
 
 
Dear professor John M. Huthnance 
Many thanks for the points on “Some aspects of the deep abyssal overflow between the middle and 
southern basins of the Caspian Sea” by Javad BabagoliMatikolaei et al. Some points are very useful 
for us to improve our study. We try to answer and address one by one each comments as follows: 
 
Many places.  Please check spelling: Absheron or Apsheron? 
Corrected. (Absheron) 
Page 3 
Line 13.  “. . as there has been only a little research . .” 
Corrected  
Line 16.  “. . investigating the dynamics . .” 
Corrected  
 
Lines 16-17.  Delete either “here” or “in this section”. 
Corrected. 
Page 9, figure 7 caption first line.  Better “. . between the north-south cross-sections of mean 
temperature” 
Corrected. 
 
Page 10. 
Line 17.  “. . comparisons. We then use . .” 
Corrected. 
 
Line 18.  Delete “Although” or “but” 
Corrected. 
Line 21.  Better “. . there is only a short distance . .”? 
Corrected. 
Line 22.  Delete “those”.  “. . transects such as IV.” 
Corrected. 
Line 23.  “. . section, we investigate . .” 
Corrected. 
Lines 24-25.  Better “. . 105 m for January and 125 m for September.  These depths are the mean of 
the maximum and minimum . .”? 
Corrected. 
Line 30.  “flashing” -> “flushing” 
Corrected. 
Page 11. 
Line 10.  “closed” -> “close” 
Corrected. 
Line 11.  Can omit “Major other” 
Corrected. 
Line 13.  Delete “were” 
Corrected. 
Line 16.  A “latitude line” means east-west; do you mean this?  Maybe delete “along a latitude line” 
since the reader knows this is water moving from transect I to transect II. 
Corrected. Latitude line is omitted. 
Line 16.  “. . for this sinking depth variation . .” 
Corrected. 
Page 13. 



Line 5.  “. . section, we investigate . .” 
Corrected. 
Line 11.  “parameters” -> “variables” 
Corrected. 
 
Lines 13-14.  Delete “although” or “however”. 
Corrected. 
 
Line 18.  “the Cape depending on the outflow properties; its buoyancy varies . .”? 
Corrected. 
 
Lines 19-20.  Better rearranged.  “behavior the vorticity and potential vorticity of the flow column 
upstream of the Cape is linked to the separation of the flow from the Cape, as previous works (Ezam 
et al., 2012; Stern, 1980) have shown.  Here . .”  
Corrected. 
 
Lines 31-32.  Please do not use u and U for the same quantity.  If U is the magnitude you do not need 
“|..|” in the formula on line 31. 
Corrected. 
 
Page 15 lines 13-15.  This is very unclear.  How many layers are there.  In how many layers is there 
flow?  Please state clearly what layers there are, in which layer(s) is there motion, and what you 
mean by the “effect of the upper layer”.  Lines 20-24, (1) and (2) have no mention of different layers 
and rather suggest only one deepest moving layer, possibly with a layer above with no flow. 
In their work, firstly they used three layers for Momentum and mass formulas to achieve some 
equations for friction and entrainments; then they concentrate in third layer (dense flow). In our 
paper, we used the final result of their paper 1 and 2. 
I tried to rewrite this section. 
Page 16 
Lines 8-9.  This sentence is not needed.  But please do make sure that all symbols are consistent in 
this manuscript! 
Corrected. 
 
Line 14.  “stream tube” (spelling) 
Corrected. 
Line 28.  Π in italics please. 
Corrected. 
 
Page 17 
Line 23.  Delete “rather” 
Corrected. 
 
Lines 27-28.  Please remove gap so formula appears on one line.  Delete “)” after “f”. 
Corrected. 
 
Page 18 figure 4 caption.  Can omit “which is rather close to the bottom”; you explain k at the end. 
Corrected. 
 
Page 19 
Line 5.  Can omit “will be” 
Corrected. 



Lines 15-17  Better “. . results. Although use of observational data is common for deep flow volume 
flux estimation, we do not have ADCP data across the Absheron sill. . .” 
Corrected. 
 
Line 18.  “. . across Absheron Strait.” 
Corrected. 
 
Line 27.  “. . and h’, (deep . .”  [order of symbols] 
Corrected. 
 
Page 20. 
After (6) you must say that (6) is an approximation for |L1| = |L2|.  Otherwise (5) and (6) would be 
the same and lines 14-15 are meaningless.  2 Sinh(αL) ≠ (eαL1 - e –αL2), the term in b is missing from (6) 
etc. 
Corrected. 
 
Line 16. Better “. . geostrophic balance between v and h’ is assumed as Ro ~ 0.1 . .” 
Corrected. 
 
Line 21.  “. . -150 m which is the approximate depth . .” [But earlier you said 180 m sill depth]. 
Corrected. Typing error. 
 
Page 21 line 12.  “on” -> “in”. 
Corrected. 
 
Page 23. 
Line 10.   “. . section 4.1, we estimate . .” 
Corrected. 
Lines 15-16.  “This is the main reason” – you have not given a reason!  I think you mean “The main 
reason . . is that this deep flow carries” 
Corrected. 
 
Lines 19-20.  This sentence adds nothing – omit. 
Corrected. 
 
Line 33.  Omit “although” 
Corrected. 
 
Page 24. 
Line 6.  “due to the fact that” -> “and”?  Present text implies that the eddies cause the separation 
but section 3.2 implied that upstream potential vorticity was a control. 
Corrected. Our ambition was upstream potential vorticity. 
 
Line 10.  “. . present and that pollution can spread . .” 
Corrected. 
 
Line 15.  “. . basin it finally overflows . .” 
Corrected. 
 
Page 25. 
Line 7.  Delete “that” 



Corrected. 
 
Line 9.  Delete “process” 
Corrected. 
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Abstract. The present study investigates the deep gravity current between the middle and southern Caspian Sea basins, 

caused by the density difference of deep waters. Oceanographic data, numerical model, and dynamic models are used to 15 

consider the structure of this Caspian Sea abyssal overflow. The CTD data are obtained from UNESCO, and the three-

dimensional ocean model COHERENS results are used to study the abyssal currents in the southern basin of the Caspian Sea. 

The deep overflow is driven by the density difference mainly due to the temperature difference between the middle and 

southern basins, especially in winter. Due to cold weather in the northern basin, water sinks in high latitudes and after filling 

the middle basin it overflows into the southern basin. As the current passes through the Absheron Strait (or sill), we use the 20 

analytic model of Falcini and Salusti (2015) for the overflow gravity current to estimate the changes of vorticity and potential 

vorticity of the flow over the Absheron sill; the effects of entrainment and friction are also considered. Because of the 

importance of the overflow in deep water ventilation, a simple dynamical model of the boundary currents based on the shape 

of the Absheron Strait is used to estimate typical mass transport and flushing time which is found to be about 15 to 20 years 

for the southern basin of the Caspian Sea. This time scale is important for the Caspian Sea ecosystem and the impacts of 25 

pollution due to oil exploration. Apart from this, by reviewing the drilled oil and gas wells in the Caspian Sea, the results show 

that the deep overflow moves over some of these wells. Thus, the deep flow can be an important factor of oil pollution in the 

deeper part of the southern Caspian Sea. 
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1. Introduction 

Baroclinic currents play an important role in the ocean and sea circulations, especially in deep waters of the ocean. Because 

these currents are important in deep water ventilations of the oceans, they have an integral role in thermohaline circulation. A 

driving mechanism for the circulation is cooling of surface waters at high latitudes and consequent formations of deep waters 

by sinking the cooled salty water masses (Fogelqvist et al., 2003). 5 

Cooling in polar seas (Dickson et al., 1990) and evaporation in marginal seas (Baringer and Price, 1997) form dense waters 

that sink to form deep water masses. For example, dense water from the deep convective regions of the North Atlantic produces 

a signature of the thermohaline overturning circulation that can be seen as far away as the Pacific and Indian oceans (Girton et 

al., 2003). In the global sense, bottom-trapped currents play an integral role in thermohaline circulation and are a vehicle for 

the transport of heat, salt, oxygen, and nutrients over great distances and depths. Mixing and exchange processes between the 10 

along-slope currents at the continental shelves and deep ocean water can also affect the thermohaline circulations. Huthnance 

(1995) has reviewed the processes involved in such near-shelf circulations. He has pointed out such flows around the world 

that may lead to the formation of mesoscale eddies as they become unstable while moving along the sloped boundary. The 

ability of abyssal flows to transport and deposit sediments is also of geological interest (Smith, 1975). 

