

Dear Editor,

Thank you for allowing us the opportunity to revise the manuscript, "Investigating the relationship between volume transport and sea surface height in a numerical ocean model" by Estee Vermeulen et al. We are grateful to the two anonymous reviewers for their suggestions which have significantly improved the manuscript.

In particular we have condensed much of the text to improve readability of the manuscript and clarified the relevance of the study by clearly stating the aims of validating the Agulhas transport proxy in HYCOM, followed by a concise discussion on the shortfalls of the model transport proxy.

Please find below the detailed responses to the reviewers' comments and the amended manuscript attached.

Kind regards

Estee Vermeulen,

on behalf of the authors.

Interactive comment on "Investigating the relationship between volume transport and sea surface height in a numerical ocean model" by Estee Vermeulen et al.,

Anonymous Referee #1

Received: 21 Dec 2018

1) The manuscript is very long and would benefit from shortening. There is a lot a duplication between the latter subsections of section 2 and the whole of section 3. Then the authors repeat the results in section 4 again.

Authors- Thank you for this suggestion, the manuscript has been shortened and duplication removed.

Changes in manuscript: Sections 1,2,3 & 4

2) The immediate relevance of the study is unclear. The authors present their results very much as a proof-of-concept for the ACT measuring principle, but the moorings have already been successfully deployed. The motivation therefore feels a bit redundant. Another motivation could be to improve physical understanding of the relationship between SSH and transport, but for that the manuscript is too much focused on the statistics of the relation between the two variables, rather than the hydrodynamics. For example, there are quite a few statements (e.g. line 277 & 279) where a careful analysis of the hydrodynamics would be appropriate

Authors: The goals of the paper were to use the numerical model to test the sensitivity of the transport proxy to i) changes in the vertical structure of the current and how this impacted the linear relationship between SSH slope and transport, and ii) the time period of data needed to build a strong relationship between transport and SSH slope. We appreciate this wasn't clear and have now clarified our goals in the revision.

Changes in manuscript: Rephrased this in the Abstract (l 24-26), section 1 (l105-109) as well as in the summary and conclusion section (l426-431).

3) The construction of Tjet and Tbox is quite confusing. For e.g. there is a Tx and a Txsw, even though in both cases they are used for the transport in the southwest (sw) direction. Use better terms for these? Might it help to add the equations how all these transport variables are constructed?

Authors- Txsw is the southwestward component of Tx, we have clarified this in the text.

Changes in manuscript: See l 187-191 & l204-207

4) There is no validation of the depth structure of the Agulhas Current in HYCOM. Given that there is quite some mention of the baroclinic nature of the current, this would be good to validate using e.g. the ACT array data themselves.

Authors: Thank you for this suggestion, an important addition to the validation. We have now included a new figure showing the time mean (2010-2013) velocity cross section of the Agulhas Current at the ACT array, for both the ACT in-situ observations and for the HYCOM numerical model.

Changes in manuscript: See Fig 2 and l170-176

5) It is a missed opportunity I feel, that the authors have not also investigated the temperature/heat transport. That is something that was hard to do in the ACT array itself, yet is crucial for its climate monitoring ambition. Here, the authors have all the information to calculate the relation between volume and temperature transports

Authors: Unfortunately, this is beyond the scope of the study. The study is focused on investigating the sensitivity of the transport proxy to the underlying assumptions on which it was based. However, it is something we hope to pursue in future. Please see Bryden and Beal, 2001 & Morris et al., 2017.

Other, more minors comments are

- The abstract is fairly technical and detailed, especially in the second half. I am not sure how relevant this is to most readers. For example, how useful is it to mention the terms Tjet and Tbox if they are not explained?

Authors- Noted, the abstract has now been revised.

Changes in manuscript: See Abstract

- line 110: add 'time' before 'length scale'?

Authors- Noted, however this sentence was removed.

- line 161: It is unclear whether the nesting is one-way or two-way

Authors- One way nesting approach and clarified in the text

Changes in manuscript: l 130

- Is table 1 really relevant? Most, if not all, of the information is also in the text. And since there is only one model setup, why does it need to be in a table?

Authors: We agree and have now removed this table.

Changes in manuscript: removed Table 1

- Figure 1: The altimetry line stops just before reaching the shore. Is this an artefact of the plotting, or does this highlight that nearshore altimetry is not used. If the latter, it would be good to mention that
Authors- This was the first satellite coordinate point from track 96 (of the TOPEX/Poseidon and Jason satellites) overlapping the starting point of the ACT array

- line 272: I don't understand why the 12km product is used, if the 6km product is more accurate. Why not interpolate the 6km product to the actual mooring locations?

Authors- We used the 12km resolution as it more closely matches the 10km resolution of HYCOM. The 6km product also adds more noise/submesoscale processes, which is beyond the resolution of HYCOM to resolve.

- Eq 2: Why not use T_x here, if it is equivalent to Y_i ?

Authors- Yes, they are equivalent and we have changed Y_i to T_x

Changes in manuscript: See l265 & Figure 8

- Table 3 would be much more useful if it also listed the observational ACT results?

Authors: We have now included the ACT observational results in Table 2.

Changes in manuscript: Table 2

- line 490: Is this increase from 86% to 88% is statistically significant?

Authors: This sentence was removed since the objective was not to formally compare the improvement between the fit of the linear models, but rather to assess the current structure of the residual transport events, in order to see why the linear relationship doesn't hold for certain transport events and at different locations of the array (see Fig 9). We essentially fitted a linear relationship to model data at each mooring, assessed the current structure of residual outliers that didn't fit the linear relationship, and refitted the linear relationship excluding the violating events (Figure 4). The linear relationship is suited to a barotropic current structure, however baroclinic variability in the model violates this proportional relationship between SSH slope and transport.

Changes in manuscript: l385-390

- Table 4: I don't understand why all the r-values are essentially the same. What does this tell us about the system? How to interpret this? And how is the correlation with the observations?

Authors: the performance of the proxy did not necessarily improve by calculating the linear relationship over longer time scales, suggesting that the current dynamics in the model system are very consistent.

Changes in manuscript: See Table 3 & l 493

type-os etc:

- line 62: 'area' instead of 'field'?

- line 120: Zhu et al should be ncitep{}

- line127: 'but may also be'

- line 182: remove 'notably'
- Figure 2: use 'dashed' instead of 'faint'?
- line 641: 'has' instead of 'have'

Authors: Thank you for highlighting these errors, all have now been corrected

Anonymous Referee #2

Received: 16 Jan 2019

The manuscript would benefit with a reorder and editing. For example, in the Summary and Conclusion section the authors state (line 534-537) "The HYCOM model provided the means to investigate the validity of the assumptions used to create the proxies, such as the constant relationship between SSH slope and transport per unit distance at each mooring location and the temporal scale of observations needed to build a strong linear relationship between transport and SSH slope." They then follow with a limited discussion explaining some reasons why the proxy does not capture the model transport, referring to figures to justify this reasoning – this is not a summary or conclusion. It is suggested that much of the information (lines 534-628) should be incorporated into the relevant parts of Section 3.

A reordering of Lines 629-696 would form what may be considered a "Summary and Conclusion" sections.

Authors- Thank you for these suggested changes which were in line with the other reviewer. We have now significantly condensed and clarified the text and flow of the paper.

Section 2.1 should only provide details of the model used in this study. The reader is not interested in the details of the larger regional model that provided the boundary conditions of the higher resolution (1/10o) nested model.

Authors: Noted and changed

Changes in manuscript: see section 2.1

The presentation of section 2 was convoluted and thus difficult for the reader to easily understand the approach taken. It is suggested that the authors revise this section to more clearly and concisely explaining the methods and assumptions.

Authors: Noted and revised

Changes in manuscript: Section 2

Lines 275-290 "The length scales of the slopes ranged from 24 km at mooring A to 12 km at mooring G and 48 km for the offshore CPIES-pairs, indicating an increase in the spatial scale of offshore flow, possibly due to increased offshore variability. Results from the in situ proxy experiment by Beal and Eliot [2016] also showed an increasing length scale with increasing distance offshore, however the results varied considerably

in magnitude: 27 km at mooring B to 102 km at mooring G." Can you explain the reason for the difference in length scales between the model and observations (in situ and satellite)? Does this indicate the model doesn't capture the observed variability? What implications does this have for this study?

Authors: The reason why the length scales differ between the model and the observations is because the model does not capture completely and accurately the observed variability. This limitation and its implication is now discussed in this study and clarified in the text.

Changes in manuscript: See l 434 (section 4)

It is suggested that section 2.4.1 be revised to remove any unnecessary information concerning the larger regional model.

Authors: Noted and changed

Changes in manuscript: section 2.4.1

Line 407-408. "The proxies only capture a portion of the transport estimate from the HYCOM model, suggesting it also only captures a portion of the model variability." Is this the only problem with the proxy estimate? A more detailed analysis is really required to understand the impact of the assumptions used in developing the proxy.

Authors: The frequently impinging eddies make it difficult for the proxy to accurately estimate the transport of both Tbox and Tjet because the eddies resulted in the correlation of the regression models decreasing offshore. Therefore, the proxy transport estimates (for both Tbox and Tjet) inshore were more accurate than the ones offshore. We have clarified this in the text

Changes in manuscript: l 436-464

Line 418-420 "In summary, the results indicate that the proxy is generally better suited in HYCOM to estimate the box transport rather than the jet transport. Further analysis in this study therefore only focuses on the box transport." It is not appropriate to simply ignore results that don't agree. You need to fully explore the reasons why the different proxies fail.

Authors: The difference in the performance of the jet transport algorithm in the models and in the observations suggests that the models are unable to resolve all the dynamics associated with meander events, for which the jet algorithm was specifically developed.

The jet transport proxy by Beal and Eliot [2016] was developed to estimate the transport of the Agulhas Current during mesoscale meander events, which generally causes the current to manifest as a full-depth, surface intensified, cyclonic circulation out to 150 km from the coast with anticyclonic circulation farther offshore. The Agulhas meanders in the HYCOM simulation occur in association with large anticyclonic eddies predominantly located at the offshore edge of the current, with a narrow, southwest stream close to the coast. In some instances anticyclonic eddies span the length of the entire array. Therefore, considering that the model is unable to resolve the dynamics associated with meander events, for which the jet transport algorithm was specifically developed, further analysis only focuses on the box transport proxy

In addition, the poorer performance of the Tjet proxy in HYCOM and possibly in the in situ study, may also be because it only represents the southwestward component of the flow, whereas the input sea

surface slope reflects the net flow along the array. Therefore, based on these findings further analysis focussed on the Tbox proxy.

We have explored this in the text.

Changes in manuscript: see l33, l331-340 & l440-455

Lines 485-499 Removing outlier to increase the performance of the proxy is not appropriate. The authors should clearly identify the dynamical reasons for the reduced skill of the proxy. It is only through this in-depth analysis that advantages and disadvantages of the proxy can be fully explored.

Authors- The reason we decided to remove the outliers was because in the case of the offshore linear models, the outliers were often the transport events that violated the linear relationship between SSH slope and transport. Investigation into the current structure of the outlying transport events further showed the baroclinic nature of the eddies that broke down the linear relationship between SSH slope and transport, specifically for the offshore regression models. Thus, removing the transport events that violated the relationship proved to increase the performance of the proxy. Motivating that the offshore variability resulted in the poorer performance of the models offshore.

Changes in manuscript: see l385-l390 & l465-468 & Figure 4

The manuscript is lengthy and the prose overly convoluted and repetitive, when reviewing the manuscript the authors should, where possible, simplify the writing and remove repetition. Below are a few examples:

Authors: Thank you for highlighting this, we have thoroughly revised the manuscript to improve readability.

Line 85-89 “The Agulhas transport proxy of Beal and Eliot [2016] was derived from the physical principle of geostrophy, where along-track sea surface height slope measured by satellite altimeters can ultimately be related to a measure of volume transport across a portion of the current, provided that the surface current represents the flow at depth [Beal and Eliot, 2016]. “ can be deleted as lines 89-93 fully explain the major findings of the Beal and Eliot, 2016 study.

Authors: Noted and corrected

Line 151 change “: : : in doing so: : :” to “.. thus : : :”

Authors: Corrected

Line159-161 remove “ The horizontal resolution of the parent model ranged from 14 km in the northern Indian Ocean to 45 km in the Southern Ocean, with a resolution ranging from 30 to 40 km in the region of the Agulhas Current.” This information is not needed; the reader can refer to George et al., 2010 if they require more information on the model from which the boundary conditions were taken.

