to accentuate

such conditions, we supplement the reference observation with modified observation as displayed in panel b. A corresponding30

model result is given as shown in Fig. 3c.

We denote the comparison of the reference observation and model results as the Reference case, while the comparison of the

modified observation and model results is referred to as the Modified case.
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The ice edges (0.15 concentration isolines) as given by Eq. 1 are displayed as colored lines in Fig. 3. Edges from synthetic

observations have been added in Fig. 3c. The main purpose of this article is to present metrics for the separation in such sets of

lines.

Now consider the areas between the ice edges, from which the IIEE metrics are computed. The regions corresponding to the

definitions in Eq.s 9 and 10 are shown in pink and red in Fig. 4.5

The results for the various displacement metrics that were defined in Sect. 2 are given in Table 1. First, we note that in the

Reference case, all D
IE

and D
IIEE

scores have similar values (with the expected exception of the maximum displacement

score D
IE

H
which has a larger value than the other D

IE

scores by design). Also, ∆
IE

and ∆
IIEE

are of similar magnitudes in

the Reference case.

For the modified case, we assume that the bottom boundary is adjacent to land. This is relevant for the hatted ice edge10

displacement metrics. From experience, we know that discrepancies where sea ice emerges or disappears at a distance from

other ice covered regions arise from time to time in an operational sea ice forecasting service. An example will be presented in

Sect. 4. We find that the value of the D
IE

ice edge displacement metrics given by Eq.s 4, 5 and 7 increase from the Reference

case to the Modified case by a factor of about 2-5 even though a fairly modest area with additional sea ice has been introduced

in the latter case. Since the additional discrepancy between the observations and model results has been introduced at a large15

distance, this change is according to our expectations.

Even though an additional discrepancy has been introduced in the Modified case, its shape and size is such that with the

exception of bias metrics all IIEE displacement metrics increase by a very modest degree in these synthetic examples. In

conclusion, we find that the deterioration according to scores for the Modified case is much larger for the D
IE

ice edge

displacement metrics than for the IIEE metrics since the latter do not explicitly depend on the displacement between the pair20

of ice edges. Moreover, we note that if the ice edge displacement is defined by Eq. 3 the resulting D̂IE displacement increase

only by a marginal fraction from the Reference case to the Modified case, due to the added ice area’s proximity to land.

Finally, we note from Table 2 that the fractions skill score is only moderately reduced when additional observed sea ice is

introduced locally in the Modified case, and the FSS displacement also increases modestly (Table 1, D
FSS

). The changes in

the IIEE area scores provide a quantification of the change in ice extent when substituting the Reference case with the Modified25

case.

A digression which is relevant here is that we have not included the Modified Hausdorff Distance, which was recommended

by Dukhovskoy et al. (2015), in our analysis. In our formulation, this quantity is the maximum of the two terms in the bracket in

Eq. 5, and will generally exhibit similar results toD
IE

AV G
but with larger magnitudes. While the sensitivity study in Dukhovskoy

et al. (2015) is rich in detail, changes like contrasts between the Reference case and the Modified case are not considered. In30

their study of results from seasonal forecasts, Palerme et al. (2019) conclude that results for the Modified Hausdorff Distance

are sensitive to differences with similar qualitative aspects as those discussed in this section. In Sect.s 4 and 5 below we will

examine if differences which are qualitatively similar to the Modified case have an effect on the quality assessment of the ice

edge position in the forecasts from CMEMS ARC MFC.
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4 Ice edge metrics for two forecasts

We compare model results with observations which both are products that are distributed by CMEMS. The observational prod-

uct is the Arctic Ocean Sea Ice Concentration Charts Svalbard which is a multi-sensor product that uses data from Synthetic

Aperture Radar (SAR) instruments as its primary source of information (WMO, 2017). This product covers the northern Nordic

Seas, the Barents Sea and adjacent ocean regions. It is available on working days as mean values on a 1 km stereographic grid5

and will be referred to as the ice chart data hereafter.