As thermohaline circulation causes ventilation of deep ocean water, it is important not only in open seas and ocean but also in 15 

semi-closed and closed basins ventilations, e.g. the Caspian Sea. Study of thermohaline dynamics and circulation has also 

been of interest to other scientists such as climate researchers. The dynamics of such dense currents on slopes have been 

modeled in the past both theoretically and experimentally starting with Ellison and Turner (1959) and Britter and Linden 

(1980), and a review on gravity currents can be found in Griffiths (1986). 

The Caspian Sea, the world’s largest inland enclosed water body, consists of three basins namely northern(shallow, mean 20 

depth of about 10 m and covering 80000 km2), the middle (rather deep, with mean depth of about 200 m, maximum depth 788 

m and covering 138000 km2) and the southern (deep, with a mean depth of 350 m, maximum depth 1025 m and covering 

164840 km2) and is located between 36.5° N and 47.2° N, and 46.5° E and 54.1° E (Aubrey et al., 1994; Aubrey, 1994). The 

depth varies greatly over this sea (Ismailova, 2004, Figure 1). The northern basin, after a sudden depth transition at the shelf 

edge, reaches the middle one. The middle and southern basins are divided by the Absheron sill or Strait (with a maximum 25 

depth of 180m). The western slopes of the two deeper basins are fairly steep compared to the eastern slope (Gunduz and Özsoy, 

2014). Peeters et al (2000) have also estimated the ages of waters of the Caspian Sea basins while considering the exchange 

between the middle and southern basins, based on chemical tracers, and found typical ages of about 20 to 25 years depending 

on the exchange rates. The exchange rate between the middle and southern basins seems to vary year by year and is dominated 

by atmospheric forcing (and sea level change). 30 

The Caspian Sea is enclosed with weak tides and its circulation is mainly due to wind and buoyancy, although some wave-

driven flows also occur in coastal regions (Bondarenko, 1993; Ghaffari and Chegini, 2010; Ghaffari et al., 2013; Ibrayev et 

al., 2010; Terziev et al., 1992). The seasonal circulation based on a coupled sea hydrodynamics, air-sea interaction and sea ice 
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thermodynamics model of the Caspian Sea was investigated by Ibrayev et al. (2010) and Gunduz and Özsoy (2014). The effect 

of freshwater inflow to the Caspian Sea on seasonal variations of salinity and surface circulation (or flow) pattern of the 

Caspian Sea has also been studied using HYCOM model (Kara et al, 2010). These studies indicate that in north-eastern parts 

of the middle basin of this sea there are signs of sinking water in cold season. Such deep convection can be a part of the 

thermocline circulations, affected by the side walls topography of the middle and southern basins. These deep topographically 5 

influenced rotating flows can constitute parts of the abyssal circulation of the Caspian Sea. 

The main aim of the present work is to study the deep abyssal overflow in the Caspian Sea as has only been pointed out in the 

previous studies. To fulfill this, we used observational data and numerical simulations to show that the overflow can exist over 

the Absheron sill. Firstly, we used observational data to understand the feasibility of the deep flow in this basin; however, the 

resolution of observation data is very low to cover all the purposes of the paper. Hence, the use of a numerical model can help 10 

us understand better the Absheron sill deep overflow. On the whole, this paper can be divided into three main parts based on 

the goals of the paper. Section two focuses on the existence of the deep overflow in the Caspian Sea using some observations 

and numerical simulations, as there has been only a little research on this deep flow in the Caspian Sea (Peeters et al, 2000). 

In the course of this section, the accuracy of the model simulations is considered by comparing the model results with some 

observational data. Section 3 concentrates on the dynamics of the outflow when moving through the Absheron Strait into the 15 

southern basin. Although there are many aspects investigating the dynamics of the flow, the vorticity and potential vorticity 

will be considered in this section. In section 4, the importance of the abyssal overflow will be indicated and the volume of this 

flow and hence the flushing time of the southern Caspian Sea basin will be calculated using a simple model for the overflow 

over the Absheron sill. 

 20 

2 Data used and method of the research 

 

2.1 Observational data 

 

The data used in this study were taken mainly by the International Atomic Energy Agency (IAEA), in Septembers of 1995 and 25 

1996 (Peeters et al (2000). This data are collected at 42 stations using an exploration ship, namely Hajef. The 1995 data are 

for 13 stations, while the 1996 data are for 29 stations (Figure 1). At first, temperature, salinity, and density diagrams are 

plotted for all stations. Both data sets indicate the differences between densities of deep waters of the middle and southern 

basins. For example, Fig. 2a shows the density differences between a and b (Fig. 1b) as about 0.5 kg/m3. For better 

understanding, the T-S diagram is plotted to investigate the contribution of temperature and salinity in this density difference. 30 

Based on the T-S diagram, the water in the middle basin is both cooler and saltier than that of the southern basin, particularly 

in the deeper parts. Hence, the denser deeper water of the middle basin with respect of that of southern basin can lead to deep 

abyssal overflow between the two basins over the sill of the Absheron Strait separating middle and southern basins. The 

temperature, salinity and density transect across the Absheron Strait, as shown in figures 3a, b also show the evidence of the 

deep abyssal overflow moving from the middle to the southern basin. As the sloped isopycnals are similar to those of isotherms, 35 

it seems that the buoyancy that drives the flow is mainly due to the temperature difference. However, unfortunately, the 
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horizontal resolution of the measured data is not good enough to show detailed patterns of temperature, salinity, and density 

of the overflow (see below). 

 
 

(a)                                                                     (b) 5 
 

Fig 1:(a) Schematic diagram of the Caspian Sea with the locations of the most important rivers namely the Volga, Ural and 

Kura and SefidRud; Garabogazköl Gulf and Absheron Strait are also shown on the map;(b) locations of CTD and ADCP 

measurements, the geographic position of the shown transects (see below). The CTD casts are for 42 stations for Septembers 

of 1995 and 1996.CTD stations, a and b are emphasized because in Fig. 2a,b, physical properties of the waters for these 10 
stations are presented. ADCP data is recorded from November 2004 to the end of January 2005 to validate the numerical 

simulations. 

 

 
                                 (a)                                                                                          (b) 15 
Fig. 2: (a) Comparison of density between stations a and b (middle and southern basins, see Fig.1b) indicating the difference 

in density (~ 0.5 kg /m3) between two basins. (b) T-S diagram for a and b to show differences in temperature and salinity, 
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particularly in deep water. To plot this diagram, the potential temperature and potential density anomaly (σ0) are calculated 

from CTD data. The T-S diagram confirms the differences in density in deep water for σ0>10 kg /m3. 

 

 

 5 
 

 
(a)                                                                                           (b) 

Fig. 3: Cross sections of temperature and salinity across the Strait at transect I (across the Absheron Strait over the sill) in 

September from observational data; dots show the locations of measurements.  10 

                                                                 
(a)                                                                                                              (b) 

Fig.4: Comparison between density fields across the Strait in transect I, in September, from observational data (a) and 

numerical model (b). For observational data dots show the locations of measurements. For a better understanding of the 

spacing of CTD stations, distance is plotted in kilometers on the top of Fig. 4a. The cross sections are about the same but the 15 
differences between the two transects near the bottom, particularly in the west of the Strait is mainly due to the low 

resolution of observational data (4a). Numerical transect clearly shows the boundary trapped overflow for which two 

isopycnals near the bottom is highlighted (4b).  
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The horizontal resolution of observational data is very coarse for showing the overflow. For example, Fig 4a indicates that the 

width of the Strait is about 200 km and we have just 9 CTD stations. It means that the average distance between two stations 

is 23 km, however, unfortunately in the most important area of the Strait (western) the distance between two stations is 30-35 

km. As a result, we have some problems in showing the structure of the flow. More fine-resolution data and data for different 

months are required to compare the cross sections of the flow for different months. Hence, due to lack of good measurements 5 

around the Strait between the two main basins of the Caspian Sea, we are compelled to use numerical simulations for the study 

of deep overflow at the Absheron sill, including its seasonal variability. This also includes some general aspects of the 

circulations in the Caspian Sea.  