Authors: Noted and corrected

Line 154-155 Change “The HYCOM output in this study was made available from a nested 1/10_ model of the greater Agulhas Current System (AGULHAS) [Backeberg et al., 2008; 2009; 2014].” To “This study used output from a nested 1/10_ model of the greater Agulhas Current System (AGULHAS) [Backeberg et al., 2008; 2009; 2014].”

Authors: Noted and corrected

These are a few examples; there are many more instances of repetition and where more concise writing would improve the text.

Minor comments

Line 45 change “As the current continues southwestward the current becomes..” to “As the current continues southwestward it becomes..”

Authors: Noted and corrected

Line 60-62 poorly constructed sentence “The unique circulation of the Agulhas Current System, in the context of regional and global climates, makes it an important field of research.”

Authors: The unique circulation of the ACS, in the context of regional and global climate variability, makes it an important field of research

Changes to manuscript- l63

Line 67: “However, the close proximity of the current to the coast makes it difficult to monitor using satellite altimetry [Rouault et al., 2010].” Is this statement still true given the development of the AVISO X-track product (<https://www.aviso.altimetry.fr/en/data/products/sea-surface-heightproducts/regional/x-track-sla/coastal-along-track-sea-level-anomalies.html>)?

Authors: Noted and addressed

Changes in manuscript: in l70-73. The close proximity of the Agulhas Current to the coast has made it difficult to monitor using satellite altimetry, however, newer altimetry products dedicated to coastal areas are promising but are yet to be validated within the Agulhas Current region (Birol et al., 2017).

Line 74-84. It can be shown that the total cost of in situ observing, satellite observations and models are all on similar cost. Singling out in situ observations as the only costly tool is not appropriate or accurate.

Authors: Noted, cost aspect removed.

Changes in manuscript: l80

Change “ In situ observations may accurately measure the dynamics of the Agulhas Current throughout the water column but are expensive and spatially coarse.” To “In situ mooring observations provide high temporal observations of the Agulhas Current throughout the water column but spatially coarse.” Authors: Noted and corrected

Line 106 Change [Beal and Eliot, 2016] to Beal and Eliot [2016] Authors: Noted and corrected

Line 120 Change Zhu et al. [2004] to [Zhu et al., 2004] **Authors: Noted and corrected**

Line 158-159 Change “.. buffer zone.” To “.. sponge layer.” **Authors: Noted and corrected**

Line 166-167 Change “Both models have 30 hybrid layers and targeted densities ranging from 23.6 to 27.6 kg/m3. To “AGULHAS has 30 hybrid layers and targeted densities ranging from 23.6 to 27.6 kg/m3.” **Authors: Noted and corrected**

Line 185 Add “ :: 2010-2013 (Figure 1, Beal et al., 2015) **Authors: Noted and corrected**

Line 193-195 Change “During the first phase of the ACT experiment, the mooring array was maintained in the Agulhas Current for a period of 34 months, perpendicular to the continental slope at 34_S, south of East London, South Africa (Figure 1).” To “ The ACT mooring array was located perpendicular to the continental slope at 34_S, south of East London, South Africa (Figure 1).” **Authors: Noted and corrected**

Line 200 Change “ From the data collected in Beal et al. [2015], two volume transports were estimated:: : : “ to “From the data collected, Beal et al. [2015], provided two volume transports estimates: ..” **Authors: Noted and corrected**

Line 202 Change “:: : is a net transport” to “:: : is the net transport ..” **Authors: noted and corrected**

Line 218 Remove “Based on physical principles sea surface slope is proportional to surface geostrophic velocity.” **Authors: Removed**

Line 237 Define Tx and Txsw

Authors: The transport variable in the regression models was defined as transport per unit distance, i.e. the vertically integrated velocity with units in ms².s⁻¹ where Tx represents the net component of the current flow and Txsw the southwestward component of the flow.

Changes in manuscript: See l187-191

Line 269 “The coordinates of the along-track altimeter data were obtained from the filtered 12km Jason-2 Aviso satellite product, and not the unfiltered 6 km product which was used for the original ACT proxy [Beal and Eliot, 2016], since the 12 km product matched the _10 km model resolution more closely.” Is this difference significant given that the model is interpolated onto the altimetry ground track?

Authors: No, the difference is not significant. However, at the time, we decided to use the 12km resolution as it more closely matches the 10km resolution of HYCOM.

Figure 2 Caption. Change “Figure 2: HYCOM transport per unit distance proxy (m2 s⁻¹) for Tx (blue) and Txsw (red) transport at 1 km intervals at the first model time step (solid lines, week of 3rd January 1980) and for the mean reference period (dashed lines). The faint grey lines represent the positions of moorings and offshore CPIES pairs.” To Figure 2: HYCOM transport per unit distance proxy (m2 s⁻¹) for Tx (blue) and Txsw (red) transport at 1 km intervals at the first model time step (solid lines) and for the ACT reference period (2010-2013, dashed lines). The grey dashed-lines

represent the positions of moorings and offshore CPIES pairs.” **Authors:** Noted and corrected

Changes in manuscript- see Figure 3

Line 303-306 remove “Tx and Txsw are simply shown at the first model time step (week of the 3rd of January 1980) in HYCOM and for the mean of the reference period (2010-2013) to show the difference between the net and southwest transport components used to calculate Tbox and Tjet (Figure 2).” **Authors:** Removed

Line 411 Remove “Figure 4 shows the correlation between proxy and model transports for each year.” **Authors:** Removed

Line 413 Add “: : .insignificant minimum correlation of 0.00 (2003) (Figure 4).” **Authors:** Noted

Line 413 Change “: : : correlation of 0.82 (2014) and an insignificant minimum correlation of 0.00 (2003).” To “: : : correlation of 0.82 (2014) and a minimum correlation of 0.00 (2003).” **Authors:** Noted

Lines 428-431 Remove. “Figure 5 shows the surface variability by displaying the eddy kinetic energy and the mean surface geostrophic flow as represented by the overlaying SSH contours over the 3-year reference period, and over the highest (1988) and lowest (1994) correlated years of the box transport proxy.” **Authors:** Removed

Any important information in this sentence should be included in the figure caption.

Line 431-432. Add “During the reference period the current appears to be stable with low levels of EKE inshore whereas offshore the flow is more variable with higher levels of EKE (Figure 5).” **Authors:** Noted

Line 445 Remove “Figure 6 shows the mean cross-track velocity profiles during the reference period (2010- 2013), the highest correlated year (1988) and the lowest correlated year (1994) for each mooring and the CPIES-pairs.” **Authors:** Removed

Any important information in this sentence should be included in the figure caption

Anonymous Referee #3 Received: 25 April 2019

The manuscript is greatly improved. The authors have adequately addressed my comments. The paper is acceptable for publication.

Minor comments:

Line 37-39 Remove “, suggesting that 3-years was a sufficiently long time-period for the observation-based transport proxy.” Given the limitations of the model this conclusion is not supported. **Authors:** Removed

Line 56 Change ‘These contribute to leakage from this region, contributing heat, salt..’ to These contribute heat, salt...’ **Authors:** Noted and corrected

Line 174 change “appears to be” to “is” **Authors:** Noted and corrected

1 **Investigating the relationship between volume**
2 **transport and sea surface height in a numerical**
3 **ocean model**

4 Estee Vermeulen ^{1,2*}, Björn Backeberg ^{2,3,4}, Juliet Hermes ^{1,5}, Shane Eliot ⁶

5 ¹ *Department of Oceanography, University of Cape Town, Rondebosch, South Africa*

6 ² *Nansen-Tutu Centre for Marine Environmental Research, University of Cape Town, South*
7 *Africa*

8 ³ *CSIR, Coastal Systems Research Group, Stellenbosch, South Africa*

9 ⁴ *Nansen Environmental and Remote Sensing Centre, Bergen, Norway*

10 ⁵ *South African Environmental Observation Network, Egagasini Node, Cape Town, South*
11 *Africa*

12 ⁶ *Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600*
13 *Rickenbacker Causeway, Miami, FL 33149*

14 ^{*}*Corresponding author address:* Estee Vermeulen, Department of Oceanography, University of
15 Cape Town, Rondebosch, South Africa
16 Email: esteever01@gmail.com

17 Abstract

18 The Agulhas Current Time-series mooring array (ACT) measured transport of the Agulhas
19 Current at 34°S for a period of 3 years. Using along-track satellite altimetry data directly
20 above the array, a proxy of Agulhas Current transport was developed based on the relationship
21 between cross-current sea surface height (SSH) gradients and the measured transports. In this
22 study, the robustness of the proxy is tested within a numerical modelling framework, using a
23 34-year long regional-hindcast simulation from the Hybrid Coordinate Ocean Model (HYCOM).
24 Two reference proxies were created using HYCOM data from 2010-2013, extracting model data
25 at the mooring positions and along the satellite altimeter track for; (1) the box-transport
26 (T_{box}) and (2) the jet (southwestward) transport (T_{jet}). Next, sensitivity tests were performed
27 where the proxy was recalculated from HYCOM for (1) a period where the modelled vertical
28 stratification was different compared to the reference proxy, and (2) different lengths of periods:
29 1, 3, 6, 12, 18 and 34 years. Compared to the simulated (native) transports, it was found that
30 the HYCOM proxy was more capable of estimating the box transport of the Agulhas Current
31 compared to the jet transport. The HYCOM configuration in this study contained exaggerated
32 levels of offshore variability in the form of frequently-impinging baroclinic anticyclonic eddies.
33 These eddies consequently broke down the linear relationship between SSH slope and vertically-
34 integrated transport, resulting in stronger correlations for the inshore linear regression models
35 compared to the ones offshore. Vertically integrated transport estimates were therefore more
36 accurate inshore than those offshore or when the current was in a meandering state. Results
37 showed that calculating the proxy over shorter or longer time periods in the model did not
38 significantly impact the skill of the Agulhas transport proxy, suggesting that 3 years was a
39 sufficiently long time period for the observation based transport proxy.

⁴⁰ **1 Introduction**

⁴¹ The Agulhas Current System is the strongest western boundary current in the Southern
⁴² Hemisphere and transports warm tropical water southward along the east coast of South
⁴³ Africa [Lutjeharms, 2006]. The Agulhas Current, in the northern region, is known for
⁴⁴ its narrow, fast, flow conditions following the steep continental slope [de Ruijter et al.,
⁴⁵ 1999]. As the current continues southwestward the current becomes increasingly unstable
⁴⁶ over the widening continental shelf until it eventually retroflects, forming an anticyclonic
⁴⁷ loop south of Africa and returning to the Indian Ocean as the eastward Agulhas Return
⁴⁸ Current [Beal et al., 2011; Biastoch and Krauss, 1999; Dijkstra and de Ruijter, 2001;
⁴⁹ Hermes et al., 2007; Lutjeharms, 2006; Loveday et al., 2014]. The anticyclonic loop, known
⁵⁰ as the Agulhas retroflection, contains some of the highest levels of mesoscale variability
⁵¹ in the global ocean [Gordon, 2003] ~~through the formation of~~ Agulhas rings, eddies and
⁵² filaments. ~~This, in turn, contributes significantly to the Benguela upwelling system, the~~
⁵³ ~~Atlantic Ocean and the global overturning circulation system [Gordon et al., 1987; Beal~~
⁵⁴ ~~et al., 2011; Durgadoo et al., 2013], thereby impacting the Atlantic Meridional Overturning~~
⁵⁵ ~~Circulation (AMOC) by providing a salt advective feedback through a process known~~
⁵⁶ ~~as the Agulhas leakage [Biastoch and Krauss, 1999; Beal et al., 2011; Durgadoo et al.,~~
⁵⁷ ~~2013; Loveday et al., 2014].~~ In the regional context, the Agulhas Current has a major
⁵⁸ influence on the local weather systems, due to large latent and sensible heat fluxes, which
⁵⁹ contributes to rainfall and storm events over the adjacent land [Reason, 2001; Rouault
⁶⁰ et al., 2002; Rouault and Lutjeharms, 2003]. The unique circulation of the Agulhas
⁶¹ Current System, in the context of regional and global climates, makes it an important
⁶² field of research.

