Interactive comment on

"Synoptic scale variability of surface winds and expected changes in the ocean-atmosphere dynamics of the eastern Austral Pacific Ocean" by Iván Pérez-Santos et al.

Anonymous Referee #1

Received and published: 9 January 2019

The presented study investigates the variability of southern hemisphere surface winds between 40_S and 56_S. As data basis two scatterometer datasets, Modis chlorophyll measurements, the ERA-Interim reanalysis dataset and observations from meteorological stations and buoys are used. A principal component analysis is applied on the scatterometer data to investigate the first three patterns. Up- and downwelling as well as nighttime heat wave events are investigated. The article is in principle well written. Jumping between the figures (e.g. line 214 fig. 4e than line 215 fig. 2c,f, line 217 fig.3g,p) in the text makes it harder to follow the argumentation. The topic of the study is interesting, and I suggest to publish the article after the following issues are addressed:

General comment to RC1: We appreciate the recommendation of the reviewer to add the ERA5 climate data set to the manuscript and also carried out the statistical analysis, e.g., EOF and wavelet. New figures were added to the manuscript contributing to an increase in the quality and strength of the results and discussion presented in the new manuscript version.

• What are the investigated "expected changes" which are mentioned in the title?

We modified the title to, "Synoptic scale variability of surface winds and ocean response to atmospheric forcing in the eastern Austral Pacific Ocean".

• Two different scatterometer datasets (QuickSCAT and ASCAT) are used, which have an overlap of only about two years. The raw satellite data are not gridded. Does the processing of the data can influence the results? Could you give some more details about the data?

The two scatterometers datasets overlap in the information on the surface winds from 2007 to 2009. We extracted three time series for the zonal and meridional wind components in areas close to coastal zone (e.g., 42.2° S, 47.2° S and 52.2° S, see the new figure 1 to the geographical position). The linear regression between both scatterometers was high with an r2 range from 0.65 to 0.73. The raw data for each dataset are now presented in the new figure 3, where the raw data from the ERA5 reanalysis is also presented.

• For QuickSCAT, the institution is mentioned from which the data were retrieved (could you change the link to the webpage/ftp where the data are available instead of the institute's main page). It is not mentioned from where you get ASCAT. Are these data treated in the same way as the QuickSCAT data? If not, is there a potential impact on the results?

We added the ftp website for both satellite surface wind products: QuikSCAT (ftp.ifremer.fr/ifremer/cersat/products/gridded/mwf-quikscat/data/) and ASCAT (ftp.ifremer/cersat/products/gridded/MWF/L3/ASCAT/). The ASCAT database was treated similarly ro QuikSCAT. The only difference was in the spatial resolution.

• In figure 6, a relatively strong difference in the Ekman pumping between both datasets can be seen. Is this because of the different periods of both data sets or are there differences in the observations?

We agree with this comment. The new calculation of Ekman pumping using the ERA5 data set (new figure) exhibited a similar behavior to the results of QuikSCAT. The Ekman pumping

values are a good representation of the features in the three products (QuikSCAT, ASCAT, and ERA5 reanalysis), e.g., the area between $50^{\circ}-54^{\circ}$ S / $75^{\circ}-80^{\circ}$ W and the coastal zone between latitudes $40^{\circ}-44^{\circ}$ S. We added these new results and discussion to the manuscript.

• In line 169, it is mentioned that for the overlapping period, R2 0.7. Why wasn't the EOF analysis done also with reanalysis data. This could help to identify the origin of the differences. ERAInterim assimilates QuickSCAT. There is also a newer reanalysis called ERA5 available, which assimilates also ASCAT. With a resolution of about 0.28_, its resolution is close to the one from the gridded ASCAT data you are using.

As was recommended, we added the ERA5 dataset to the manuscript. This new data was used in the EOF calculation and other analyses. New figures were generated, and in general, the results obtained with ERA5 agree with the results obtained with QuikSCAT and ASCAT.

• In figure 1, the long term mean for QuickSCAT is higher than for ASCAT. Is this because of the different periods, or has one instrument potentially a bias larger than the other? This could be checked by looking into a homogeneous data set like a reanalysis.

We calculated the long term mean using the ERA5 reanalysis data set over the period 1999-2015. The new result is presented in figure 2 and is similar to the ASCAT long term mean. We added a new description of figure 2 in the text.

• In line 158 it is mentioned that long term means and linear trends were removed. How? Was it done for each scatterometer data set individually?

Yes, we eliminated the linear trends individually for QuikSCAT, ASCAT and ERA5.

• In line 161 it is explained that wavelet spectra were calculated on the entire sampling period. For each data set individually? How are the different resolutions taken into account? In the same way, wouldn't it make sense to repeat the same investigation with a reanalysis?

The wavelet spectra analysis was applied individually for each scatterometers, e.g., for QuikSCAT over the period 1999-2009 and ASCAT over the period 2007-2015. We repeated the same analysis for the ERA5 reanalysis data. The new data set and results were added to the manuscript. The ERA5 covered the entire sampling period 1999-2015 and showed similar results to QuikSCAT and ASCAT.

We clarified the sentence in line 161.

• You found different cycle lengths for 1999-2008 and 2008-2015. This corresponds more or less to the periods covered by the two scatterometer products. Does the same investigation on reanalysis data would give you comparable results? Or in other words, are the differences related to the two different satellite products and potentially different treatment of the data?

The wavelet analysis carried out with the ERA5 reanalysis data set confirmed the different cycle lengths observed with the QuikSCAT and ASCAT data set.

• What are the criteria to identify nighttime heat wave events? The temperature range of the events is specified. Is the definition for example based on the difference between night- and daytime, a heating rate, an exceedance of a threshold or is it only the existence of a second temperature peak at night time?

We explored different statistic tools to automatically identified the "nighttime heat wave events," based on the spectral analysis, the dominance periods of 12 and 24 hours were extracted from the time series but the residual time series did not clearly show the events. Therefore, the best tool was

selecting the daytime that we observed the occurrence of the process, and with a detailed manual validation, the nighttime heat wave events were quantified. In the future, the additional effort will be put into finding an efficient tool. We believe that the reports and publication of this new event will attract the attention of the scientific community and new tools will facilitate development.

• The red dashed line in figure 3 (b,e,h,k,n,q) is the 95. Yes, The red dashed line in figure 3 (b,e,h,k,n,q) is the 95

• What do the flashes in figure 3 (c, f, l, o) mean ? This is not mentioned in the legend. The arrows in figure 3 (c, f, l and o) indicated the normalized eigenvector patterns presented in figure 2 (a, b, d and e). We decided to eliminated the arrows from the figure.

• Figure 4: Was ERA-Interim used for the EOF analysis? If this is the case, why are the results not compared to the ones from the observations? Both scatterometers data sets include the date which is shown in the figure.

As we mentioned before, a new data set for the ERA5 reanalysis was added to the manuscript covering the entire sampling period (1999-2015). The EOF result was added to a new figure and also to the text, showing similar variance and eigenvector behavior as QuikSCAT and ASCAT.

• Figure 9: It is not explained what the error bars mean. Why is the lower bound not shown?

In figure 9, the error bars denote the standard deviation. As the lower and upper boundshave the same values, we decided to plot the upper bound only. We clarified the figure 9 caption and new text was inserted in the new version of the manuscript.

"Figure 9. Surface air temperature and net solar radiation long term hourly means, and histogram of the maximum surface air temperature, from the Puyuhuapi Fjord oceanographic buoy $(\mathbf{a}, \mathbf{c}, \mathbf{e})$, and meteorological station $(\mathbf{b}, \mathbf{d}, \mathbf{f})$, for2011-2017. The gray shaded area in $(\mathbf{e} \text{ and } \mathbf{f})$ shows the times of the second air temperature maxima. The error bars in $(\mathbf{a}, \mathbf{b}, \mathbf{c} \text{ and } \mathbf{d})$ represent the standard deviations of each variables".

Interactive comment on "Synoptic scale variability of surface winds and expected changes in the ocean-atmosphere dynamics of the eastern Austral Pacific Ocean" by Iván Pérez-Santos et al.

Anonymous Referee #2

Received and published: 30 January 2019

This paper presents an analysis of wind variability in the eastern Austral Pacific Ocean, and more precisely over the southernmost part of America. Also, the authors look for relationships between wind patterns and the ocean response, as well as the potential impact on nighttime heat waves. I think the goals are interesting and can shed light into the mechanisms behind coastal ocean variability in that region, but I'm concerned about the robustness of their conclusions as the methodology presents some flaws. Probably the intuitions of the authors are right, but a more careful analysis should be performed to support their conclusions.

General comment to RC2: We appreciate all recommendations of the reviewer, especially the addition the time series of different variables and processes, such as those relate to the Ekman upwelling quantification and the ocean response. The new total Ekman upwelling quantification demonstrated the dominance of Ekman pumping instead of the Ekman transport as was proposed before and recently by other authors. Additionally, supplement material has been added which presents different figures associated with the validation processes between wind satellite and reanalysis products with in-situ data (buoys and navy lighthouse). These analyses demonstrated the high correlation, and low root mean square error and standard deviation between in-situ data and the ERA5 reanalysis climate data set.

The first issue is about the analysis in two different periods. I understand this is done because of the time coverage of each satellite product, but by doing this it is not clear if the differences reported between periods are due to the period or the product. I think that more efforts should be put in the comparison between products and after calibration use them as a single product and perform the analysis for the whole period.

-To validate the results obtained with the two scatterometers, the ERA5 reanalysis data set was incorporated into the manuscript. The ERA5 covered the complete and continuous sampling period of satellites (1999-2015). The data analysis of ERA5 confirmed and validated the results showed by the scatterometers. New figures and text were added to the manuscript.

The relationship between the wind structures and the ocean response (SST and Chla) is the most important part of the paper, in my opinion. Therefore should be presented in a more robust way. Using only snapshots is not enough to prove anything. Either you show time series (e.g. SST/Chla evolution against EP/ET or TUT), or use composites (i.e. average the SST for the periods in which HAP/LAP situations are dominant).

-As was recommended by RC2, we extracted a time series of the Total Ekman Transport, same as TUT, along with the west coast of Chiloé island, where favorable upwelling conditions were observed. The ERA5 data set was used for this calculation. Time series of Chl-a, normalized fluorescence line height and SST from MODIS AQUA were used in a temporal and spatial resolution of 8 days and 4 km. A new figure is presented in the manuscript to show the precise relationship between wind structures and the ocean response during the period 2002-2018.

Something similar happens with the results concerning the nighttime heat waves. Using two handpicked cases to demonstrate the influence of LAP systems in the nighttime heat waves is not robust. Some statistics as composite images associated with nighttime heat wave periods or time series analysis would be much better.

-We added a new subplot figure (Fig. 13) that shows the time series of the nighttime heat wave events. Also, a correlation process was applied between air temperature and an atmospheric pressure of each of the events revealing a high correlation coefficient.

The separation between Ekman pumping and Ekman transport is interesting. This should probably be discussed in more depth in the discussion section, as well as the implications the different components may have on the ocean evolution.

-We added more information and a discussion of the relevance of Ekman upwelling in the ocean response. New references were incorporated, and the further analysis and quantification of total upwelling demonstrated the dominance of Ekman pumping instead of Ekman transport along the western coastline of Chiloé island.

Detailed comments

The title doesn't seem adequate. The ocean-atmosphere coupling is not taking into account (only atmosphere forcing on ocean). Also, no expected changes are analyzed.

-We modified the title, to "Synoptic scale variability of surface winds and ocean response to atmospheric forcing in the eastern Austral Pacific Ocean".

I miss an introductory figure with the map of the zone of interest with the major wind patterns. -We added a new figure 1 to show the geographical position of stations and analysis.

For the introduction it would be useful to clearly state if HAP and LAP are symmetric atmospheric situations.

-We incorporated new information in the Introduction.

L90-94: I think this does not fit as a final sentence for the introduction and should be moved elsewhere.

-We eliminated the last sentence of the introduction section.

L105. Has ERA-Interim or the satellite data been validated in this region? This is important as the quality of those products is not the same everywhere. If you have wind data from local stations, it would be worth comparing them with it to assess the quality at different time scales.

-We added supplemental material that incorporates different figures of the validation process carried out between satellites and reanalysis surface wind products with in-situ local stations, such as, buoy and navy lighthouse. A Taylor diagram was applied showing satisfactory results.

L110. Show the location of the stations in an introductory figure.

-As we mentioned before, a new figure 1 was added to the manuscript.

L118. It is not clear if the data is 15-mins or hourly.

- We have clarified the information in the text. The raw atmospheric data from the buoy (3 minutes) and the meteorological station (15 minutes) were hourly averages.

Section 2.4. It would be useful to briefly describe what Ekman transport and Ekman pumping is, what physical process involves, for the non-oceanographers.

-We added a new paragraph in section 2.4 that describes the importance of Ekman transport and pumping as physical processes to the biology and in general for non-oceanographers.

L142-145. Why can't you compute the curl? Can't you use the wind over land for that? Or alternatively, a 0 wind? Also, I'm not sure your choice of extrapolating the wind curl to the near-coast points is better. Although there is probably not a best option you should discuss the implications of that extrapolation in your results, as you may be overestimating the Ekman pumping near the coast.

We computed the wind stress curl as shown in equation 5. In the computation of the wind stress curl, only the data available over the sea was used. During the wind stress curl calculation, the closest grid point to the coast is lost. The extrapolation process thus only incorporated this point in the data. We compared the wind stress curl calculation with and without the extrapolation processes, and the results did not change. The positive Ekman pumping velocities registered in the coastal zone, especially in the northern domain, extended for more than five grid point into the ocean.

We decided to continue with this methodology, but the results obtained in the interior fjords and channels were deleted in the new figure.

L148. It would be better to show the sections you are using in an introductory figure. In Fig 5 is not clear at all.

-As we mentioned before, a new figure 1 has been added to the manuscript.

L156-157 "This method " This sentence is not needed. -We eliminated the sentence.

L158. "..the three LEADING modes" -We added "leading" to the sentence.

L163. The hourly, daily and monthly means are the same. If you refer to computing the means for each hour, then you should explain it better.

-We eliminated this sentence from the text.

L163-171. I think this paragraph is repetitive with ideas presented before and can be rewritten.

-We eliminated this sentence from the text.

L168. Time correlation is not a statistical moment. Also, you should compare the differences in magnitude (e.g. STD) and the RMSE. Also, time correlation should be computed for the different data sampling you analyze here (e.g., hourly, daily or monthly).

-Correlation process and Taylor diagram were applied in all cases where necessary. New results and discussion was added to the manuscript.

L174. Why the period 1999-2015? It doesn't match with the period covered by the products.

-We agree with the comments, but the manuscript was written some years ago, with the data set available at this time. In this version, we have incorporated the ERA5 reanalysis data set to December 2018, with which we demonstrated the similarities to QuikSCAT and ASCAT. The ocean response to the surface wind using the derived parameters, e.g., Ekman pumping and transport were presented for the period reported by ERA5 reanalysis (1999-2018).

L193-196. Beware, EOF analysis works on anomalies, so they reflect weakenings or strengthenings of the mean field, and may not mean a change in the direction of the total wind field. Please, reconsider your statement.