Model results are taken from the Arctic Ocean Physics Analysis And Forecast product. Assimilation of sea ice concentration

is implemented by use of microwave data, while no SAR data are assimilated. The model product will from here on be referred

to as the ARC model product. In our investigation we will consider daily mean fields of sea ice concentration, which presently

are distributed on a 12.5 km stereographic grid. We restrict this study to the forecasts from the Thursday bulletins, which10

are available with a forecast range of ten days. The microwave data that are assimilated are available as the Ocean and Sea

Ice Satellite Application Facility northern hemisphere product (Breivik et al., 2001), which is available from the CMEMS

catalogue. The assimilation was performed three days prior to the Thursday bulletins. The main topic of this investigation is to

provide an independent assessment of the quality of results for the ice edge, and not to assess the impact of assimilation. Thus,

we compare results with ice chart data rather than with the microwave data.15

Prior to performing the analysis both products are regridded. The ice chart product is aggregated onto a 13 km grid, while

the ARC model product is interpolated onto the same grid (the axes of the two CMEMS products, both available on polar stere-

ographic grids, are rotated differently). The land-sea masks of the two regridded products are overlaid so that the geographical

extent of the two regridded products is identical.

In order to explore how sea ice edge metrics from actual forecasts and observations are affected by changing conditions, we20

here examine two cases that illustrate contrasts of the type that was examined in Sect. 3. The two cases that are chosen are the

day 5 ARC forecast products issued on 2017-03-30 and 2017-05-25. The quality of the forecasted ice edge positions will be

assessed by comparing the model results with the ice edge position in the ice chart data on the respective forecast valid dates.

The positions of the ice edges on these two dates according to model and observations are shown by displaying the IIEE fields

in Fig. 5a and b.25

For the situation on 2017-05-29 (panel b) we notice that there are large discrepancies in the position of the ice edge in several

locations: a polynya to the northwest of Greenland is open in the model, but not in the observations; there is a region along the

coast in the Barents Sea where the model ice edge has retreated from the coast in the southern Kara Sea while the entire Kara

Sea is frozen over in the ice chart; there remains some ice along the coast in the southeastern Barents Sea in the ice chart but

not in the model. These objects are indicated by labels in Fig. 5. Note also that polynyas have opened around Franz Josef Land30

(FJL), but since these are seen in both products this region doesn’t affect the displacement metrics to the same degree as the

other discrepancies that are mentioned here.

In contrast, the situation on 2017-04-03 (panel a) has notable offsets along the sea ice edge, but polynyas and mismatching

results in coastal regions play a much smaller role than on 2017-05-29.
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Results for the various displacement metrics are given in Table 3. As was seen in the results for the synthetic cases in Sect. 3,

the scores that deviate substantially between the two forecasts are for the D
IE

ice edge displacement metrics and for ∆
IE

. The

inflated values for the 2017-05-29 forecast when compared to the results for the 2017-04-03 forecast can largely be attributed

to the ice edges associated with the IIEE features that are labeled in Fig. 5b. Furthermore, we note that the values for D̂IIEE

AV G

and D̂IIEE

RMS
are larger than those for the corresponding D̂IE metrics by a factor of 1.5-2. This contrast, which is much larger5

than in the synthetic case (Table 1), can be attributed to the fact that the individual IIEE features in the synthetic cases were

few and regular. In the forecasts there is a large number of IIEE features with irregular shapes.

Furthermore, we find that the D̂IE metrics change only very modestly from 2017-04-03 to 2017-05-29 due to the proximity

to the coast for the features that are labeled in Fig. 5b, in contrast to the results forD
IE

. We also note that the definitions for the

displacement metrics that are derived from the IIEE lead to values for D̂IIEE

AV G
that are about twice as large as the corresponding10

D
IIEE

AV G
values. Finally, we observe that for each of the two forecasts that are examined here, the relative difference between

D
IIEE

AV G
and D̂IE

AV G
is only about 10% or less. The relationships between the various displacement metrics are examined based

on results from a full year of weekly forecast bulletins in the next section.

From the results for supplementary metrics in Table 4 we note that the FSS values are only slightly lower for the 2017-05-29

forecast than for the 2017-04-03 forecast, even though this forecast performs much poorer when diagnosed with the D
IE

ice15

edge displacement metrics.

5 Ice edge position metrics for 2017

The comparison of model results and observations in Sect. 4 has been performed for all weekly forecast bulletins from 2017.