⁶³ To understand the complicated dynamics of the Agulhas Current requires an integrated
⁶⁴ approach using numerical ocean models, satellite remote sensing measurements and *in situ*
⁶⁵ observations. Previous studies have suggested that measuring the dynamics of the Agulhas
⁶⁶ Current in the northern region is easier due to its stable trajectory and its confinement to
⁶⁷ the continental slope [van Sebille et al., 2010]. However, the close proximity of the current
⁶⁸ to the coast makes it difficult to monitor using satellite altimetry [Rouault et al., 2010].
⁶⁹ In addition, the frequent disturbances of the current in the form of solitary meanders, also

70 known as Natal Pulses, and its interactions with mesoscale features originating upstream
71 and from the east [Elipot and Beal, 2015], remain poorly resolved in many numerical
72 ocean models [Tsugawa and Hasumi, 2010; Braby et al., 2016], highlighting the challenges
73 involved in monitoring and modelling the dynamics in this region.

74 There is a trade-off between spatial and temporal sampling. *In situ* observations ~~may~~
75 accurately measure the dynamics of the Agulhas Current throughout the water column
76 but are expensive and spatially coarse. In contrast, satellite observations can provide
77 high spatial resolution data of the surface ocean but lacks detailed information below
78 the surface. Hence, numerical models are needed to provide a temporally coherent, high
79 resolution representation of the ocean throughout the water column. Numerous studies
80 aiming to monitor long-term changes in global current systems have adopted methods
81 to combine various sampling tools [eg. Maul et al. 1990; Imawaki et al. 2001; Andres
82 et al. 2008; Zhu et al. 2004; Yan and Sun 2015], including the recent development of the
83 Agulhas transport proxy established to monitor the interannual variability and long-term
84 trends in Agulhas Current transport [Beal and Elipot, 2016].

85 ~~The Agulhas transport proxy of Beal and Elipot [2016] was derived from the physical
86 principle of geostrophy, where along track sea surface height slope measured by satellite
87 altimeters can ultimately be related to a measure of volume transport across a portion
88 of the current, provided that the surface current represents the flow at depth [Beal and
89 Elipot, 2016].~~ Beal and Elipot [2016] have shown that a strong relationship exists between
90 surface geostrophic velocity and full-depth transport such that sea level anomalies can
91 be used to study the variability and dynamics of the Agulhas Current System as has
92 been demonstrated before [Fu et al., 2010; Rouault et al., 2010; Rouault and Penven,
93 2011; etc.]. The 22-year transport proxy created by Beal and Elipot [2016] assumed
94 a fixed linear relationship between *in situ* transport and sea surface slope based on *in*
95 *situ* measurements over the 3-year sampling period of the Agulhas Current Time-series
96 experiment (ACT) [Beal et al., 2015]. Analyses of the Agulhas Current transport proxy
97 time-series concluded that the Agulhas Current has not intensified over the last two
98 decades in response to intensified global winds under anthropogenic climate change [Cai,
99 2006; Yang et al., 2016], but instead has broadened as a result of increased eddy activity
100 [Beal and Elipot, 2016] in agreement with Backeberg et al. [2012].

101 This modelling study aimed to recreate the Agulhas transport proxy developed by Beal
102 and Eliot [2016], within a regional HYCOM simulation of the greater Agulhas Current
103 System in order to test the validity of the underlying assumptions on which the satellite
104 altimeter derived proxy was based. Firstly, the Agulhas Current transport proxy was
105 recreated using modelled data from HYCOM following the methodology of Beal et al.
106 [2015] and [Beal and Eliot, 2016] for the data period 2010–2013. This reference proxy
107 allowed for the relationship between Agulhas Current transports and sea surface slope
108 across the Agulhas Current Time series experiment (ACT) array to be investigated in
109 HYCOM. Following this, the impact of the vertical variability of the current on the accur-
110 acy of the transport proxy was assessed. Finally, the optimal length scale of observations
111 needed to build a strong linear relationship between transport and SSH slope was tested
112 by recalculating the proxy using 1, 3, 6, 12, 18 and 34 years of HYCOM data.

113 Assuming a constant vertical stratification over the 3 year sampling period, and hence
114 ignoring baroclinic changes that could potentially impact the linear relationship between
115 sea surface slope and full depth transport could become problematic when generating a
116 22 year proxy of Agulhas Current transports. Therefore, key questions for this paper in-
117 clude: (1) How is the linear relationship between transport and sea surface slope affected
118 when recalculating the proxy over longer time periods in HYCOM? (2) How will changes
119 in the vertical structure of the Agulhas Current impact the transport proxy? Theoret-
120 ically the vertical velocity structure changes during mesoscale meander events Zhu et al.
121 [2004] and thermohaline processes [Beal and Eliot, 2016] since horizontal changes in
122 stratification result in changes in the velocity structure with depth. Perhaps even changes
123 in the strength of the Agulhas Undercurrent may impact the transport proxy. Finally,
124 (3) what would be the ideal sampling period needed to build a strong, linear relationship
125 between transport and SSH slope? Building the linear relationship over periods longer
126 than 3 years could perhaps increase the skill of the transport proxy by averaging out
127 random perturbations, but may be also be affected by the interannual variability of the
128 current system [Eliot and Beal, 2018]. This study aims to test the robustness of using 3
129 years of *in situ* mooring data to develop a satellite altimetry derived transport proxy for
130 the Agulhas Current at 34°S, by testing the underlying assumptions in a numerical mod-
131 elling framework. This can assist in planning future deployments of moorings ultimately

~~132 facilitating the improvement of an integrated ocean observing system for the Agulhas
133 Current.~~

~~134 This paper is structured as follows; Section 2 describes the data and methods, it should
135 be noted that this section forms a key part of the paper as the methods of recreating the
136 proxy are an integral component of the study. Section 3 presents the results from the
137 HYCOM transport proxy and lastly Section 4 presents the summary and conclusions.~~

~~138 2 Data and Methods~~

~~139 2.1 The Hybrid Coordinate Ocean Model~~

~~140 The Hybrid Coordinate Ocean Model (HYCOM) is a primitive equation ocean model
141 that was developed from the Miami Isopycnic Coordinate Ocean Model (MICOM) [Smith
142 et al., 1990]. HYCOM combines the optimal features of isopycnic-coordinate and fixed-
143 grid ocean circulation models into one framework [Bleck, 2002] and uses the hybrid layers
144 to change the vertical coordinates depending on the stratification of the water column.
145 The model makes a dynamically smooth transition between the vertical coordinate types
146 via the continuity equation using the hybrid coordinate generator [Chassignet et al., 2007].
147 Well-mixed surface layers use z-level coordinates, -coordinates are utilized between the
148 surface and bottom layers in a well-stratified ocean, and the bottom layers apply -
149 coordinates following bottom topography. Adjusting the vertical spacing between the
150 hybrid coordinate layers in HYCOM simplifies the numerical implementation of several
151 physical processes without affecting the efficient vertical resolution, and ~~in doing so~~ com-
152 bines the advantages of the different coordinate types in optimally simulating coastal and
153 open-ocean circulation features [Chassignet et al., 2007].~~

~~154 The HYCOM output in this study was made available from a nested $1/10^\circ$ model of
155 the greater Agulhas Current System (AGULHAS) [Backeberg et al., 2008; 2009; 2014].
156 The regional nested model, AGULHAS, received boundary conditions from the basin-
157 scale model of the Indian and Southern Ocean (INDIA) [George et al., 2010] every 6-hrs.
158 The boundary conditions were relaxed towards the outer model over a 20 grid cell ~~buffer~~
159 ~~zone. The horizontal resolution of the parent model ranged from 14 km in the northern~~
160 ~~Indian Ocean to 45 km in the Southern Ocean, with a resolution ranging from 30 to 40~~~~

~~161 km in the region of the Agulhas Current. The nested model covered the region from~~
~~162 the Mozambique Channel to the Agulhas Retroflection region and the Agulhas Return~~
~~163 Current, geographically extending from approximately 0°-60° East and from 10°-50° South,~~
~~164 with a horizontal resolution of ~10 km that adequately resolved mesoscale dynamics to~~
~~165 the order of the first baroclinic Rossby radius estimated to be about 30 km [Chelton et al.,~~
~~166 1998]. Both models have~~ 30 hybrid layers and targeted densities ranging from 23.6 to 27.6
~~167 kg/m³.~~

~~168 The parent model was initialised from Levitus climatology (WOA05) [Antonov and Levi~~
~~169 tus, 2006] and spun up for 10 years using climatological ERA interim forcing [Dee et al.,~~
~~170 2011]. AGULHAS was initialised from a balanced field of the parent model interpolated~~
~~171 to the high-resolution grid. Both models were then run~~ from 1980 to 2014 using inter-
~~172 annual forcing from ERA40 [Uppala et al., 2005] and ERA-interim [Dee et al., 2011].~~
~~173 Version 2.2 of the HYCOM source code has been used in this model and, together with~~
~~174 the second order advection scheme, provides an adequate representation of the Agulhas~~
~~175 Current [Backeberg et al., 2014]. However, limitations of the free running model include~~
~~176 high levels of SSH variability south of Madagascar and offshore of the Agulhas Current,~~
~~177 suggesting that eddy trajectories may be too regular in the model [Backeberg et al.,~~
~~178 2014]. The data available for this study was a weekly output of the regional HYCOM~~
~~179 model of the Agulhas region from 1980 to 2014. See table 1 for a summary of the model~~
~~180 configuration.~~

~~181 2.2 The Agulhas Current Time-series Experiment~~

~~182 The ACT experiment was established to notably obtain a multi-decadal proxy of Agulhas~~
~~183 Current transport using satellite altimeter data. The first phase of the experiment was~~
~~184 the *in situ* phase where the ACT mooring array was deployed in the Agulhas Current,~~
~~185 near 34 S, for a period of three years from 2010-2013 [Beal et al., 2015]. The second~~
~~186 phase was the development of the transport proxy, where sea surface height along the~~
~~187 ACT section, obtained from along track satellite altimetry, was regressed to the *in situ*~~
~~188 transport measurements [van Sebille et al., 2010; Beal and Eliot, 2016]. To optimally fa~~
~~189 cilitate the regression between the transport and altimetry, the ACT array was collocated~~
~~190 with the altimeter track number 96 successively occupied by satellites TOPEX/Poseidon~~

Table 1: HYCOM specifications.

Model	HYCOM (regional)
Configuration	AGULHAS (nested)
Nested domain	0°–60°E; 10°–50°S
Time period	1980–2014
Resolution	1/10°; Weekly (7/8 days)
Grid spacing (km)	~10 km
Vertical discretization	30 hybrid layers Target densities (+1,000 kg/m ³) layer 1 – layer 30: 22.30, 22.60, 22.90, 23.20, 23.50, 23.80, 24.10, 24.40, 24.70, 25.00, 25.30, 25.60, 25.90, 26.20, 26.50, 26.80, 26.89, 26.99, 27.08, 27.18, 27.27, 27.37, 27.46, 27.56, 27.65, 27.75, 27.84, 27.94, 28.00, 28.05
Bathymetry	GEBCO 1'
Atmospheric forcing	6 hourly ERA interim reanalysis data (1/4°) resolution
Boundary forcing	Parent model (INDIA)
Advection scheme	2 nd order
Vertical mixing scheme	KPP

¹⁹¹ (1992–2002), Jason 1 (2002–2008) and currently Jason 2 (since 2008) and Jason 3 (since
¹⁹² 2016) [Beal and Eliot, 2016] (Figure 1).