We have clarified this sentence "The spatial structure for the first three modes from the QuikSCAT and ASCAT databases were similar (Fig. 2). In the case of the spatial structure of mode 1 (Fig. 2a and 2d), southerly and southwesterly winds dominated the study area, when the time-dependent coefficient was positive (Fig. 3a and 3j, PC-1). When PC-1 (principal component) was negative, the spatial structure of mode 1 changed the direction, and northerly and northeasterly winds occurred".

In this manuscript, we are using the same EOF method (real-vector EOF) proposed in Kaihatu et al., (1998). In the description of the methodology, the authors wrote: "The time-dependent coefficients show the magnitudes and directions of the vectors; negative coefficients denote a 180° shift in the direction relative to that shown on the spatial map".

Figure 3. What do the arrows mean?.

The arrows in figure 3 (c, f, 1 and o) indicated the normalized eigenvector patterns presented in figure 2 (a, b, d and e). We have decided to eliminate the arrows from the figure.

Figure 4 is strange. Here there are more than one EOF acting. If not, EOF+ and EOF- should be exactly the opposite. I think this figure, as it is more confusing.

-We have clarified the information in figure 4, but we believe that figure 4 is essential to the manuscript because it is the only figure that shows different examples of the influence of HAB and LAP systems in the study region.

L257-259. It is not clear that ET/EP is strong in those examples. Probably showing time series of ET/EP would be more illustrative than single snapshots. Also, about the maps, they are confusing, too much information there. Probably a more straightforward figure with the wind field and the TUT in colors would be clearer.

-We eliminated ET/EP examples and added the time series of the Total Ekman Transport together with the ocean response variables, e.g., Chl-a, SST, etc. A new figure is present in the manuscript.

L268-270. This sentence doesn't seem very relevant in this context. Again it would be better to show the location of the station in an introductory figure. -We eliminated the first sentence from the text and added the position of the stations in figure 1.

L273-274. I don't think the histograms are enough to prove the solar radiation forces the diurnal cycle. Although is probably the case, correlations or explained variance diagnostics would be better suited for that.

-We carried out a new statistical analysis to prove the relationship between variables. New subplot figures were added.

Figure 9. It is not clear what the bottom panels represent.

-The bottom panels in figure 9 (e and f) represent the histogram of the maximum surface air temperature as we mentioned in the caption of figure 9.

Figure 10. The caption is not clear.

-The information presented in figure 10 shows the results from the nighttime heat wave events. We improved the caption of figure 10 and also included more details inside the figure.

L345-354. This is not supported by any result shown in the paper. Either the authors show new figures or remove this.

-We removed lines 345-354 from the text and also the reference includes in this paragraph (Alvarinho et al., 2006).

Con formato: Fuente: Comprimido 0.5 pto, Espacio ajustado en 14 pto, Sin Resaltar

Con formato: Fuente: 12

Con formato: Fuente:

Con formato: Fuente: Con formato: Fuente: Con formato: Fuente:

Con formato: Fuente: Con formato: Fuente:

pto

Synoptic scale variability of surface winds and expected changes in the ocean response to- atmospherice forcing dynamics of in the eastern Austral Pacific Ocean

Iván Pérez-Santos^{1, 2}, Romanet Seguel^{2, 3, 4}, and Wolfgang Schneider^{5, 6}, Pamela Linford⁷, David Donoso⁵⁻⁸, Eduardo Navarro³⁻⁶, Constanza Amaya-Cárcamo⁹, Elías Pinilla⁴, Giovanni Daneri¹⁰.

¹Centro i-mar de la Universidad de los Lagos, Puerto Montt, Chile ²Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Chile Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Chile ⁴Instituto de Fomento Pesquero, Aysén, Chile Departamento de Oceanografía, Campus Concepción, Universidad de Concepción, Chile ⁶Millennium Institute of Oceanography (IMO), University of Concepción, Chile Programa de Doctorado en Ciencias mención Conservación y Manejo de Recursos Naturales, Centro i-mar Universidad de Los Lagos, Puerto Montt, Chile. ⁸Pontificia Universidad Católica de Valparaíso, Chile Departamento de Geofísica, Universidad de Concepción, Chile.

Centro de Investigaciones en Ecosistemas de la Patagonia, Coyhaique, Chile.

20

25

30

35

5

10

15

		l	Curs	siva, Ing	lés	(Reino
1	Abstract. In the southern hemisphere, macroscale atmospheric systems such as the westerly winds and the		UNIC	10)		
ļ	Southeast Pacific Subtropical anti-cyclone (SPSA) influence the wind regime of the eastern Austral Pacific Ocean.					
	The average and seasonal behaviors of these systems are well-known, although wind variability at different time	(Con	formato:	Sin	Resal
	and distance scales was previouslyremains largely unexamined. Therefore, the The main goal of this study was,		Con	formato:	Sin	Resal
	therefore, to determine the space and time scale variabilities of surface winds from 40° to 56° S, using QuikSCAT,		Con	formato:	Sin	Resal
	ASCAT, and ERA5 reanalysis-Interim surface wind information, complemented by in situ meteorological data. In					
	addition, interactions between atmospheric systems, together with the ocean-atmosphere dynamiesresponse, were					
	evaluated, from 1999 to 20152018. The empirical orthogonal function detected dominance at the synoptic scale in					
1	mode 1, representing approximately 30 % of the total variance. In this mode, low and high atmospheric pressure					
	systems characterized wind variability, with a cycle length of 16.5 days. Initially, mode 2, representing					
1	approximately 22 % of the variance, was represented by westerly winds from the west/east direction (43° to 56° S),					
	which occurred occurring mostly during spring-and summer/fall-winter, with an annual time scale (1999-2008),	(Con	formato:	Sin	Resal
1	until they were replaced by systems cycling at 27.5 days (2008-2015), reflecting the influence of the Southern					
	Hemisphere's baroclinic annular mode. Mode 3, representing approximately 15 % of the variance, involved passage					
	of small scale, low and high atmospheric pressure (LAP, HAP) systems throughout Patagonia. Persistent Ekman					
	suction south of the Gulf of Penas, and up to and beyond the Pacific mouth of the Magellan Strait, occurred					
	throughout the year. Easterly Ekman transport (ET) piled these upwelled waters onto the western shore of South					

Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar

formato: Sin Resaltar

^{*}Corresponding author: Iván Pérez-Santos: jvan.perez@ulagos.cl

America, when the winds blew southward. These physical mechanisms were essential in bringing nutrients to the surface, and then transporting planktonic organisms from the oceanic zone into Patagonian fjords and channels. In a

variation, between 41° and 43° S, surface wind from the SPSA produced offshore ET-upward Ekman pumping dominated the total Ekman transport instead the ET during spring and summer, causing reduced sea surface temperature, and increased chlorophyll-a; this is the first time that such Ekman upwelling conditions have been reported so far south, in the eastern Pacific Ocean. The influence of northward migrating LAP systems on the oceanatmosphere interphase allowed us to understand, for the first time, their direct relationship with recorded night time

45

40

air temperature maxima (locally referred to as "Nighttime heat wave events"). In the context of global climate change, greater attention should be paid to these processes, based on their possible impact on the rate of glacier melting, and on the Aaustral climate.

Keywords: Atmospheric pressure systems, Ekman transportupwelling, Pacific Ocean, Patagonia, synoptic scale

1. Introduction

- The eastern Austral Pacific Ocean (40° to56° S) is under the influence of westerly winds, and the Southeast Pacific 50 Subtropical anti-cyclone (SPSA) (Tomczak and Godfrey, 1994; Stewart, 2002). In this region, westerly winds are stronger than those in the northern hemisphere, on average, and extend in a belt from 40° to 60° S (Talley et al., 2011). The SPSA shows an annual migration, reaching its southern position ($\sim 40^{\circ}$ to 46° S) in the Agustral summer, owing to the poleward displacement of the intertropical convergence zone (Rahn and Garreaud, 2013; Ancapichun and Garcés-Vargas, 2015; Schneider et al., 2017). The anti-clockwise rotation of winds from the SPSA generates 55
- northerly winds along the coastline of Chile and Peru, contributing to the maintenance of upwelling conditions all year around, giving rise to one of the higher productivity marine ecosystems in the world's oceans (Kampf and Chapman, 2016). The system is well known for the contribution of westerly winds and SPSA to the circulation regimen, e.g., formation of the Humboldt Current system (Thiel et al., 2007; Fuenzalida et al., 2008).
- 60 While most studies have focused on SPSA behavior (Rahn and Garreaud, 2013; Ancapichun and Garcés-Vargas, 2015; Schneider et al., 2017), and the effect of the ocean-atmospheric interaction, little is known about the surface wind variability in the eastern Austral Pacific Ocean. Therefore, the principal goal of this study was to determine the space and time variability of the surface winds that extend from 40° S to 56° S, using different satellite wind products, reanalysis climates date set, and in situ meteorological information. The interaction between the Austral
- 65 Pacific surface wind regimen and the SPSA was also taken into account, together with ocean-atmosphere dynamics. The principal hypotheses of our study were: (1) the passage of synoptic-scale atmospheric events throughout the eastern Austral Pacific Ocean, such as low/high atmospheric pressure (LAP and HAP) systems, dominated the surface wind variations in the study area, instead of the westerly wind, producing northerly or southerly winds. (2) The interaction between synoptic scale atmospheric events, such as the SPSA, with LAP systems, allowed the 70 advection of warm air over Patagonia, creating maximum surface air temperatures at nighttime, especially in fall and

winter.

2

Con formato: Sin Resaltar

Con formato: Fuente: Negrita, Espacio ajustado en 16 pto

In terms of time-distance scales, atmospheric systems have been categorized as macro-,meso-, and microscale (Orlanski, 1975; Ray, 1986; Holton, 1992). The macroscale definition is divided into planetary and synoptic scales. Winds that impact the globe belong to the planetary scale, such as the westerly and trade winds, and also El Niño

- 75 (Tomasz, 2014), extending over distances from 1000-40000 km, with time scales of weeks or longer. Synoptic scale systems cover 100-5000 km or so, in a timescale of days to weeks, and include events such as atmospheric pressure systems, like subtropical anti-cyclones and hurricanes. Mesoscale events cover a distance and time scale of 1-100 km, in minutes to hours, and include events such as thunderstorms, tornadoes, and sea/land breezes, while microscale systems cover a range of <1 km, and include events such as turbulence, dust devils and gusts, occurring</p>
- in seconds to minutes. In this manuscript, we evaluated the oceanic response to synoptic scale atmospheric events, including LAP and HAP systems. From meteorological point of view, in a LAP system winds rotate clockwise (southern hemisphere) around a core of low pressure, and are generally associated with severe weather conditions, e.g., intense wind, rain, and cloudy. In contrast, in a HAP system winds rotate counterclockwise (southern hemisphere), and high pressure is located in the center of the event, producing mostly good weather conditions with clear skies.

-	Con	formato:	Sin	Resaltar
-	Con	formato:	Sin	Resaltar
-	Con	formato:	Sin	Resaltar
-	Con	formato:	Sin	Resaltar

The passage of LAP events throughout Patagonian fjords and channels, such as Puyuhuapi Fjord, creates intense vertical mixing that favors microalgal blooms, increasing primary production during the winter season to reach a

magnitude similar to the traditionally productive spring-summer season (Montero et al., 2017). In the case of HAP events, which produce alongshore winds (northward), the contribution to the upwelling conditions (offshore Ekman
transport) in the northern part of the eastern Austral Pacific coastline have not been quantified. Similarly, LAP systems also produce alongshore winds, although in the opposite direction (southward), and favor downwelling; the mechanisms and effects of these events are addressed in Sect. 3.2.

In the California upwelling systems (32°-44° N), the contribution of Ekman transport (ET) and Ekman pumping (EP), with upward velocities favoring upwelling and primary production, and downward velocities contributing to

- downwelling, were quantified using an atmospheric model, finding that EP was more important than ET (Pickett and Paduan, 2003). In the central-northern region of Chile, where only ET has been evaluated previously as the leading contributor to upwelling, (Sobarzo and Djurfeldt, 2004), one study (Bravo et al., 2016) have demonstrated that EP contributed 40-60 % of the total upwelling transport. ET and EP, derived here using surface wind products from the QuikSCAT and ASCAT satellites and ERA5 reanalysis climate data set, were used in this study to quantify the contribution of these processes to the total upwelling, with special attention to the offshore region of Chiloe Island
 - (42°-43.5° S), where northward wind occurs during spring-summer, due to the SPSA influence.
 In this manuscript, statistical analysises, such as an incluiding empirical orthogonal function (EOF) employingusing

the surface wind products from the QuikSCAT and ASCAT satellites and ERA5 reanalysis; from 1999–2015, allowed <u>for the estimation of the importance of the synoptic scale events</u> in the wind variability of the eastern Austral Pacific Ocean-to be determined. In addition, the ocean-atmosphere response to the surface wind was evaluated using reanalysis data to the present day, together with a time series of chlorophyll-a, fluorescence and sea surface temperature data from MODIS-Aqua satellite. Air temperature and atmospheric pressure from ERA5 and insitu data from buoy and meteorological stations were also included in the analyses. , and highlight the occurrence of

Con formato:	Sin Resaltar
Con formato:	Sin Resaltar

3

LAP and HAP systems, with time scales of days. HAP systems and the SPSA contributed to create conditions suitable for upwelling, in the northern part of the study area (offshore Chiloe Island), causing a drop in the sea surface temperature, and increased chlorophyll a, while LAP systems moved through, mostly in fall and winter, changing climate conditions during nighttime throughout Patagonia. Our results are presented and discussed in Sect.3 and Sect. 4, respectively.

2. Materials and methods

115 **2.1** Satellite and reanalysis surface wind data

Surface wind data was obtained from SeaWinds scatterometers, mounted on the QuikSCAT and ASCAT satellites. QuikSCAT wind vectors were obtained daily, for a $0.5^{\circ} \times 0.5^{\circ}$ grid (http://www.ifremer.fr). The root mean square errors (RMSE) for wind velocity and direction were specified to be less than 1.9 m s⁻¹ and 17°, respectively (Piolle and Bentamy, 2002). Analysis of QuikSCAT satellite wind data covered the period from July 1999 to November 120 2009. For the ASCAT wind product, the temporal resolution was also daily-averaged, and the spatial resolution was $0.25^{\circ} \times 0.25^{\circ}$ over two swaths with widths of 550 km (Bentamy et al., 2008). The ASCAT data was validated with moored buoys from the National Data Buoy Center (NDBC), MF-UK (Météo-France and UK Met office), TAO buoys, QuikSCAT scatterometers, and the European Centre for Medium-Range Weather Forecasts (ECMWF). Comparison between ASCAT and QuikSCAT data demonstrated good agreement at a wind speed range of 3-20 m 125 s^{-1} , but outside this range, ASCAT underestimated the wind speed. The RMS was not uniform worldwide, with values of 1.5–3.5 m s⁻¹ at high latitudes with an average global RMS of 2 m s⁻¹ from wind direction of 18° (Bentamy et al., 2008).Furthermore, comparison of ASCAT wind fields with data from moored buoys showed correlation coefficients of 0.86 with an RMS of 2 m s⁻¹ (Bentamy and Croize-Fillon, 2011). In this study the ASCAT product was used during period from April 2007 to December 2015.

