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Abstract. Ocean data assimilation systems encompass a wide range of scales that are difficult to control simultaneously using

partial observation networks. All scales are not observable by all observation systems which is not easily taken into account in

current ocean operational systems. The main reason for this difficulty is that the error covariance matrices are usually assumed

to be local (e.g. using a localization algorithm in ensemble data assimilation systems), so that the large scale patterns are

removed from the error statistics.5

To better exploit the observational information available for all scales in CMEMS assimilation systems, we investigate a new

method to introduce scale separation in the assimilation scheme.

The method is based on a spectral transformation of the assimilation problem and consists in carrying out the analysis with

spectral localisation for the large scales and spatial localisation for the residual scales. The target is to improve the observational

update of the large scale components of the signal by an explicit observational constraint applied directly on the large scales,10

and to restrict the use of spatial localisation to the small scale components of the signal.

To evaluate our method, twin experiments are carried out with synthetic altimetry observations (simulating the JASON

tracks), assimilated in a 1/4◦ model configuration of the North Atlantic and the Nordic Seas.

Results show that the transformation to the spectral domain and the spectral localization provides consistent ensemble

estimates of the state of the system (in the spectral domain,or after backward transformation to the spatial domain). Combined15

with spatial localisation for the residual scales, the new scheme is able to provide a reliable ensemble update for all scales,

with improved accuracy for the large scale; and the performance of the system can be checked explicitly and separately for all

scales in the assimilation system.

1 Introduction

Over the last decades, the spectral window of the oceanic processes observed from space has steadily increased. At the same20

time, model resolution has also improved to better understand and interpret the observed signals. This progress in observations

and models is a challenge for ensemble data assimilation. Because the size of the ensemble is always very small compared to the

number of degrees of freedom to be monitored. The model is usually too expensive to perform large-size ensemble simulations.
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This means that the probability distribution of the possible states of ocean is described by a small sample as compared to the

dimension of the subspace over which uncertainties develop. In particular, the rank of the ensemble covariance matrix is much

smaller than the rank of the real error covariance matrix. A traditional approximation to solve this problem is to localise this

error covariance matrix (Houtekamer and Mitchell, 1998; Hamill et al., 2001; Testut et al., 2003; Brankart et al., 2011). The

analysis is then applied locally by only using observations within a defined radius of influence which is bound to decrease with5

the broadening of the spectral window controlled by the data assimilation. The control of large scales, namely larger than this

radius of influence, thus results from the combination of a large number of local analyses.

The large scales structures, although they are well observed (in the ocean by altimetry, ARGO floats,...), are therefore only

indirectly controlled by the algorithm. Observations contain simultaneously information about small scale structures (especially

at the observation point) and about larger scale structures, taken into account the full observational network. Spatial localisation10

does not directly take advantage of each scale contained in the observations system.

Because of the limited size of the ensemble, it is difficult to explicitly control the full range of scales without separating

the spectral components of the signal. Separation of scales during the analysis step of data assimilation algorithms allows

us to adjust localisation according to the considered spectral band of the signal. This is helpful to directly control the large

scales which are frequently and precisely observed (altimetry, ARGO floats, ...). To separate scales in data assimilation, two15

approaches have been previously studied : the multiscale filter and the spectral transformation. The multiscale filter consists in

separating the signal in two spectral bands, delimited by a cutting scale, in order to achieve two distinct ensemble analysis in

the spatial domain (Zhou et al., 2008; Zhang et al., 2009). In this scheme, applied to an EnKF, two distinct localisation windows

are used to exploit correlations over a longer distance for the analysis of the large scales. A more approximate version has also

been proposed by simply combining the increments obtained for each of the two spectral bands (Miyoshi and Kondo, 2013). A20

comparable approach was proposed for 3DVar systems by Li et al. (2015). Alternatively, Buehner (2012) proposed a spectral

transformation approach within an EnVar system, which is a spatial and a spectral localisation with a wavelet transform. This

method is more generic because scales are separated continuously from the largest scales to the smallest scales. Localisation

is used to neglect the correlations between the components of the signal which are distant both in terms of spatial location

and in terms of scales. However, this method would be expensive for large systems and could be difficult to insert in a global25

ocean assimilation system. More recently, Buehner and Shlyaeva (2015) and Caron and Buehner (2018) have developed a

new formulation of this algorithm for EnVar systems. It incorporates the multiscale filter idea of decomposing the signal in

several spectral bands and it avoids the complete removal of the between-scale covariances (Buehner and Charron, 2007). This

formulation makes use of an augmented spatial/spectral ensemble covariance matrix, whereas the result of the analysis is still

computed in the spatial domain.30

Following a similar idea of combining the multiscale filter and spectral transformation approaches, we propose in the present

paper to combine these two algorithms by applying a spectral analysis with spectral localisation (hereinafter called spectral

localisation) to the large scales components of the signal and a spatial analysis with spatial localisation (hereinafter called

spatial localisation) for the residual scales. By separating the components, we avoid using an augmented covariance matrix and

we thus potentially neglect useful statistical relationships. However, this makes the multiscale system less expensive and easier35
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to implement in an existing ensemble data assimilation system. It is indeed expected that the spectral transformation of the

large scales is cheap enough to be applied to large size global ocean system, and that spectral localisation is more appropriate

than spatial localisation to capture the large scale components of the observed signal. On the other hand, for the small scale

components, the spectral transformation becomes too expensive, and the local correlation structure prevails. The target is thus

to improve the observational update of the large scale components of the signal by an explicit observational constraint applied5

directly on the large scales, and to restrict the use of spatial localisation to the residual scale components of the signal. These

analyses should be done one after the other to be included in an existing sequential algorithm as operated for instance by

Mercator Ocean.

The performance of this multiscale observational update is then studied with an example application in the context of

CMEMS systems. We performed a 70-member ensemble simulation using the oceanic model NEMO (Nucleus for European10

Modelling of the Ocean (Madec, 2008)) version 3.6 at 1/4◦ with the CREG4 configuration (Dupont et al., 2015) as part of the

CMEMS project. This configuration of the North Atlantic and Nordic Seas is currently used at Mercator Ocean for developing

and testing the future assimilation system. This configuration is thus appropriate to check that our new algorithm can be

integrated in the data assimilation system of Mercator Ocean (SAM2) used for the CMEMS program.