¹⁹³ During the first phase of the ACT experiment, the mooring array was maintained in the
¹⁹⁴ Agulhas Current for a period of 34 months, perpendicular to the continental slope at
¹⁹⁵ 34°S, south of East London, South Africa (Figure 1). The array was made up of 12 sites;
¹⁹⁶ site A through G were full depth current meter moorings which were, on average, 26 km
¹⁹⁷ apart. Sites P2–P5 were CPIES (Current and Pressure recording Inverted Echo Sounders)
¹⁹⁸ placed 50 km apart. The CPIES were used to estimate the geostrophic cross track velocity
¹⁹⁹ beyond mooring G so that the Agulhas Current variability was fully captured during

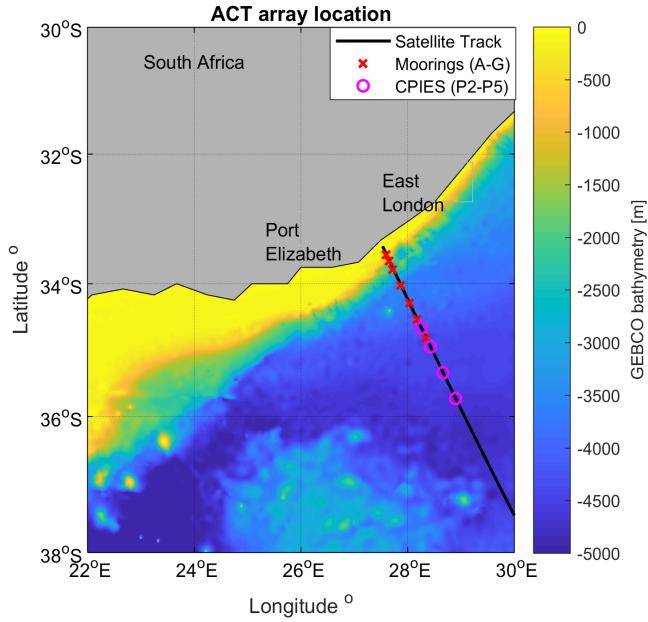


Figure 1: Geographical location of the ACT array with the mooring (red crosses) and CPIES (magenta circles) stations relative to the T/P, Jason-1,2,3 satellite track #96 (black line). Colour shading illustrates the GEBCO bathymetry (m).

meander events [Beal et al., 2015]. From the data collected in Beal et al. [2015], two volume transports were estimated: (1) a box or boundary layer transport (T_{box}) and (2) a western boundary jet transport (T_{jet}). T_{box} is a net transport within a fixed distance from the coast, while T_{jet} is a stream dependent transport that is calculated by changing the boundaries of integration at each time step depending on the strength and cross-sectional area of the southwestward jet. The western boundary jet transport algorithm was developed to specifically exclude the northeastward transport during meander events, occurring inshore of the meander [Beal et al., 2015].

During the second phase of the ACT experiment, Beal and Eliot [2016] built a 22-year transport proxy by regressing the three years of *in situ* transport measurements against along-track satellite altimeter data spanning the years 1993-2015. Beal and Eliot [2016] noted the importance of the relationship between sea surface height and transport when inferring trends in the current structure based on satellite altimetry and remained cautious regarding the assumptions used to validate the proxy. In order to obtain transport estimates using altimetry, it was also important to define accurate boundaries for the Agulhas Current to distinguish whether the current is stable or meandering and to determine the width of the current to calculate T_{box} and T_{jet} .

217 2.3 Development of the Agulhas transport proxy

218 Based on physical principles sea surface slope is proportional to surface geostrophic velo-
219 city. Previous analyses have shown that the vertical structure of the Agulhas Current is
220 barotropic [Elipot and Beal, 2015], such that the direction of current velocity anomalies
221 does not change significantly with depth. This suggests that the relationship between sur-
222 face geostrophic velocity and full depth transport should be strong, despite the presence of
223 the Agulhas Undercurrent [Beal and Elipot, 2016]. The relationship between sea surface
224 slope and transport was therefore tested using linear regression models, which explicitly
225 described a relationship between the predictor variable, sea surface slope and the response
226 variable, transport per unit distance [van Sebille et al., 2010; Beal and Elipot, 2016].

227 The transport proxy created by Beal and Elipot [2016] was initially developed by finding a
228 linear relationship between transport and sea surface slope across the entire length of the
229 ACT array, a common method used in previous studies [Imawaki et al., 2001; van Sebille
230 et al., 2010; Sprintall and Revelard, 2014; Yan and Sun, 2015]. However, this method lead
231 to uncertainty in the linear regression due to the strong, co-varying sea surface height
232 across the current. The preferred method was therefore to build nine individual linear
233 regression models, one for each mooring position and CPIES-pairs along the ACT array,
234 which locally related transport to sea surface slope [Beal and Elipot, 2016]. It is important
235 to note that the regression models assumed a constant, linear relationship between sea
236 surface slope and transport over the three-year *in situ* period. The transport variable in
237 the regression models was defined as transport per unit distance (T_x and T_{xsw}), i.e. the
238 vertically integrated velocity with units in m^2s^{-1} . The total transports, T_{box} and T_{jet}
239 in m^3s^{-1} , were calculated by integrating the T_x and T_{xsw} estimates, predicted from the
240 regression models, to the respective current boundaries.

241 2.4 Recreating the Agulhas transport proxy in HYCOM

242 2.4.1 Model Transport

243 In order to recreate the Agulhas Current proxy in HYCOM, data corresponding to the
244 measurements collected from the ACT mooring array were extracted from the model.

245 The barotropic velocity -equivalent to an integral of the velocity with depth- from each
246 mooring location (A-G) and CPIES pairs P3-P4 and P4-P5 was extracted for the 34-year
247 model period. Extracting the barotropic velocity component from each mooring avoided
248 interpolation errors that may have occurred if the model velocity was interpolated onto
249 the locations of each current-meter instrument on each mooring [e.g. van Sebille et al.,
250 2010]. Transport per unit distance (T_x) for each mooring was calculated by multiplying
251 the cross-track barotropic velocity by the respective depth at each mooring location ~~and~~
252 the sea surface slope for each of the locations were obtained from the model (see next
253 section) (hereafter CPIES pairs P3 P4 and P4 P5 were included as mooring positions 8
254 and 9). The same method was employed to build regression models between sea surface
255 slope and the southwestward component of the flow (T_{xsw}), as is required to ultimately
256 calculate the jet transport (T_{jet}) [Beal et al., 2015].

257 ~~To assess the accuracy of the transport proxy, the HYCOM transport proxy was compared~~
258 ~~to the simulated (native) transport in HYCOM to quantify the differences between the~~
259 ~~proxy and modelled transports and hence understand which processes the proxy may fail~~
260 ~~to represent. The transport across the ACT section in HYCOM was extracted by setting~~
261 ~~up the grid points between the two coordinates defining the start and end of the section~~
262 ~~following the great circles of the sphere and calculating the defined transport at each~~
263 ~~grid point along the section. The transport calculation facilitated a separation of the~~
264 ~~transports into two components: the box transport (T_{box}) and the jet transport (T_{jet}).~~

265 2.4.2 Model SSH

266 In order to reproduce the “along-track” SSH altimeter data needed to create the proxy as
267 in Beal and Eliot [2016], 34 years of HYCOM SSH was linearly interpolated onto the
268 coordinates of the TOPEX/Jason satellite track number 96 overlapping the model ACT
269 array. The coordinates of the along-track altimeter data were obtained from the filtered 12
270 km Jason-2 Aviso satellite product, ~~and not the unfiltered 6 km product which was used~~
271 ~~for the original ACT proxy [Beal and Eliot, 2016]~~, since the 12 km product matched the
272 ~~~10 km model resolution more closely~~. To obtain the sea surface slope for each regression
273 model, an optimal pair of SSH data points was chosen such that the horizontal length

scale between them allowed for a maximum correlation between the sea surface slope and Tx . The length scales of the slopes ranged from 24 km at mooring A to 12 km at mooring G and 48 km for the offshore CPIES-pairs, indicating an increase in the spatial scale of offshore flow, possibly due to increased offshore variability. Results from the *in situ* proxy experiment by Beal and Eliot [2016] also showed an increasing length scale with increasing distance offshore, however the results varied considerably in magnitude: 27 km at mooring B to 102 km at mooring G. In this study the SSH slope was calculated such that a negative SSH slope corresponds to a negative surface velocity (southwest) according to geostrophy, whereas a positive slope would indicate positive northeastward flow.

2.4.3 Building the regression models

Nine linear regression models were ~~first~~ developed to estimate the transport per unit distance (Tx and $Txsw$) from the HYCOM sea surface slope during ~~approximately~~ the same three-year period over which the ACT proxy was developed (April 2010- February 2013). The three-year time period ~~will further be referred to as the reference period.~~ ~~Further tests were later performed, where the proxy was calculated over a range of different time periods (see section 2.6).~~

To calculate the total transport across the ACT array requires continuous Tx estimates across the current. This was achieved as in Beal and Eliot [2016] by fitting a piecewise cubic Hermite interpolating polynomial function to obtain transport estimates at 1 km intervals from the coast to the end of the array (Figure 2). Fitting the transport function to the coast and equating it to zero would be equivalent to implementing a no-slip boundary condition in the model. Before calculating the total transport the current boundaries needed to be defined. The box transport (T_{box}) was calculated by integrating Tx horizontally to 230 km offshore, the three-year mean width of the current in HYCOM. The jet transport (T_{jet}) was calculated using the algorithm developed by Beal et al., 2015 by integrating $Txsw$, the southwest transport component, to the first maximum of Tx beyond the half-width of the current (115 km in HYCOM) at each time step (Figure 2). Beal et al. [2015] argued that T_{jet} therefore captured the southwestward transport of the

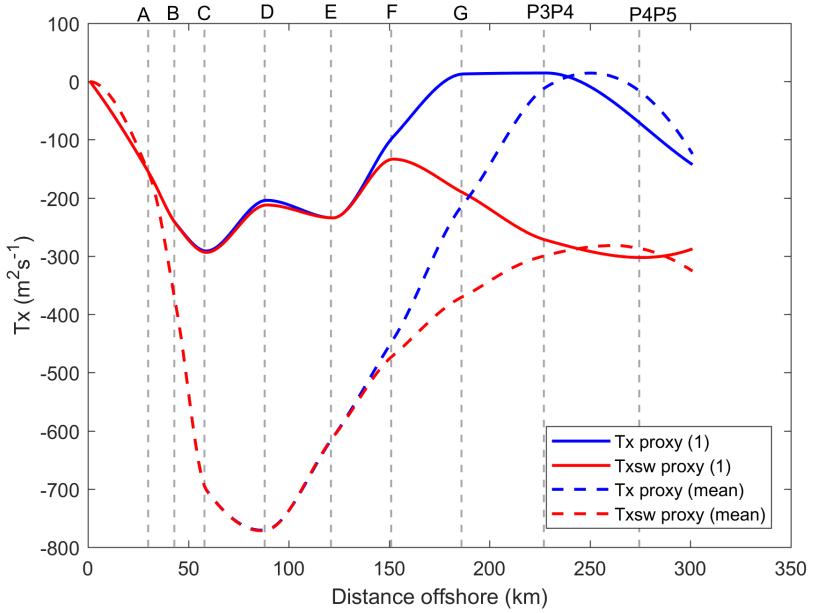


Figure 2: HYCOM transport per unit distance proxy ($\text{m}^2 \text{ s}^{-1}$) for Tx (blue) and $Txsw$ (red) transport at 1 km intervals at the first model time step (solid lines) and for the mean reference period (2010-2013) to show the difference between the net and southwest transport components.

meandering Agulhas Current. Tx and $Txsw$ are simply shown at the first model time step (week of the 3rd of January 1980) in HYCOM and for the mean of the reference period (2010-2013) to show the difference between the net and southwest transport components used to calculate T_{box} and T_{jet} (Figure 2).

In order to test the accuracy of the transport proxy, it was first compared to the HYCOM transport for the same period over which the proxy was developed (2010-2013). By studying the corresponding model fields we were able to identify dynamic features in the model that the proxy failed to capture. The correlation for the overlapping transports from the model and the model proxy was calculated as well as the 3-year mean and standard deviation (Table 3). Then, assuming that the three-year linear relationship between SSH slope and transport per unit distance (Tx and $Txsw$) from 2010-2013 remains constant, the regression models were applied to the entire 34-year SSH model data. This resulted in transport per unit distance estimates (Tx and $Txsw$) for each mooring position at each time step from 1980 to 2014. Thereafter, the 34-year transports were calculated by applying the same methods that were used to calculate the 3-year transport time-series; firstly, obtaining Tx estimates at 1 km-intervals along the array and secondly integrating

319 horizontally to obtain T_{box} and T_{jet} (Figure 2).