2.2 Some general features of the COHERENS numerical model, and its boundary and initial conditions 

For the simulations, the numerical model COHERENS (Coupled Hydrodynamical Ecological model for Regional Shelf seas; 10 

Luyten et al., 1999) has been used. COHERENS uses a vertical sigma coordinate and the hydrostatic incompressible version 

of the Navier-Stokes equations with Boussinesq approximation and equations of temperature and salinity. The model uses an 

Arakawa C-grid (Arakawa and Suarez, 1983) and equations are solved numerically using the mode-splitting technique. The 

grid size in horizontal is 0.046 × 0.046 degrees, typically 5 km, and 30 sigma layers, labeled k (the bottom layer is 1 and the 

surface one is 30). The coastlines and bathymetry data with 0.5′ ×0.5′ (30 seconds) resolution are acquired from GEBCO, 15 

although interpolated and smoothed slightly. 

The model was initialized for winter (January) using monthly mean temperature and salinity climatology, obtained from Kara 

et al (2010); and it was forced by six hourly wind, acquired from ECMWF (Mazaheri et al., 2013), and air pressure and 

temperature with 0.5˚×0.5˚resolution acquired from ECMWF (ERA-Interim) reanalysis. Precipitation rate, cloud cover and 

relative humidity (2.5˚×2.5˚) were derived from NCEP/NCAR reanalysis data. The river inflows (from the Global Run off 20 

Data Centre) were also included. The time steps of barotropic and baroclinic modes are 15 s and 150 s respectively. The total 

simulation time is five years (from 2000 to 2004 inclusive) with six-hour varying meteorological forcing and then the results 

of the last year are shown. The results of the numerical model are validated by ADCP data of the estuary between the Sefidrud 

River and Anzali port (figure 1, 5). These data are collected by the National Institute of Oceanography and Atmospheric 

Sciences, from November 2004 to the end of January 2005 (Shiea et al., 2016). This data was recorded by RCM9 current meter 25 

(at the ADCP station) at 3 depths on a mooring, near the surface, 50 m, and 200 m. The lack of observation data is the main 

obstacle to check the accuracy of the model results thoroughly. It would be more useful to have data on the Absheron sill for 

the model validation. However, using ADCP data near the Iranian coast was our only available data for model validation. For 

this reason, the model simulations are for five years and the results of the last year of simulations are validated with ADCP 

data for some months. 30 

The simulation results of mean and long period variations of surface velocity components are rather consistent with 

observations. This similarity is related to the timing of flow variations rather the velocity magnitudes. The difference in velocity 

between observation and model simulations comes from some of the assumptions and the resolution used in the model as can 
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be expected. The distance between two adjacent grid points in the model is about 5 km and the ADCP data are for a point in 

between the two adjacent grid points, so interpolation is used to compare the model results with data at the location of 

observations. 

 

 5 
 

 

 

 

 10 
 

 

 

 

 15 
 

 

 

 

Fig. 5: Comparison between numerical model results of surface current components and observation near the Sefidrood 20 
River and Anzali port (Shiea et al., 2016). 

 

At the beginning of this paper, it is pointed out that the observational data is indicative of the existence of a deep overflow 

over the Absheron sill (Fig.4a). The numerical simulations also show that a deep overflow clearly exists over the sill (Fig. 4b, 

6 and 14), which we examine here with more details. Typical numerical results of the deep overflow between the middle and 25 

southern basins of the Caspian Sea (the flow in the northern basin is not shown as it is too shallow) for May and December of 

2004, after four years of warm-up of the model, are shown in figures6,7,8, and 14. The deep narrow flow in the middle basin 

and the overflow over the Absheron sill and in the northwestern boundary of the southern basin are clearly observed. 

 

 30 
(a)                                                                                   (b) 

 

Figure 6: Cross-Section of the mean velocity (m/s) in transect I, obtained from model simulations, (a) for January and (b) 

May. This deep flow is southwards. 
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2.3 Comparison of numerical simulations with observations 

 

The main reason for the deep flow existence in the Caspian Sea seems to be the temperature differences between the northern 

and southern basins. The Sea surface temperature (SST) in the northern basin ranges from below zero under frozen ice in 5 

winter to 25–26 °C in summer, while more moderate variability occurs in the southern basin changing from 7–10 °C in winter 

to 25°–29 °C in summer (Ibrayev et al., 2010). It shows that the water in the northern basin cools in the cold seasons so that it 

freezes. On the other hand, the Caspian Sea has low salinity water and in deeper parts, salinity varies little with depth (12.80–

13.08 PSU), so that the density stratification largely depends on temperature variation (Terziev et al., 1992). As the northern 

shallow waters of the Caspian Sea are subjected to high evaporation in summer, in the following cold seasons these waters 10 

become dense and start to sink, mainly in the northeastern side of this sea (Gunduz and Özsoy, 2014). Based on the present 

work, the flow due to its high density enters the deep part of the middle Caspian and starts to fill the middle Caspian Sea basin. 

After filling the middle Caspian basin, it appears as an overflow entering into the southern basin through the Absheron Strait 

(Fig. 9a), similar to the that of the Denmark Strait (DS) sill, but the Absheron sill overflow is much smaller than that of the 

DS.   15 

In order to compare the numerical simulations with observational data, some vertical distributions of temperature and density 

are presented (Figs.4, 8). Figure 4 indicates that the numerical model simulates the density lower than the real value on the 

Strait. This difference is about 0.5-1 kg/m3 from the surface to the bottom with more difference in the deep parts. However, 

we can observe the similarity in the shape of the isopycnal lines between the numerical model and observations, particularly 

in the eastern part of the Strait. These differences are related to our assumptions and simplifications in the numerical model. 20 

We do not consider the Garabogazköl Gulf which can be an important factor for producing higher salinity water in the middle 

Caspian Sea basin due to high evaporation in this area (see Fig 1a). Over the years, the waterway connecting the Garabogazköl 

Gulf to the Caspian Sea is open for some years or closed for the other years based on the fluctuation of sea surface level in the 

Caspian Sea.  However, accurate information about the connection is not accessible for whether to include the Garabogazköl 

Gulf higher-salinity source in the numerical model simulations. As a result, this factor can be important in underestimation of 25 

density by the numerical model. Apart from this, the comparison of temperature between the results of the numerical and 

observational data indicates that the numerical model shows a higher temperature than that of observation data at the same 

depth (Fig.7a,b). For example, if we consider the isothermal line for the potential temperature of 6 degrees Celsius (see Fig. 

7a), it is at a depth of 200-300 in the middle basin in the numerical simulations, while this isotherm is at about 200-250 m in 

observational data. As a result, the numerical model calculates the density less than its actual value. Based on what was 30 

mentioned, two factors contribute to the formation of deep flow between the middle and southern Caspian Sea basins. We 

generally conclude that the temperature factor in the formation of this deep flow is more important because the isopycnals are 

very similar to isotherms over the Strait (see 3a,b and 4a). Some other works also confirm the importance of temperature in 

the structure of circulation of water in the Caspian Sea (e.g. Terziev et al., 1992 and Ibrayev et al., 2010). 
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Typical Rossby number of the overflow is about𝑅𝑜 =
𝑈

𝑓𝑊
= 0.2/(10−4 × 20 × 103 ) ∼0.1 (here U is the typical speed of the 

overflow, W is its width and f if the Coriolis parameter), which justifies a geostrophic assumption for the deep overflow entering 

the southern basin. 

 

 5 

                                           (a)                                                                                      (b) 

Figure 7: Comparison between the north-south cross-sections of mean temperature obtained from model simulation (a), and 

Peeters et al. (2000) measurements (b) during September. The 6 °C isotherm is marked for easier comparison.  

 

 10 
 

 

 

 

(a)                                                                               (b) 15 
 

Figure 8: Cross-Sections (N-S) of the mean density obtained from model simulation during September (a) and May (b). 
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Based on the numerical model, the main physical properties of water vary in different seasons. Some of the variable features 

of the deep overflow are shown in table 1. λ is the flow angle from the zonal east-west direction (see Fig. 9 a). Varying initial 

conditions for deep flow can also lead to different deep overflow behaviors in the southern basin. 