The objective of this paper is to describe the multiscale observational update algorithm that we have developed and to15

evaluate its performance using the CREG4 ensemble system. The paper is organised as follows. In Sect. 2, we present the

practical problem that we want to solve : we describe the prior ensemble, the observation system, and the difficulties associated

to the multiscale correlation structure. In Sect. 3, we present the spectral transformation that is applied in this study to better

display the multiscale correlation structure. In Sect. 4, we present the algorithm that we have developed to make a better use of

the correlation structure for all scales. In Sect. 5, we evaluate the resulting algorithm using the application problem described20

in Sect. 2. This is done by studying the reliability and resolution of the updated ensemble for each wavelength of the control

variables.

2 Application problem

The purpose of this section is to introduce the example application that is used in this paper to study the performance of the

multiscale observational update. This example application is chosen to serve the development of the CMEMS systems and25

to display the multivariate character of the assimilation problem. The model configuration and the prior ensemble simulation

are described in Sect. 2.1; the assimilation problem is described in Sect. 2.2; and the multiscale character of the ensemble

correlation structure is described in Sect. 2.3.

2.1 Ensemble model simulation

Our example application is based on a 1/4◦ resolution model of the North Atlantic and the Nordic Seas. We used the oceanic30

model NEMO (Nucleus for European Modelling of the Ocean, (Madec, 2008)) version 3.6, with the CREG4 configuration

as part of the CMEMS project. NEMO, used by a large community, is developed by European institutes and is used by the
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majority of the CMEMS stakeholders. It is a primitive equation model which computes the following prognostic variables : 3D

velocities, sea surface height, salinity and temperature. ERA-Interim reanalysis data, produced at ECMWF (Dee et al., 2011),

are used for the atmospheric forcing. CREG4 is a realistic configuration for the North Atlantic and the Nordic Seas, at the 1/4◦

horizontal resolution. This configuration is described in the work of Dupont et al. (2015), except that we use a 1/4◦ version

instead of the nominal 1/12◦ resolution. It has been developed by Environment Canada and coupled with Mercator Ocean’s5

SAM2 data assimilation system. The aim was to build a realistic description of the mean state and variability in the North

Atlantic and the Nordic Seas. The CREG4 configuration is currently used by Mercator Ocean and its resolution is sufficient to

evaluate the multiscale assimilation algorithm, therefore we use it for our study.

Uncertainties in the model are explicitly simulated using the standard NEMO stochastic parametrisation module developed

by Brankart et al. (2015). The aim is to produce an ensemble with a sufficient spread for all variables, especially for the10

observed variables, all over the domain. This technique has been used to simulate 6 different kinds of uncertainties in the

model as described in Table 1. Concerning the equation of state, we used the stochastic parameterisation proposed in Brankart

(2013). The two standard deviation values given in the table corresponds to the standard deviation of the random walks in the

horizontal and the vertical directions. Uncertainties in air-sea fluxes are parameterised using a multiplicative noise (with gamma

pdf to make it positive) applied to the turbulent exchange coefficients simulated by NEMO following the algorithm from Large15

and Yeager (2009) extended to other parameters (and evaluated by Mercator Ocean). Ice uncertainties are parameterised using

stochastic processes representing uncertainties in ice strength, in ice albedo, in ice/sea and ice/air drag coefficients.

With this stochastic modelling system, a 70-member ensemble simulation, without assimilation, is performed for the 8-

month period between mid-January and mid-September 2011. It will be used to performed the analyses in the present paper.

This ensemble simulation yields a probability distribution for the evolution of the system, in particular the ensemble mean,20

hereafter 〈xf 〉 where 〈·〉 indicates an ensemble mean over the members of the ensemble, and the background error covariance

matrix of the prior ensemble, Pf . Figures 1a and 1b show respectively the ensemble mean (〈xf 〉) and the standard deviation of

the prior ensemble. This ensemble is appropriate to illustrate the multiscale analysis in our study. Indeed, as will be shown later,

the spread of the ensemble spans a wide range of scales from basin scale to mesoscale. Large scales as well as small structures

are well represented which will allow us to evaluate our separation scale algorithm. Nevertheless, the standard deviation is too25

small in the regions of strong eddy activity as the Gulf Stream. This is mainly due to the model configuration (CREG4) which

causes an excessive dissipation of the turbulent kinetic energy. Moreover, the variability is too large close to east Siberian sea.

However, since we are using twin experiments, the simulation does not need to be perfectly realistic to evaluate our approach

(providing that the multiscale nature of the problem remains). These characteristics are thus not likely to affect the evaluation

of the multiscale algorithm that is performed in this study.30

2.2 Definition of the twin experiments

The assimilation problem investigated in this study is based on twin experiments with altimetry. In this kind of experiment,

the true state is known and synthetic observations are built from this true state. It is generated by the same model to which

data assimilation is applied. This method has the advantage that the effectiveness of the different algorithms can be directly
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evaluated thanks to the known true state. One member of the ensemble simulation is left apart to be used as a reference (the

simulated truth) from which the observations will be simulated : xtrue. The prior ensemble (indicated thereafter by the subscript

f as forecast during an assimilation step) used in the experiments is thus a 69-member ensemble.

In this study, to illustrate the behaviour of the multiscale algorithm, we will concentrate on studying the observational

update of the prior ensemble on August 30, 2011. Figure 1c shows the true anomaly : xtrue−〈xf 〉. This true anomaly will be5

used as a reference to evaluate the effectiveness of the different localisation schemes and of the multiscale analysis. Synthetic

observations are simulated by adding a simulated observational noise (ε : a Gaussian noise with 5 cm standard deviation) to

the true state (xtrue) with the observation operator (H) along the track of the JASON altimeter :

yo =Hxtrue + ε (1)

In this experiment, a 10-day observation window is chosen to have the best coverage provided by JASON. Figure 1d shows the10

resulting synthetic observation of the SSH. JASON altimeter does not provide any observation above 66◦ North latitude. In our

example, there is thus no available observation to correct, during the analysis step, the large ensemble variance observed close

to east Siberian sea (Fig. 1b). This is something that the multiscale approach will have to cope with.