320 2.5 Comparison of the transport proxy to actual model transports

321 The simulated model transports were calculated using the full-depth velocity fields across
322 the array. If the relationship between SSH slope and transport is strong, there would
323 be good agreement between the proxy and the actual model transports. To quantify
324 this correlations and transport statistics for the model and proxy were calculated from
325 the two-time-series. These provided insight into which processes the proxy may have
326 failed to capture, which were then further investigated in HYCOM. Statistics are deemed
327 significant at the 95% significance level.

328 Eddy kinetic energy (EKE) was calculated to show the surface variability of the current
329 coincident with averaged SSH contours used to represent the mean surface structure
330 (Figure 5). The eddy kinetic energy was calculated as follows:

$$EKE = \frac{(u^0)^2 + (v^0)^2}{2} \quad (1)$$

331 where u^0 and v^0 are the zonal and meridional geostrophic current anomalies relative to the
332 geostrophic current mean, calculated over the 3-year mean reference period, and over the
333 highest and lowest correlated years. In order to evaluate the subsurface current structure
334 along the ACT array, vertical velocity profiles were analysed for each mooring and CPIES-
335 pair over the 3-year mean reference period as well as over the highest and lowest correlated
336 years.

337 Transport variability in the HYCOM model was analysed by investigating residual trans-
338 port events in the worst and best performing regression models. In order to examine
339 the impacts of variable mesoscale features, residual transport events were identified as the
340 outlying residual transport values above and below 2 standard deviations of the estimated
341 transport.

$$e = Y_j - \hat{Y}_j \quad (2)$$

342 where e is the estimated residuals, Y_j is the HYCOM transport per unit distance value
343 (Tr) and \hat{Y}_j is the estimated transport per unit distance value according to the linear
344 regression models.

345 To investigate the current structure during these residual events, composite averages of
346 the cross-track velocity structure were analysed. The cross-track velocity at each depth
347 layer in HYCOM was extracted at 12 km intervals from 0 km to 400 km offshore, for the
348 34-year model period. Although the ACT array only reached 300 km offshore, analysis of
349 the current structure in HYCOM was extended further offshore. Previous analyses have
350 shown increased levels of offshore variability in this HYCOM simulation [Backeberg et al.,
351 2009; 2014], which therefore made it interesting to study the subsurface structure during
352 the offshore current meanders and the influence these could have on the transport proxy.
353 To further investigate the effect of the residual transport values on the ~~box~~ transport
354 proxy, ~~considering it performed better than the jet transport proxy (see section 3.2)~~, all
355 corresponding transport events exceeding plus or minus two standard deviations were
356 removed from each linear regression model during development of the proxy, ~~after which~~
357 ~~the T_{box} proxy was re calculated as explained in section 2.4.3 and evaluated against the~~
358 ~~initial box transport proxy.~~

359 2.6 Sensitivity tests

360 ~~To test the sensitivity of the time span of observations used to create the transport~~
361 ~~proxy, sensitivity experiments were performed to test how many years of virtual *in situ*~~
362 ~~observations are~~ needed to create an accurate proxy ~~to monitor the~~ Agulhas Current
363 ~~transport. Using~~ 34 years of model data the linear relationship could be tested over much
364 longer or shorter periods.

365 Using the method described in section 2.4.3, regression models were built for 1, 6, 12, 18
366 and 34 years. In addition, the models were calculated over two arbitrary 3-year periods,
367 to test the ~~influence that different current dynamics over different years could have on the~~
368 ~~development of the transport proxy.~~ Lastly, the regression models were calculated over
369 the maximum and minimum annual transport years in HYCOM, as well as during the
370 years the HYCOM transport standard deviation was the largest and the smallest. Table 2
371 shows the time range over which the sensitivity experiments were performed. ~~The 3-year~~
372 ~~in situ period in the model corresponded to the actual time range over which the *in situ*~~
373 ~~experiment was conducted, April 2010 – February 2013 [Beal et al., 2015].~~

Table 2: Sensitivity experiment time periods.

Time range (years)	Model dates
1	Jan 2011 - Dec 2011
3	Apr 2010 - Feb 2013
6	Jan 2009 - Dec 2014
12	Jan 2003 - Dec 2014
18	Jan 1997 - Dec 2014
34	Jan 1980 - Dec 2014
3*	Jan 1980 - Dec 1982; Jan 2000 - Dec 2002
Max (Min) HYCOM transport.	2003 (1982)
Max (Min) HYCOM transport STD.	2013 (1980)

3* Corresponds to the two additional 3-year periods

374 3 Results

375 3.1 HYCOM linear regression models

376 The coefficient of determination (R^2) from the regression models ~~showed~~ how well the
 377 linear relationship predicts the transport ~~per unit distance estimates~~ in HYCOM (Figure
 378 3). ~~The R^2 statistics from the regression models~~ ranged from 0.86 at mooring A (30
 379 km offshore) to 0.49 at the last CPIES-pair P4P5 (275 km offshore) for Tx and 0.86
 380 at mooring A to 0.37 at P4P5 for $Txsw$ (P values $< 10^{-3}$). Results from ~~the *in situ*~~
 381 ~~experiment~~ showed an increase in the R^2 statistics in the regression models ranging from
 382 0.51 at mooring A and 0.81 for CPIES-pair P4P5 for Tx [Beal and Eliot, 2016], thus
 383 ~~showing that the regression models had poorer skill inshore during the *in situ* experiment,~~
 384 ~~whereas in HYCOM the regression models have poorer skill offshore.~~ The results from
 385 the $Txsw$ regression models in HYCOM showed similar results ~~for~~ for the inshore mooring
 386 locations (A, B, C, E) with slightly higher correlations for offshore moorings F, G and
 387 CPIES-pair P3P4 but a lower correlation for D and the furthest CPIES-pair P4P5. ~~This~~
 388 ~~shows that the $Txsw$ regression models explained more variance for moorings F, G and~~
 389 ~~P3P4 but less variance for D and P4P5 than the Tx regression models.~~

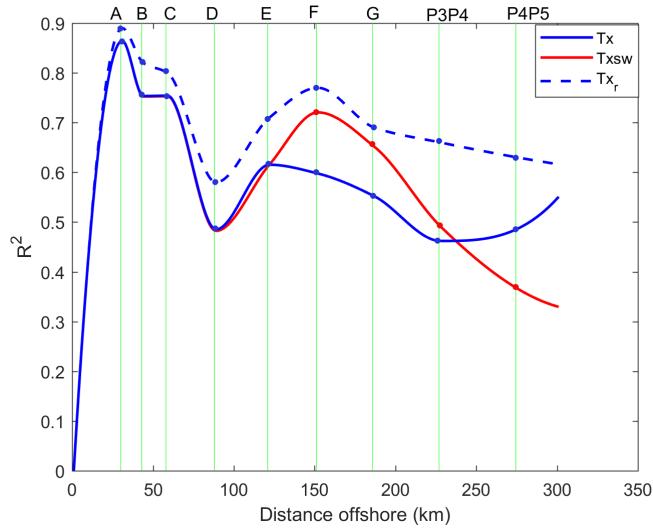


Figure 3: R^2 statistics from the linear regression models showing the relationship between HYCOM SSH slope and HYCOM transport per unit distance for each mooring (A-G) and CPIES-pair (P3P4 & P4P5) over the 3-year reference period (2010-2013). Tx is represented by the solid blue line and Tx_{sw} by the solid red line. The dashed blue line represents the results of Tx after the removal of the residual transport events (see section 3.4). Sites A - CPIES pair P4P5 are shown by the faint green lines.

390 3.2 Proxy validation

391 In order to test the accuracy of the box and jet HYCOM transport proxies, these were
 392 compared to the box and jet transports extracted from HYCOM. This aided the investi-
 393 gation in terms of identifying transport events or features the proxy failed to represent.
 394 Based on the correlation of the 3 year proxy transport (2010-2013) to the model transport
 395 over the same period, the box transport proxy explained 57% of the variance while the
 396 jet transport proxy only explained 14% of the variance. Assuming a constant three year
 397 linear relationship for the nine regression models, the transport proxy was calculated using
 398 34 years of HYCOM SSH slope, after which the 34 year box transport proxy explained
 399 52% of the variance and the jet transport proxy explained 26% of the variance.
 400 Table 3 summarises the transport statistics based on the 3 year and extended 34 year time
 401 period. The 34-year mean transport and standard deviation from HYCOM for the box and
 402 jet transport was -84 ± 47 Sv and -110 ± 38 Sv respectively. The proxy box transport
 403 was -87 ± 34 Sv and the jet transport was -92 ± 31 Sv. A higher jet transport was
 404 expected considering it excludes northeast counter-flows that decrease the box transport
 405 [Beal et al., 2015]. The differences between the standard deviations between HYCOM and

Table 3: a) Summary of the transport statistics of the HYCOM model transport against the HYCOM proxy transport over the 3-year and extended 34-year time period. Negative values denote transport in the southwest direction. $1 \text{ Sv} = 10^6 \text{ m}^3 \text{s}^{-1}$. b) Correlations between the HYCOM model transport and HYCOM proxy transport, for the box transport and jet transport with the percentage of variance shown in brackets. All correlations were significant.

a)	HYCOM (2010-2013)		Proxy		HYCOM (1980-2014)		Proxy	
	T_{box}	T_{jet}	T_{box}	T_{jet}	T_{box}	T_{jet}	T_{box}	T_{jet}
Transport	$-81 \pm$ 53	$-112 \pm$ 41	$-91 \pm$ 35	$-92 \pm$ 30	$-84 \pm$ 47	$-110 \pm$ 38	$-87 \pm$ 34	$-92 \pm$ 32
Max (Sv)	-223	-244	-196	-185	-236	-245	-213	-219
Min (Sv)	44	-48	-36	-46	87	-30	-20	-27

b)	T_{box}	T_{jet}
2010-2013	0.75 (57%)	0.38 (14%)
1980-2014	0.72 (52%)	0.51 (26%)

the proxy indicate that transport in HYCOM experiences more variability compared to the proxy. The proxies only capture a portion of the transport estimate from the HYCOM model, suggesting it also only captures a portion of the model variability. The positive minimum transport values for T_{box} during both time periods also appear to be peculiar, suggesting a current reversal during those events (Table 3).

Figure 4 shows the correlation between proxy and model transports for each year. The correlation per year for T_{jet} varies greatly from year to year with a significant maximum correlation of 0.82 (2014) and an insignificant minimum correlation of 0.00 (2003). In contrast, the correlations for T_{box} vary much less and are always significant with a maximum correlation of 0.88 (1988) and minimum correlation of 0.50 (1994). The box transport has higher correlations for most of the 34-year time period except during two single years where the jet transport has a higher correlation, 0.78 against 0.70 during 1991 and 0.54 against 0.50 during 1994. In summary, the results indicate that the proxy is generally better suited in HYCOM to estimate the box transport rather than the jet transport. Further analysis in this study therefore only focuses on the box transport.

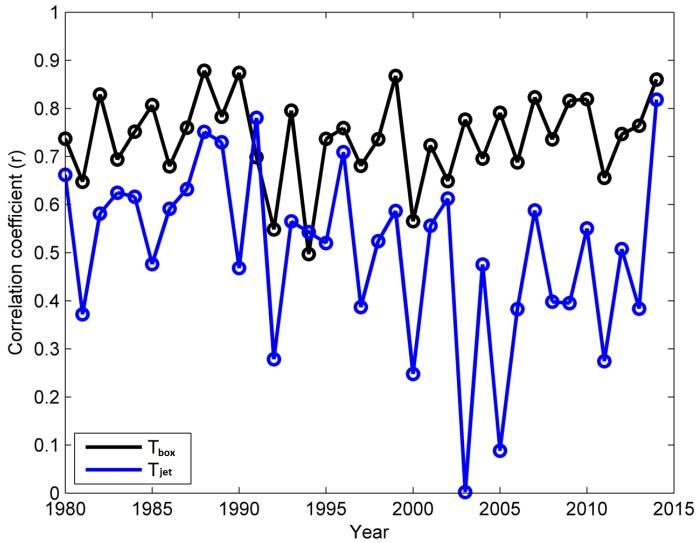


Figure 4: 34-year annual correlations between the box (black) and jet (blue) transport proxies against the box and jet transports extracted from HYCOM.