 

Table 1: Boundary current parameters and variables obtained from the numerical simulations on the sill based on transect I 5 
(see text). 

 g´ (m/s2) vp(m/s) up(m/s)    λ(deg) 

NOV 0.00222 -0.12 -0.044 107 

JAN 0.00239 -0.133 -0.047 109 

MAY 0.00251 -0.147 -0.031 101 

SEP 0.00241 -0.19 -0.078 112 

 
 

What stands out from table1 is that the main features of deep flow are different in each season. These differences show that 

the deep flow velocity and reduced gravity, g’, fluctuate during the year, 0.127-0.2 m/s (magnitude of the velocity components) 10 

and 0.00221-0.00251m/s2 (reduced gravity) respectively. As a result, λ is changeable between 101 and 112 degree. It is 

predicted that the flow may show varying behavior when moving over the Absheron sill and then into the southern basin. Here, 

we focus on how much water sinks with different initial conditions over the strait. To show this, some transects are plotted and 

are shown in Fig.10. These transects are I and II (see Fig. 1b) to evaluate how much the water sink after moving 20 km into 

the southern basin. The isopycnal 1008.9 kg/m3is considered for all months as a reference one for the main deep flow boundary. 15 

First and most importantly, it should be close to the bottom. In addition to this, it should be better to opt for one isopycnal that 

is clear for all months for better comparisons. We then use one method for the flow volume flux calculation for all months. 

Although we could choose 1008.95 kg/m3 for May and September because it is closer to the bottom, it was impossible for 

November due to the fact that the maximum isopycnalis 1008.9 kg/m3. Thus, we chose the 1008.9 kg/m3 isopycnal to estimate 

the flow in all transects and for all months. 20 

Transects I and II are used due to the fact that there is only a short distance between them and because the entrainment and 

friction effects are less on the overflow as compared with some transects such as IV. 

 In this section, we investigate the effects of the different initial conditions on the deep flow. Based on the results of Fig.10, 

similar isopycnals are located at depths 105 m for January and 125 m for September. These depths are the mean of the 

maximum and minimum depths of the reference isopycnal. 25 

The results also indicate that the deep flow in summer is confined closer to the bottom than in winter. In general, the formation 

mechanism of water mass can be very complex. This difficulty is related to the formation time of this water mass and how 

long it takes to reach the Strait. To clarify this, in the previous section we mentioned that the dense flow fills the middle basin 

and then overflow into the southern basin (Fig.9a).  For this reason, it is tried to estimate the filling time in section four with 

some simplified assumptions. Peeters et al (2000) estimated the filling (or flushing) time as about 20-25 years. However, the 30 

density of water entering the southern basin is not the same for all seasons as the water sinking processes due to evaporation 



11 

 

and subsequent cooling in the northern basin occur mainly in winter. Nevertheless, it would be possible to track the sinking 

water in the strait if the numerical model simulations were at least for 20 years. The present numerical model runs are for five 

years only due to computing limitations. With longer simulation time it is likely that time scales of variability of the dense 

flow over the strait could be better investigated. It would be possible to see in which years the outflow is stronger or weaker 

(due to stronger or weaker atmospheric forcing) and also this could lead to the calculation of the filling time range of the 5 

basins.   

Despite the fact that our simulation time was shorter (5 years) than the filling time of the middle basin which is 20 years 

(Peeters, et al, 2000), the simulation results for the fifth year clearly show the overflow but with some variability. This is due 

to fact that the initial conditions of the present numerical model are taken from the outputs of the HYCOM model simulations 

which were carried out by Kara et al. (2010), that has reached a more or less steady density field, close to that of the 10 

observations, after a long time (about 20 years). Previous numerical simulations did not show any significant deep flow, as 

such simulation times were often not enough for the whole basins to reach a quasi-steady state, as the main aims of such works 

only concerned the near-surface circulation processes in the Caspian Sea.  

Comparison of transects I and II shows that the water sinks to depths of about 200 and 80 meters in September and January 

respectively, as the overflow enters the southern basin. This occurs when the water moves nearly 23 km (the distance between 15 

I and II). One of the most important reasons for this sinking depth variation can be the difference in reduced gravity that varies 

with season. 

 

 

 20 
 

 

 

 

 25 
 

  

 

 

 30 
 

(a)                                                                                                                  (b) 

 

Figure 9: (a) A schematic diagram of the sinking flow in the middle basin and the overflow current over Absheron sill (top), 

and topography around the sill in the middle of the Caspian Sea with the chosen coordinates (bottom).(b)The balance of 35 
forces on the overflow and flow coordinates are also shown. 
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(a)                                                                                   (b) 

 

 5 

 
 

(a)                                                                                       (b) 

 

Fig 10: Simulated density fields along transects I (a) and II (b) in Sept. (above) and January (below) 2004. The reference 10 
isopycnal of the deep flow boundary is also shown. 
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3 Dynamics of the overflow 

 

The dynamics of the deep flow can be analyzed using analytical models as have been used in many other works. Among them, 

one can refer to Girton et al. (2003) work in which they used a stream tube framework to analyze the results of their 

observational data in Denmark Strait overflow. In this section, we investigate the dynamics of the overflow in the Caspian Sea. 5 

The flow, after entering in the southern basin deflects to the right and is trapped on the western boundary of southern basin 

topography. In the course of that, Coriolis, buoyancy, bottom frictions and entrainment are the most important forces which 

affect the deep flow (Fig 9b). A better approach would be to use a method which includes all forces affecting it dynamically. 

Although there are many quantities which are important in terms of the deep flow dynamics, the vorticity and potential vorticity 

are often used to investigate such flow behavior. Generally, the vorticity is one of the most important variables in the 10 

oceanography for understanding the main features of the water column when moving over a strait. It is also clear that some of 

the main features can come from the numerical model simulation results.  

As mentioned in section 2, although the main aim of doing numerical simulations was to show the deep overflow in the Caspian 

Sea, the simulations also showed that after the deep overflow is trapped in the southern basin it seems to create eddies, 

particularly near of the Iranian coast. As the deep flow reaches the SefidRud Cape, it separates from that coast and forms one 15 

or two eddies. Similar flow behavior in the Persian Gulf outflow as it enters the Oman Sea has also been observed. The Persian 

Gulf outflow can separate from the Ras Al Hamra Cape in the Oman Sea while being attached or detached from the Cape 

depending on the outflow properties; its buoyancy varies with seasons (Ezam et al., 2012). In such flow, behavior the vorticity 

and potential vorticity of the flow column upstream of the Cape is linked to the separation of the flow from the Cape, as 

previous works (Ezam et al., 2012; Stern, 1980) have shown. Here the numerical simulations outputs are used to calculate the 20 

vorticity and potential vorticity along the deep flow. Falcini and Salusti (2015) presented a method to estimate the vorticity of 

the water column. This formula is very useful due to the consideration all of the forces which are important in the present 

overflow dynamics. Thus, this method is also used in the present work. Here, firstly the deep flow entrainment parameter and 

drag coefficient are calculated and then the dynamic model of the deep flow is discussed.  

 25 
3.1 Estimation of drag coefficient and entrainment parameter of the deep flow 

 

Johnson and Sanford (1992) estimated the drag coefficient, Cd=3×10-3 from the analysis of data from the Mediterranean 

outflow. Girton and Sanford (2003) used Cd=3×10-3 for the Denmark Strait and Cheng et al. (1999) studied the bottom 

roughness length and bottom shear stress in South San Francisco Bay and calculated Cd from 2×10-3 to 6×10-3. To simplify the 30 

analysis, we define 𝑟𝑏 =
𝑐𝑑 U

𝐻
 and 𝑟𝑒 =

𝐸

𝐻
. In this study, we have conducted the analysis using Cd=3×10-3 and 5×10-3. Hence, rb 

=Cd U /H=0.003×0.2/50 ~ 1 ×10-5s-1 and rb= CdU/H=0.005×0.2/50 ~ 2×10-5s-1. Here, rb is the bottom friction parameter and U 

is the magnitude of the deep flow velocity where H is the thickness of overflow. E is an entrainment speed and defined as E 

=E*×U, where E* is the entrainment coefficient that depends on the overflow top boundary Richardson number (Price and 

Bringer, 1994).Ri is the bulk Richardson number defined as 𝑅𝑖 =
𝑔′𝐻

𝑈2 𝑐𝑜𝑠𝜃, where θ is the bottom slope. There are many 35 
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methods to calculate entrainment parameter, E* of which some are presented in table 2. Due to the importance of E* in the 

next section for estimation of vorticity, the E* is calculated based on table 2 formulas, for the transects I, II, III, IV, and V. 