The observational update of the prior ensemble will be performed with a square-root algorithm. The analysis scheme used

at Mercator-Ocean is derived from the Singular Evolutive Extended Kalman filter (SEEK) (Pham et al., 1998; Brasseur and15

Verron, 2006) which is similar to that used in the Ensemble Transform Kalman Filter (ETKF) (Bishop et al., 2001). It can be

applied indifferently in the spatial domain as well as in the spectral domain. In the assimilation system, the observational update

is usually applied to all model variables. In this paper however, the effect of the multiscale approach will mainly be evaluated

by the update of SSH, which is the observed variable, and by the update of temperature and salinity to illustrate the application

of the method to non-observed variables. In the multiscale algorithm developed in this study, nothing will be changed in the20

core of the square root algorithm : the only novelty is that a spectral transformation is applied before the observational update

to allow spectral localisation rather than spatial localisation. A spatial localisation scheme has been already developed and

evaluated (Testut et al., 2003; Brankart et al., 2011). For this study, it has been adapted to be used in the spectral domain.

2.3 Ensemble correlation structure

The 69-member ensemble correlation structure (without the true state, which has been left apart) is illustrated in Fig. 2a and25

Fig. 2b. It has been computed according to two arbitrary reference points : one in the Gulf Stream, and the other in the North-

East Atlantic Ocean off the coast of Portugal. Ensemble correlation structure shows how the assimilation of an observation at

this reference point will influence the other regions during the analysis step. ForN = 69 members, the correlation coefficient is

significant at 95% if it is larger in absolute value than 0.2367. In both examples, the most important and significant values, i.e.

where the observation will have an impact, are mostly confined around the reference point. Some significant correlations are30

observed further, but their values are lower and not reliable enough to be used during an assimilation step. The usual solution

to avoid the spurious effect of non-significant ensemble correlations is to perform a spatial localisation during the analysis step.

It consists in completing the correlation structure provided by the ensemble by the assumption that only local correlations are
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significant and usable (Houtekamer and Mitchell, 1998; Hamill et al., 2001). The long range correlations are thus assumed to

be zero to perform the analysis step.

However, if we look at the same correlation structure (from the same ensemble) for the large scale component of the signal

(characteristic scale larger than L≈ 187km), as illustrated in Fig. 2 (bottom panels), we see that there are significant corre-

lations over a much larger range. Hence, a significant information of the large scale signal is available even if the size of the5

ensemble is small. But these are usually masked by the presence of the small scale signal. In the standard spatial localisation,

these large scale correlations structures are heavily suppressed and thus a part of the large scale information is not used during

the analysis step. The goal is now to find a way to correctly exploit these correlations in the assimilation scheme to better

estimate the large scale signal.

It seems difficult to explicitly control all scales of the system without separating the different spectral components of the10

signal. In this study, the main idea is to do a spectral transformation of all variables of the system in order to do the analysis in

the spectral domain before going back in the spatial domain to do the next steps of the assimilation scheme.

3 Spectral transformation

The purpose of this section is to describe the linear transformation that will be applied on the state vectors and on the observation

vectors to separate scales. The forward and backward transformation of the model data are described in Sect. 3.1 and Sect. 3.215

respectively; the transformation of observations and observation errors is described in Sect. 3.3; and the effect on the ensemble

correlation structure is studied in Sect. 3.4.

3.1 Forward transformation : projection on the spherical harmonics

The forward transformation step means transforming into the spectral domain each input parameter used for the analysis,

namely each member of the prior ensemble, but also observations and observational errors. A full two-dimensional signal in20

spherical coordinates, f (θ,φ), can be projected on spherical harmonics Ylm (θ,φ) by the following spectral transformation

(ST) :

ST : flm =

∫
Ω

f (θ,φ)Ylm (θ,φ)dΩ (2)

where l and m are the degree and order of each spherical harmonics, with l ∈ N and |m| ≤ l. In principle, the integral in

Eq. (2) extends over the whole sphere Ω. However, in the assimilation system, all fields f (θ,φ) that need to be transformed are25

anomalies with respect to the ensemble mean. In practice, it is thus possible to extend f (θ,φ) with zeroes outside the available

domain (f (θ,φ) = 0 on continents and outside the model domain) in order to compute the integral over the whole sphere. For

a multivariate three-dimensional variable, this transformation can be applied to each vertical level of each model variable.

This spectral transformation provides a new point of view on the ensemble because it separates scales. Each degree l of

the spherical harmonic indeed corresponds to a wavelength of a spherical harmonic λ=
2πRc

l
with Rc the Earth radius and30
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thus to a characteristic scale L=
λ

2π
. This reversible spectral transformation preserves the information for each degree l. The

coefficients flm of the spherical harmonics decomposition can be computed for each degree l up to a selected degree l = lmax.

This transformed field contains the same information, until lmax, as shown in the spatial domain in Fig. 1. The coefficients

flm of each member of the prior ensemble have been computed for the SSH until the degree lmax = 60, which corresponds

to a wavelength λ≈ 667 km and a characteristic length L≈ 106 km. Figure 3a shows the standard deviation of this prior5

ensemble in the spectral domain. Figure 3b shows the result of the spectral transformation applied to the true SSH anomaly,

i.e. the coefficients flm of the true SSH anomaly. Similar patterns have been observed by Wunsch and Stammer (1995) from

early altimetric observations. Most of the variability is concentrated at large scales (small l). The variance becomes weak for

meridional structures, i.e. for |m |→ l.

3.2 Backward transformation : scale separation10

From the spectrum flm, the field f lmax

lmin
(θ,φ) can be reconstructed using the inverse transformation :

ST−1
lmin→lmax

: f lmax

lmin
(θ,φ) =

lmax∑
l=lmin

l∑
m=−l

flmYlm (θ,φ) (3)

This inversion can be constrained to specific scales by choosing the values of lmin and lmax. The full field can be reconstructed

since f (θ,φ) = f∞0 (θ,φ). This is how the method separates scales.

Any spectral band can thus be extracted by choosing the range [lmin; lmax] appropriately. Figure 4 shows the result of the15

extraction of the large scales applied to each member of the ensemble and to the true anomaly to keep only the large scales. In

this case : lmin = 0 and lmax = 34, which corresponds to a wavelength λ≈ 1177 km and a characteristic scale L≈ 187 km.

Small scales structures have been properly removed and only large scales structures remain visible on the figure.