421 3.3 Evaluating the net transport proxy

422 The strengths and weaknesses of the box proxy are further investigated by selecting the
 423 highest and lowest correlated years from the 34-year annual correlations (Figure 4), and
 424 evaluated by plotting the current structure in the model over the respective years (Figures
 425 5 & 6). ~~Investigating the full depth current structure could emphasize important sub-~~
 426 ~~surface processes which may not have distinct signatures at the surface and may therefore~~
 427 ~~be excluded in the transport proxy.~~

428 ~~Figure 5 shows the surface variability by displaying the eddy kinetic energy and the mean~~
 429 ~~surface geostrophic flow as represented by the overlaying SSH contours over the 3 year~~
 430 ~~reference period, and over the highest (1988) and lowest (1994) correlated years of the box~~
 431 ~~transport proxy. During the reference period the current appears to be stable with low~~
 432 ~~levels of EKE inshore whereas offshore the flow is more variable with higher levels of EKE.~~
 433 ~~The flow depicts a similar structure during the lowest correlated year, however, during the~~
 434 ~~highest correlated year the mean EKE is higher along and downstream of the array with~~
 435 ~~a relatively stable current structure in comparison to 1994 and 2010 2013.~~ The narrow
 436 spacing of the SSH contours for all three periods indicates a strong gradient inshore and
 437 hence a strong mean geostrophic current, however the wide spacing between the SSH
 438 contours offshore suggests that the variability in the model is confined to the offshore

439 side of the current. It is assumed that high levels of mesoscale variability in the model
440 could bias the current position and hence the transport estimate, however, based on the
441 analysis there were approximately five anticyclonic eddies during the highest correlated
442 year (1988) and ~7 anticyclonic eddies during the lowest correlated year which does not
443 greatly differentiate the accuracy of the proxy for those years.

444 ~~Figure 6 shows the mean cross track velocity profiles during the reference period (2010–2013), the highest correlated year (1988) and the lowest correlated year (1994) for each mooring and the CPIES pairs.~~ The model cross-track velocity changes direction with
445 depth, specifically for offshore mooring G and CPIES-pairs P3P4 and P4P5, at the depth
446 of ~2000 m (Figure 6) thereby defining the depth of the Agulhas jet. During the 3-year
447 reference period the velocity changes direction at moorings B and G (~1200 m and ~2000
448 m respectively) and at sites P3P4 (~2000 m) and P4P5 (~300 m, ~2000 m). During 1988
449 sites F-P4P5 experience a change in direction (>~2000 m). Lastly, during 1994 mooring
450 G and sites P3P4 and P4P5 exhibit a change in direction (>~2000m). ~~This shows that the offshore variability in the model impacts not only the surface variability (Figure 5) but also the subsurface flow, which would directly impact the accuracy of the box transport proxy.~~

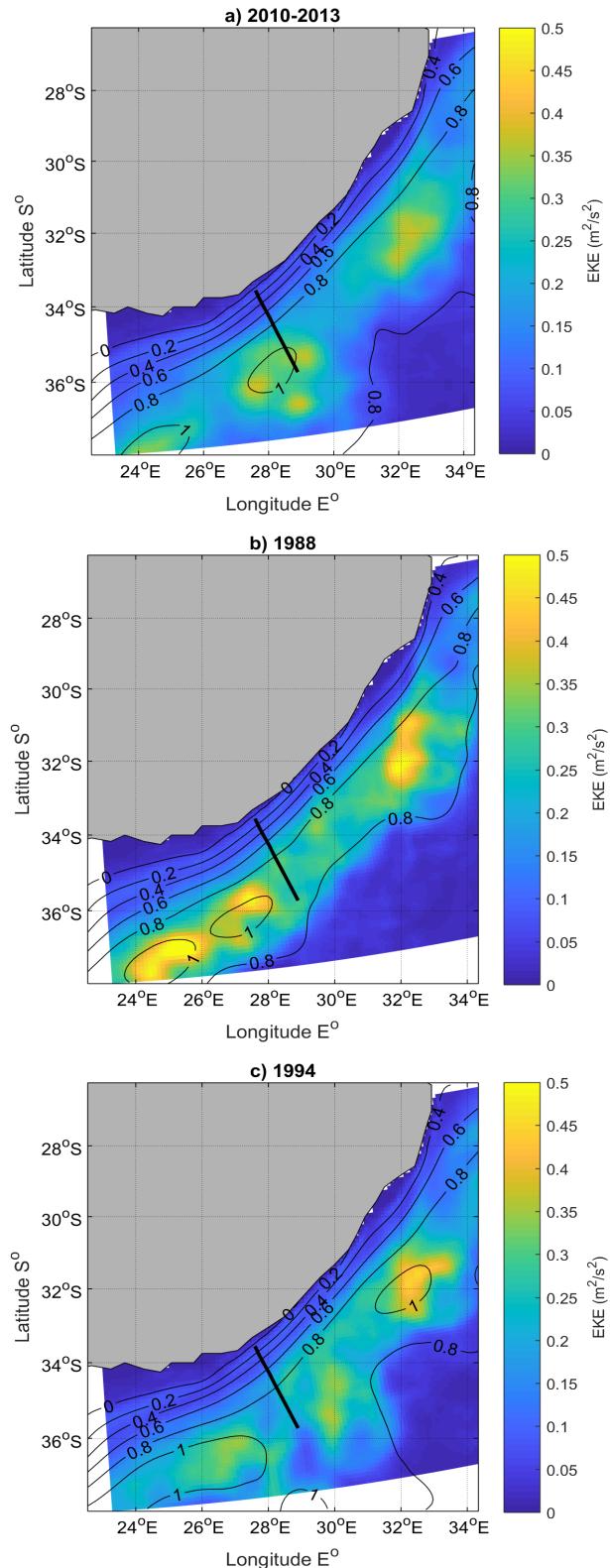


Figure 5: Eddy kinetic energy (EKE in m^2/s^2) and sea surface height (SSH in m) contours during (a) the reference period (2010-2013) (b) the highest (1988) and (c) lowest (1994) correlated years. The black line representing the ACT array.

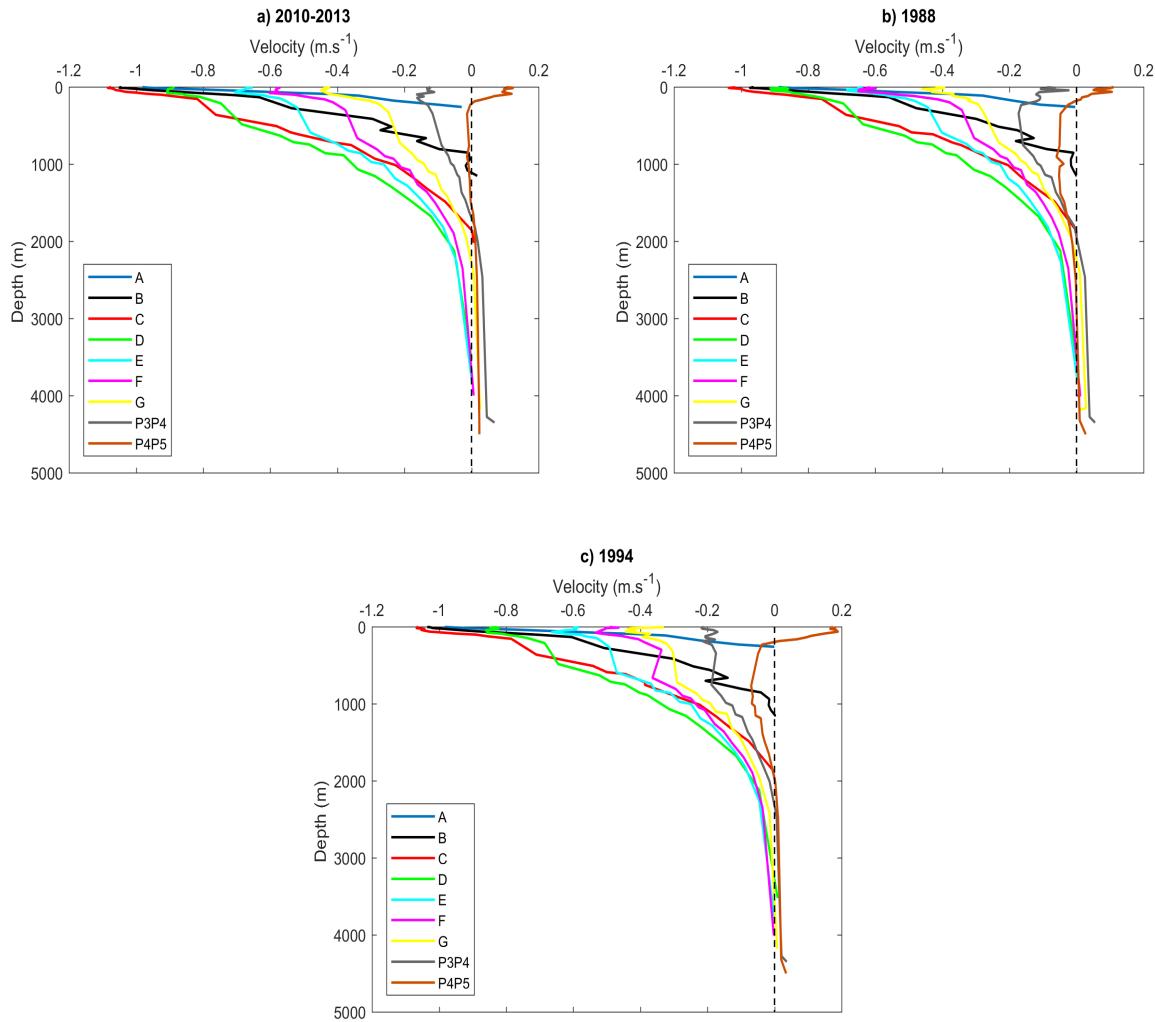


Figure 6: Mean cross-track velocity profiles (m s^{-1}) during (a) the 3-year reference period (2010-2013), (b) during the highest correlated year (1988) and (c) the lowest correlated year (1994). Each colour represents the different moorings (A-G) and CPIES-pairs (P3P4 & P4P5). Negative values indicate southwestward flow.

456 3.4 Investigating the transport variability

457 This section will investigate factors of transport variability in the HYCOM model which
 458 caused the limitations in the HYCOM transport proxy. It was previously shown that
 459 the performance of the linear regression models weakened moving offshore because of the
 460 decrease in correlation between transport per unit distance and SSH slope. Regression
 461 model 8, CPIES-pair P3P4 (RM 8, Figure 7a), captured the least transport variance at
 462 46% and regression model 1, mooring A (RM 1, Figure 7b), explained the most transport
 463 variance at 86%. The differences between the magnitudes of the residual transport events
 464 between RM 1 and RM 8 emphasize a large difference in transport variability between

465 the inshore and offshore mooring locations in HYCOM.

466 According to the methods presented above, a negative SSH slope in HYCOM corresponds
 467 to a negative (southwest) surface velocity and if the current structure were barotropic, a
 468 negative (southwest) transport per unit distance estimate and vice versa. As shown in
 469 regression model 1 (Figure 7b), all the data points are clustered such that the negative
 470 SSH slope relates to a negative transport per unit distance, in the absence of northeast
 471 counterflows. Careful analyses of regression model 8 shows that eight of the nine resid-
 472 ual transport events do violate the proportional relationship between SSH slope and T_x
 473 (Figure 7a). Some of which have a negative SSH slope relating to a positive transport per
 474 unit distance where others show a positive SSH slope with negative transport per unit
 475 distance. Therefore the SSH slope does not always reflect the direction of flow at depth,
 476 and thus the correct sign for T_x .