The ERA5 reanalysis climate date set of surface wind was added to the manuscript because it offered continued surface wind data with high temporal and spatial resolution from 1979 to the present day (https://cds.climate.copernicus.eu). Data covering the period from 1999 to 2018 was included. The ERA5 reanalysis used 4D-Var data assimilation in CY41R2 from the ECMWF with 137 levels in the vertical and the top level at 0.01 hPa. This data set is available in hourly temporal resolution with a regular spatial grid of 0.25° × 0.25°. Hourly surface wind data was averaged daily for the analyses presented in Figures 2–10. As surface wind input, ERA5 incorporated different satellite scatterometer data such as, e.g., AMI (ERS 1 and ERS2), ASCAT (METOP-A/B), OSCAT (OCEANSAT-2), and SeaWinds (QuikSCAT). Furthermore, in situ data provided by the World Meteorological Organization information system (WMO-WIS), e.g., land stations, drifting buoys, ship stations, radiosondes, radars, and aircraft data, was added. To understand the origin and influence of the "nighttime heat wave events" in Patagonia, the air temperature (2 m) and surface atmospheric pressure from ERA5 with hourly temporal resolution were utilized.

Local and regional validation process analyses were performed using information from Navy lighthouses (NLHs) located in the coastal zone (Fig. 1). The information from NLHs covered the period from 2009–2012, a period 4 **Con formato:** Fuente: Negrita, Espacio ajustado en 16 pto

Con formato: Fuente: Negrita 145

where QuikSCAT, ASCAT, and ERA5 surface wind product coincided in operation. Additionally, data from an oceanographic buoy moored in Reloncaví sound (Fig. 1) was used for comparison with ERA5 reanalysis from 2017–2018. As a validation tool, a Taylor diagram was applied to all data sets (Taylor, 2001). In general the validation between satellites and reanalysis surface wind products with the in-situ wind data demonstrated satisfactory results, with correlation coefficients of 0.5–0.9, as well as RMS and standard deviations of ~2–4 m s⁻¹. The ERA5 showed the highest statistical results (See Supplementary Material for further details regarding the validation process).

150

2.2 Environmental data from buoys and meteorological stations

Data from an oceanographic buoy installed in the northern section of Puyuhuapi Fjord (Fig. 1, 44° 35.3' S, 72° 43.6' W), and equipped with atmospheric (wind speed and direction, air temperature, and atmospheric pressure), and surface water (temperature and conductivity) sensors, was used to understand fjord-atmosphere interactions. The raw atmospheric meteorological data from the buoy were collected with a temporal resolution of three3 min, and the water data were registered hourly at depth of ~1 m-depth. The time series from the oceanographic buoy started in April 2011 and finished in July 2013. A meteorological station was installed on the coast ~500 m from the buoy, to continue atmospheric measurements in this region. The meteorological station registered raw atmospheric-_data every 15 min (wind speed and direction, air temperature, and atmospheric pressure) from April 2014 to August 2017. Generally, Tall the atmospheric data was temporally homogenized, from the buoy and the data from the

160

165

175

155

meteorological stations were averaged hourly average.

2.3 <u>Satellite derived Ssea</u> surface temperature, and chlorophyll-a, and fluorescence datafrom satellite

Satellite-derived images and time series of chlorophyll-a (<u>Cehl-a</u>) concentration, normalized fluorescence line height (<u>FLH</u>) -and sea surface temperature (SST) were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, onboard the Aqua satellite, <u>the data were obtained with a spatial resolution of 4 km² per pixel, at nadir, over cloud-free ocean areas, and-with a temporal resolution of 8 days, covering the period from 2002–2018. Chl-a, <u>FLH</u> and SST images and time series were extracted from the Geospatial Interactive Online Visualization and Analysis Infrastructure (Giovanni; https://giovanni.gsfc.nasa.gov), and were used as <u>measures_evidence_of the marine response to the surface winds, and the associated processes, e.g., ET and EP.</u></u>

170 **2.4 Derived variables**

The influence of surface wind on the ocean response was monitored throughout the calculation of the ET and EP. Both processes participate in the injection of nutrients from the deep layer to euphotic zone, where the phytoplankton are more abundant, increasing primary production (Thurman and Trujillo, 2004). In the ET, wind blowing to the equator (Polar) on the western coastline generates an offshore (onshore) mass transport to the ocean, causing the upwelling (downwelling) of rich water. In contrast, EP originates from the divergence (convergence) of Con formato: Fuente: Negrita

Con	formato:	Sin Resaltar
Con	formato:	Sin Resaltar
Con	formato:	Fuente:
Con	formato:	Fuente:
Negi	rita, Sin	Resaltar
Con	formato:	Fuente:
Con	formato:	Fuente:
Negi	rita, Sin	Resaltar
-		
Con	formato:	Fuente:
Con Con	formato:	Fuente:
Con Con Negi	formato: formato: rita, Sin	Fuente: Fuente: Resaltar
Con Con Negi Con	formato: formato: cita, Sin formato:	Fuente: Fuente: Resaltar Fuente:
Con Negi Con Con	formato: formato: cita, Sin formato: formato:	Fuente: Resaltar Fuente: Fuente:
Con Negi Con Negi	formato: formato: cita, Sin formato: formato: cita, Sin	Fuente: Fuente: Resaltar Fuente: Fuente: Resaltar
Con Negi Con Negi Con	formato: formato: cita, Sin formato: formato: cita, Sin formato:	Fuente: Fuente: Resaltar Fuente: Resaltar Fuente:
Con Negr Con Negr Con Con	formato: formato: cita, Sin formato: formato: cita, Sin formato: formato:	Fuente: Fuente: Resaltar Fuente: Resaltar Fuente: Sin Resaltar
Con Negi Con Negi Con Con Con	formato: formato: cita, Sin formato: formato: formato: formato: formato:	Fuente: Fuente: Resaltar Fuente: Resaltar Fuente: Sin Resaltar Sin Resaltar
Con Negi Con Con Con Con Con Con	formato: formato: cita, Sin formato: cita, Sin formato: formato: formato: formato:	Fuente: Resaltar Fuente: Fuente: Resaltar Fuente: Sin Resaltar Sin Resaltar Sin Resaltar
Con Negi Con Con Con Con Con Con	formato: formato: cita, Sin formato: formato: formato: formato: formato: formato:	Fuente: Fuente: Fuente: Fuente: Fuente: Sin Resaltar Sin Resaltar Sin Resaltar Sin Resaltar
Con Negi Con Con Con Con Con Con Con Con	formato: formato: cita, Sin formato: cita, Sin formato: formato: formato: formato: formato: formato:	Fuente: Resaltar Fuente: Fuente: Resaltar Fuente: Sin Resaltar Sin Resaltar Sin Resaltar Sin Resaltar
Con Neg1 Con Neg1 Con Con Con Con Con Con	formato: formato: formato: formato: formato: formato: formato: formato: formato: formato: formato: formato:	Fuente: Resaltar Fuente: Fuente: Resaltar Fuente: Sin Resaltar Sin Resaltar Sin Resaltar Sin Resaltar Sin Resaltar
Con Neg1 Con Con Con Con Con Con Con Con	formato: formato: formato: formato: formato: formato: formato: formato: formato: formato: formato:	Fuente: Resaltar Fuente: Fuente: Resaltar Fuente: Sin Resaltar Sin Resaltar Sin Resaltar Sin Resaltar Sin Resaltar Sin Resaltar Sin Resaltar

wind stress curl, contributing to the upwelling (downwelling) of water due to the positive (upward) and negative (downward) EP velocities (Tomczak and Godfrey, 1994; Stewart, 2002).

Using QuikSCAT and ASCAT surface wind data, the components of the zonal and meridional wind stress (τ_u and

 τ_{v} , respectively), were calculated, as shown in Eq. (1).

180
$$\tau_u = \rho_a C_d u U_{10}, \ \tau_v = \rho_a C_d v U_{10}$$

In Eq. (1), ρ_a is air density (1.2 kg m⁻³), $\underline{C_a} - \underline{C_{a^-}}$ is a dimension less drag coefficient; u and v are the zonal and meridional wind components, respectively; and U_{10} is the magnitude of the wind vector 10 m above sea level. $\underline{C_d}$ was calculated using the formula proposed by Yelland and Taylor (1996), in which the coefficient varies as a function of the wind velocity, according to Eqs. (2); and $\underline{Eq.}$ (3).

185
$$C_d = 0.29 + \frac{3.1}{U_{10}} + \frac{7.7}{U_{10}^2} \times 10^{-3}, \text{ for } U_{10} \le 6ms^{-1}$$
 (2)

$$C_d = 0.60 + 0.070U_{10} \times 10^{-3}, \text{ for } 6ms^{-1} \le U_{10} \le 26ms^{-1}$$
(3)

Ekman surface transport, M ($m^2 s^{-1}$), was calculated for each grid point of the satellite wind field using Eq. (4) (Smith, 1968).

$$\vec{M} = \frac{\tau}{\rho_{\rm w} f} \tag{4}$$

190

In Eq. (4), $\vec{\tau}$ is the wind stress vector, ρ_w is the water density (1025 kg m⁻³), and f is the Coriolis parameter; t_{τ} the EP velocity, W_E (m³ s⁻¹), was calculated according to Eq. (5) (Smith, 1968).

$$W_E = \frac{1}{\rho_w f} \nabla \times \vec{\tau} \tag{5}$$

195

200

In Eq. (5), $\nabla \times \vec{\tau}$ is the wind stress curl, which was derived by first order cross-differencing of the wind stress field, which implies that no curl computation was possible for the grid points nearest to the coast. This drawback was overcome by applying coKriging, in two dimensions, to the wind stress curl, which allowed extrapolation toward the coast (Marcotte, 1991).

<u>The order to</u> quantify the relative importance of EP tofor the total upwelling transport (TUT), EP velocities were integrated up to ~50 km offshore; along three transects; which were located in the northern (42.27° S), central (47.2° S), and southern (52.20° S) parts of the study region (Fig. 5-1(a),black dots). The objective of this calculation was performed to obtain the vertical transport ($m^3 s^{-1}$) for each selected transect, and compare it with the ET obtained by Eq. (4), following the methodology proposed by Pickett and Paduan (2003). In Fig. 11 TUT was averaged every 8 days for comparison with the MODIS-Aqua variables, e.g., Chl-a, FLH and SST.

Con formato: Sin Resaltar Con formato: Sin Resaltar Con formato: Sin Resaltar

Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar

Código de campo cambiado Código de campo cambiado

(1)

2.5 Data analysis

Zonal and meridional surface winds from QuikSCAT (1999_2009), and ASCAT (2007_2015) and ERA5
 reanalysis (1999_2015), were used to apply a standard empirical orthogonal function (EOF) analysis (Emery and Thomson, 1998; Kaihatu et al., 1998), in order to determine the modes of variability that dominated the spatiotemporal behavior of the wind field in the eastern Austral Pacific Ocean. Before computing the EOFs, long term means and linear trends were removed for each scatterometer (QuikSCAT and ASCAT) and reanalysis product (ERA5) separately. To complete this process, the mean and linear trend calculations were applied to all grid points covering the entire data set period. This method enabled a more compact description of the variability appearing in the first mode.

A Morlet wavelet analysis was applied (Torrence and Compo, 1998) to the time-dependent coefficients of the three <u>leading</u> modes, resulting from real-vector EOF analysis of the QuikSCAT<u>and</u>-ASCAT<u>and</u> ERA5 reanalysis <u>surface</u> wind fields. This wavelet analysis allowed <u>for the</u> distinction of <u>the</u>-time and duration of the dominant periods of the different atmospheric processes. The wavelet spectra were used to calculate <u>the</u> time-averaged spectra

 for the entire sampling period, and these are <u>subsequently</u> referred to from here on as the global wavelet spectrum (Torrence and Compo, 1998).
 The statistical moments (hourly, daily, monthly, means and standard deviations) used in our calculations were
 always estimated employing values from QuikSCAT, ASCAT, and the buoy and meteorological station databases.

Before calculating long term daily and monthly means for the ET and EP presented in Fig. 6, the period of overlap of the surface winds, from QuikSCAT and ASCAT (2007 2009), was analyzed. Three time series from QuikSCAT and ASCAT surface winds were extracted, close to the 42.2° S (northern), 47.2° S (central), and 52.2° S (southern) aspects of the study area. The statistical moment of the overlapping period for the zonal and meridional winds, in the three time series, was R²-0.7, with a lag=0. This was deemed to be acceptable, and so on that basis, a continuous time series was built, using data from QuikSCAT for July 1999 December 2007, and then continuing with data from ASCAT from January 2008 December 2015.

Con formato: Fuente: Negrita Con formato: Sin Resaltar Con formato: Sin Resaltar Con formato: Sin Resaltar

-{	Con	formato:	Sin	Resaltar
-{	Con	formato:	Sin	Resaltar
4	Con	formato:	Sin	Resaltar
1	Con	formato:	Sin	Resaltar

-{	Con	formato:	Sin	Resaltar
-{	Con	formato:	Sin	Resaltar
-	Con	formato:	Sin	Resaltar

Con formato: Fuente: Negrita, Espacio ajustado en 16 pto

Con formato: Fuente: Negrita

3. Results

215

3.1 Surface wind features and variability

Analysis of the surface wind long term daily mean, for the period 1999-2015, using the QuikSCAT and ASCAT satellite products and the ERA5 reanalysis climate data set, showed similar patterns (Fig. 12). In general, westerlies were the predominant the surface winds, especially between 42° and 45° S, although a more detailed analysis indicated different features. 1) North of 42° S, the wind was slightly west-southwesterly. 2) South to the 45° S, the wind started an inclination from the west to the northwest direction, and 3) between the 5452° S and 56° S, the wind blew along the Austral coast of the Magellan region, while in the rest of the study area, the wind direction was perpendicular to the coast. The surface wind average registered as a meridional gradient, in which low speeds (5-6 m)

 s^{-1}) were observed in the northern domain, and stronger wind (10-12 m s⁻¹) was registered down towards 51° S. The standard deviations were very similar between satellite products (±3.0 to ±4.2 m s⁻¹), representing the same meridional gradient observed in the surface wind magnitude, but the ASCAT data registered lower variability and

240

245

throughout the study region.

less intense surface wind magnitudes, compared with the data obtained by QuikSCAT (Figs. 24a and Fig. 24b). Nevertheless, lower standard deviations and wind magnitudes were obtained by the ERA5 reanalysis data (Fig. 2c). Computation of the seasonal cycle, using all datasets e.g., both the QuikSCAT, and ASCAT and ERA5-datasets, showed a similar meridional gradient to that obtained in the average analysis, highlightingrepresenting the timepersistence and high intensity of the northwesterly winds in the open ocean water of the Magellan region (51° to 56° S).