The use of spherical harmonics is not the most natural way to separate scales for fields that do not extend over the whole

sphere. In principle, it would for instance be better to use the eigenfunctions of the Laplacian operator defined for the model20

domain. They would account for the land barriers and would display a better relation to the system dynamics. However, they

would also be much more expensive to compute than the spherical harmonics, and would need to be stored and then loaded

each time they are needed to separate scales. This is why we preferred using spherical harmonics in this study : they make the

method numerically efficient and they are sufficient to obtain a relevant spectral decomposition of the input signal.

3.3 Transformation of the observations25

In theory, transformation of observations is not needed to separate scales in the assimilation system. It should be sufficient to

introduce the scale separation operator in the observation operator of the existing algorithm. However, for practical reasons,

the algorithm that we are proposing requires a preprocessing of the observations to separate scales. This is done to keep the

algorithm easy to implement in an existing system : nothing new needs to be implemented except the scale separation operator,

and to keep the resulting algorithm efficient enough to be applicable to large size assimilation system.30
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In this section, we show how this transformation of observations can be performed by regression of the observations on the

spherical harmonics (see Sect. 3.3.1) and how the statistics of the observational errors can be transformed accordingly (see

Sect. 3.3.2).

3.3.1 Regression of observations

For all observations that are not available on a regular grid (for which Eq. (2) could directly be applied), the spectral trans-5

formation can be performed by linear regression of the innovation vector (anomaly of the observations with respect to the

ensemble mean) on the spherical harmonics.

The approach is to look for the spectral amplitudes flm so that the corresponding field f (θ,φ) (up to degree lmax following

Eq. (3) with lmin = 0) minimises the following distance to observations fo :

Jo =

p∑
k=1

1

(σo
k)

2 [f (θk,φk)− fok ]
2 (4)10

where p is the size of the observation vector (including bogus observations); fok is the observation at coordinates (θk,φk);

σo
k is typically the observation error standard deviation (including the representativity error corresponding to the signal above

degree lmax) at coordinates (θk,φk). If the observation system is insufficient to control all spectral components with sufficient

accuracy, the final penalty function J can include a regularization term Jb as J = Jo +αJb, where the parameter α can be

tuned (between 0 and 1) to modify the importance of Jb with respect to Jo. The regularization term Jb is the following norm15

of the spectral amplitudes flm of Eq. (2) :

Jb =

lmax∑
l=0

l∑
m=−l

flm
2

σlm2
(5)

where σlm is typically the standard deviation of the signal along each spherical harmonics.

In practice, several additional modifications may need to be introduced in the algorithm and have been implemented for our

study. (i) For a non-global model domain (such as CREG4), it may be better to reduce the basis of the spherical harmonics (for20

each degree l) to the subspace that is effectively spanned by the prior ensemble. (ii) For numerical efficiency reasons, it can be

useful to perform the regression locally (over a local range of degree l), and then iterate until convergence. (iii) In case of large

regions without observations (as the Nordic seas for spatial altimetry), it can be useful to add zero bogus observations to avoid

triggering a spurious signal where no observation is available. For instance, in our study, we added observations in the northern

region of the domain, where no JASON observations are available.25

3.3.2 Observational error

The observational error results from both the initial Gaussian error with a standard deviation of 5 cm introduced on the true

member to create the observation, and also the partial observation coverage and hence the algorithm used to do the regression.

In theory, this error can be quantified. We suppose that the observational error is decorrelated at large scales. Indeed, the large

scales correlations of this observational error are small compared to the observed large scale structures. This assumption will30
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be verified in Sect. 5.2 by the consistency of the rank histograms. As part of our twin experiment, we propose the following

procedure.

This error has been quantified following these steps. In this twin experiment, the true state is known. The chosen true member

from which the observation has been created, initially belongs to an ensemble ofN+1 = 70 members. Then, in the same ways

described above, N + 1 true members, xitrue with i ∈ [1;N + 1] can be used to generate observations yo,i. It is then possible5

to evaluate the standard deviation of the observational error in the spectral domain by transforming (i) the innovation vector

and (ii) the misfit with respect to the true state, and by computing the RMS difference between these two transformed vectors.

More explicitly, this is done by computing the RMS between STregr

[
yo,i−H〈xf 〉

]
where the operator STregr provides the

spectrum resulting from the regression of innovations yo,i−H〈xf 〉, and ST
[
xitrue−〈xf 〉

]
where the operator ST provides the

spectrum of the corresponding true anomalies xitrue−〈xf 〉, following Eq. (2).10

This method is directly applicable to twin experiments, and can be transposed to a real system by simulating observational

error and looking at how it is transformed in the spectral domain. In a realistic case, the above method can directly be transposed

by simulating observational error in model results, and by transforming the difference between the perturbed and unperturbed

data. The standard deviation of the result is then an estimate of the observation error standard deviation along each spherical

harmonics.15

3.4 Transformed correlation structure

We need to study the main dependencies and correlations between the different spectral components of the ocean fields in order

to determine whether and how the scale separation could be used in the data assimilation scheme. Figure 5 shows two examples

of ensemble correlation maps between spectral amplitudes. It is comparable to Fig. 2 but in the spectral domain (amplitudes

flm of Eq. (2)). Ensemble correlation structure is computed according to reference points in the spectral domain and indicated20

by crosses in Fig. 5. It shows how the assimilation of the signal of an observation at these reference points will impact the other

scales during the spectral analysis step. Similarly to Fig. 2, the significant and maximum area is confined near the reference

points. Most correlations between very different scales are weak and might thus be neglected by data assimilation. This is

the basic property allowing to introduce scale separation in the data assimilation scheme with a reasonable cost. However,

it is true that there are also significant correlations for remote scales, and that neglecting these correlations corresponds to25

loosing a potentially useful information. This is however similar to what happens with spatial localisation : in Fig. 2, there also

exists significant correlations far from the reference location. The question is then : which correlations is it better to neglect

to preserve the meaningful structures contained in the ensemble. This is the question that we will try to elucidate with our

example application.

To exploit this property of weak correlations between very different scales, a spectral analysis thus also requires to be30

localised, at least for the large scales in our study. The method of spectral localisation is the same as that usually used in the

spatial domain. For the same reasons, each localisation window will contain a number of degrees of freedom sufficiently low

to be controlled with an ensemble of moderate size.
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4 Combining spatial and spectral localisation

The objective of this section is to introduce and demonstrate the multiscale observational update algorithm, combining spectral

localisation for the large scales and spatial localisation for the small scales. In Sect. 4.1, we show how spectral localisation

can be obtained using the spectral transformation presented in Sect. 3, and how it can be combined with spatial localisation to

build up the multiscale observational update algorithm. In Sect. 4.2, we compare the spatial and spectral localisation schemes,5

and demonstrate the improvement brought by spectral localisation in the control of the large scales. In Sect. 4.3, we use this

comparison to determine the critical scale, lc, above which spatial localisation starts performing better than spectral localisation.