Figure 11 shows E* versus Ri for May from transects I to V. 

Based on Ri for the overflow, Ri varies at different locations. Using U as 0.1 to 0.2 m/s, g’=0.00222-0.00251 m/s2, H=50-70 

m, tanθ=0.02, 𝑅𝑖 =
0.00251×50

0.2×0.2
0.99~ 3.1. Based on table 2 with Ri>= 0.8, we used mean E* based on formulas 2, 3, 4 and 5 of 5 

table 1, because we cannot use the formula 1(Ri>= 0.8, then E* <=0). For this section, re, entrainment parameter, values are 

considered as 5×10-6 and 1×10-5s-1based on typical values for Ri, U and H. 

 

Table 2: Some of the published E* equations based on Ri (Kashefipour et al, 2010). 

Equation number Researcher Year Equation 

1 Ellison and Turner 1959 E*=
0.08−0.1𝑅𝑖

1+5𝑅𝑖
 

 

2 

 

3 

 

4 

 

5 

Ashida and Shinzi 

Garcia 

Kessel and Krancnburg 

Karamzade 

1977 

 

 

 

1985 
 

 
 

 

1996 

 

2004 

E*=0.0015Ri-1 

E*=
0.075

(1+718𝑅𝑖2.4)0.5 

E*=
5.5×10−3

3.6𝑅𝑖−1+√(3.6𝑅𝑖−1)2+0.15
 

E*=0.0021 𝑅𝑖−1.1238 

 10 
 

 

 

 

 15 
 

 

 

 

 20 
 

 

 

 

 25 
Figure 11: Changes of entrainment coefficients based on different Richardson numbers for May in transects shown in figure 

1b. The formulas in table 1 are used to estimate E* (the numbers refer to the equation numbers in table 1). To use E* in Eqs.1 

and 2 (Section 3.2), the mean values for E* is also estimated (black). 
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3.2 The changes of vorticity and potential vorticity of the overflow 

 

As mentioned before, vorticity is an important parameter for the study the column properties of overflow over the sill. Also, 

the vorticity can be useful to consider the behavior of the flow (e.g. Stern, 1980) in the southern basin, particularly near the 

SefidRud Cape. Not only do we try to estimate the vorticity of the water column and the width of the flow when moving into 5 

the southern basin, especially during the adjustment of the flow width, but also we estimate the flow vorticity and its behavior 

near the Cape. The width of the flow is calculated directly from the numerical simulations but for the calculations of vorticity 

and PV (potential vorticity), we need to use an analytical model. 

Here we consider the structure of the flow as it moves over the sill in terms of its vorticity and PV. Falcini and Salusti (2015) 

presented an analytic model for the Sicily channel: vorticity and PV equations are based on the stream-tube model (Smith, 10 

1975; Killworth, 1977). To deal with this, they used (𝜉, ψ) coordinate system, a modified form of that which was used by 

Astraldi et al. (2001). In this frame, 𝜉 is the along-flow coordinate and ψ is the cross-flow coordinate (see Figure 1 in Smith, 

1975). In this method, friction and mixing effects are considered in the estimation of potential vorticity. Firstly, Falcini and 

Salusti used the hydrostatic pressure equations for three layers to achieve some equations for entrainment and friction; next, 

they concentrate the third layer (with dense water near the bottom) to obtain formulas for vorticity and potential vorticity. In 15 

addition to this, based on their assumptions (Falcini and Salusti, 2015), the velocity of a stream line is a function of 𝜉 only. 

They defined β as the angle between (𝜉, ψ) and (x, y) coordinates. They assume that β is close to zero in the channel. They 

then used the classical vorticity equation (Gill, 1984) and assumed cross sectional averages of the various terms in the steady 

state of vorticity equation due to difficulty of depth and velocity calculations in different position from hydrographic data. 

They presented formulas (1and 2) to calculate vorticity and potential vorticity for dense flow (deepest moving layer) 20 

. These formulas are based on a homogeneous bottom water vein while using shallow water theory (over bars indicate cross 

sectional averages). To obtain a formula, the bottom water is assumed to be well mixed and the flow has a strong axial velocity, 

nearly uniform over the cross section of the stream and also the cross-stream scale is assumed to be much smaller than the 

local radius of curvature of the streamline axis. Relative vorticity and potential vorticity distributions of the deep flow are: 

 25 
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Where Г=
𝐸

ℎ
.  

To obtain formula (1), it is supposed that 𝜁0
̅̅ ̅ ≪ 𝑓 . After integrating the shallow-water equations along the flow and mass 

continuity equation and also using some mathematical operations, Eqs. 1 and 2 are obtained. 

Here ζ and Π are respectively the mean relative vorticity and potential vorticity, h is the layer thickness and ∂h/∂x is slopes of 

the flow reference isopycnals, ζ0 and 𝑢 0̅̅ ̅̅  are respectively the initial vorticity and velocity. ζ0 is estimated as U/W, where U and 5 

W are respectively the flow speed (~ 0.2 m/s) on the sill and cross channel scale (~ 20 km) over the sill. To be applicable, some 

terms in Eq.1 are considered as cross-sectional averages. Three terms are significant in vorticity: the stretching term, the 

entrainment effect and the friction. To estimate all parameters in these formulas, we use 5 transects from the Strait (I) to the 

southern area (V) (figure 1b). Typically, for November in transect III, ∂h/∂x≈0.0047 (δh~180 m and δx~38 km), �̅�=0.11 m/s, 

ℎ̅=180 m, are estimated. The calculations of rb and re are based on Ri number (presented in section 3.1 and formulas in table 10 

1) that are rb=2×10-5 (s -1) and re=4×10-6 (for transect II), 8×10-7(for transect III) are calculated based on (figure 11). In transect 

IV and V, re~0 because of large Ri~ 40 to 50. Using Eqs.1 and 2, profiles of ζ and Π are plotted in figures 12 as functions of 𝜉 

along the stream tube. 

 

 15 

 

 

 

                           Figure 12: Changes in ζ(s-1) (left) and Π (m-1s-1) (right) along the flow based on Eqs. 1and 2. 

 20 
 

Figure 12 shows that ζ increases from I to V, because of stretching term in Eq. 1, although Sep. and Jan. values have different 

behaviors in transect IV to V. However, after the transect III, the changes are not considered, because the depth does not vary 

significantly (stretching term) and entrainment has been ignored as Ri is large after this transect. In the month of November, 

the vorticity has a maximum value of about 8.5×10-5 (s-1) in transect V, although in January the vorticity is the least among all 25 

the months shown. When it comes to Π, the graph shows a decrease in PV values along the flow from I to IV, but after IV, the 

Π values are almost constant. For example, changes of Π over the sill (from I to III) are about 7× 10-7 (m-1s-1) and 4 ×10-7(m-

1s-1) for Sep. and Jan. respectively, due to bottom friction and entrainment. 
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Transects I, Π and III are located on the slope and IV and V are in deeper parts of the southern basin. The vorticity and PV 

values are based on the topography of the Caspian Sea. Fig. 12 shows that the changes of vorticity are more marked from I to 

III because the depth of the flow changes more on the slope (stretching term) over this distance. As the flow enters the southern 

Caspian Sea basin, it adjusts into an internal Quasi-geostrophic flow, almost as a deep western boundary current in the southern 

Caspian Sea basin. The gravity-driven flow appears as a trapped current after Absheron sill due to Coriolis effect (transect IV 5 

and V). When moving along the southern (Iranian) coast, the forces of pressure gradient and Coriolis balance the force of 

friction. The entrainment effect can be ignored because the Richardson number is about 50 based on Fig. 11 in transect V, so 

E*~ 0. The width of flow over the sill and when being trapped is calculated for all month (from the numerical simulation 

results) and varies for various seasons; here it is shown for the transect V. These values are 18, 16, 34, and 35 km for Nov, 

Jan, May, and Sep respectively. As figure 12 shows, the potential vorticity of the water column decreases from I to V, due to 10 

frictional and entrainment effects. The comparison of the flow width from I to V transects also shows that the bottom friction 

(and also entrainment, particularly over the Strait) increases the width of the flow in the southern basin. For example, for 

September, the width of flow increases from 20 km (I) to 35 km (V), by about 15 km as a result of moving over the sill and 

into the southern basin. It means that friction force decreases potential vorticity of the flow in the southern basin.  