Sin Resaltar
Sin Resaltar
Sin Resaltar
Sin Resaltar
Sin Resaltar

Con formato: Sin Resaltar

Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar

EOF analysis allowed <u>further</u> understanding of the surface wind variability modes, and the distribution of the total variance. The EOF for the QuikSCAT (1999–2009) daily data showed a concentration of ~70 % of the total variance in the first three empirical modes: EOF-1=30.01 %; EOF-2=22.5 %; EOF-3=16.4 % (Fig. 3a_c). For the equivalent ASCAT (2007–2015) daily wind data, the EOF represented ~65 % of the total variance, in the first three empirical modes: EOF-1=27.9 %; EOF-2=22.5 %; EOF-3=15.3 % (Fig. 3d-f). In contrast, the ERA5 reanalysis data showed similar variance, but covered the total sampling period with EOF-1=28.6 %, EOF-2=25.9 % and EOF-3=18.2 % (Fig. 3g_i). The spatial structure for the first three modes from the QuikSCAT_ and ASCAT_ and ERA5 databases were similar (Fig. 32). In termshe case of the spatial structure of mode 1 (Fig. 2a3a, and 2dd and g), southerly and southwesterly winds dominated the study area; when the time-dependent coefficient was positive (Fig. 3a4a, and 3i 5a and 6a, PC-1). When PC-1 (principal component), 1 (PC-1) was negative, the spatial structure of mode 1 rotated 180°, and northerly and northeasterly winds occurred. The global spectrum analysis performed earried out for PC-1 denoted the dominant, 16.5 days cycle (Fig. 3b-4b and

3k5b). The PC-1 monthly mean calculation demonstrated that southerly winds occurred mostly during the fall and spring seasons (Fig. 3c and 3l), while northerly winds were more frequent during winter, spring, and summer (Fig. 3c 4c and 3l5c). The global spectrum of the complete and continuous data set of the ERA5 reanalysis again showed the 16.5 days cycle and the annual cycle, which was approximately 314 days (Fig. 6b). For the monthly mean calculation, an alternating dominance of southerly and northerly winds was observed (Fig. 6c). The southerly and northerly winds were associated with the passage of intense HAP (Fig. 4a7a), and LAP (Fig. 4b7b) systems,

The spatial structure of mode 2 highlights the presence of the easterly (positive time-dependent coefficient), and westerly winds (negative time-dependent coefficient) (Fig. 23b, 3e and 3h2e). The global spectrum for the PC-2 (Fig. 3d-4d and 3e4e) represented the dominance of the annual cycle of 374 days for the QuikSCAT database. The low pass filtered time series for the PC-2 (Fig. 3d4d, red line) showed the occurrence of the most positive values during the fall and winter season, represented by the easterly winds (Fig. 344f). The negative part of the PC-2 was observed during spring and summer, highlighting the presence of the westerly winds (Fig. 3f4f). Even though the spatial structure of mode 2 from the ASCAT database presented a similar pattern to the QuikSCAT mode 2, the annual cycle period was not detected in the spectrum of PC-2 (Fig. 3m-5d and 3n5e). In this analysis, cycles of 27.5 days and 16.5 days were obtained. The monthly mean for PC-2 coincided with the results from QuikSCAT during and summer summer is presented by the spectrum of PC-2 with the results from QuikSCAT during and summer between the spectrum of PC-2 (Fig. 3m-5d and 3n5e).

winter (easterly winds), and spring (westerly winds), but was different in summer and fall, where the wind direction

275	varied (Fig. 305f). PC-2, the global spectrum signal and monthly mean calculations obtained using the ERA5 fata	-1	Con formato	ſ]	1
	reflected a combination of results registered with the QuikSCAT and ASCAT data sets, highlighting the dominance					
	of the 374 and 27.8 days cycles (Fig. 6d-f). Figures 4e-7c and 4d-7d showeds examples of the atmospheric systems	//				
	involved in the wind direction variability characteristic of presented in this mode.					
	The spatial structure of mode 3 <u>can be</u> represented by a clockwise atmospheric circulation (e.g., Fig. <u>74e</u>) of surface		Con formato	ſ]	2 !
280	winds, in the same direction as an-LAP system, when the time-dependent coefficient was positive (Figs. 2e-3c, and	/				
	23f and $3i$). The rotation of the winds became counterclockwise (e.g., Fig. $4f7f$) when the time-dependent coefficient					
	was negative, representing a structure similar to that seen for an HAP system (Figs. 3g-4g, 5g and 6gand 3p).	///				
	Periods of 28 days were detected in the spectrum analysis of both-all_data sets (QuikSCAT, and ASCAT_and	/				
	ERA5), while semiannual (157 days) and annual cycles were <u>also</u> observed in the QuikSCAT and ASCAT winds,	/				
285	respectively (Figs. <u>43h-i, 5h-I and 6h-i</u> 3i, 3q, and 3r).	/				
	Wavelet analysis <i>facilitated the allowed</i> observation of the year-round dominance of the synoptic time scale		Con formato	(]	3]
	obtained by PC-1 (Fig. 5a-8a and Fig. 5b8b). An evident change ofin time scales was observed for PC-2, e.g., the					
	annual cycle dominated from 2000-2008 (Fig. 5e8c), but from 2009-2015, a 20-to-30 day cycle was more					
	intense than the annual cycle (Fig. 5d8d). In PC-3, the semiannual signal observed in the global spectrum (Fig. 4h)					
290	occurred during 2004 (Fig. 5e8e), but However, while the annual cycle registered in Fig. 4q5h, was clear in 2011	/				
	(Fig. 5f8f), synoptic time scales were persistent from 2000-2015 (Fig. 5e-8e and Fig. 5f8f). The wavelet analysis					
	performed on the ERA5 PC-1, PC-2 and PC-3 (Fig. 8g-i) confirmed the results obtained from the QuikSCAT and					
	ASCAT data sets, showing the change in time scales registered in PC-2 starting in 2009, and higher energies from					
	the annual cycle from 1999 to 2006.					
			Con formato:	Fuente:		
295	3.2 Derived parameters from surface winds and ocean implications		Negrita			
	The average dominance of the westerly surface wind stress generally produced a northerly Ekman transport (ET) in					
	the study region (Fig. 6a-9a-cand Fig. 6b). On average, the ET ran parallel to the coast, between 4140° and 47° S,		Con formato	(4]
	whileand from there to 56° S, the inclination of the coastline, and the influence of the westerly wind stress,	$/ \parallel$				
	contributed to change the ET direction to be orienting mostly perpendicular to the coast. This was the region (48° to	///				
300	56° S), where the highest ET value (2.16 m ² s ⁻¹) was recorded, due to the presence of the most intense regional	/				
	winds, regionally (Fig. 12). Moreover, a wide area of positive (upward motion), and maximum Ekman pumping					
	(EP=-(0.25 m day ⁻¹), was observed around approximately 51° S, in the QuikSCAT data, in which and the positive EP					
	extended across the study area (Fig. 25a). The same area of positive and intense EP was observed in the ASCAT					
	database, although in the northern part of the study region, between $4\underline{10}^{\circ}$ and 48° S, the upward EP was located					
305	closer to the coast, covering approximately the first ~100 km (Fig. 6b9b). The long term mean of daily ET and EP					
	calculated with ERA5 was similar to that obtained for the QuikSCAT period showing the greatest coincidences with					
	areas where EP was maximized (Fig. 9c), However, the ERA5 values were the higher with EP=0.57 m day ⁻¹ at 50.5°					
	S / 76.25° W. Moreover, EP was also high in the ERA5 dataset along the coastline between 40° S to 44° S (Fig. 9).					

ĺ	The analysis (from Fig.2-9) using the satellite wind surface products, QuikSCAT and ASCAT, together with the
310	reanalysis product demonstrated that ERA5 showed stronger similarities between the results. Hence, Iin order to
	understand the annual variability of the ET and EP, and the contribution of_ both processes to the total upwelling
	transport (TUT), three data time series from ERA5 were extracted, for the northern, central and southern parts of the
	study region, covering the period 20001999 20158 (Fig. 710). In the northern part of the study region, in ocean
	water west as far as the coast of Chiloe Island, the long term TUT daily mean showed high variability (± 0.8232 m ³ s ⁻
315	¹) all-yearround, and especially during fall and winter, when onshore ET dominated the TUT. This condition
	changed during part of the spring and all the entire summer, to showing mainly dominance by the offshore ET, but
	with a weaker magnitude than that observed duringfor winter. The EP was positive, and dominated but contributed
	less to the TUT (Fig. <u>10</u> 7a). The long-term, monthly mean of these time series- showed the dominance of
	downwelling conditions, from MayApril to SeptemberOctober (Austral fall-winter). The upwelling startedtypically
320	began in OctoberNovember and finished in AprilFebruary, with a significant contribution by from the ET-EP (Fig.
	7 <u>10</u> b). The cumulative transport was in generally favorable to downwelling, from MayApril to December, and
	showed less with reduced upwelling in the summer (Fig. <u>10</u> 7c).
	In the time series data for the Gulf of Penas, the all-year-round variability of the long term daily TUT mean
	continued was observed (±0.9735 m ³ s ⁻¹), but the offshore ET events decreased, and EP showed was more
325	negative <u>reduced positive values</u> (Fig. 7d10d). Downwelling conditions prevailed, due to the dominance of the ET
	during the year (Fig. 7e10e), and the cumulative transport was negative (downwelling) for ET and TUTall variables
	(ET, EP, and TUT), and was higher than observed in the northern time series (Fig. 7f10f).
	In the southern part of the study region, close to the entrance of the Magellan Strait, the absolute maximum (-
	2.148.25 m ³ s ⁻¹) was reported, along with higher variability of the TUT ($\pm 1.240.41$ m ³ s ⁻¹), which was again
330	dominated by the ET. The EP was positive and favorable for upwelling, but less intense than for the ET (Fig. 7-10h).
	The long term monthly mean for transport showed the highest values for the ET, and the highest contribution of this
	process to the TUT, even though the EP was positive and favorable for upwelling (Fig. 7 <u>i10i</u>). The cumulative
	transport was also the most important, compared with the other time series (Fig. 7j10j).
	<u>D</u> In general, downwelling conditions generally dominated the study region, but in the open ocean water around
335	Chiloe Island, upwelling was observed during spring-summer owing to the contribution of the wind stress curl that
	generated positive EP velocities. Considering the previous results showing that surface winds (ET and EP)
	contributed to the injection of subsurface water to the surface layer, the time series of TUT together with satellite
	Chl-a, FLH and SST were used Using the ASCAT surface wind data, some examples of the derived ET and EP from
	January were extracted, to evaluate the oceanic response during the favorable upwelling conditions (Fig. <u>811</u>) <u>The</u>
340	time series of TUT from 2002 to 2018 showed an annual cycle where upwelling conditions occurred during spring-
	summer, (Fig. 11a, red shaded area), while downwelling conditions were typically observed in fall and winter (Fig.
	<u>11a, blue shaded area). The anomalies of Chl-a showed a positive response to the TUT (Fig. 11b) with a correlation</u>
	coefficient (Corr. coef.) of 0.32. Because the Chl-a signal was contaminated with suspended solid sediments and
	other non-biological signals, FLH time series was incorporated into the analysis, showing a Corr. Coef, of 0.54 with
345	Chl-a. In this case, FLH also exhibited a positive relationship with TUT with a Corr. coef, of 0.27 (Fig. 11c).
	10

	Con	formato	
-	Con	formato]6
-	Con	formato	
	Con	formato	[8]
	Con	formato	
/	Con	formato	
	Con	formato	[]1]
	Con	formato	[]2]
	Con	formato	[]3]
	Con	formato	[]4]
	Con	formato	([].5]
	Con	formato	[]6]
	Con	formato	([].7]
	Con	formato	[]8]
	Con	formato	[] 9]
-	Con	formato	[20]
-	Con	formato	[21]
-	Con	formato	[22]
-	Con	formato	[23]
	Con	formato	[24]
	Con	formato	 [25]
	Con	formato	[26]
$\ $	Con	formato	[27]
1	Con	formato	[28]
$\ $	Con	formato	[29]
$\left \right $	Con	formato	[30]
1	Con	formato	[31]
1	Con	formato	[32]
1	Con	formato	[33]
	Con	formato	[34]
1	Con	formato	<u></u>]35
l	Con	formato	<u></u>]36]
/	Con	formato	<u> </u>
/	Con	formato	<u></u>]38
/	Con	formato	<u></u> 39
1	Con	formato	[]
/	Con	formato	<u> [</u>]
	Con	formato	[4 2]
/	Con	formato	<u></u>]
	Con	formato	<u> </u>
-	Con	formato	<u></u>]

Negative SST anomalies were also observed during fall and winter and at lower frequency during the spring and summer compared to that of the upwelling response (Fig. 11d). The Corr. coef. between the SST anomalies and TUT was 0.29. From an inter-annual point of view, a high amount of positive anomalies of Chl-a and FHL was observed, e.g., 2008, 2014, and 2016 and in the SST anomalies of 2004, 2008–2009, and 2016–2017. For the TUT time series, no inter-annual variability was observed, but from 2017 to the end of 2018, decreasing amounts of positive TUT was observed. The SST (Fig. 11e and g) and Chl-a images (Fig. 11f and h) obtained during the upwelling provided evidence of the oceanic response to the TUT. Along the west coast of Chiloe Island, the SST dropped by approximately 4°C and the Chl-a increased ~10–15 mg m⁻³ compared with the values in the open Pacific Ocean waters. These examples demonstrated the importance of TUT in the oceanic response to wind.

355 **3.3** Relationship of synoptic events with nighttime heat waves

The long term hourly mean of the surface air temperature (SAT) obtained from buoy and meteorological station data showed the same patterns with a markedly diurnal cycle, where the SAT maximum was registered in the afternoon (15:00–18:00, local time), while absolute minima were observed early in the morning (6:00–8:00; Fig. 12a and d). The observed SAT diurnal cycle coincided with the solar radiation maximum moment, as shown in the net solar radiation time series from the buoy and meteorological station (Fig. 12b and e). The spectral analysis of both time series (SAT and net solar radiation) showed the dominance of the diurnal cycle (24 h) followed by the semidiurnal cycle (12 h; Fig. 12c and f). The histogram of the SAT absolute maxima demonstrated a bimodal structure, with an initial peak in the afternoon, as was observed in the diurnal cycle (Fig. 12a and d) and a second peak at night from ~21:00 to 05:00 (Fig. 12g and h). The first peak can be described by solar radiation and the balance of this subsection describes the processes involved in the SAT nighttime maximum, known in this manuscript as "nighttime heat wave events".

The time series registered 236 nighttime heat wave eventsfrom2011 to 2017 (Fig. 13a).On average, ~46 events occurred every year (averaged using the complete years of 2012, 2015, and 2016). Fig. 13b shows the time series of the atmospheric pressure values associated with the nighttime heat wave events, exhibiting a high Corr. coef. of 0.96 with the nighttime heat wave events (Fig. 13a). The temperature range from these events was 4 to 20°C, with the most common temperatures between 10 and 12°C (Fig. 13c).A detailed examination of the days with lower air temperatures (4–7°C) demonstrated that during these days the diurnal temperature cycle was similar at 0°C and high atmospheric pressure (1020–1030 hPa) corresponded to the incursion of the southern edge of the Southeast Pacific Subtropical anti-cyclone (figure not shown). The monthly histogram of the nighttime heat wave events showed most occurrences in fall and winter, with fewer incidences in summer (Fig. 10e13d). Figure 114 presents an example of this event, which occurred during fall 2011, as shown in the atmospheric data from the oceanographic buoy installed in Puyuhuapi Fjord. The maximum SAT was observed on April 21, 2011, at midnight (00:00, local

In order to explore the causes involved in the augmented air temperature, ERA<u>5-interim products-reanalysis climate</u> data sets were used (Fig. <u>11b-14b</u> – <u>11g14g</u>). Before the event, images from surface wind and atmospheric pressure

time), coinciding with a decreased atmospheric pressure, and increased surface wind intensity (Fig. 11a14a).