This critical scale is the key parameter that specifies how spatial and spectral localisation are combined in the multiscale

observational update algorithm.

4.1 Multiscale observational update algorithm10

We propose an algorithm for the multiscale analysis based on a combination of a spectral analysis with spectral localisation

for the large scales (described by Eq. (7)) and a spatial analysis with spatial localisation for the residual scales (described

by Eq. (6)). The large scales are defined by the critical scale lc. The full algorithm is explained by the equations (8) to (12).

For this new method, we need to combine an algorithm to perform the observational update (OU) of the ensemble with the

forward (ST) and backward (ST−1) spectral transformations previously defined by Eqs. (2) and (3). Any observational update15

algorithm can be chosen provided that it allows localisation, for instance the SEEK observational update (Brasseur and Verron,

2006) or the ETKF observational update (Bishop et al., 2001). This localisation will be applied in our case in the spectral

domain (OUspectral) or in the spatial domain (OUspatial) depending on the context.

4.1.1 Spatial and spectral localisation

The analysis step is usually done in the spatial domain with a spatial localisation (observational update OUspatial) using20

spatial innovation. This step is applied to the prior ensemble anomaly, δxif , with respect to prior ensemble mean (for member

i= 1, · · · ,m) to obtain the updated ensemble δxia. It corresponds to the correction applied to the prior ensemble during the

assimilation step.

δxif →OUspatial→ δxia (6)

Another approach is to apply the observational update in the spectral domain with spectral localisation (OUspectral) to25

the prior ensemble (δxif ) after transformation into the spectral domain (ST). The spectral innovation is computed following

Sect. 3.3.1. The resulting spectral analysis (δxia with superscript LS for large scales) is only available up to the scale lc, for

which the spectral transformation has been done.

δxif → ST→OUspectral→ ST−1
0→lc

→ δxi,LS
a (7)
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4.1.2 Multiscale analysis : description of the algorithm

Multiscale analysis combines a spectral localisation for the large scales, and spatial localisation for the residual scales.

• First step : spectral localisation for the large scales

Observational update with spectral localisation for the large scale part of the ensemble anomalies, as already described

in the previous section, see Eq. (7).5

δxif → ST→OUspectral→ ST−1
0→lc

→ δxi,LS
a (8)

• Second step : spatial localisation for the residual part

Extract δxi,Res
f : the residual part of each anomaly of the prior ensemble :

δxif → ST→ ST−1
0→lc

→ δxi,LS
f

δxi,Res
f = δxif − δx

i,LS
f

(9)

Then, compute δyRes : the residual part of the innovation, using the current best estimate of the large scale field at the10

observation points :

δyRes = δy−H

(
1

N

N∑
i=1

δxi,LS
a

)
(10)

Compute δxi,Res
a : the residual part of the ensemble analysis increment, using the residual spatial innovation (δyRes)

during the observational update in the spatial domain with spatial localisation (OUspatial). Spatial observational error

has to be estimated and can be smaller than those chosen for the spatial localisation only (see Eq. (6)) to get better results15

at each scale. Indeed, a part of the error has already been taken into account during the spectral localisation for the large

scales.

δxi,Res
f →OUspatial→ δxi,Res

a (11)

• Third step : full spectrum

Compute δxia : the final value of the ensemble analysis for the member i as the sum of Eq. (8) and Eq. (11) :20

δxia = δxi,LS
a + δxi,Res

a (12)

This analysis increment is directly comparable to the analysis increment obtained with the spatial localisation applied to

the full field, see Eq. (6).
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4.2 Comparison of localisation schemes

The relevance of implementing a multiscale analysis rather than the usual spatial localisation is only validated if spectral

localisation better retrieves large scales patterns of the signal than spatial localisation. To verify the validity of this assumption,

we perform two different analyses in the context of the twin experiments described in Sect. 2.2. The first analysis is carried

out with a spatial localisation only following Eq. (6), hereinafter called spatial localisation, whereas the second analysis uses5

a spectral localisation only following Eq. (7), hereinafter called spectral localisation. Spatial and spectral localisation radius

have been optimised to obtain the best results in both experiments. The spatial localisation radius corresponds to a wavelength

of spherical harmonic about 139km at the equator while those of spectral localisation is a rectangle of 3 in ordinate l-number

and 1 in m-number. They have been deduced from the correlation ensemble (see for instance Fig. 2a and Fig. 2b for spatial

localisation; and Fig. 5a and Fig. 5b for spectral localisation). The localisation radius are chosen small enough to avoid non10

significant correlations. In order to evaluate these localisation algorithms, they are compared for the large scales. As justified

later in Sect. 4.3, we choose to define large scales as the range of scales l ∈ [0;34].

Each scale of spatial and spectral analysis increments has to be as close as possible to the corresponding scale of the true

anomaly. The large scale part of this spatial analysis increment (δxia of Eq. (6)) can be directly compared to the spectral analysis

increment obtained from the large scale of the prior ensemble (δxi,LS
a of Eq. (7)). It can be extracted following Eq. (2) and15

Eq. (3), to obtain the corresponding large scales of the spatial analysis increment :

δxia→ ST→ ST−1
0→lc

→ δxi,LS
a (13)

Simultaneously, the obtained spectral analysis increment (Eq. (7)) is back into the spatial domain (applying ST−1, following

Eq. (3)) to be directly comparable to the large scales of the spatial analysis increment (Eq. (13)). Figures 6a and 6b show

respectively the large scale of the mean ensemble of analysis increments obtained respectively with spatial localisation or20

spectral localisation (see Sect. 4.1.1). Hence, they have to be as similar as possible to the large scale part of the true anomaly

showed on Fig. 4c.

Spectral localisation recovers large scales much better than spatial localisation, see Fig. 6 vs. Fig. 4c. In all cases, the analysis

increment is significant only where JASON data are available (see Fig. 1d). The analysis and the type of localisation thus have

no significant impact on the north of the model domain. This result reinforces the idea of a multiscale analysis with spectral25

localisation for the large scale. It is now necessary to determine the critical scale, lc, from which the spatial localisation will be

preferred.