477 Examination of the cross track velocity structure with depth (Figure 8) shows that there
 478 is a change in the direction of velocity in the bottom layers at the location of regression
 479 model 8 (CPIES-pair P3P4). The cross-track flow in the surface layers (\sim 0-700 m) of the

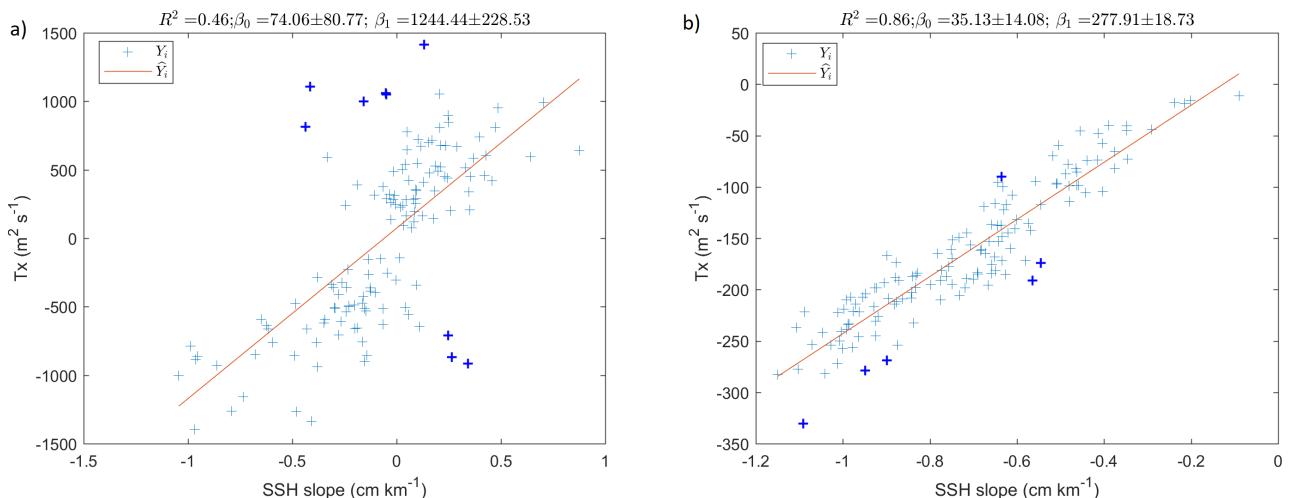


Figure 7: Linear regression models showing the relationship between HYCOM SSH and transport per unit distance (T_x) for a) CPIES-pair P3P4 (RM 8); capturing the least transport variance (46%) and b) Mooring A (RM 1); capturing the most transport variance (86%). Y_i (blue crosses) represent the T_x values from HYCOM and \hat{Y}_i (red line) represents the T_x estimates from the linear regression model. The bold crosses highlight the residual transport events with transport values greater or less than 2 standard deviations of the transport estimate. The coefficient of determination (R^2) quantifies the amount of variance explained by the regression model, β_1 is the slope coefficient and β_0 the intercept with 95% confidence intervals. Note the different scaling on the x & y-axes.

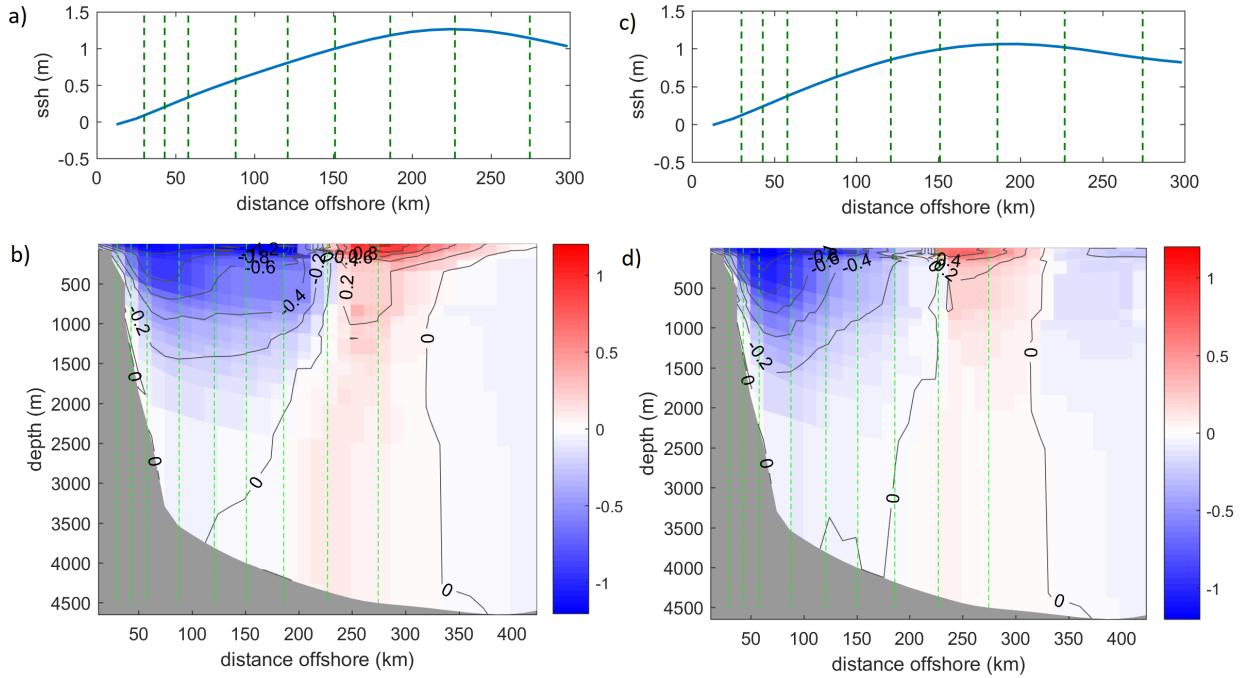


Figure 8: Composite SSH (m) and cross-track velocity structure (ms^{-1}) of the residual transport events from a & b) regression model 8 and c & d) regression model 1. Blue shading represents the negative, southwest current direction and red represents the positive, northeast current flow. Contours are every $0.2 ms^{-1}$. Dashed vertical lines represents the nine locations of the mooring and CPIES-pairs, the first line representing mooring A and CPIES-pair P4P5 furthest offshore.

480 current is towards southwest, whereas below ~ 700 m the flow is towards the northeast.
 481 Therefore, the vertically integrated flow (Tx) is positive, that is towards the northeast,
 482 and in the opposite direction implied by the SSH slope. In contrast, at the location of
 483 mooring A, the composite velocity field is always towards the southwest, that is consistent
 484 with the SSH slope.

485 The residual investigation (Figures 7 & 8) shows how large outliers decrease the overall
 486 performance of the linear regression models, by decreasing the percentage of captured
 487 variance. If these transport events were removed the performance of the linear regres
 488 sion models would statistically increase. Removing the outliers larger than ± 2 standard
 489 deviations from regression model 8, increases the percentage of captured variance from
 490 46% to 66%. For model 1, removing outliers increases the captured variance from 86% to
 491 88%. The improvement is specifically greater for regression model 8 due to the removal of
 492 the extreme events that violated the directly proportional relationship between SSH slope

493 and transport. Figure 3 shows the increase in the performance of the linear regression
494 models after the removal of the outlying transport events from all nine regression models.
495 The increase in variance explained is notable for the regression models corresponding to
496 the inshore moorings B and C and offshore moorings F, G and CPIES pairs P3P4 and
497 P4P5. After the removal of the outlying transport events, the box transport proxy was
498 re-calculated and its performance compared to the initial proxy. The “improved” T_{box}
499 proxy captures more variance, 72%, compared to 52% for the original proxy.

500 3.5 Sensitivity tests

501 The 34-year Agulhas transport proxy was based on regression models built using only
502 3 years of HYCOM model data. The statistics in Table 4 and Figure 9 illustrates the
503 results obtained from building the linear regression models and deriving the transport
504 proxy using 1, 3, 6, 12, 18 and 34 years of model data. The Taylor diagram (Figure
505 9) shows the distribution of the results in terms of standard deviation of the transport,
506 the correlation, and the root mean squared error (RMSE) between the proxies and the
507 HYCOM model transport. We find that the correlation between proxy box transport
508 and model box transport is not improved by using more model data to build the proxy.
509 The correlation is 0.72 when using data from 2010-2013, and changes by no more than
510 0.01 when extending the number of years of model data. Similarly, building the proxy
511 with one year of model data decreases the correlation by only 0.01 (Figure 9 & Table 4).
512 The only visible difference was the decrease in standard deviation. It was expected that
513 the correlation would increase because using more years of model data may capture more
514 current variability and the RMSE would decrease to correspond to the model transport
515 estimates.

516 The sensitivity of the box transport proxy was also tested using two arbitrary 3-year peri-
517 ods. In comparison to the correlation obtained during 2010-2013 the correlation decreased
518 by 0.02 during 1980-1982 and remained the same during 2000-2002. The results obtained
519 from calculating the T_{box} proxy during the maximum (minimum) transport and standard
520 deviation years in HYCOM showed no improvement or decrease in the skill of the proxy
521 either.

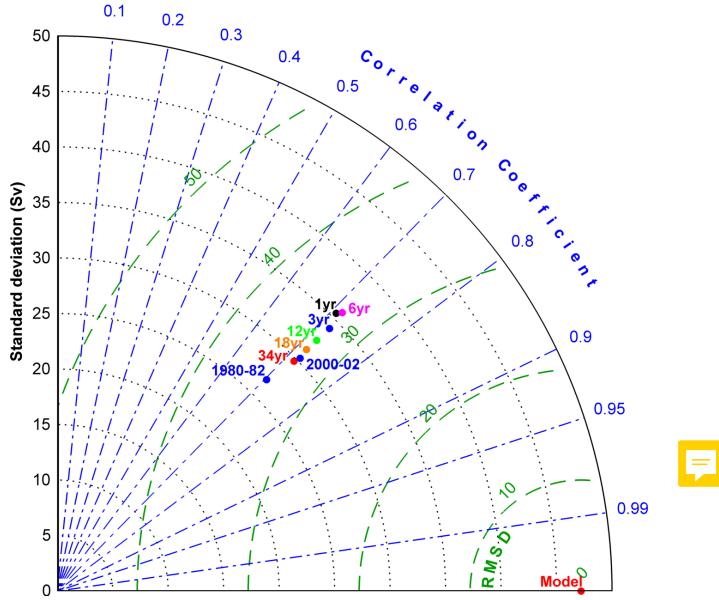


Figure 9: Taylor diagram showing the results of the box transport proxy calculated based on a 1-year linear relationship (black), 3 years (blue), 6 years (magenta), 12 years (green), 18 years (orange), 34 years (red) and during 1980–1982 and 2000–2002 (blue).

Table 4: Transport statistics and correlation results obtained from calculating the net transport proxy over a range of time periods.

Net transport	Transport (Sv)	STD (Sv)	RMSE (Sv)	r
MODEL	-84.32	47.23	0	1.00
1-yr	-87.26	35.47	33.36	0.71
3-yr	-87.21	34.09	32.76	0.72
6-yr	-87.04	35.91	33.04	0.72
12-yr	-86.91	32.51	32.83	0.72
18-yr	-88.71	31.28	32.95	0.72
34-yr	-88.15	29.74	33.14	0.72
1980–1982	-87.86	26.80	34.14	0.70
2000–2002	-94.80	30.31	32.87	0.72

522 4 Summary and conclusions

523 The Agulhas Current transport proxies, developed by Beal and Eliot [2016], were based
 524 on nine linear regression models, each assuming a constant linear relationship from three
 525 years of observations between *in situ* transport and satellite along-track sea surface gradi-
 526 ents. Applying constant linear models and assuming a constant vertical current structure,
 527 the transport proxies were extended using 22-years of along-track satellite data in order to
 528 yield two 22-year time-series of Agulhas Current transports [Beal and Eliot, 2016]. The
 529 Agulhas Current transport proxies in the current study replicates the methods used by

530 Beal and Eliot [2016] but applies these using a regional HYCOM model of the Agulhas
531 Current [Backeberg et al., 2009; 2014]. The HYCOM transport proxies were developed
532 using nine, three-year linear regression models between model transport and model SSH
533 slope, and extended using 34-years of the model SSH data from 1980 to 2014.

534 The HYCOM model provided the means to investigate the validity of the assumptions used
535 to create the proxies, such as the constant ~~relationship between SSH slope and transport~~
536 ~~per unit distance at each mooring location and the temporal scale of observations needed~~
537 ~~to build a strong linear relationship between transport and SSH slope.~~ Two transport
538 types, the ~~box transport~~ and the ~~jet transport~~, were extracted from HYCOM in order
539 to validate the ~~box transport proxy (T_{box})~~ and the ~~jet transport proxy (T_{jet})~~. The T_{box}
540 proxy explained a higher percentage of ~~transport variance (57%)~~ during the three year
541 reference period (2010–2013), in comparison to the T_{jet} proxy that only captured 14%
542 of the variance. Using 34 years of model data (1980–2014), assuming the fixed 3 year
543 relationship between SSH slope and transport, T_{box} explained 52% of the variance in
544 comparison to T_{jet} that only captured 26%. Results from Beal and Eliot [2016] also
545 showed that the ~~box transport proxy (T_{box})~~ explained a higher percentage of variance
546 (61%) during the ACT period than the ~~jet transport proxy (T_{jet}): 55%~~.