Apart from this, the trapped current continues moving into the western part of the southern basin (Fig. 13), but it shows an 15 

interesting behavior as it reaches the Delta SefidRud cape. The flow separates from the cape and forms one or two eddies 

(Fig.14). Based on the numerical results, separation of the dense flow from the cape depends on the season (different boundary 

currents for different seasons). The important parameter determining the behavior of flow when it separate from cape is its 

potential vorticity. 

In this section, the potential vorticity of the deep flow is estimated for different seasons based on information as in figure 14. 20 

We can observe different behavior of the flow when separating from the cape for fall in November and in spring May (Fig.14). 

For example, in transect V for November and May, the values of the potential vorticity are 6× 10-7 and 4 ×10-7 (ms)-1 

respectively (Fig.12). Figure 14 indicates that in November, the flow is closer to the cape than in May during the time of 

separation. It can probably be concluded that the potential vorticity upstream of the flow can be effective on the flow when it 

separates from the cape, although other factors such as Rossby number is also important. In order to be more accurate, Stern 25 

(1980) showed that for this kind of the flow with zero potential vorticity assumption, the flow separates from the cape when 

the width of flow upstream of the cape is less than about 0.42 RD, where RD is the Rossby radius of deformation 

 RD= (g´H) 0.5/f (based on the current depth, H and its reduced gravity, g´ far upstream). Based on Fig. 12, we can still use the 

Stern method for this flow, although the potential vorticity is not quite zero upstream of the Cape (figure 12, right). Based on 

typical values of the RD~2L which is about 30 km, and width of the western boundary current (about 15 to 35 km, calculated 30 

above) which is in the same order as 0.42RD,  the flow may just be separated from the cape especially for Jan and November 

(with width 16 and 18 km respectively), as indicated in Fig. 14 in which the separation and formation of a cyclonic mesoscale 

eddy near the cape are more pronounced in November, considering the fact that PV of the flow is not quite zero before the 
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cape, as the Stern criteria may not apply for such flow separation. A more rigorous criterion is needed for the separation of 

such flow from the cape that may be dependent on the geometrical dimensions of the cape as well. 

 

 

                                   (a)                                                (b) 5 

Figure13: Density fields along transect V (from the numerical model) in May (a) and Nov. (b). 

 
(a)                      (b) 

Fig.14: Monthly mean currents (m/s) in the layer "k=11", obtained from the model simulation for May (a) and Nov (b). The 

dense flow separates from the SefidRud Delta cape. The bottom deep topographically trapped current over the Abshuron sill 10 
and the southern Caspian Sea basin is marked. k=1 is the bottom layer and k=30 is the top layer. 

 

 



19 

 

 

4. Flushing time and the importance of this work  

 
4.1 Volumes of basins dense water and flushing times calculations 

 5 
As mentioned in section 2 and also discuss in the following section, the flushing times of the Caspian Sea basins are important 

parameters for this ecosystem. To calculate the basin flushing time, the first and important step is the estimation of the dense 

flow volume flux when entering the southern basin over the Absheron sill. A simple method to calculate the deep flow volume 

flux is multiplying the mean velocity of the overflow by its cross-section (Eq.3). Although the numerical model outputs give 

directly the velocity, the cross- section should be calculated. Here the deep flow volume flux is also estimated by formulas 3 10 

to 6, in addition to that obtained by the numerical simulations.  

 It is very useful to use an equation which is compatible with the physical conditions of the Absheron sill. For this reason, the 

shape of the sill and the deep flow reference isopycnal will be considered for obtaining an appropriate formula (6) for the deep 

flow volume flux. Here the accuracy of this formula is checked using the numerical simulation results. Although use of 

observational data is common for deep flow volume flux estimation, we do not have ADCP data across the Absheron sill. 15 

Hence, here we try to obtain a formula using temperature and salinity data that are much more available than the ADCP data 

across Absheron StraitAbsheron. 

The overflow volume flux is given by (3) in which v is the mean magnitude of the geostrophic velocity of the overflow and ds 

is an element of its cross-section area. 

= vdsQV                                                    
(3) 20 

Due to the parabolic form of the bottom topography (Z) of Absheron Strait, its geometry of the dense overflow in this valley 

like shape (Figure15a, b) can be given by: 

  )4(       xAeh

cbxaxZ

−=

++=

'

2

   

Where a, b, c, A and α are assumed to be constant and we also assign the deep flow reference isopycnal depth (approximately 

the top boundary of the overflow) as h´ (see Figure 15b). 25 

 Due to the fact that Z and h´, (deep flow isopycnal reference line), in the graph (Figure15a, b) are from L1 to L2, we can 

calculate h´ and Z values at (x=L1) and (x=L2), Substituting Eq. (4) in Eq. (3) and using the assumptions and that v is the mean 

deep flow geostrophic speed and is assumed constant (in each month and uniform in depth) and  is given by the slope of h´ in 

the x-direction, we have: 
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(6) 10 

Where: 

 

To obtain the Eq. 6, which is an approximation for |L1| = |L2|, we defined L based on L1 and L2. Although the minimum of Z 

is not exactly at x=0, as it does not create a large error. To show this in reality, the QV is calculated separately with Eq. 5 and 

6. The results show that the difference is about 2-5 percent when using (Eq. 5) without any assumptions (L ~ ∣L1∣~ ∣L2∣). 15 

Another important point is that the geostrophic balance between v and h’ is assumed as Ro ~ 0.1 based on flow parameters 

estimations of sections 2. 

To calculate the mean monthly volume flow rate of the deep current that enters the southern basin of the Caspian Sea, we 

assume that its density is greater than 1008.78kg/m3. Then the average density (for different seasons) of the flow below the 

deep flow upper boundary (e.g. Figure15), equation (6) and figure15 are used to calculate the deep flow volume flux.   20 

For the times that the middle and southern basins are filled, first the volumes of middle (VM), and southern (VS) basins (see 

Figure 15c) are calculated below three levels (z=0, z=-100, and z=-180 m which the approximate depth of the Absheron sill, 

which would be more appropriate only for the southern basin), then if we assume a similar annual mean value of QV for both 
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basins, these filling times are estimated. The results of these calculations and comparisons between them for different seasons 

are given in Tables 3 and 4. The results show that the maximum and minimum flow rates of abyssal water that enter the 

Southern Caspian Sea are in May and November respectively. In order to check the accuracy of Eq. 6, the QV is also directly 

calculated from the numerical simulations without any assumptions. As shown in table 3, the numerical model value is greater 

than that of the analytical estimation. This underestimation by Eq. 6 can be due to the fact that we used some assumptions to 5 

obtain Eq. 6. The velocity used is the geostrophic velocity and the deep flow isopycnal reference lines are also simplified. 

Apart from this, some errors come from the choice of 1008.78 kg/m3 contour as its position changes for different months (see 

section 2.3). To solve this problem, we follow one method for all months (under the same boundary conditions for all months), 

to acquire approximate estimates. The flushing time is then estimated based on the direct calculation from the numerical 

simulations. The results show that the flushing time is about 6-7 years (middle basin) and 13-15 years (southern basin) for the 10 

numerical simulations based on z=0, that are similar to those from the Eq. 6 (table 4). 