4.3 Determining the critical scale

On average, spectral localisation only gives better results than spatial localisation for the large scales, but we need to check

that this affirmation remains valid at each scale or that it exists a critical scale, lc, from which this tendency is no more true. To30

determine lc, a classic score is computed for the spatial localisation and the spectral localisation. It shows the improvement of
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the RMSE after/before the analysis by averaging sums over the whole model domain :

ρ=
RMSEposterior

RMSEprior
=

√
(< xa >−xtrue)

2√
(< xf >−xtrue)

2
(14)

where · is the mean over the domain. Each member of this equation is then computed for all specific degree l, following

Eq. (2) and (3) with lmin = lmax = l. During an analysis step, the RMSE of the observed variable will be reduced. The ratio

thus allows to evaluate the accuracy of the analysis for each scale. Figure 7 shows this score for each degree l until 100 for the5

spatial analysis only and until 60 for the spectral analysis only.

This gives a new point of view to evaluate the results of an analysis, giving the efficiency of the spatial or spectral analysis

at each scale and no more only for the full field. Spatial localisation deals with all scales at the same time. The score is almost

the same at each scale : around 0.8. In contrast, this score of the spectral localisation is very sensitive to the scale. It is almost

up to twice smaller than the one of the spatial localisation for the large scales. It increases with the degree until being similar10

and exceeding the spatial localisation score. The spectral observational error used for the spectral localisation has not been

computed exactly from l ≈ 50. This led to important values close to l = 60 which impacts the score shown in Fig. 7. However,

if observational error has been computed exactly until larger degrees, the trend would follow a similar pattern.

Until around l ≈ 34, spectral localisation further reduces the spatial RMSE than spatial localisation, which is consistent with

the study of analysis increments in Fig. 6. While, for larger degrees l, this trend tends to reverse. The critical value, lc, does not15

need to be very precise for the multiscale analysis. Indeed, the scores of spatial and spectral localisations are close on a range

of degrees (here around 30 and 50 for instance). A variation of a few degrees on lc will not have any major impact on the final

results of the multiscale analysis. In this twin experiment and for all these reasons, the critical scale lc is now fixed to lc = 34.

5 Evaluation of the multiscale observational update

The aim of this section is to evaluate the multiscale analysis and to compare it with spatial analysis, for the full spectrum but20

also at each scale. For that purpose, we did a multiscale analysis following the algorithm presented in the previous Sect. 4.1.2,

with the critical scale lc = 34. This experiment is hereinafter called spectral+spatial localisation in figures.

In Sect. 5.1, we demonstrate that multiscale analysis keeps the advantages of spectral and spatial localisations at each

wavelength. This is done by studying the error of spatial RMSE for each scale and comparing the analysis increment for the

multiscale analysis and the spatial localisation. In Sect. 5.2, we check the reliability of these updated ensembles by computing25

rank histograms in the spatial and also spectral domains. In Sect. 5.3, we show that the spread of the updated ensembles

obtained with the multiscale analysis decreases much more than those of the spatial localisation at large scales as well as for all

scales. In Sect. 5.4, we evaluate the impact of the multiscale analysis on the non observed variables (temperature and salinity),

with a multivariate analysis. We show that on average multiscale analysis reduces much more their spatial RMSE than the

spatial localisation for large scales, and similar errors at smaller scales.30
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5.1 Error reduction at each wavelength

On average, the updated ensemble produced with the multiscale analysis should better approach the true state than those

obtained with the spatial localisation only. To evaluate the efficiency of the multiscale analysis, the error has been computed

in two ways : at each scale in the spectral domain, following Eq. (14), and in the spatial domain for the full spectrum, with a

comparison of the analysis increments and the true state.5

5.1.1 Spectral point of view : reduction of spatial RMSE for each scale

The previous score showing the evolution of the RMSE after/before the analysis on average on the model domain, following

Eq. (14) is now computed for the multiscale analysis. Figure 7 (black curve) shows this score computed for each scale until

l = 100.

Multiscale analysis keeps the advantages of both localisations (spectral localisation in green and spatial localisation in blue).10

As expected, for the large scales l ∈ [0; lc] with lc = 34, the multiscale analysis is much better than spatial localisation, and

has the same order of magnitude as the spectral localisation. Indeed, the same spectral localisation with the same configuration

has been done for the multiscale analysis. For the residual scales, multiscale analysis allows to recover, as expected, similar

results to the spatial localisation, especially for the smaller scales. Differences occur especially close to lc and result from the

contribution of the spatial localisation to treat the residual scales.15

5.1.2 Spatial global point of view : analysis increment

The analysis increments obtained with spatial localisation (Fig. 8a) or with multiscale analysis (spectral + spatial localisation,

Fig. 8b) can be directly compared to the full spectrum of the true anomaly shown in Fig. 1c. The multiscale analysis allows

to recover a part of the large scale pattern unlike the spatial localisation. It keeps advantages of the spatial localisation for the

residual scales.20

These analysis increments can be evaluated at each scales. Figures 6a and 6c show the large scales (l ∈ [0;34]) of these

analysis increments respectively for spatial localisation or multiscale analysis. They have been obtained from their respective

full fields (Fig. 8a and Fig. 8b) following Eq. (2) and Eq. (3). Small structures have been well removed from the full spectrum.

They have to be closer as possible to the large scales of the true anomaly shown Fig. 4c, which have been extracted from its

full field shown in Fig. 1c. Multiscale analysis and spectral localisation give similar results for the large scales and are better25

than the spatial localisation. This is consistent with observed reduction of spatial RMSE at each large scale, shown in Fig. 7.

5.2 Reliability of the updated ensemble

Updated ensemble should be reliable in the spatial domain but also in the spectral domain. It means to check the coherence

between the assumed probabilities and the observed statistics when the ensemble is compared to the verification data (the true

state in our twin experiment, or observation in a real system). To check ensemble reliability, ranks are traditionally computed30

in the spatial domain and summarised in a rank histogram. They show the distribution of observations with respect to the
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ensemble (Anderson, 1996; Talagrand et al., 1997). In our context of twin experiments, the prior ensemble is reliable by

construction. Indeed, the true state originates from the same ensemble simulation as the other members. The reliability of the

updated ensemble will be evaluated by comparing the rank histogram of the updated ensemble with the rank histogram of the

prior ensemble. Hence, a flat rank histogram indicates a reliable ensemble, whereas a U-shaped rank histogram indicates a lack

of spread in the ensemble : the uncertainty is under-estimated (Anderson, 1996; Hamill, 2001). Alternatively, we propose a new5

point of view of these ranks, computing them in the spectral domain. The interpretation of these new ranks has to corroborate

the conclusions obtained in the spatial domain.