The results for mean displacement metrics and biases for the 5-day forecasts are displayed in Fig. 6. We note that there is a

seasonal variation in all metrics with large deviations during the months that lead up to the sea ice minimum in mid-September.20

We will refer to the period from the start of July to mid-September as the pre-minimum. A substantial part of the pre-minimum

discrepancies is explained by the biases, which reveal that the sea ice extent is larger in the ice chart product than in the model

product. The smaller extent in the model product gives rise to negative values in Fig. 6b. Annual average values for the various

displacement metrics are given in rows All 5-day forecasts of Tables 3 and 4.

Furthermore, we note that the curves in Fig. 6 can be separated into two groups:25

1. D
IE

AV G
, D̂IIEE

AV G
and D

FSS

2. D̂IE

AV G
and D

IIEE

AV G

Group 1 metrics generally have larger values than group 2 metrics. This is expected since e.g. D̂IE

AV G
≤DIE

AV G
by definition,

notably the different impact on these two metrics when the displacements occur in the vicinity of land or islands. Moreover,

we demonstrated in Sect. S1 that the definition of D̂IIEE

AV G
in group 1 leads to values that are larger than the D

IIEE

AV G
metric in30

group 2.
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Interestingly, we find that there is a contrast in the results between the two metrics groups during the pre-minimum: the

deterioration exhibited in the evolution of group 1 metrics are larger than the corresponding deterioration for group 2 metrics

in absolute terms. When we inspect the results from the two cases presented in Sect. 4, Table 3 reveals that the group 2 metrics

have the lowest values in both cases. However, the separation into two distinct groups of metrics does not apply. We note

that these two cases (indicated by vertical lines in Fig. 6) precede the July to mid-September pre-minimum during which the5

separation between the groups is most striking.

We have supplemented this analysis by a comparison between the microwave product that is assimilated by the model, and

the ice charts. The deviations between these two observational products reveal similar peaks during the pre-minimum, e.g. with

values for D
IE

AV G
and ∆

IE

in ranges of about 60 - 120 km and -40 - -120 km, respectively (see Sect. S2 in the Supplementary

Information document for details). Hence, the pre-minimum peaks that are seen in Fig. 6 can at least to some degree be10

attributed to assimilation of an observational product that deviates from the ice charts during the pre-minimum season. The

correlation coefficients for the time series of D
IE

AV G
for the 5-day forecasts vs. ice charts (black line in Fig. 6a) and the time

series of D
IE

AV G
for microwave data vs. ice charts is 0.89. The corresponding correlation coefficient for ∆

IE

is 0.92.

Next, we have examined how the quality of the ice edge forecasts changes as a function of lead time. In order to limit the

impact of the strong seasonal signal that is evident from Fig. 6, we have restricted this part of the analysis to the period from15

January to mid-May. The deterioration of the forecast quality that can be inferred from Fig. 7 is very weak. We also note that

results for the two metrics in group 2 (blue and red curves in Fig. 6a) nearly overlap at all lead times, and are also lower in

magnitude than the group 1 metrics at all lead times, as expected. The FSS scores for the same period are depicted as a function

of resolution in Fig. 8, for model forecasts issued with a five day lead time, as well as for the microwave data. These results

reveal that useful forecasts with a five day lead time are obtained at a scale of about 60x60 km, when the FSS reaches a value20

of 0.5 (which is a criterion recommended by Skok and Roberts (2016)). When comparing the microwave data with ice charts,

the FSS is well above 0.5 for a neighbourhood extent n= 3, corresponding to useful data at a scale of approximately 40x40 km

if ice chart data are taken as truth.

Finally, from the results in Table 4 we note that the model has a tendency to have a lower sea ice extent than the ice chart, as

more than 70% of the IIEE areal misrepresentation is due to such conditions. This tendency is a confirmation of the negative25

bias values reported in Table 3.