Con formato: Fuente: Negrita

Con formato: Espacio Después: 6 pto

11

380

showed the predominance of a westerly wind, from 45° - 56° S, and northerlies from 30°-35° S (Fig. 11b14b). At the same time, the SAT showed a meridional gradient, in which high air temperature covered the northern domain of the image (30°-40° S) (Fig. 11e14c). At midnight on July 21, 2011 (00:00, local time), an LAP system arrived in the eastern Austral Pacific Ocean water, and moved northward, interacting with the southern edge of an SPSA system. LAP systems rotate clockwise, with intense winds of ~25 m s⁻¹, and a minimum atmospheric pressure of 958 mbar (Fig. 11414d). The west and northwest winds from the LAP advected southward the maximum air temperature, located north of 40° S, contributing to the increased air temperature and heat in Patagonia, as shown in Fig. 11a14a. High air temperature due to the LAP winds reached the southern part of Patagonia, close to the Magellan Strait (Fig.

11e14e). Atmospheric conditions returned to normal days after the LAP passage, (Fig. 11f-14f and Fig. 11g14g) as

390

395

385

A second example, using atmospheric data from the winter of 2012, demonstrated the increased SAT over Patagonia due to the LAP system influence better (Fig. 1215). In this case, the maximum air temperature was again registered when the intensity of the wind increased and atmospheric pressure was low (Fig. 12a15a). Before this event, winds were from the north and northwest, but less intense, and the high air temperature presented the usual meridional gradient (Fig. 12b-15b and Fig. 12e15c). At midnight of July 18, 2012, an LAP system entered the study area, and advected high air temperature from the subtropical area southward, to Patagonia. During this nighttime heat wave event, warm air was transported along the coast of Patagonia to ~56° S (Fig. 12d-15d and Fig. 12e15c). Pre-event atmospheric conditions were restored one day after the passage of the LAP system (Fig. 12f-15f and Fig. 12g15g).

4. Discussion

shown in Fig. 11b-14b and 11e14c.

400

405

The combination of QuikSCAT, ASCAT and ERA<u>5</u>-interim surfacesatellite wind products, together with in situ measurements of winds from oceanographic buoys and meteorological stations, has facilitated understanding of surface wind variability in the eastern <u>Aa</u>ustral Pacific Ocean, and the Patagonian interior. Surface winds were generally westerlies (Fig. <u>42</u>), and the synoptic scale dominated wind variability, due to the influence of the low/high atmospheric pressure systems, with winds from the northerly /southerly directions, respectively (Fig. <u>2-3-6</u>and Fig. <u>3</u>). Implications of the synoptic scale events on the atmosphere-ocean interaction is the focus of this section of the manuscript, owing to the importance of winds to the oceanic responses, such as ET and EP, and their influence on the Patagonian climate.

4.1 Surface wind variability

410

Satellite data on the long term surface wind daily means, over the period 1999-2015, demonstrated that between 42° - 45° S, the normal wind was perpendicular to the coast, and blew from the west. From 45° S and to 56° S, the predominant wind direction changed to the northwest, reaching its highest intensity in the Magellan region, where it blew parallel to the coast. At the other end of the study region ($4140^{\circ}-42^{\circ}$ S), the predominant wind was from the southwest, although the intensity was less than in the Magellan region (Fig. 24). To date, the wind regime for this region has only been presented as a conceptual model, to show the influence of the westerlies on the westerly drift

Con formato: Fuente: Negrita, Espacio ajustado en 16 pto

Con formato: Fuente: Negrita

415 current (Thiel et al., 2007; Arkhipkin et al., 2009; KilianandLamy, 2012), and to present the general atmospheric circulation applicable to the west coast of South America (Rahn and Garreaud, 2013; Tallev et al., 2011). Even though a map similar to Fig. 1-2 waswere presented in Aguirre et al., (2012) and Saldías et al., (2018), using QuikSCAT data-(2000-2007), details of the surface wind behavior could not be determined. In addition, winds regime studies, which included derived variables such as EP and ET, focused on the central and northern region of 420 the Chilean and Peruvian coasts, north of 40° S, and had as their main goals explanation of the dynamic of the Southeast Pacific Subtropical anti-cyclone (SPSA), and improved understanding of the wind's influence on this circulation regime (Ancapichun and Garcés-Vargas, 2015; Bravo et al., 2016; Fuenzalida et al., 2008; Schneider et al., 2017). Recently, the behavior and evolution of the ET in northern Patagonia was investigated along with its implications in the ocean response (Narváez et al., 2019). In the next section, these results will be incorporated and discussed.

425

430

435

450

LAP and HAP systems dominated mode 1 of the EOF, contributing ~30 % of the total variance (Fig. 2, 3-6 and 4). In this mode, southerlies related to the passage of HAP systems, and northerlies produced by LAP systems (Fig. 74), occurred in a time scale of 16.5 days (Fig. 4-63 and Fig. 85). This illustrated the variability of surface winds in the eastern Austral Pacific Ocean, complementing the westerly winds which have been seen to dominate the wind regime, in average and seasonal data (Fig. 2).

EOF analysis detected wind from the west the westerly wind pattern in mode 2 with accounting for 22% of the total variance. This wind occurred mainly during spring-summer, before veering to an easterly wind for fall-to-winter (Fig. 2-3-6and Fig. 3). A cycle change was observed in this mode using the individual QuikSCAT and ASCAT data sets and confirmed with the continuous data set of the ERA5 reanalysis (Fig. 8). During the first period of wind

- analysis (1999 2009), an annual cycle dominated mode 2(1999-2009), but in the second period (2009-2015), this dominance reduced, and cycle periods of 27.5 days and 16.5 days were observed (Fig. 85). The period of 16.5 days denoted the importance of the synoptic time scale, while the 27.5 day cycle suggested the influence of the recently reported Southern Hemisphere's baroclinic annular mode (BAM), which has been described as displaying an energy 440 band lasting between 20 and 30 days (Thompson and Barnes, 2014; Thompson and Woodworth, 2014). BAM influence was observed by Ross et al., (2015) in a Patagonian fjord (47.8° S), using Acoustic Doppler current
- profiler (ADCP) data, combined with in situ surface wind and atmospheric pressure records, highlighting the contribution of this atmospheric phenomenon to the intensification and frequency of the LAP systems that occur throughout the Patagonian. In addition, Narváez et al., (2019) reported the dominance of the BAM on an 445 intraseasonal time scale showing an essential influence of this cycle in the atmospheric and oceanographic conditions of northern Patagonia (40°-45° S).

Finally, the EOF analysis allowed for the detection of the high surface wind variability in the eastern Austral Pacific Ocean, showing the dominance of the atmospheric pressure systems (e.g., LAP and HAP systems) over the various time scales. These atmospheric synoptic events occurred throughout the study region, coinciding with significant areas of the strongest westerly wind belt on earth (Chelton et al., 2004).

Con forma	to:	Sin	Resaltar
Con forma	to:	Sin	Resaltar
Con forma	to:	Sin	Resaltar
Con forma	to:	Sin	Resaltar
Con forma	to:	Sin	Resaltar
Con forma	to:	Sin	Resaltar
Con forma	to:	Sin	Resaltar

AP and HAP systems dominated mode 1 of the EOF, contributing -30 % of the total variance (Fig southerlies related to the passage of HAP systems, and northerlies produced by LAP system; thi 5). This illustrated the variabilit omplementing winde in average and seasonal data

In the Yucatan basin and the Caribbean Sea, where trade winds dominate the wind regime, synoptic-scale atmospheric events also dominate mode 1 of the EOF, characterized by the influence of continental cold front systems during fall and winter, and extratropical LAP systems in spring and summer (Pérez-Santos et al., 2010). In the tropical Indian Ocean, EOF analysis also improved understanding of wind variability induced by different phases of the monsoon (Alvarinho et al., 2006). It was also seen that the spatial structure of mode 3 of the EOF indicated passage of other types of LAP and HAP systems, this time covering small areas, as in mode 1, although with a different time scale (Fig. 3 and Fig. 4). In general, surface wind variability in the eastern Austral Pacific Ocean was dominated by synoptic scale events, in which pressure systems with different distance and time scales played an essential role in the region's wind regime.

4.2 Atmospheric-ocean interactions

The long term ET mean showed that this movement ran parallel to the coast from between 4140° and 48° S, and then from 48° S to 58° S, it ran perpendicular (onshore) to the coastline, showing higher magnitude in the Magellan region (Fig. 96). Studies have shown that when onshore ET occurred, downwelling conditions prevailed, 470 and particulates were transported to the coast (Stewart, 2002), favoring the retention of eggs and larvae in the coastal zone (Epifanio and Garvine, 2001; Garland et al., 2002). It has also been shown that when offshore ET occurred, upwelling processes dominated along the coastline, favoring primary production (Escribano et al., 2016; Iriarte et al., 2012; Montero et al., 2007). As argued in the previous section, synoptic scale atmospheric events, such as LAP and HAP systems, dominated wind variability within the study area, especially in its northern domain, where the 475 southern edge of the SPSA arrived during spring-summer. During this time of the year, northerly winds influenced the region, producing offshore ET, as shown by the ET time series for the northern $(42.27^{\circ} \text{ S})$ part of the study area (Fig. 107). Then, the upwelling process occurred along the coastline of Chiloe Island, as was demonstrated by the increased chlorophyll-a and the drop of SST in the area of wind influence (Fig. 811). In addition, EP velocity was positively helping the upward movement of oceanic water, which enhanced the injection of nutrients into the surface 480 layer (Rykaczewski and Checkley, 2008). Quantification of the Ekman downwelling/upwelling processes and their impact on the ocean response demonstrated the high contribution of the EP to the total Ekman transport in northern Patagonia (along with the west coast of Chiloé Island) over that of ET. These results imply that wind stress curl plays an essential role in the upward displacement of rich oceanic water to the surface layer. During the annual cycle, favorable upwelling conditions were observed from November to April (Figs. 10 and 11), the time of year with more intense photosynthetically available radiation (PAR) for phytoplankton species (Daneri et al., 2012).

To date, coastal upwelling quantification using only the ET has been reported as south as the central coastal region of Chile (~36° S) (Sobarzo and Djurfeldt, 2004; Sobarzo et al., 2007) and recent analyses have been extended to 45° 14

Con formato: Fuente: Negrita

460

465

S (Narváez et al., 2019). However, our work has shown that coastal upwelling can also occur by EP and must be added to the TUT quantification for a realistic evaluation of the ocean response to surface wind. For example, in the California upwelling system, EP is more significant than ET for the TUT, especially during spring and summer (Pickett and Paduan, 2003). In northern Chile (27°–32° S) EP represented ~40% of the TUT, causing changes in the SST spatial structure (Bravo et al., 2016). Around Cabo Frío (22° S/ 42° W) EP was also the primary contributor process in the upwelling of the coldest water to the surface layer (Castelao and Barth, 2006).

- From an inter-annual point of view, the TUT favored upwelling from spring 2015 to summer 2016, contributing to
 high Chl-a and FLH readings during summer 2016 (Fig. 11). A strong harmful algal bloom (HAB) was reported in northern Patagonia during February and March 2016, causing the death of 40.000 t of salmon (Díaz et al., 2019; Paredes et al., 2019). The main factors involved in the 2016 HAB included increased solar radiation, SST, and water column stratification, which were highlighted as trigger mechanisms (Léon-Muñoz et al., 2018). However, the results presented in this manuscript show that EP and ET favor the upwelling of nutrient-rich water to the euphotic
 layer, which can contribute to HAB development. Additionally, high ammonium concentration was observed two
- months later in the open oceanic water off the west coast of Chiloé Island (41° 46' 15'' S / 75° 43' 31'' W) due to the shedding to the sea of 4.600 t of dead salmon (Buschmann et al., 2016). As Fig. 11 shows, during this time EP favored the vertical ascent of water, inhibiting the sinking of the biochemical waste. Therefore, the Ekman upwelling process must be considered in the future for the decision makers during an environmental emergency.
- 505 In general, however, downwelling conditions, dominated by onshore ET, were observed in the study area, especially in the south, close to the Magellanic region (Fig. <u>6-9</u> and Fig. <u>710</u>). We have hypothesized that the irregular orographic from 44° to_56° S, where the coast is conformed with many islands and channels, could reduce the possibility for oceanic water to sink at the coastline, allowing the opportunity for it to pass to the interior Patagonian fjords, carrying nutrients, eggs, larvae from many species into these areas, to enhance biological production in the southern Patagonian fjords.

In addition, it was noted that it was not only the ocean that responded to the synoptic scale variability of the surface wind, but that atmospheric conditions were also influenced. Two examples demonstrated the importance of synoptic scale events in modifying climate conditions in the <u>A</u>austral region (Fig. <u>11–14</u> and Fig. <u>1215</u>), where LAP systems contribute with the origin of the "Nighttime heat wave events."

- 515 A conceptual model was built to explain the source of the nighttime heat wave events (Fig. 1316). In this model, two atmospheric pressure systems participated: a permanent high pressure located in the north (SPSA), which transported warm air from the subtropical region (over the 40° S), and a synoptic LAP system, which originated in the south, with cold air from the Polar zone (Fig. 13a16a). The LAP originated in the Austral-Pacific Ocean, and the system moved northward, with intense winds rotating clockwise. The northward moving LAP stopped when it
- 520 encountered the southern edge of the SPSA, at approximately 40° S (Fig. 13b16b). At this moment the stronger west and northwest wind from the LAP pulled in the warm air from the SPSA, and advected its heat southward to Patagonia. These events occur more frequently at nighttime, and their impact on the Patagonian climate depends on the intensity of the LAP system winds, and the heat content of the SPSA.

In the contexts of climate change and variability, any increase or trend of change in these events needs to be taken into account, as mechanisms that could contribute to increased glacial meltwater, and alteration of the <u>A</u>austral climate.