5.2.1 Spatial rank histograms

Rank histograms have been computed, with respect to the true state, from spatial maps limited to the JASON domain for the

prior ensemble, the spatially updated ensemble and the multiscale updated ensemble. Figure 9b shows the rank histograms10

for the large scales (l ∈ [0; lc]) for the same ensembles but also for the spectrally updated ensemble presented in the previous

section.

Ranks histograms show that all these updated ensembles can be considered as reliable as the prior ensemble, both for the full

spectrum and for the large scales. Indeed, the prior ensemble looks somewhat under dispersed but can be considered reliable

because the true member originates from the ensemble itself. The rank histograms of the updated ensembles are of the same15

order of magnitude as that of the prior ensemble. Thus, the small under-dispersion of the prior ensemble (which can only result

from the limited size of the sample) has not increased during the analysis step. These consistent ranks histograms confirm that

the observational error have been properly evaluated.

5.2.2 A new point of view : ranks map in the spectral domain

Reliability of all updated ensemble (spatial localisation only and multiscale analysis) is now tested for degrees l ∈ [0;60] by20

calculating ranks in the spectral domain with respect to the true state. Ranks are computed following the same procedure as in

the spatial domain but the members and the true state are previously transformed into the spectral domain following Eq. (2).

Figure 10 shows the maps of ranks in the spectral domain for the prior ensemble, the spatially updated ensemble and the

multiscale updated ensemble. The maps of ranks for the spectrally updated ensemble is not shown due to similar results to the

multiscale updated ensemble. This new point of view allows to diagnose the behaviour of the system for each scale.25

Ranks maps in the spectral domain provide additional indication that all algorithms provides reliable updated ensembles.

Observational error have been consistently evaluated. The ranks are computed for each spectral coordinate (l,m), and have

been normalised by the total number of data points to have numbers between 0 and 1. For a perfectly reliable ensemble, ranks

would be evenly and randomly distributed over the entire spectral domain. For our study, when degrees tend toward l =m,

which corresponds to meridional signal, ranks are not all represented even for the prior ensemble. But, these spectral regions30

correspond to extremely weak standard deviation of the ensemble in the spectral domain (see Fig. 3a) : there is no meridional

signal in the prior ensemble. They do not have an important impact on the spatial field. For the other degrees, ranks show that
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the prior ensemble is reliable. The spatially updated ensemble and the multiscale updated ensemble also remain reliable even

if the latter seems to be somewhat less dispersed.

5.3 Resolution of the updated ensemble

The spread, or variance, of the prior and the updated ensemble (with N = 69 members) has been computed to check the

resolution of the updated ensemble. For instance, for the prior ensemble, xf :5

Spread =
1

N

N∑
i=1

(
xif−< xf >

)2
(15)

The reliability of the ensemble has been checked previously with the rank histograms. Then, the smaller the spread after the

analysis, the better the analysis. Figures 11 and 12 show the spread of the prior ensemble, the updated ensemble after spatial

localisation, and the updated ensemble after a multiscale analysis (spectral + spatial localisation), respectively for the full

spectrum and after extraction of the large scales (l ∈ [0, lc], with lc = 34).10

The multiscale analysis allows to decrease the ensemble spread more than the spatial localisation. The spread is much more

reduced along JASON tracks, see Fig. 11c. This decrease is especially important for the large scales, see. Fig. 12c. For the large

scales, the spread of the updated ensemble by spectral localisation is not shown due to similar results to those of multiscale

analysis. Thus, knowing that all these ensembles are reliable, the more efficient algorithm is the multiscale analysis because of

it has further reduced the spread of the ensemble and is the closest to the the true state.15

5.4 Multivariate analysis

Multivariate analysis consists in extending the observational update to non observed variables, like temperature and salinity, in

the state vector during the analysis. The experimental setup remain the same. The aim is to evaluate the impact of the multiscale

analysis on these non observed variables and to check that it does not introduce more error than the spatial localisation. These

errors could increase during the next forecast and cause some unrealistic values. For this purpose, we compute the score defined20

by Eq. (14) for each degree for the spatial localisation (spat) and for the multiscale analysis (spct + spat). Then, we compute

for each level and each degree, the ratio of these scores, following Eq. (16).

Ratio =
ρspat

ρspct+spat
(16)

Figure 13 shows these results for the temperature and salinity. Each depth of this figure thus correspond to the ratio of the blue

and black curves of the Fig. 7, no more for the SSH but for the temperature or salinity instead of SSH.25

On average, below and around the critical degree lc = 34, the multiscale analysis further reduces the error as compared to

the spatial localisation only. In a few cases, at basin scales, multiscale analysis appears to produce poorer results than spatial

localisation. However, this effect is small as compared to the improvement made at the other depths and large scales. For

smaller scales, these two analysis give similar results. It is consistent with the fact that a similar spatial localisation is done for

the both analyses and with the results obtained for SSH (see Fig. 7).30
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6 Conclusions

We have formulated and evaluated a multiscale analysis approach for ensemble ocean data assimilation that provides a better

recovering of the large scales than the current spatial analysis with spatial localisation. It has been developed to be used in the

existing data assimilation system of Mercator Ocean used in the CMEMS project. This new scheme consists in performing a

spectral analysis with spectral localisation for the large scales and a spatial analysis with spatial localisation for the residual5

scales.

The transformation to the spectral domain and the spectral localisation provide consistent ensemble estimates of the state of

the system (in the spectral domain, or after backward transformation to the spatial domain). In terms of accuracy, this spectral

localisation recovers the large scale structures better than the spatial localisation. For the large scales, spectral localisation yields

lower errors than spatial localisation while keeping a reliable ensemble. Conversely, the spatial localisation is still preferable10

for the small scales.