 The Eq. 6 can also be useful for estimation of the volume flux of overflows in other Straits, particularly in such oceanic 

environment without ADCP data, for example on the Persian Gulf outflow for which there are many CTD data on the Hormuz 

Strait (Bidokhti and Ezam, 2009).  
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                                                                                   (c) 20 
 

Fig15: (a) Typical density fields along transect I for Sept. from which we calculate the flow rates. (b) The scheme of the 

topography with a typical isopycnal and model parameters. (c) The model bathymetry used to calculate the volumes of the 

middle (VM), and southern (VS) basins. The Surfer software is used to plot and calculate VM and VS using GEBCO data with 

0.5º × 0.5º resolution. 25 
 

 

Table 3: The model deep flow boundary current parameters (1 Sv=106 m3/s) for different months. The last column (red 

symbol) show direct calculation from the numerical model 

 H1 (m) H2(m) 2L (m)    QV(Sv) 

Analytical 

QV(Sv) 

Numerical 

NOV 55 10 19000 0.016 0.034 

JAN 145 85 32000 0.115 0.15 

MAY 145 55 34000 0.146 0.17 

SEP 135 45 27500 0.116 0.16 
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Table 4: Flushing times of the middle (TM) and the southern (TS) basins (using an annual average volume flow rate (QV) 

below three levels based on formula 6. 
Level VM(m3×1013) VS(m3×1013) TM(year) TS(year) 

z=0 (sea surface) 2.55 5.12 8.35 16.77 

z=-100 1.09 4.13 3.57 13.5 

z=-150 0.36 3.62 1.17 11.85 

 5 
 

 

4.2 The importance of deep flow in the southern basin 

 

In section 4.1, we estimate the Caspian Sea basins flushing times because it is very important for the ventilation of these deep 10 

basins. In addition to this, in section 2, it was discussed as why this time scale is important for the required time of the numerical 

simulations of the Caspian Sea, particularly for the deep parts proper adjustment. In this section, the importance of other 

aspects of the deep flow are discussed. In general, deep flows play a pivotal role in the water ventilation of deeper parts of the 

Caspian Sea. Signs of life in the deep part of the Caspian Sea are observed, especially in the Southern basin (Terziev, 1992), 

however, the reasons for the existence of marine life have not been addressed clearly so far. The main reason why the deeper 15 

part of the Sothern Caspian Sea basin is not “dead” like that in the Black Sea is that carries oxygen from the surface layers to 

the bottom layers, and nutrients from the bottom layers towards the top layers by a slow advection. As a result of this, the 

Absheron sill overflow can be considered as the most important element of this ecosystem in the southern basin of the Caspian 

Sea. Moreover, these days, oil well pollution and climate change effects are the most important problems in the Caspian Sea. 

To begin with, it is interesting to look at the locations of the oil and gas wells in this Sea. As the location of the oil and gas 20 

wells in this basin are shown in figure 16a, it can be seen that they are mainly situated in two areas in the northern basin and 

particularly around Absheron sill (at present). Also, a satellite image shows that some oil spills have occurred in the vicinity 

of these oil and gas wells around the sill. For example, the figure16b which is extracted from Marina and Yu Lavrova (2015) 

using satellite data shows that the spills are located on the sill and also in the western parts of the southern basin. In addition 

to this, studies on the sea bed on the Absheron Strait and Bako Gulf indicated approximately 1 and 1.5 meters depth of sludge 25 

and oil residues in the form of high-density pellets and mazut (Escani and Amini, 2013). If we consider all of the points and 

look at the path of the deep flow (Fig.14), the present work can be very important for consideration of the impacts of such oil 

exploration activities in the fate of deeper as well as other depths of this environment, if certain careful actions are not taken. 

By considering these points, the existence of deep flow on the sinking and mixing processes is very important in the ventilation 

of the southern basin. Unfortunately, the pollution of oils can spread into deeper parts of the southern basin via this deep flow. 30 

In other words, this deep flow plays a positive role in the ventilation of the deeper parts of the Caspian Sea, but with oil 

exploration activities in bottom of this enclosed sea, this deep flow can have a negative effect on the Caspian Sea, as it can 

carry polluted materials to the deep parts of this ecosystem. 
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The overflow direction was calculated showing that the flow passes over some oil drilled holes area in Absheron sill. Due to 

this angle, the flow passes through the wells near the Azerbaijani Republic rather than the eastern part of the sill near 

Turkmanestan. In section 3, the dynamics of the flow was discussed. Among all of the dynamics aspects, it was found that 

under certain conditions the flow was separated from the SefidRud Cape(based on section 3.2) and two eddies were formed 

here. Eddies are very substantial in the ocean and climate (Gill, 1984) because they advect mass (here the oil pollution of even 5 

harmful algae blooms) and their ability to propagate is crucial to their contribution to marine mixing rates (Friel, 1987). Based 

on this result (path of the deep flow and the eddy formation in the SefidRud Cape) it can be concluded that the region near the 

SefidRud Delta Cape may be the most polluted waters in deeper parts at present and that pollution can spread other deeper 

parts of the southern basin of the Caspian Sea (Fig.16b). 

These days, climate change leads to many problems in this area like the sea level rise (Chen et al., 2017), mainly due to the 10 

rising trend of atmospheric temperature in recent years. Due to this problem, a question is raised as what is the effect of climate 

change on the deeper flows of the Caspian Sea. Based on section 2.1, it is mentioned that the water sinks in the northern basin 

and after filling the middle basin it finally overflows into the southern basin. If it is accepted that the atmospheric temperature 

rises, it will also warm the northern part of the Caspian Sea, and hence it is predicted that the sinking process will be weaker. 

As a result of this, the volume of water mass by the deep overflow would decrease and flushing time would increase. In other 15 

words, it probably has a negative effect on the deep part of the southern basin of the Caspian Sea due to weaker ventilation by 

this deep flow, if it does not totally shut off this ventilation.   

 

 
 20 

(a)                                                                                                    (b) 

Fig 16: (a) The locations of oil and gas fields in the Caspian Sea, extracted from https://www.offshore-mag.com. (b)The map 

of oil spills revealed from satellite radar imagery in the central and southwestern parts of the Caspian Sea in 2010. (Mityagina 

and Yu Lavrova, 2015). 

https://www.offshore-mag.com/
https://www.offshore-mag.com/
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5. Conclusions and consequences 

 
The results of observations and numerical simulations showed that there is an abyssal flow from the middle to the southern 

basins of the Caspian Sea. The density difference between the deeper water of the middle basin and that of southern basin 

leads to an overflow gravity current over the Absheron sill. This difference is mainly due to the temperature difference between 5 

deeper parts of these two basins; winter storms and cold wind provide the cooling of this rather high-latitude shallow water in 

the northern basin. As a result, cold water initially sinking in the northern part of this Sea, at about 48 degrees latitude, fills 

first the middle basin and then overflows towards the southern basin. In autumn and winter, surface water cools and its density 

is increased and then it sinks to the deeper parts of the middle basin, like deep convection in high latitude oceans.  

We estimated typical mass transport and flushing times of the deep-water basins of this Sea using the overflow properties at 10 

the Absheron sill. After the sill, the overflow adjusts itself moving south as a gravity-driven topographically trapped current, 

spiraling into deeper parts due to bottom friction and entrainment. It always tends to move toward the western shores of this 

Sea, mainly due to the Coriolis force that shifts it to the right. Such flow is important in the abyssal circulation and ventilation 

of the deep southern basin of the Caspian Sea. For vorticity and potential vorticity of the flow, the formulas which are presented 

by Falcini and Salusti (2015) are used to estimate the changes of relative vorticity and potential vorticity over Absheron sill of 15 

the trapped current. 

Results also showed that nearly 3.05×1012 m3of water per year by this abyssal flow can enter the Southern basin, giving a 

typical flushing time of about 15 to 20 years which are of the same order as those estimated by Peeters et al. (2000). Some 

points are discussed as how the southern Caspian Sea basin ecosystem can be strongly dependent on this flow. 

The northern and middle Caspian Sea basins have become important areas for oil and gas explorations (especially the Absheron 20 

shallow Strait area) and marine transport nowadays. Since the Caspian Sea is an enclosed sea, the adverse effects of such 

activities may particularly affect the deeper parts of the Caspian Sea basins. For this reason, it is recommended that more 

detailed observational data are collected in the deep parts of the southern and middle basins of the Caspian Sea, by joint projects 

with neighboring countries. More extensive and fine-resolution observational data and numerical simulations are required to 

find more details of the overflow structure over and around the Absheron sill (Strait) and the deeper parts of the Caspian Sea 25 

basins. 

 

Acknowledgments 

The financial support of the University of Tehran, while doing this work is greatly acknowledged. Numerous comments of 

Prof.J. M. Huthnance in improving the paper is greatly acknowledged.  30 

References 

Arakawa, Akio, and Max. J. Suarez: Vertical differencing of the primitive equations in sigma coordinates, Monthly Weather 

Review 111.1, 34-45, 1983. 
 



26 

 

Astraldi, M., Gasparini, G. P., Gervasio, L., & E. Salusti: Dense water dynamics along the Strait of Sicily (Mediterranean 

Sea), Journal of Physical Oceanography 31.12, 3457-3475, 2001. 

 

Ashida, Kazuo, and E. Shinzi: Basic study on turbidity currents, Proceedings of the Japan Society of Civil Engineers. Vol. 