5. Conclusions

530

In our study, satellite <u>and reanalysis</u> wind data were used to understand surface wind variability in the eastern Austral Pacific Ocean, a region <u>generally</u> dominated-<u>generally</u> by strong westerlies, and the SPSA. The empirical orthogonal function demonstrated that, within the <u>study</u> area, mode 1<u>2 and 3</u> of wind variability <u>showed</u> <u>was</u> dominated by synoptic <u>time</u> scale <u>dominance</u> influences, due to the effects of low and high atmospheric pressure systems, instead of the planetary scale westerlies detected in mode 2. <u>Generally, In general</u>, downwelling conditions prevailed in the study region, <u>owing due</u> to onshore <u>ETEkman</u> transport, but offshore <u>ETEkman</u> transport, and upward <u>EPEkman</u> pumping, were observed during spring and summer in the northern domain (~4140° to 48° S), contributing to reduced sea surface temperatures, and increased chlorophyll-a. The arrival of the southern edge of the SPSA during spring and summer <u>created</u> was the main impetus behind the upwelling conditions dominated by EP, and this is the first time that this condition <u>has been</u>-was reported so far south. In addition, the SPSA was involved in <u>generating</u> the <u>origin</u> of nighttime heat waves, acting with LAP systems to produce night time air temperature maxima which exceeded the normal midday maxima <u>induced eaused</u> by solar radiation.

540

545

535

 Data availability. All data sets used in this manuscript can be requested from the corresponding author.

 Supplement. The supplement related to this article is available online.

Author contributions. IPS: designed the experiment, collection and analysis of the satellite data, and was the manuscript leader. RS: collection and analysis of the satellite and in situ data, as well asand manuscript revision. WS: designed the experiment, collection and analysis of the satellite data, as well asand manuscript revision. PL: data analysis of ERA5 and generation of Figure 1. DD: data analysis of ERA5 and validation process. EN: data analysis. CAC: validation process. GD: manuscript revision. All authors contributed to the writing this of the manuscript.

550 **Competing interest**. The authors declare that they have no conflict of interest.

Acknowledgments

Surface wind data was collected as part of FONDECYT Grants 3120038, and 11140161, by Dr. Iván Pérez-Santos, with assistance from Dr. Wolfgang Schneider's research group. Financial support was also provided by Centro Copas Sur Austral PFB31 and AFB170006. We are grateful to Centro Copas Sur Austral for providing data from its

555 oceanographic buoy and a partial scholarship for Romanet Seguel to complete a Magister in Oceanography at the University of Concepción, Chile. We thank Centro de Investigación en Ecosistemas de la Patagonia (CIEP) for providing meteorological information. <u>The ERA5 reanalysis data was provided by the Copernicus Climate Change</u> **Con formato:** Fuente: Negrita, Espacio ajustado en 16 pto

Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar
Con	formato:	Sin	Resaltar

Con formato: Sin Resaltar

	Service (C3S) (2017): ERA5: Fifth generation of the ECMWF atmospheric reanalyses of the global climate.	 Con	formato: Sin Resa	ltar
	Copernicus Climate Change Service Climate Data Store (CDS). We appreciate the tremendous effort of the	 Con	formato: Sin Resa	ltar
560	anonymous reviewers which led to improved manuscript quality.	 Con	formato: Sin Resa	ltar

References

565

570

575

Alvarinho J. L., Isoguchi	, O., and Kawamura, H	I.: Characteristic	patterns of Quik	SCAT based w	rind stress and
turbulent heat flux in the	he tropical Indian Ocean	, Remote Sensing	of Environment,	Volume 103, I	ssue 4, pp 398
407, 2006.					

Aguirre, C., Pizarro, Ó., Strub, P. T., Garreaud, R., & Barth, J. A.: Seasonal dynamics of the near-surface alongshore flow off central Chile. Journal of Geophysical Research: Oceans, 117(C1), n/a-n/a. https://doi.org/10.1029/2011JC007379, 2012.

Ancapichun, S. and Garcés-Vargas, J.: Variability of the Southeast Pacific Subtropical Anticyclone and its impact

- on sea surface temperature off north-central Chile. Ciencias Marinas, 41(1), 1–20. https://doi.org/10.7773/cm.v41i1.2338, 2015.
- Arkhipkin, A. I., Schuchert, P. C., and Danyushevsky, L.: Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue whiting (Micromesistiusaustralisaustralis). Fisheries Research, 96(2–3), 188–194. https://doi.org/10.1016/j.fishres.2008.11.002, 2009.
- Bentamy, A., Croize-Fillon, D. and Perigaud, C.: Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations Ocean Sci., 4, 265–274, 2008.
- Bentamy A. and Croize-Fillon, D.: Gridded surface wind fields from Metop/ASCAT measurements. International Journal of Remote Sensing, 33, 1729-1754, 2011.
- Bravo, L., Ramos, M., Astudillo, O., Dewitte, B., and Goubanova, K.: Seasonal variability of the Ekman transport and pumping in the upwelling system off central-northern Chile (~30° S) based on a high-resolution atmospheric regional model (WRF). Ocean Science, 12(5), 1049–1065. https://doi.org/10.5194/os-12-1049-2016, 2016.

Buschmann, A., Farías, L., Tapia, F., Varela, D., and Vásquez, M.: Informe Final: Comisión Marea Roja (CMR). Alphen aan den Rijn: Wolters Kluwer, 2016.

585

590

- Dee, D.P., Uppalaa, S.M., Simmonsa, A.J., Berrisforda, P., Polia, P., Kobayashib, S., Andraec, U., Balmasedaa, M.A., Balsamoa, G., Bauera, P., Bechtolda, P., Beljaarsa, A.C.M., van de Bergd, L., Bidlota, J., Bormanna, N., Delsola, C., Dragania, R., Fuentesa, M., Geera, A.J., Haimbergere, L., Healya, S.B., Hersbacha, H., Hólm, E.V., Isaksena, L., Kallberg, P., Kohler, M., Matricardia, M., McNallya, A.P., Monge Sanzf, B.M., Morcrettea, J. J., Parkg, B. K., Peubeya, C., de Rosnaya, P., Tavolatoe, C., Thépaut, J. N., and Vitarta, F.: The ERA Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc.137, 553–597, 2011.
- Castelao, R. M., and Barth J. A.: Upwelling around Cabo Frio, Brazil: The importance of wind stress curl, Geophys. <u>Res. Lett.</u>, 33, L03602, doi:10.1029/2005GL025182, 2006.
- 595 <u>Chelton, D.B., Schlax, M.G., Freilich, M.H., Milliff, R.F.: Satellite measurements reveal persistent small scale</u> features in ocean winds. Science 303, 978e983, 2004.

Con formato: Español (Chile)

Emery, W. J.and Thomson R. E.: Data analysis methods in physical oceanography, 634 pp, Pergamon Press, Oxford, 1998.

- Epifanio, C. E. and Garvine, R. W.: Larval Transport on the Atlantic Continental Shelf of North America: a Review. Estuarine, Coastal and Shelf Science, 52, 51–77, doi:10.1006/ecss.2000.0727, 2001.
- Escribano, R., Bustos-Ríos, E., Hidalgo, P., and Morales, C. E.: Non-limiting food conditions for growth and production of the copepod community in a highly productive upwelling zone. Continental Shelf Research, 126, 1–14.https://doi.org/10.1016/J.CSR.2016.07.018, 2016.
- Fuenzalida, R., Schneider, W., Garcés-Vargas, J., and Bravo L.: Satellite altimetry data reveal jet-like dynamics of
 the Humboldt Current, J. Geophys. Res., 113, C07043, doi:10.1029/2007JC004684, 2008.
- Garland, E. D., Zimmer, C.A., Lentz, S.J.: Larval Distributions in Inner-Shelf Waters: The Roles of Wind-Driven Cross-Shelf Currents and diel Vertical Migrations. Limnology and Oceanography, Vol. 47, No. 3, 803-817, 2002,

Holton, J.: An Introduction to Dynamic Meteorology. Academic Press, San Diego, 511 pp, 1992.

- 610 Iriarte, J. L., Vargas, C. A., Tapia, F. J., Bermúdez, R., andUrrutia, R. E.: Primary production and plankton carbon biomass in a river-influenced upwelling area off Concepción, Chile. Progress in Oceanography, 92–95, 97–109. https://doi.org/10.1016/J.POCEAN.2011.07.009 2012
- Kaihatu, J.M., Handler, R.A., Marmorino, G.O., and Shay, L.K.: Empirical Orthogonal Function Analysis of Ocean Surface Currents Using Complex and Real-Vector Methods, J. Atmos. Oceanic Technol., 15, 927–941, doi: 10.1175/1520-0426(1998)015<0927:EOFAOO>2.0.CO;2, 1998.
 - Kamph, J. and Chapman, P.: Upwelling systems of the world: a scientific journey to the most productive marine ecosystems. Springer, Berlin, 425 pp, 2016.

Kilian, R.andLamy, F.: A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49– 55°S). Quaternary Science Reviews, 53(C), 1–23. https://doi.org/10.1016/j.quascirev.2012.07.017, 2012.

- 620 Marcotte, D.:Cokrigeage with matlab, Computers and Geosciences, 17(9), 1265-1280, doi:10.1016/0098-3004(91)90028-C, 1991.
 - Montero, P., Daneri, G., Cuevas, L. A., González, H. E., Jacob, B., Lizárraga, L., and Menschel, E.: Productivity cycles in the coastal upwelling area off Concepción: The importance of diatoms and bacterioplankton in the organic carbon flux. Progress in Oceanography, 75(3), 518–530. https://doi.org/10.1016/j.pocean.2007.08.013, 2007.
 - Montero, P., Pérez-Santos, I., Daneri, G., Gutiérrez, M., Igor, G., Seguel, R., Crawford, D., and Duncan, P.: A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem, Estuar. Coast. ShelfSci., 199, 105-116, 2017.
 - Narváez, D., Vargas, C., Cuevas, A., García-Loyola, S., Lara, C., Segura, C., Tapia, F., Broitman, B.: Dominant scales of subtidal variability in coastal hydrography of the Northern Chilean Patagonia. Journal of Marine Systems, Volume 193, Pages 59-73, ISSN 0924-7963, https://doi.org/10.1016/j.jmarsys.2018.12.008, 2019.

Con formato: Sin subrayado, Color de
fuente: Automático Código de campo cambiado
Con formato: Sin subrayado, Color de
Código de campo cambiado
Con formato: Sin subrayado, Color de
Con formato: Sin subrayado, Color de
Con formato: Sin subrayado, Color de
Con formato: Sin subrayado, Color de
Con formato : Fuente: Times New Roman, 10 pto, Color de fuente: Automático

Con formato: Fuente: Times New Roman, 10 pto, Color de fuente: Automático

Con formato: Fuente: Times New Roman, 10 pto, Color de fuente: Automático

```
Código de campo cambiado
```

Con formato: Sin subrayado, Color de fuente: Automático

19

600

625

	Orlanski, I.: A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological		Con formato: Sin
	Society, 56: 527-530, 1975.	l	subrayado, Color de fuente: Automático
	Paredes, J., Varela D., Martínez C., Zúñiga A., Correa K., Villarroel A. and Olivares B.: Population Genetic		Con formato: Sin
635	Structure at the Northern Edge of the Distribution of Alexandrium catenella in the Patagonian Fjords and Its	l	subrayado, Color de fuente: Automático
	Expansion Along the Open Pacific Ocean Coast. Front. Mar. Sci. 5:532.doi: 10.3389/fmars.2018.00532, 2019.		
	Pérez-Santos, I., Schneider, W., Sobarzo, M., Montoya-Sánchez, R., Valle-Levinson, A., and Garcés-Vargas, J.:		Con formato: Sin
	Surface wind variability and its implications for the Yucatan basin-Caribbean Sea dynamics. Journal of	l	subrayado, Color de fuente: Automático
	Geophysical Research, 115 (C10), C10052. https://doi.org/10.1029/2010JC006292, 2010.		
640	Pickett, M. H. and Paduan J. D.: Ekman transport and pumping in the California Current based on the U.S. Navy's		Con formato: Sin
	high resolution atmospheric model (COAMPS), J. Geophys. Res., 108(C10), 3327, doi:10.1029/2003JC001902,	l	subrayado, Color de
	2003.		rucinee. Automatico
	Piolle, J. F. and Bentamy, A.: Mean Wind Fields (MWF product), User Manual, QuikSCAT, CERSAT, Plouzané,		Con formato: Sin
	42pp. 2002.		subrayado, Color de
645	Rahn D and Garreaud R : A synoptic climatology of the near-surface wind along the west coast of South America	_	Iuente: Automatico
0.15	Int I Climatol 1-13 2013		subrayado, Color de
	Pay P.S.: Massasala Mataaralagy and Faraaasting American Mataaralagiaal Society Poston MA 702 pp. 1096	ſ	fuente: Automático
	Ray, F.S. Mesoscare Meteorology and Poretasting. American Meteorological Society, Boston, MA, 755 pp, 1760.		con formato: Sin subrayado, Color de
	Koss, L., Valle-Levinson, A., Perez-Santos, I., Tapia, F., and Schneider, W.: Baroclinic annular variability of internal		Con formato: Sin
	motions in a Patagonian fjord. Journal of Geophysical Research: Oceans, 120, 5668–5685.	l	subrayado, Color de
650	https://doi.org/10.1002/2015JC011264, 2015.		Tuente. Automatico
	Rykaczewski, R. R. and Checkley, D.M.: Influence of ocean winds on the pelagic ecosystem in upwelling regions.		Con formato: Sin
	PNAS, 105-6, 1965–1970, 2008.	l	fuente: Automático
	Saldías, G.S., Sobarzo, M., and Quiñones, R.: Freshwater structure and its seasonal variability off western		Con formato: Sin
	Patagonia. Progress in Oceanography, https://doi.org/10.1016/j.pocean.2018.10.014, 2018.		Código de campo cambiado
655	Schneider, W., Donoso, D., Garcés-Vargas, J., and Escribano, R.: Water-column cooling and sea surface salinity		coalgo as campo campiano
	in anona in the unrealling region off control couth Chile driven has a relational displacement of the Couth Desific		Con formato: Sin
	increase in the upwening region off central-south Chile driven by a poleward displacement of the South Pacific		Con formato: Sin subrayado, Color de
	High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017.		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color do
	High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968.		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de
	 High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de
660	 High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile, J. Geophys. Res., 109, C12012, doi:10.1029/2004JC002350, 2004. 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de
660	 High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile, J. Geophys. Res., 109, C12012, doi:10.1029/2004JC002350, 2004. Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.: Coastal upwelling and seasonal cycles 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de
660	 Hickease in the upwelling region off central-south Chile driven by a poleward displacement of the South Pacific High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile, J. Geophys. Res., 109, C12012, doi:10.1029/2004JC002350, 2004. Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.: Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile, Progress in Oceanography 75, 363– 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de
660	 Hicrease in the upweining region on central-south Chile driven by a poleward displacement of the South Pacific High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile, J. Geophys. Res., 109, C12012, doi:10.1029/2004JC002350, 2004. Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.: Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile, Progress in Oceanography 75, 363–382, 2007. 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de fuente: Automático
660	 Hicrease in the upwelling region off central-south Chile driven by a poleward displacement of the South Pacific High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile, J. Geophys. Res., 109, C12012, doi:10.1029/2004JC002350, 2004. Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.: Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile, Progress in Oceanography 75, 363–382, 2007. Stewart, R. H.: Introduction to physical oceanography, Spring 2002 Edition, Department of Oceanography, Texas A 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de fuente: Automático
660	 Hicrease in the upwelling region on central-south Chile driven by a poleward displacement of the South Pacific High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile, J. Geophys. Res., 109, C12012, doi:10.1029/2004JC002350, 2004. Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.: Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile, Progress in Oceanography 75, 363–382, 2007. Stewart, R. H.: Introduction to physical oceanography, Spring 2002 Edition, Department of Oceanography, Texas A and M University, 350pp, 2002. 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de fuente: Automático Con formato: Sin subrayado, Color de fuente: Automático
660	 Hicrease in the upwelling region on central-south Chile driven by a poleward displacement of the South Pacific High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile, J. Geophys. Res., 109, C12012, doi:10.1029/2004JC002350, 2004. Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.: Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile, Progress in Oceanography 75, 363–382, 2007. Stewart, R. H.: Introduction to physical oceanography, Spring 2002 Edition, Department of Oceanography, Texas A and M University, 350pp, 2002. Talley, L.D., Pickard, G.L., Emery, W.J., and Swift, J.H.: Descriptive physical oceanography, an introduction. Six 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de fuente: Automático Con formato: Sin subrayado, Color de fuente: Automático Con formato: Sin subrayado, Color de fuente: Automático
660 665	 Hidrease in the upweining region off central-south Chile driven by a poleward displacement of the South Pacific High. Progress in Oceanography, 151, 38–48. https://doi.org/10.1016/j.pocean.2016.11.004, 2017. Smith, R. L.: Upwelling, Oceanogr, Mar. Biol. Annu. Rev. 6,11-46, 1968. Sobarzo, M. and Djurfeldt, L.: Coastal upwelling process on a continental shelf limited by submarine canyons, Concepción, central Chile, J. Geophys. Res., 109, C12012, doi:10.1029/2004JC002350, 2004. Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J., and Schneider, W.: Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile, Progress in Oceanography 75, 363–382, 2007. Stewart, R. H.: Introduction to physical oceanography, Spring 2002 Edition, Department of Oceanography, Texas A and M University, 350pp, 2002. Talley, L.D., Pickard, G.L., Emery, W.J., and Swift, J.H.: Descriptive physical oceanography, an introduction. Six edition, Academic press, Elsevier, 1-983, 2011. 		Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de Con formato: Sin subrayado, Color de fuente: Automático Con formato: Sin subrayado, Color de fuente: Automático Con formato: Sin subrayado, Color de fuente: Automático