This new spectral approach also gives a new point of view to diagnose the system. Traditional diagnostics as ensemble mean,

spread, correlations structures, rank histograms, etc., gives information at each scales and no more only for the full field.

The multiscale analysis, which is a hybrid scheme combining spectral localisation for the large scales and spatial localisation

for the residual scales, keeps the advantages of these two localisations. Consequently, it can significantly improve the current15

use of various ocean observing systems, particularly with regard to the large scale information contained in sparse distribution

of observations as altimeters or ARGO floats.

The direct perspective of this study is to implement and test the method in the real CMEMS system developed at Mercator

Ocean. The target is (i) to check that the method can be applied without deep modification of the existing system, (ii) to evaluate

the operational gain that is obtained by an improved control of the large scale signal, and (iii) to enhance the diagnostic of the20

system by evaluating the performance separately for each scale. Some data assimilation steps have already been successfully

carried out in the same context of our study (not shown). In the longer perspective, the implementation of this multiscale

approach for ensembles might improve the CMEMS products of Mercator Ocean as the reanalysis which are used by a large

scientific community.
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Figure 1. SSH (in m). Ensemble mean (a), standard deviation (b) of the prior ensemble (N = 69 members). The true anomaly (c) is defined

as the difference between the true member (computed as an additional independent member of the ensemble) and the ensemble mean (a).

Synthetic observations simulating along-track JASON altimetry (d) correspond to the true member along the track of JASON altimeter plus

a noise, following Eq. (1).

Source of uncertainty pdf Standard deviation Corr. timescale Laplacian filter

Equation of state normal 0.7/0.2 grid points 8 days 0

Air-sea fluxes gamma 40% 8 days 3

Ice strength gamma 40% 8 days 100

Ice albedo beta 5% 8 days 100

Ice drag coefficients gamma 10% 8 days 100
Table 1. Simulation of model uncertainties to perform the 70-member ensemble. It follows the working configuration used at Mercator Ocean

to perform ensembles for research and development in the context of CMEMS systems.
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Figure 2. Two examples of ensemble correlation for the prior ensemble (SSH), according to two different reference points indicated by

black crosses, computed for the full spectrum (top figures) and for the large scales (bottom figures, l ∈ [0; lc] with lc = 34 following Eq. (2)

and Eq. (3), which corresponds to a characteristic scale larger than L≈ 187km). Light grey colour corresponds to non significant values of

ensemble correlations for an ensemble of N = 69 members (smaller in absolute value than 0.2367 with significance threshold at 95%).
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(a) Standard deviation
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(b) True anomaly

Figure 3. Standard deviation (a) of the prior ensemble and true anomaly (b) in the spectral domain (SSH), according to the degrees l ∈ [0,60]

in abscissa and m in ordinate, see Eq. (2), which corresponds to a characteristic scale larger than L≈ 106km
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Figure 4. Ensemble mean (a), standard deviation (b) of the prior ensemble, and true anomaly (c) for the SSH (in m), after extraction of the

large scales (l ∈ [0; lc] with lc = 34, which corresponds to a characteristic scale larger than L≈ 187km, see Eq. (3)).
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(a) First example
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(b) Second example

Figure 5. Two examples of ensemble correlation for the prior ensemble (SSH) in the spectral domain, according to the degrees l ∈ [0,60] in

abscissa and m in ordinate, see Eq. (2). The two different reference points are indicated by black crosses. Light grey colour corresponds to

non significant values of ensemble correlations for an ensemble of N = 69 members (smaller in absolute value than 0.2367 with significance

threshold at 95%).
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(a) Analysis increment :
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Figure 6. Ensemble mean of large scales part of the analysis increments (SSH in m), with l ∈ [0, lc], lc = 34. (a) obtained after spatial

localisation only and then filtered, see Eq. (6) and Eq. (3); (b) obtained after spectral localisation following Eq. (7); (c) obtained after

multiscale analysis (spectral+spatial localisation, see Sect. 4.1.2). To be compared to the large scale true anomaly, Fig. 4c.

spatial
spectral
spectral+spatial

l degree

Figure 7. Reduction of spatial RMSE for each degree for the SSH, computed using Eq. (14). The blue curve (spatial) refers to the spatially

updated ensemble, the green curve (spectral) to the spectrally updated ensemble, and the black curve (spectral+spatial) to the multiscale

updated ensemble.
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Figure 8. Same as Fig. 6a and Fig. 6c but keeping the full spectrum (no extraction of the large scales). (a) obtained after spatial localisation

only, following Eq. (6); (b) obtained after multiscale analysis (spectral+spatial localisation) following Sect. 4.1.2. To be compared with

Fig. 1c.

prior spat spct+spat

(a) Full spectrum

prior spat spct spct+spat

(b) Large scales

Figure 9. Spatial rank histogram on the JASON domain for the SSH. prior (in red), spat (in blue), spct (in green) and spct+ spat (in

black) correspond respectively to the prior ensemble, spatially updated ensemble, spectrally updated ensemble and to the multiscale updated

ensemble. (a) Full spectrum; (b) After extraction of the large scales : l ∈ [0; lc] with lc = 34.
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(a) Prior ensemble
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(b) Updated ensemble :
spatial localisation only
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(c) Updated ensemble :
spectral + spatial localisation

Figure 10. Maps of ranks in the spectral domain for the SSH, according to the degrees l ∈ [0,60] in abscissa and m in ordinate, see Eq. (2).

(a) Prior ensemble; (b) and (c) updated ensembles respectively obtained after spatial localisation only (see Eq. (6)) or after the multiscale

analysis (spectral+spatial localisation, see Sect. 4.1.2).
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Figure 11. Ensemble spread of the prior (a), the updated ensembles obtained with (a) the spatial localisation only or with (c) the multiscale

analysis (spectral+spatial localisation), according to Eq. (15) (full spectrum) for the SSH.

26



0.0 0.5 1.0 1.5 2.0

10^-4
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Figure 12. Same as Fig. 11 but after extraction of the large scales (l ∈ [0; lc] with lc = 34, see Eq. (2) and Eq. (3)).
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(a) Temperature
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Figure 13. Improvement obtained by the multiscale analysis for temperature (a) and salinity (b). This improvement is measured by com-

parison to spatial localisation only using the ratio in Eq. (16). Blue (respectively red) colour corresponds to a better (respectively worse)

correction of the error using the multiscale analysis as compared to spatial localisation only.
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