6 Discussion

Our investigation of the results for the ice edge in the 2017 forecast bulletins in Sect. 5 revealed that the metrics D̂IE

AV G
and

D
IIEE

AV G
nearly overlap, and this is also the case for ∆̂IE and ∆

IIEE

. These similarities can to some degree be understood from

the following simplified cases: consider first a situation where one ice edge is shifted by a constant distance from the other, i.e.,30

they are parallel lines. Then, all of the average displacement metrics will be nearly identical, and this will also be the case for

the displacement bias metrics. This is an idealized description for cases similar to the forecast for 2017-04-03 (Fig. 5a) where

D
IE

AV G
is only moderately larger than D̂IE

AV G
(Table 3).
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Next, consider a situation where a part of one ice edge is shifted from the other, and the remaining part is due to discrepancies

with coastal ice cover in one product, but not in the other. When the length of boundaries between IIEE areas and adjacent dry

grid cells is much shorter than the ice edge length, the impact of disregarding coastal segments in Eq. 13 is small. Then, nearly

identical displacement metrics values will again be the result for e.g. D̂IE

AV G
and D

IIEE

AV G
by the same argument as above since

the coastline will have taken on the role as an ice edge, or IIEE area limit. However, the value for D
IE

AV G
will inflate in this5

situation. These differences in displacement metrics will be further accentuated when such coastal discrepancies are separated

geographically from the remaining ice edges as e.g. is seen with the labeled features in Fig. 5b, and D
IE

AV G
� D̂IE

AV G
(Table 3).

The main exception to the two types of situations described above occurs when polynyas form in the open ocean, away from

the continental coasts as well as the Arctic islands. However, such cases rarely arise in the set of results that are investigated

here.10

6.1 Reducing the set of displacement metrics

The expected relationship between displacement metrics, conceptually described above, is confirmed by the results in Sect. 5.

Hence, with the present configuration of validation domain and the results from model and observation, one in each of these

two metrics pairs D̂IE

AV G
,D

IIEE

AV G
and ∆̂IE ,∆

IIEE

can be disregarded. Of the two approaches, we find adopting D
IIEE

AV G
and

∆
IIEE

to be the more intuitive and simpler choice (but admittedly this preference is somewhat subjective).15

We can take this analysis one step forward, by systematically computing the correlation coefficients between all possible

combinations of displacement metrics time series pairs. If we perform such an analysis for all 2017 forecasts and list the pairs

whose correlation value is outside the range [-0.85, 0.85], 50 such pairs from a total of 105 pairs become listed. However, an

influential seasonal cycle in the metrics, evident from the strong bias during the pre-minimum, has a sizable impact on the

correlation results. If we instead restrict the analysis to the months prior to the pre-minimum, and retain the criterion that pairs20

with correlation outside [-0.85, 0.85] is of interest, we find that 13 of the proposed 15 metrics can be divided into four groups

inside which metrics have large positive (> 0.85) or large negative (< -0.85) correlation coefficients. These groups are

1. All three D
IE

metrics

2. D
IIEE

AV G
, D

FSS

, D̂IE

AV G

3. ∆̂IE , ∆
IIEE

, ∆̂IIEE25

4. D̂IE

RMS
, D̂IIEE

AV G
, D̂IIEE

RMS
, D̂IIEE

MAX

The two remaining displacement metrics are ∆
IE

and D̂IE

H
.

Note also that the Hausdorff/maximum metrics are at times subject to large fluctuations depending on presence or absence of

outliers. This was also noted in the investigation of skill metrics for sea ice model results by Dukhovskoy et al. (2015). Hence,

a case can be made for disregarding the Hausdorff/maximum metrics.30
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6.2 Relative ice edge metrics

From the synthetic cases that were analyzed in Sect. 3, we note that the penalty for local freezing in one product but not in

the other is much smaller for the IIEE-based displacement metric D
IIEE

AV G
than for the ice edge displacement metric D

IE

AV G
. We

therefore introduce two combined, relative metrics:

r
AV G

=
D

IE

AV G

DIIEE

AV G

(22)5

r̂
AV G

=
D

IE

AV G

D̂IE

AV G

(23)

These derived metrics will e.g. increase in magnitude as local freezing are seen in the observational product and not in model

results since the common numerator D
IE

AV G
will inflate. Then, if the model eventually becomes able to represent the local

freezing, the metrics will decrease. For the synthetic cases we investigated in Sect. 3 we find r
AV G

= 1.03 and r̂
AV G

= 1 in10

the Reference case. In the Modified case we have r
AV G

= 1.82 and r̂
AV G

= 1.90. The corresponding set of ratios for the two

forecasts that were examined in Sect. 4 are r
AV G

= 1.21 and r̂
AV G

= 1.14 on 2017-04-03, and r
AV G

= 2.89 and r̂
AV G

= 3.17

on 2017-05-29.