20

	Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106,		Con formato: Sin
	7183–7192, doi:10.1029/592 2000JD900719, 2001.		subrayado
670	Thiel, M. et al.: The Humboldt Current system of northern and central Chile. Oceanography and Marine Biology:		Con formato: Sin
	An Annual Review, 45, 195-344 © R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, Editors Taylor and		subrayado, Color de
	Francis, 2007.		ruente: Automatico
	Thompson, D. W. J. and Barnes, E. A.: Periodic variability in the large-scale southern hemisphere atmospheric		Con formato: Sin
	circulation, Science, 343, 641–645, 2014.		subrayado, Color de
675	Thompson, D. W. J and Woodworth J. D.: Barotropic and baroclinic annular variability in the southern hemisphere.	_	Con formato: Sin
	L Atmos Sci 71 1480–1493 doi:10 1175/LAS-D-13-01851 2014		subrayado, Color de
			fuente: Automático
	Inurman, H.V. and Irujillo, A.P.: Introductory Oceanography. Tenth edition, Pearson, Prentice Hall, Upper Saddle		Con formato: Sin
	<u>River, New Jersey 07458, 597pp, 2004.</u>		fuente: Automático
	Tomasz, N.: Chapter Two - El Niño/Southern Oscillation and Selected Environmental Consequences, Advances in		Con formato: Sin
680	Geophysics, Elsevier, Volume 55, Pp 77-122, 2014.		subrayado, Color de fuente: Automático
	Tomczak, M. and Godfrey, J. S.: Regional Oceanography: An Introduction, 422 pp, Pergamon, 1994.		Con formato: Sin
	Torrence, C.and Compo, G. P.: A Practical Guide to Wavelet Analysis, Bull. Amer. Meteor. Soc., 79, 61–78, doi:		subrayado, Color de
	10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.		Con formato: Sin subrayado, Color de
	Yelland, M.and Taylor, P.K.: Wind Stress Measurements from the Open Ocean, J. Phys. Oceanogr., 26, 541-558,		Con formato: Sin
685	doi: 10.1175/1520-0485(1996)026<0541·WSMFTO>2.0.CO: 2.1996		subrayado, Color de
	un. 10.1170/1020 0100(1770)020 00011. Humi 107 2.0.00, 2, 1770.		ruente: Automatico
	<u>۸</u>		Con formato: Sin
			fuente: Automático

	Figure captions		Con formato: Fuent Negrita, Sin subra	e: yado,	
	Figure 1. Map of the study area and geographical position of the sampling stations. Bathymetric image of the		Espacio ajustado e	n 16	
	seafloor and topography obtained from https://www.gmrt.org/GMRTMapTool		Con formato	[[£6]
690	Figure 21. Long term mean of daily surface wind from (a) QuikSCAT (1999-2009), and (b) ASCAT (2007-2016)	-7	Con formato	[} ₽7]
	and (c) ERA5 reanalysis climate data sets (1999-2015). Black line: standard deviations from of daily data. Colored				
	bar: surface wind magnitude.				
	Figure <u>32</u> . Eastern Austral Pacific Ocean, 1999 to 2015: normalized eigenvector patterns, from QuikSCAT (a , b) ₅		Con formato: Sin		
	and (c), and ASCAT; surface winds (d, e, and f) and ERA5 reanalysis (g, h and i).		fuente: Automático	e	J
695	Figure 34 . (a, d, and g) Normalized time series of the time-dependent coefficient (black lines), with from the 30	1	Con formato	[} ₹8‡
	day, low pass filtered time series (solid red lines). (b, e, and h) Global wavelet spectra (black solid lines) with 95%				
	confidence interval (red dashed lines), and $(c, f_{\underline{a}, \underline{and}, i})$ long term monthly mean of EOF modes from surface winds	/			
	daily data on QuikSCAT from 1999 to 2009: mode 1 (a, b, and c), mode 2 (d, e, and f), mode 3 (g, h, and i).	/			
	Figure <u>53</u> . Continued. (ja, md, pand g) Normalized time series of the time-dependent coefficient (black lines) with	1	Con formato	[} ₽9!
700	from the 30 day, low pass filtered time series (solid red lines). (kb, ng, qand h) Global wavelet spectra (black solid				
	lines) with 95% confidence interval (red dashed lines) and (1c, of, rand i) long term, monthly mean of EOF modes				
	from surface winds daily data on ASCAT from 2007 to 2015: mode 1 (ja, kb, land c), mode 2 (md, ne, oand f),	//			
	mode 3 (pg , <u>gh, <u>Fand</u>i).</u>	/			
	Figure 6. (a, d, and g) Normalized time series of the time-dependent coefficient (black lines) from the 30 day, low		Con formato	[3 0?
705	pass filtered time series (solid red lines). (b, e, and h) Global wavelet spectra (black solid lines) with 95%	$/ \parallel$			
	confidence interval (red dashed lines), and (c, f, and i) long term monthly mean of EOF modes from surface winds	/			
	daily data of ERA5 reanalysis from 1999 to 2015; mode 1 (a, b, and c), mode 2 (d, e, and f), mode 3 (g, h, and i).	/			
	Figure <u>47</u> . Snapshots of <u>the</u> surface winds representing EOF eigenvector spatial structures for mode 1 (a and, b),		Con formato		\$1]
	mode 2 ($c_{\underline{n}}$ and $d_{\underline{n}}$), and mode 3 (e and f). Surface wind and atmospheric pressure data were obtained from the	/			
710	$ERA5 \ reanalysis \ climate \ Interim \ product. \ The \ surface \ wind \ vectors \ were \ plotted \ with \ a \ spatial \ resolution \ of \ 1^{\circ}\times1^{\circ}.$	//			
	The red rectangle in (a) indicates the study area.				
	Figure <u>58</u> . Morlet wavelet power spectrum applied to the three series of the empirical orthogonal function EOF time-	1	Con formato	[]	3 23
	dependent coefficient from QuikSCAT (a, c, and e), and from ASCAT (b, d, and f) and from the ERA5 (g, h, and	\square			
	i). The fine contour lines enclose regions of confidence levels greater than of >-95% for a red noise process with a lag	///			
715	1 coefficient between $0_{\frac{37-52}{2}}$ and 0.5570 , and the thick contour lines indicate the cone of influence. The color bar	//			
	relates colors toon the power spectrum.	/			
	Figure 69 Long term mean of daily surface wind stress (black arrows), ETkman transport (red arrows), and EPkman		Con formato		33
	pumping (color bars) from (a) QuikSCAT (1999-2009), (b) ASCAT (2007-2016) and (c) ERA5 reanalysis	\square			
	(1999–2015). The black lines represent the zero value of Ekman pumpingP, where a positive number is a region	//			
720	favorable to upwelling and negative to downwelling. The black dots in (a) represented the positions of time series				
	shown in Fig. 7.				

ĺ	Figure 7 <u>10</u> . Quantification of the cross-shore transport using <u>ERA5 reanalysis satellite winds products (QuikSCAT</u>		Con formato	
	and ASCAT)-from the north, center and south time series (see Fig. 6-1(a) for the position), for from 1999-		(<u> </u>
	$\frac{2015-2018}{2015-2018}$. (a, d, and g) represent the long term daily mean, (b, e, and h) the long term monthly mean, and (c, f,			
725	and i) cumulative E <u>Tkman transport</u> , <u>EPpumping</u> , and <u>TUT</u> total transport. The <u>TUTtotal transport</u> is the sum of the			
	ETkman transport and EPpumping. The positive/negative values of transport indicate upwelling/downwelling			
I	conditions.			
	Figure 811. Time series of (a) the TUT from ERA5, (b) the Chl-a anomalies, (c) the FLH anomalies and (d) the SST		Con formato	
	anomalies from the MODIS-Aqua satellite data. (e-h) Examples to showsing the ocean response to ETkman	\square		
730	transport and EPpumping along the northern coast of Patagonia. Daily images of the wind stress: Ekman transport			
	and pumping from ASCAT wind product (a, d, g); SSTsea surface temperature (eb, and e, gh), and Chl-			
	achlorophyll-a (e, f, and ih), from MODIS-Aqua.	/		
	Figure 912. SATurface air temperature and net solar radiation long term hourly means, withand histogram of the		Con formato	[\$6]
	maximum <u>SATsurface air temperature and spectral analysis</u> , from the Puyuhuapi Fjord oceanographic buoy (a, eb,	\square		
735	ec. and g), and meteorological station (b, d, fe, f, and h), for 2011-2017. The gray shaded area in (e and f) shows	//		
	the times of the second air temperature maxima, The error bars in (a, b, d and e) represent the standard deviations of	/		
	each variable.			
	Figure 13. (a) Time series of the nighttime heat wave events (b) atmospheric pressure during the events, (c)related		Con formato: Sin	
	histogram, and (d) long term monthly mean from 2011 to 2017. Data were obtained from the Puyuhuapi Fjord		subrayado, Color de fuente: Automático	
740	oceanographic buoy (2011-2013) and meteorological station (2014-2017). From July 2013 to April 2014 no data			
	was collected. The red circle in (a and b)denotes the position of the nighttime heat wave events described in Figs. 14			
	and 15.			
	Figure 1114. Hourly air temperature, atmospheric pressure, and wind speed, data from the Puyuhuapi Fjord	1	Con formato	··· [\$7]
	oceanographic buoy (a), and surface winds, atmospheric pressure and surface air temperature from the ERA-	//		
745	interim5 reanalysis climate product (b) - (g), during April 2011. The surface wind vectors (b, d, and f) were plotted			
	with a spatial resolution of 1°×1°.			
	Figure <u>1215</u> . Hourly <u>data of</u> air temperature, atmospheric pressure, and wind speed <u>data</u> from the Puyuhuapi Fjord	-7	Con formato	 [\$8]
	oceanographic buoy (a), and surface winds, atmospheric pressure and surface air temperature from ERA-interim5			
	<u>reanalysis climate</u> product (b) – (g), during July 2012. The surface wind vectors (b, d, and f) were plotted with a			
750	spatial resolution of 1°×1°.			
	Figure <u>1316</u> . A conceptual model of the "Night-time heat wave event" in the Eastern Austral Pacific Ocean. (a) The		Con formato: Sin	
	initial condition, where a low atmospheric pressure system with cold air and a high atmospheric pressure system		fuente: Automático	
	with warm air are regionally present, although separate; (b) the low atmospheric pressure system moves northward			
	and encounters the high atmospheric pressure system, advecting warm air to Patagonia.			
755	•		Con formato: Sin subrayado, Color de fuente: Automático	

Con formato: Sin subrayado, Color de fuente: Automático

Figure 1. Long term mean of daily surface wind from (a) QuikSCAT (1999 2009), and (b) ASCAT (2007 2016). Black line: standard deviations from daily data. Color bar: surface wind magnitude. Con formato: Sin subrayado, Color de fuente: Automático

Con formato: Sin subrayado, Color de fuente: Automático

Figure 1. Map of the study area and geographical position of the sampling stations. Bathymetric image of the seafloor and topography obtained from https://www.gmrt.org/GMRTMapTool.

Con formato: Sin subrayado, Color de fuente: Automático

Figure 2. Long term mean of daily surface wind from (a) QuikSCAT (1999–2009), (b) ASCAT (2007–2016) and (c) ERA5 reanalysis climate data sets (1999–2015). Black line: standard deviations of daily data. Colored bar: surface wind magnitude.

Con formato: Sin subrayado, Color de fuente: Automático

Figure 3. Eastern Austral Pacific Ocean, 1999 to 2015: normalized eigenvector patterns, from QuikSCAT (**a**, **b**) and (**c**), ASCAT (**d**, **e**, and **f**) and ERA5 reanalysis (**g**, **h** and **i**).

780

785

Figure 3. (a, d, g) Normalized time series of the time-dependent coefficient (black lines), with 30 day, low pass filtered time series (solid red lines). (b, e, h) Global wavelet spectra (black solid lines) with 95% confidence interval (red dashed lines), and (e, f, i) long term monthly mean of EOF modes from surface winds daily data on QuikSCAT from 1999 to 2009: mode 1 (a, b, c), mode 2 (d, e, f), mode 3 (g, h, i).

Figure 4. (**a**, **d**, and **g**) Normalized time series of the time-dependent coefficient (black lines) from the 30 day, low pass filtered time series (solid red lines). (**b**, **e**, and **h**) Global wavelet spectra (black solid lines) with 95% confidence interval (red dashed lines), and (**c**, **f**, and **i**) long term monthly mean of EOF modes from surface winds daily data on QuikSCAT from 1999 to 2009; mode 1 (**a**, **b**, and **c**), mode 2 (**d**, **e**, and **f**), mode 3 (**g**, **h**, and **i**).

Figure 3. Continued. (j, m, p) Normalized time series of the time-dependent coefficient (black lines) with 30day, low pass filtered time series (solid red lines). (k, n, q) Global wavelet spectra (black solid lines) with 95% confidence interval (red dashed lines) and (l, o, r) long term, monthly mean of EOF modes from surface winds daily data on ASCAT from 2007 to 2015: mode 1 (j, k, l), mode 2 (m, n, o), mode 3 (p, q, r).