1975. No. 237. Japan Society of Civil Engineers, 1975. 5 
 

Aubrey, D. G., Glushko T. A., and V. A. Ivanov: North Caspian Basin: Environmental status and oil and gas operational 

issues, Report for Mobil-oil 650, 1994. 
 

Aubrey, D. G: Conservation of biological diversity of the Caspian Sea and its coastal zone, A proposal to the Global 10 
Environment Facility. Report to GEF, 1994. 
 

Baringer, MO'Neil, and J. F. Price: Mixing and spreading of the Mediterranean outflow, Oceanographic Literature Review 

3.45, 436-437, 1998. 
 15 
Bidokhti, A. A., and M. Ezam: The structure of the Persian Gulf outflow subjected to density variations, Ocean Science 135-

161, 2009. 
 

Bondarenko, A. L: Currents of the Caspian Sea and formation of salinity of the waters of the north part of the Caspian Sea, 

Nauka, Moscow 6, 3019-3053, 1993. 20 
 

Britter, R. E., and P. F. Linden: The motion of the front of a gravity current travelling down an incline, Journal of Fluid 

Mechanics 99.3, 531-543, 1980. 
 

 25 
 

Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J. F., & E. S. Safarov: Long‐
term Caspian Sea level change. Geophysical Research Letters, 44(13), 6993-7001, 2017. 

 
 30 
Cheng, R. T., Ling, C. H., Gartner, J. W., & P. F. Wang: Estimates of bottom roughness length and bottom shear stress in 

South San Francisco Bay, California, Journal of Geophysical Research: Oceans 104.C4, 7715-7728, 1999. 
 

Dickson, R. R., Gmitrowicz, E. M., and A. J Watson: Deep-water renewal in the northern North Atlantic, Nature 344.6269 

848, 1990. 35 
 

Escani, H., and A, Amini: Impact of oil and gas industries on the Caspian Sea ecosystem. The growth of Geography 

Education, number 103, page 26-31, 2013. 
 

Ellison, T. H., and J. S Turner: Turbulent entrainment in stratified flows, Journal of Fluid Mechanics 6.3, 423-448, 1959. 40 
Ezam, M., Bidokhti, A. A., & A. H Javid: Numerical simulations of spreading of the Persian Gulf outflow into the Oman Sea. 

Ocean Science, 6(4), 887-900, 2010. 

 

Falcini, F., and E. Salusti: Friction and mixing effects on potential vorticity for bottom current crossing a marine strait: an 

application to the Sicily Channel (central Mediterranean Sea), Ocean Science 11.3, 391-403, 2015. 45 
 

Fogelqvist, E., Blindheim, J., Tanhua, T., Østerhus, S., Buch, E., & F. Rey: Greenland–Scotland overflow studied by hydro-

chemical multivariate analysis, Deep Sea Research Part I: Oceanographic Research Papers 50.1, 73-102, 2003. 
 

Flierl, G. R.: Isolated eddy models in geophysics. Annual Review of Fluid Mechanics, 19(1), 493-530, 1987. 50 
 

García, Marcelo H: Hydraulic jumps in sediment-driven bottom currents, Journal of Hydraulic Engineering 119.10, 1094-

1117, 1993. 
 

Ghaffari, P., and V. Chegini: Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and 55 
flow field off Feridoonkenar Bay, Iran, Ocean Science 6.3, 737-748, 2010. 
 

Ghaffari, P., Isachsen, P. E., and J. H. LaCasce: Topographic effects on current variability in the Caspian Sea, Journal of 

Geophysical Research: Oceans 118.12, 7107-7116, 2013. 



27 

 

 

Gill, A. E: Atmosphere-ocean dynamics, Elsevier, 1984. 
 

Girton, James B., and T. B. Sanford: Descent and modification of the overflow plume in the Denmark Strait, Journal of 

Physical Oceanography 33.7, 1351-1364, 2003. 5 
 

Griffiths, R. W: Gravity currents in rotating systems, Annual Review of Fluid Mechanics 18.1, 59-89, 1986. 
 

Gunduz, M., and E. Özsoy: Modelling seasonal circulation and thermohaline structure of the Caspian Sea, Ocean Science 

10.3, 459-471, 2014. 10 
 

Huthnance, John M: Circulation, exchange, and water masses at the ocean margin: the role of physical processes at the shelf 

edge, Progress in Oceanography 35.4, 353-431, 1995. 
 

Ibrayev, R. A., Özsoy, E., Schrum, C. & H. I.  Sur: Seasonal variability of the Caspian Sea three-dimensional circulation, sea 15 
level and air-sea interaction, Ocean Science 6.1, 2010. 
 

Ismailova, B. B: Geoinformation modeling of wind-induced surges on the northern–eastern Caspian Sea, Mathematics and 

Computers in Simulation 67.4-5, 371-377, 2004. 
 20 
Johnson, G.C. and T.B. Sanford: Bottom and interfacial stresses on the Mediterranean outflow, Tenth 

Symposium on Turbulence and Diffusion. Portland, Oregon. American Meteorological Society, 105-106, 1992. 

 

Kara, A. B., Wallcraft, A. J., Metzger, E. J., & M.  Gunduz: Impacts of freshwater on the seasonal variations of surface 

salinity and circulation in the Caspian Sea, Continental Shelf Research 30.10, 1211-1225, 2010. 25 
 

Karamzadeh, N: Experimental investigation of water entrainment into a density current,M. Sc. Thesis, ShahidChamran 

University, Ahvaz, Iran , 2004. 
 

 30 
Kashefipour, S., Kooti, F., and M. Ghomeshi: Effect of reservoir bed slope and density current discharge on water 

entrainment, Environmental Hydraulics, Two Volume Set: Proceedings of the 6th International Symposium on 

Environmental Hydraulics, Athens, Greece, 23-25 June 2010. CRC Press, 2010. 
 

Kessel, Thijs van, and C. Kranenburg: Gravity current of fluid mud on sloping bed, Journal of Hydraulic Engineering 35 
122.12, 710-717, 1996. 
 

Killworth, Peter D: Mixing of the Weddell Sea continental slope, Deep Sea Research 24.5, 427-448, 1977. 

 

Luyten, P.J., Jones, J.E., Proctor, R., Tabor, A., Tett, P. & K. Wild-Allen: COHERENS- A coupled hydrodynamical-40 
ecological model for regional and shelf seas: user documentation, MUMM Rep, Management Unit of the Mathematical 

Models of the North Sea, 1999. 

 

Mazaheri, S., Kamranzad, B., and F.Hajivalie: Modification of 32 years ECMWF wind field using QuikSCAT data for wave 

hindcasting in Iranian Seas, Journal of Coastal Research 65.sp1 344-349, 2013. 45 
 

Mityagina, Marina I., and Olga Yu Lavrova. : Multi-sensor satellite survey of surface oil pollution in the Caspian Sea." 

Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2015. Vol. 9638. International Society for 

Optics and Photonics, 2015. 
 50 
Peeters, F., Kipfer, R., Achermann, D., Hofer, M., Aeschbach-Hertig, W., Beyerle, U., &K.Fröhlich: Analysis of deep-water 

exchange in the Caspian Sea based on environmental tracers, Deep Sea Research Part I: Oceanographic Research Papers 

47.4 621-654, 2000. 
 

Price, J. F. &Baringer, M. O. N. (1994). Outflows and deep water production by marginal seas. Progress in Oceanography, 55 
33(3), 161-200. 

Shiea, M., Chegini, V. & A. A. Bidokhti: Impact of wind and thermal forcing on the seasonal variation of three-dimensional 

circulation in the Caspian Sea, IJMS, Vol. 45 (05), 671-686, 2016. 

 



28 

 

Smith, Peter C: A streamtube model for bottom boundary currents in the ocean, Deep sea research and oceanographic 

abstracts. Vol. 22. No. 12. Elsevier, 1975. 
 

Stern, Melvin E: Geostrophic fronts, bores, breaking and blocking waves, Journal of Fluid Mechanics 99.4, 687-703, 1980. 
 5 
Terziev, F. S., Kosarev A., and A. A. Kerimov: The Seas of the USSR. Hydrometeorology and Hydrochemistry of the 

Seas,The Barents Sea 1, 1992. 
 

 

 10 
 
 


	os-2018-13-author_response-version5.pdf (p.1-4)
	os-2018-13-supplement-version4.pdf (p.5-32)