We started this discussion by noting that results for the two metrics which are the denominators in Eq. 22 and 23 nearly

overlap. Hence, the curves in Fig. 9a also nearly overlap. However, this is not the case for the 5-day forecast for 2017-09-15

11, indicated by the rightmost vertical line in Fig. 9a. This outlier in the context of the metrics ratios can be explained by

examination of the IIEE areas, for which the results in the Fram strait is shown in Fig. 9b. We can infer that there is a complex

shape of a large part of the ice edge in the observational product (the red grid cells that have a blue neighbour) which is at some

distance from the model ice edge. This inflates the edge-integrated metric D̂IE

AV G
much more than the area-derived D

IIEE

AV G
, and

consequently r̂
AV G

(2.18) is significantly smaller than r
AV G

(2.94) in this case.20

6.3 Recommendation

Our recommendations regarding a set of metrics to use for assessing the quality of ice edge forecasts are made from a preference

of simplicity and necessity. By simplicity we have in mind metrics which are simple, not convoluted, in their implementation,

and also have an intuitive interpretation. By necessity we have in mind a set of metrics for which each value provides useful

information that is supplementary to the other values, and not overlapping.25

From the analysis of validation results from a full calendar year that was presented in Sect. 5, and the subsequent discussion

in 6.1 above, we recommend that validation results for ice edge displacement are provided for a set of three metrics:

1. D
IE

AV G

2. D
IIEE

AV G

3. ∆
IIEE

AV G
30
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Here, 1. and 2. give a high and a low bound for the expected displacement error for the position of the ice edge, respectively.

The bias metric 3. provides information about whether the ice edge should be expected before or after a user reaches the

forecasted position of the ice edge.

Moreover, while no new metrics are involved, we also encourage displaying results for

4. r
AV G

5

since time series for this quantity provides information on the robustness of the metrics results that can be easily presented as

a line plot. In situations with large values of this fraction a user should be aware that the quality of the forecasted ice edge

position is sensitive to how the displacement error is formulated. Note that of the two formulations in Eq. 22 and 23, our

preference is the former since the episodic high impact of a complex ice edge makes interpretation of the latter less intuitive in

the present context.10

Another useful supplement when the pan-Arctic ice edge is considered is metrics statistics that are computed for sectors or

sub-domains. IN CMEMS ARC MFC, we have adopted the Global Ocean Data Assimilation Experiment (GODAE; Bell et al.,

2015; Hernandez et al., 2009) definitions of Arctic region when comparing forecasts to microwave observations. The GODAE

Arctic regions are displayed in Fig. S3 in the Supplementary Information document. An alternative definition of Arctic sectors

was adopted by Posey et al. (2015) in their quantification of the sea ice edge displacement.15

Obviously, in a context of forecasting, validation results will always be available after the fact only. However, recent valida-

tion results are more often than not also relevant for a future period. We apply an auto-correlation crossing at e−1 to define the

decorrelation time scale. Then, we find that the decorrelation time scales of the metrics 1.-4. above are 6-7 weeks.

Frequently, users of forecast products are interested in the results for a small portion of the full domain. Hence, when

possible validation results should be provided as easily accessible representations on maps. Hence, taking advantage of the20

long decorrelation time scale we recommend to supplement the above set of metrics with maps showing the distribution of

IIEE areas (as e.g. Fig. 5).

This ends our recommendation for a basic set of ice edge displacement metrics. Nevertheless, more advanced users may

also benefit from access to results for the FSS as a function of neighbourhood size: the FSS will also be highly relevant when

performance changes due to increased resolution in model system upgrades are evaluated.25

The above set of recommendations are based on an examination of results covering one year, for a specific forecast system

and a specific observational product. While we believe that such an analysis is relevant for other sets of forecasts and obser-

vational products, each configuration should be checked separately, if resources are available. Issues like domain size (e.g.

pan-Arctic vs. regional) and resolution (representation of archipelagos and straits) can conceivably affect the characteristics of

the forecast quality.30

We end this study by noting that the travel time for commercial shipping between ports in Northwestern Europe and the Far