Figure 5. (a, d, and g) Normalized time series of the time-dependent coefficient (black lines) from the 30 day, low pass filtered time series (solid red lines). (b, e, and h) Global wavelet spectra (black solid lines) with 95% confidence interval (red dashed lines) and (c, f, and i) long term, monthly mean of EOF modes from surface winds daily data on ASCAT from 2007 to 2015; mode 1 (a, b, and c), mode 2 (d, e, and f), mode 3 (g, h, and i).

Con formato: Fuente: Sin Negrita, Sin subrayado, Color de fuente: Automático

d), and mode 3 (e and f). Surface wind and atmospheric pressure data were obtained from ERA-Interim product.

Con formato: Sin subrayado, Color de fuente: Automático

Con formato: Sin subrayado, Color de fuente: Automático, Diseño: Claro (Blanco)

Figure 6. (**a**, **d**, and **g**) Normalized time series of the time-dependent coefficient (black lines) from the 30 day, low pass filtered time series (solid red lines). (**b**, **e**, and **h**) Global wavelet spectra (black solid lines) with 95% confidence interval (red dashed lines), and (**c**, **f**, and **i**) long term monthly mean of EOF modes from surface winds daily data of ERA5 reanalysis from 1999 to 2015: mode 1 (**a**, **b**, and **c**), mode 2 (**d**, **e**, and **f**), mode 3 (**g**, **h**, and **i**).

815

820

810

dependent coefficient from QuikSCAT (a, c, e), and from ASCAT (b, d, f). The fine contour lines enclose regions of 34

confidence levels greater than 95% for a red noise process with a lag 1 coefficient between 0.37 and 0.70, and the

Con formato: Sin

subrayado, Color de fuente: Automático,

Diseño: Claro (Blanco)

thick contour lines indicate the cone of influence. The color bar relates colors to the power spectrum.

Figure 7. Snapshots of the surface winds representing EOF eigenvector spatial structures for mode 1 (**a** and **b**), mode 2 (**c** and **d**); and mode 3 (**e** and **f**). Surface wind and atmospheric pressure data were obtained from the ERA5 reanalysis climate product. The surface wind vectors were plotted with a spatial resolution of $1^{\circ} \times 1^{\circ}$. The red rectangle in (**a**) indicates the study area.

Figure 6. Long term mean of daily surface wind stress (black arrows), Ekman transport (red arrows), and Ekman pumping (color bars) from (a) QuikSCAT (1999-2009), (b) ASCAT (2007-2016). The black lines represent the zero value of Ekman pumping, where a positive number is a region favorable to upwelling and negative to downwelling. The black dots in (a) represented the positions of time series shown in Fig. 7.

Con formato: Sin subrayado, Color de fuente: Automático, Diseño: Claro (Blanco)

Figure 8. Morlet wavelet power spectrum applied to the three series of the EOF time-dependent coefficient from QuikSCAT (\mathbf{a} , \mathbf{c} , and \mathbf{e}), from ASCAT (\mathbf{b} , \mathbf{d} , and \mathbf{f}) and from the ERA5 (\mathbf{g} , \mathbf{h} , and \mathbf{i}). The fine contour lines enclose regions of confidence levels of >95% for a red noise process with a lag 1 coefficient between 0.52 and 0.55, and the thick contour lines indicate the cone of influence. The color bar relates colors on the power spectrum.

Con formato: Sin subrayado, Color de fuente: Automático, Diseño: Claro (Blanco)

Con formato: Sin subrayado, Color de fuente: Automático

Con formato: Sin

subrayado, Color de

fuente: Automático

transport. The total transport is the sum of the Ekman transport and pumping. The positive/negative values of transport indicate upwelling/downwelling conditions.

the north, center and south time series (see Fig. 6 (a) for the position), for 1999-2015. (a, d, g) represent the long

term daily mean, (b, e, h) the long term monthly mean, and (c, f, i) cumulative Ekman transport, pumping, and total

Figure 9. Long term mean of daily ET (red arrows), and EP (color bars) from (a) QuikSCAT (1999–2009), (b) ASCAT (2007–2016) and (c) ERA5 reanalysis (1999–2015). The black lines represent the zero value of EP, where a positive number is a region favorable to upwelling and negative to downwelling. 38

-75 Longitude (°W)

Patagonia. Daily images of the wind stress: Ekman transport and pumping from ASCAT wind product (a, d, g); sea surface temperature (b, e, h), and chlorophyll-a (c, f, i), from MODIS-Aqua.

Figure 10. Quantification of the cross-shore transport using ERA5 reanalysis from the north, center and south time series (see Fig. 1 for the position) from 1999–2018. (**a**, **d**, and **g**) represent the long term daily mean, (**b**, **e**, and **h**) the long term monthly mean, and (**c**, **f**, and **i**) cumulative ET, EP, and TUT. The TUT is the sum of the ET and EP. The positive/negative values of transport indicate upwelling/downwelling conditions.

Con formato: Sin subrayado, Color de fuente: Automático

870

surface air temperature, from the Puyuhuapi Fjord oceanographic buoy (a, c, e), and meteorological station (b, d, f),

for2011-2017. The gray shaded area in (e and f) shows the times of the second air temperature maxima.

Figure 11. Time series of (a) the TUT from ERA5, (b) the Chl-a anomalies, (c) the FLH anomalies and (d) the SST anomalies from the MODIS-Aqua satellite data. (e-h) Examples showing the ocean response to ET and EP along the northern coast of Patagonia. SST (e and g), and Chl-achlorophyll-a (f and h) from MODIS-Aqua.

880

43

Figure 12. SAT and net solar radiation long term hourly means withhistogram of the maximum SAT and spectral analysis, from the Puyuhuapi Fjord oceanographic buoy (\mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{g}), and meteorological station (\mathbf{d} , \mathbf{e} , \mathbf{f} , and \mathbf{h}), for 2011–2017. The gray shaded area in (\mathbf{e} and \mathbf{f}) shows the times of the second air temperature maxima. The error bars in (\mathbf{a} , \mathbf{b} , \mathbf{d} and \mathbf{e}) represent the standard deviations of each variable.

875

Con formato: Sin

subrayado, Color de

fuente: Automático

Figure 13. (a) Time series of the nighttime heat wave events (b) atmospheric pressure during the events, (c)related histogram, and (d) long term monthly mean from 2011 to 2017. Data were obtained from the Puyuhuapi Fjord oceanographic buoy (2011–2013) and meteorological station (2014–2017).From July 2013 to April 2014 no data was collected. The red circle in (a and b)denotes the position of the nighttime heat wave events described in Figs. 14 and 15.

895

Figure 10. Time series of (a) the maximum surface air temperature, (b) the histogram, and (c) long term monthly mean for 2011 2017. Data from the Puvuluani Fiord oceanographic buoy and meteorological station.

Con formato: Sin subrayado, Color de fuente: Automático

oceanographic buoy (a) and surface winds, atmospheric pressure and surface air temperature from the ERA5 reanalysis climate product $(\mathbf{b} - \mathbf{g})$, during April 2011. The surface wind vectors $(\mathbf{b}, \mathbf{d}, \text{ and } \mathbf{f})$ were plotted with a spatial resolution of 1°×1°. 46

Con formato: Sin subrayado, Color de

Figure 11. Hourly air temperature, atmospheric pressure, and wind speed, from the Puyuhuapi Fjord oceanographic buoy (a), and surface winds, atmospheric pressure and surface air temperature from ERA interim product (b) (g),

905

Figure 15. Hourly air temperature, atmospheric pressure, and wind speed data from the Puyuhuapi Fjord oceanographic buoy (a) and surface winds, atmospheric pressure and surface air temperature from ERA5 reanalysis 48

Figure 12. Hourly data of air temperature, atmospheric pressure, and wind speed from the Puyuhuapi Fjord oceanographic buoy (a), and surface winds, atmospheric pressure and surface air temperature from ERA interim product (b) (g), during July 2012.

Con formato: Sin subrayado, Color de fuente: Automático

Figure <u>1316</u>. A conceptual model of the "Night-time heat wave event" in the Eastern Austral Pacific Ocean. (a) The initial condition, where a low atmospheric pressure system with cold air and a high atmospheric pressure system with warm air are regionally present, although separate; (b) the low atmospheric pressure system moves northward and encounters the high atmospheric pressure system, advecting warm air to Patagonia.

Con formato: Sin subrayado, Color de fuente: Automático

Página 9:	[1]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[1]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[1]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[1]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[1]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[1]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[1]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[1]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[2]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[2]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[2]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[2]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[2]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[2]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					

		~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~
Degine U. 191 Con formate	TDC	28-03-2010 17-10-00

Sin Resaltar

Sin Recaltar

Sin Resaltar Página 9: [2] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Página 9: [2] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar
Página 9: [2] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00
Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Sin Resaltar Sin Resaltar
Pagina 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Sin Resaltar IPS 28-03-2019 17:19:00
Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Sin Resaltar IPS 28-03-2019 17:19:00
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00
Sin Resaltar Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar
Página 9: [3] Con formato TPS 28-03-2019 17:19:00
Sin Deceltor
Siii Kesaitai
Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar
Página 9: [3] Con formato IPS 28-03-2019 17:19:00

Página 9:	[3]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Sin Resultur					
- () -					
Página 9:	[3]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[3]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9.	[4]	Con	formato	TPS	28-03-2019 17.19.00
Sin Resultar		0011	10111000		
Sili Kesaltai					
Página 9:	[4]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[4]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Dágina Qu	[]]	Con	formato	TDC	28-03-2010 17.10.00
Sin Docaltar	[4]	COII	IOIMato	115	20-03-2019 17.19.00
Sili Kesaltai					
Página 9:	[4]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[4]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página Q.	[/]	Con	formato	TDC	28-03-2019 17.19.00
Fagina 9.	[4]	COII	TOTMACO	115	28-03-2019 17.19.00
Sin Resaltai					
Página 9:	[4]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 9:	[4]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página Q.	[4]	Con	formato	TDS	28-03-2010 17.10.00
Cin Decelt	[-+]	COII	TOTMALO	115	20-03-2019 17:19:00
Sin Kesaltar					
Página 9:	[4]	Con	formato	IPS	28-03-2019 17:19:00

Sin Resaltar

Página 9: [4] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 9: [4] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 9: [4] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 9: [4] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [5] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [6] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [7] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [8] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [9] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [10] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [11] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [12] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [13] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [14] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		

Dágina 10, [15] Con formato	TDC	29-03-2010 17.10.00

Sin Resaltar

Sin Recaltar

Sin Resaltar Página 10: [17] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [18] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar
Página 10: [17] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [18] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 <t< td=""></t<>
Página 10: [17] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [18] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 10: [18] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [18] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [18] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [19] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [20] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00
Página 10: [21] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [22] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Sin Resaltar IPS 28-03-2019 17:19:00 Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [23] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00 Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [24] Con formato IPS 28-03-2019 17:19:00 Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Página 10: [25] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar
Página 10, [26] Con formato TDS 29-02-2010 17,10,00
Pagina 10. [20] Con Tormaco IFS 28-03-2019 17.19.00 Sin Bosoltar <
Siir Kesaitai
Página 10: [27] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar
Página 10: [28] Con formato IPS 28-03-2019 17:19:00
Sin Resaltar
Página 10: [29] Con formato IPS 28-03-2019 17:19:00

Página 10:	[30]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[31]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[32]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[33]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[34]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[35]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[36]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[37]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[38]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[39]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[40]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[41]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[42]	Con	formato	IPS	28-03-2019 17:19:00
Sin Resaltar					
Página 10:	[43]	Con	formato	IPS	28-03-2019 17:19:00

Sin Resaltar

Página 10: [44] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 10: [45] Con formato	IPS	28-03-2019 17:19:00
Sin Resaltar		
Página 22: [46] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [46] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [46] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [47] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		

Dágina 22, [49] Con formato	TDC	20-02-2010 17.10.00

Sin subravado. Color de fuente: Automático.

Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [48] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Pagina 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Pagina 22: [49] Con formato	IPS	28-03-2019 17:19:00

Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [49] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [50] Con formato	IPS	28-03-2019 17:19:00

Página 22: [50] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [50] Con formato	IPS	28-03-2019 17:19:00
Sin subravado. Color de fuente: Automático		
Shi Subrayado, Color de Taente. Automatico		
Página 22: [50] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [50] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [50] Con formato	TPS	28-03-2019 17:19:00
Sin subravado. Color de fuente: Automático.	110	20 03 2013 17.13.00
Sin subrayado, Color de Tuente. Automático		
Página 22: [50] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [50] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [50] Con formato	TPS	28-03-2019 17:19:00
Sin subravada Calar de fuente: Automática	110	20 00 2010 1111000
Sin subrayado, Color de fuente. Automatico		
Página 22: [50] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [50] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
•		
Página 22: [50] Con formato	TPS	28-03-2019 17:19:00
Sin subravada Calar da fuenta: Automática	115	20 03 2013 17.13.00
Sin subrayado, Color de fuente. Automático		
Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
•		
Página 22: [51] Con formato	TPS	28-03-2019 17.19.00
Sin subravado Color de fuente: Automático	110	20 03 2013 17.19.00
Sin subrayado, Color de Idenie. Automático		

Degine 22, [51] Con formate	TDC	20-02-2010 17.10.00

Sin subravado. Color de fuente: Automático.

Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [51] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00

Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [52] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [53] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [53] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [53] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [53] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [53] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [53] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [53] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 22: [53] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
-		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00

Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subravado. Color de fuente: Automático		
Página 23: [54] Con formato	TPS	28-03-2019 17:19:00
Sin subravado. Color de fuente: Automático	110	20 00 2020 27/20100
Sin Subruyudo, Color de Tuente. Mutomatico		
Désina 22: 1541 Can formata	TDC	28 02 2010 17.10.00
Sin subravado. Color de fuente: Automático	15	28-03-2019 17:19:00
Sin subrayado, Color de fuente. Automatico		
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Pagina 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [54] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subravado. Color de fuente: Automático		
Sin subrajado, Color de fuente. Futomático		
Página 23: [55] Con formato	TPS	28-03-2019 17-19-00
Sin subravado Color de fuente: Automático	110	20 03 2013 17.19.00
successance, color ac racine. Pratomatico		

Degine 77, the Con formate	тре	<u> </u>

Sin subravado. Color de fuente: Automático.

Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Pagina 23: [55] Con formato	IPS	28-03-2019 17:19:00
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
--	-----	---------------------
Sin subrayado, Color de fuente: Automático		
Página 23: [55] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00
Sin subrayado, Color de fuente: Automático		
Página 23: [56] Con formato	IPS	28-03-2019 17:19:00

Sin subrayado, Color de fuente: Automático

28-03-2019 17:19:00
28-03-2019 17:19:00
28-03-2019 17:19:00
28-03-2019 17:19:00
28-03-2019 17:19:00
28-03-2019 17:19:00
28-03-2019 17:19:00
28-03-2019 17:19:00
28-03-2019 17:19:00
28-03-2019 17:19:00

Sin subrayado, Color de fuente: Automático