East is about 20-30 days with speeds in the range 10-15 knots (5-7.5 m/s) (Schøyen and Bråthen, 2011). Adding a few days

for advanced decision making of sea route, and subtracting some days for sailing time in ice free conditions at the end of the

leg, forecast lead times of up to 20-30 day period is expected to be required in this context. Presently, CMEMS forecasts are
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available for lead times up to 10 days. We have shown that the deterioration in the forecast quality is moderate for these lead

times (Fig. 7). Since maritime safety is one of the four core CMEMS areas of benefits, our final recommendation is to double

the forecast lead time range of the CMEMS forecasting systems.
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Ice edge displacement metrics

D
IE

AV G
D

IE

RMS
D

IE

H
D̂IE

AV G
D̂IE

RMS
D̂IE

H
∆

IE

∆̂IE

Reference case 9.1 10.6 20 9.1 10.6 20 0.24 0.24

Modified case 17.5 27.4 112 9.2 10.7 20 -9.1 -0.8

FSS IIEE displacement metrics

D
FSS

D
IIEE

AV G
D̂IIEE

AV G
D̂IIEE

RMS
D̂IIEE

MAX
∆

IIEE

∆̂IIEE

Reference case 8.8 8.8 10.4 10.5 10.6 0.17 0.21

Modified case 9.8 9.6 11.0 11.1 13.4 -1.7 -2.3

Table 1. Results for the various displacement metrics defined in Sect. 2. Vertical lines are introduced to separate non-negative displacement

metrics from signed bias metrics, and the FSS metric from IIEE metrics. The Reference case and the Modified case refer to the observational

sea ice concentrations that are displayed in Fig. 3a and b, respectively. All values are given in non-dimensional grid units. Note that in the

Reference case, all boundaries are considered open, and so the ice edge displacement metrics are unaffected when computing the hatted

variables. Note also that in the Modified case, the bottom boundary was treated as adjacent to a closed (land) boundary.
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IIEE area metrics Fractions skill score

A
IIEE

α
IIEE

n= 3 n= 7 n= 11

Reference case 2002 38 0.14 0.26 0.37

Modified case 2470 -430 0.12 0.24 0.34

Table 2. Supplementary metric scores. IIEE area scores are given in non-dimensional grid units. The fractions skill scores is computed by

Eq. 21.
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Ice edge displacement metrics

D
IE

AV G
D

IE

RMS
D

IE

H
D̂IE

AV G
D̂IE

RMS
D̂IE

H
∆

IE

∆̂IE

Forecast 4-3 35 47 150 31 43 150 -14 -15

Forecast 5-29 98 230 1560 31 39 130 -87 -23

All 5-day forecasts 69 116 720 37 48 175 -55 -27

Bootstrap fraction 0.25 0.27 0.28 0.17 0.15 0.15 0.39 0.35

FSS IIEE displacement metrics

D
FSS

D
IIEE

AV G
D̂IIEE

AV G
D̂IIEE

RMS
D̂IIEE

MAX
∆

IIEE

∆̂IIEE

Forecast 4-3 45 29 61 69 100 -14 -40

Forecast 5-29 48 34 57 61 91 -27 -48

All 5-day forecasts 61 39 79 86 119 -29 -64

Bootstrap fraction 0.28 0.18 0.18 0.18 0.15 0.33 0.30

Table 3. Results for the various sea ice edge displacement metrics. Forecast 4-3 and Forecast 5-29 results are metrics for the forecast for

2017-04-03 issued on 2017-03-30, and for the forecast for 2017-05-29 issued on 2017-05-25, respectively. All 5-day forecasts results are

averages for all weekly 2017 forecast bulletins with a 5 day lead time. Bootstrap fraction is the difference between the 95 percentile and 5

percentile values from a bootstrap analysis, divided by the corresponding average value. All values are in km. See the text for details.
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IIEE area metrics Fractions skill score

A
IIEE

α
IIEE

n= 3 n= 7 n= 11

Forecast 3-4 220 -110 0.35 0.63 0.75

Forecast 5-29 210 -167 0.30 0.54 0.68

All 5-day forecasts 260 -186 0.30 0.49 0.59

Bootstrap fraction 0.21 0.36 0.20 0.17 0.15

Table 4. Supplementary metric scores for the forecasts displayed in Fig. 5 and the corresponding 2017 average values. IIEE area scores are

given in units of 1000 km2.
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Figure 1. Schematic illustration for computation of ice edge length. The ice edge is displayed by the labeled cells that are filled grey. Black

cells correspond to land. The algorithm we present here for calculation of the ice edge length yields a value that corresponds to the length of

the blue line, see the text for details.
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Figure 2. Schematic illustration for computation of fractions skill score for gridded contour lines. Gridded lines representing the ice edge of

the model product and the observational product are shown as light gray boxes and dark gray boxes, respectively. Grid cells where the two

lines overlap are black. The original grid is displayed by thin grid lines with x-axis indices at the top and y-axis indices to the right. Thick

grid lines correspond to the grid of a neighbourhood with an extent of 3 grid cells (n= 3), with x- and y-axis indices at the bottom and to the

left, respectively. See the text for details.
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Figure 3. Sea ice concentrations representing (a) reference observations, (b) modified observations and (c) model results. The ice edges in

the observational and model products are drawn as red and magenta lines, respectively. (These lines are drawn with three times their actual

thickness in order to accentuate the edges graphically.) Note that the ice edge from the modified observations has been added in (c). Blue

color represents ice free conditions, and the gray scale used for sea ice concentration is displayed by the label bar at the bottom.
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Figure 4. Depiction of areas used for computing the IIEE metrics. The pink region corresponds to the A+ area given by Eq. 9, whereas

the A− area given by Eq. 10 is in red. The additional A− area in the Modified case is in dark red. Ice edges are displayed as gray lines

(observations) and black lines (model results). (These lines are drawn with three times their actual thickness in order to accentuate the edges

graphically.) Regions where all products are on the open ocean side of the ice edges are blue, while regions which are inside the ice edges in

all products are white.
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Figure 5. Map displaying the IIEE regions for two forecasts. Panels a and b display the results for the forecast for 2017-04-03 issued on

2017-03-30, and for the forecast for 2017-05-29 issued on 2017-05-25, respectively. Areas displayed in gray are not included in one or both

products, and are excluded in the present analysis. The following regions with ice edge discrepancies are labeled in panel b: near Franz Josef

Land (FJL), southern Kara Sea (sKS), northwest of Greenland (nwG), and southeastern Barents Sea (seBS). The displayed region is nearly

the same as the region with ice chart data (a slight zooming was applied in order to highlight features of interest, so narrow bands of grid

cells from the ice chart data to the right and to the bottom are not shown). The color codes for the various IIEE regions are the same as in

Fig. 4.
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Figure 6. Time series for (a) mean displacement and (b) bias metrics as defined in Sect. 2. All results are for the 5-day forecasts. Vertical

lines correspond to the two forecasts that were analyzed in Sect. 4. Values along the vertical axes are in units of km.
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Figure 7. Metrics for (a) mean displacement and (b) bias, as functions of forecast lead time, in days. These results are based on forecast

bulletins from January 2017 to mid-May 2017. Note that lines for D̂IE

AV G
and D

IIEE

AV G
in (a) nearly overlap, as do lines for ∆̂IE and ∆

IIEE

in (b). Values along the vertical axes are in units of km. Ice charts are not produced on Saturdays and Sundays, which correspond to forecast

lead times of +3 days and +4 days, respectively. Dashed lines are thus used to indicate the lack of analysis for these two days.
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Figure 8. Fractions skill score as a function of resolution, for five-day lead time model forecasts vs. ice chart data (blue line) and microwave

data vs. ice chart data (black line). Dashed lines show the asymptotic FSS values as defined by Roberts and Lean (2008) (their Eq. 8). These

results are based on forecast bulletins and microwave data from January 2017 to mid-May 2017.
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Figure 9. (a) Time series of two metrics ratios for forecasts with a lead time of 5 days. Vertical lines correspond to cases for which results

are discussed in detail. The left and center vertical lines correspond to the two forecasts that were analyzed in Sect. 4, whereas the line to the

right is for the situation displayed in the right panel. (b) Detail of IIEE in the Fram strait (the region between Greenland and the Svalbard

archipelago) on 2017-09-11.
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