547 The ~~poorer performance of the T_{jet} proxy in HYCOM compared to the *in situ* T_{jet} proxy~~
548 of Beal and Eliot [2016] is partly due to various model discrepancies such as the consist
549 ent merging of the anticyclonic eddies with the Agulhas Current in the northern region
550 [Backeberg et al., 2014], in addition to unresolved eddy dissipation in this region [Braby
551 et al., 2016]. It may also possibly be because it only represents the southwestward flow,
552 whereas the ~~input sea surface slope reflects the net flow along the array~~. Therefore, con
553 sidering the ~~box transport proxy~~ explains a higher percentage of variance for most of the
554 34 year period, further analysis on the current structure was based on the T_{box} proxy only.

555 One of the main assumptions on which the Agulhas transport proxy relies is that the
556 vertical structure of the current does not change outside the 3 year reference period [Beal
557 and Eliot, 2016]. There are limitations to the ability of satellite altimeters to detect
558 sub-surface variability [Robinson, 2004], however, it has been suggested that a strong
559 relationship between SSH and full depth transport exists [Beal and Eliot, 2016].

560 The surface structure of the current was investigated in terms of the mean EKE and SSH
561 contours (Figure 5), which are ideally equivalent to surface geostrophic flow and hence
562 show the mean horizontal extent of the current [Robinson, 2004]. The vertical variability
563 was investigated by plotting the mean cross track velocity profiles (Figure 6). During the
564 highest correlated year (1988) the current is stable and inshore, whereas during the lowest
565 correlated year (1994) and during the proxy development period (2010–2013) the current
566 is meandering and it appears that a large portion of the energy of the current has been
567 shifted offshore. These results are consistent with Eliot and Beal [2015], who showed that
568 during the passage of a meander event, a large portion of kinetic energy is extracted from
569 the flow through the process of barotropic conversion. Results from the analysis of the
570 vertical profile of the current reveals subsurface counterflows, specifically for the offshore
571 moorings (C, P3P4 and P4P5) and occasionally for inshore mooring B. An explanation
572 for the offshore subsurface counter flows may be due to the impinging baroclinic eddies
573 continuously propagating downstream [Backeberg et al., 2009], which thereby affect the
574 entire water column by changing the direction of flow at certain depths. This will explain
575 why the transport proxy fails to capture current reversals, as implied by the positive
576 minimum transport values in Table 3, because the SSH slope is not reflective of the
577 subsurface counterflows associated with the impinging baroclinic eddies. The occasional
578 current reversal for inshore mooring B (43 km offshore, 1264 m depth) may be due to
579 influence of the simulated Agulhas Undercurrent in HYCOM which flows approximately
580 40–60 km offshore, 1000–1700 m deep (Figure 8), as opposed to *in situ* estimates of 11–60
581 km offshore and 1000–2900 m deep [Beal, 2009].

582 The question still remains as to why most of the transport variance was explained in the
583 year 1988 and the least in 1994? Figure 3 highlighted that the performance of the linear
584 regression models decreased offshore, such that when the current is in a meandering
585 state, the T_{box} proxy fails to accurately estimate the transport. It could be assumed
586 that using the T_{jet} proxy would improve the accuracy, however, the performance of the
587 southwest regression models are only slightly stronger at the offshore end of the array. The
588 jet transport proxy by Beal and Eliot [2016] was developed to effectively estimate the
589 transport of the Agulhas Current in the event of a mesoscale meander, which generally
590 causes the current to manifest as a full depth, surface intensified, cyclonic circulation

591 out to 150km from the coast with anticyclonic circulation farther offshore [Elipot and
592 Beal, 2015]. The Agulhas meanders in the HYCOM simulation occur in association with
593 large anticyclonic eddies predominantly defined to the offshore edge of the current, with a
594 narrow, southwest stream against the coast [Backeberg et al., 2009] or in some instances
595 with an anticyclonic eddy across the entire length of the array. The resolution of HYCOM
596 is able to capture the mesoscale dynamics of eddies [Holton et al., 2017] however, it fails to
597 resolve the near coastal features, such as the inshore, surface intensified cyclonic motion
598 in this simulation. This would require a finer resolution at the coast, in order to reveal
599 smaller offshore displacements, ~ 50 km, associated with these meander events [Elipot
600 and Beal, 2015]. The high levels of offshore variability in HYCOM is therefore the main
601 limiting factor in the performance of both transport proxies.

602 The regression model for CPIES pair P3P4 (regression model 8) performed the worst, only
603 explaining 46% of the transport variance (Figure 7a). Evidence from the HYCOM velocity
604 fields showed that the offshore location of CPIES pair P3P4 was highly susceptible to the
605 impinging anticyclonic eddies, which in turn resulted in high levels of variability in the
606 horizontal and vertical velocity current structure (Figures 7a & 8). The presence of the
607 anticyclonic eddies would be included in T_{box} , considering that the eddies produce a strong
608 surface signature (Figure 5), but the SSH slope might not necessarily be reflective of the
609 transport beneath the eddy. It has been observed in a layered ocean that, when assuming
610 geostrophy, the net transport in the uppermost layer (~ 0 –1000 m) is mainly proportional
611 to the SSH slope [Andres et al., 2008]. If this was the case, the performance of regression
612 model 8 would be higher, but the current experiences a baroclinic flow beneath the entire
613 water column which is not reflective of the SSH slope (Figure 8). As the anticyclonic eddy
614 crosses the offshore edge of the ACT array, its baroclinic nature in HYCOM effects the
615 direction of velocity beneath the location of CPIES pair P3P4, which therefore results in
616 a weak correlation between SSH slope and transport. The impinging anticyclonic eddies
617 would have a similar influence on the offshore regression models for mooring G and CPIES
618 pair P4P5 (Figure 8).

619 The regression model for mooring A (regression model 1) performed the best in terms of
620 the correlation between SSH slope and transport per unit distance (Figure 7b) explaining
621 86% of the variance. The inshore location of mooring A, 30 km off the coast, experienced

622 low levels of transport variability with a stable southwest current trajectory (Figure 5 &
623 8) and Figures 6 and 8 illustrate a barotropic current structure in the vicinity of mooring
624 A with no sub surface counterflows. The small, sub surface variability observed inshore of
625 the array, below 2000 m depth do not necessarily have a direct impact on the SSH signal or
626 drastically change the volume transport of the water column, however the further offshore,
627 the closer the interaction of the current with the offshore baroclinic eddies, the weaker
628 the performance of the regression model.

629 It is important to consider that the Agulhas Current simulation in HYCOM is not com-
630 pletely realistic, demonstrating much higher levels of mesoscale variability than observed
631 [Backeberg et al., 2008; 2009]. Rouault and Penven [2011] and Eliot and Beal [2015]
632 showed that, on average, 1.6 mesoscale meanders pass through the ACT array at 34°S per
633 year. In the HYCOM simulation an average of 5 anticyclonic eddies passed over the array
634 per year. A study by Braby et al. [2016] investigating eddy activity in the northern Agul-
635 has Current using satellite altimetry, showed that both cyclonic and anticyclonic source
636 eddies dissipate upon approaching the main Agulhas Current. However, the observed
637 eddy interaction and dissipation process is poorly resolved in many numerical ocean mod-
638 els [Tsugawa and Hasumi, 2010; Penven et al., 2011; Durgadoo et al., 2013; Backeberg
639 et al., 2014; Loveday et al., 2014], including the HYCOM model used in this study.

640 The frequently impinging eddies make it difficult to effectively estimate the accurate box
641 transport of the Agulhas Current in the model since the advection of these eddies have
642 previously been found to be responsible for large transport fluctuations [Backeberg et al.,
643 2009]. The transport proxy only includes the transport of the portion of the eddy that
644 is reflected in the SSH signal across the array, whether it is only the southwestward or
645 northeastward portion of the eddy or both, and should therefore match the transport
646 peaks from the model. The transport in the model and proxy may fluctuate accordingly,
647 however the transport estimates will not necessarily be equivalent, since it also depends
648 on the strength of the proxy along the ACT array. In other words, the transport proxy
649 may capture the SSH signal of the eddies along the array, however the correlation of the
650 regression models decrease offshore, therefore transport estimates inshore would be more
651 accurate than the transport estimates offshore when the current is in a meandering state.
652 It was shown that removing the residual transport events violating the proportional rela-

653 tionship between SSH slope and transport improved the proxy performance i.e. increased
654 the percentage of transport variance explained. Several studies have researched methods
655 to decrease the levels of EKE in numerical simulations. Backeberg et al. [2009] improved
656 the representation of the southern Agulhas Current by applying a higher-order momentum
657 advection scheme, resulting in a well-defined meandering current rather than a continu-
658 ous stream of eddies. Anderson et al. [2011] found that the use of relative wind forcing
659 significantly decreased eddy intensities and a study by Renault et al. [2017] focussing on
660 the current stress feedback between the ocean and atmosphere demonstrated a reduction
661 of mesoscale activity by deflecting energy from the geostrophic current to the atmosphere,
662 showing that the indirect current feedback, improved the representation of the Agulhas
663 Current. Improving the mesoscale variability in the HYCOM model could therefore yield
664 better results for the transport proxy, specifically for the offshore regression models, in the
665 future. Furthermore, improving the simulation of coastal, shelf and continental slope fea-
666 tures, including the Agulhas Undercurrent could decrease the performance of the inshore
667 regression models. In order to effectively mirror the performance of the *in situ* transport
668 proxy developed by [Beal and Eliot, 2016] would ideally require a numerical model that
669 accurately simulates Agulhas meanders and the vertical variability, including an accurate
670 representation of the Agulhas Undercurrent, which has not yet been achieved in existing
671 regional configurations.

672 The development of the ACT transport proxy was initially tested using a regional NEMO
673 configuration in order to evaluate the potential of the altimeter proxy to monitor the
674 multi-decadal transport of the Agulhas Current [van Sebille et al., 2010]. Using the
675 numerical model, it was concluded that the correlation between the Agulhas Current
676 transport and gradient in sea surface height was greater than $r=0.78$ for any three-year
677 measuring period, and is therefore an adequate timescale to build an accurate transport
678 proxy [van Sebille et al., 2010].

679 The HYCOM output in the current study was used to test the validity of the relationship
680 between transport and SSH slope over a range of time periods. It was hypothesised
681 that building the linear relationship over longer time periods, >3 years, would increase
682 the skill of the transport proxy, since the linear relationship would include more current
683 variability over longer periods of time. The results showed that calculating the transport

proxy over longer or shorter time periods did not necessarily improve the performance of the proxy, thereby suggesting that the current dynamics for any 3-year period in the model could be very similar, in agreement with the results obtained in van Sebille et al. [2010], suggesting that the results were consistent despite the model biases. ~~This justifies that 3 years is a sufficient time period to develop the satellite altimeter transport proxy of the Agulhas Current in HYCOM.~~ Lastly, the study showed that the transport proxy is sensitive to subsurface variability in the model, ~~suggesting that~~ caution should be taken regarding the implicit assumption of a fixed vertical current structure. The accuracy of the transport proxy remains sensitive to model bias ~~and implications therein, suggesting that these results should be tested rigorously in other model simulations.~~ Sensitivity studies of this kind, using numerical ocean models, provide useful information ~~into planning in situ studies in the future, and understanding the sensitivities and limitations of transport proxies could further improve long term monitoring methods in the global ocean.~~

697 *Authors contributions

698 E.V. conducted the data analyses and wrote up the final paper. B.B provided the HYCOM
699 model data, supervised the project and provided financial support. J.H. supervised the
700 project and provided financial support and S.E. assisted with the methodology of the
701 transport proxy. All authors helped to conceptualize ideas and contributed to writing the
702 paper.

703 We have no conflicts of interest to disclose.

704 *Acknowledgements

705 This work has been funded by the National Research Foundation of South Africa and
706 by the bilateral South Africa-Norway SANCOOP SCAMPI project. We would like to
707 thank the Nansen-Tutu Centre in South Africa and SAEON for providing opportunities
708 to present the project locally and internationally. We thank the Nansen Environmental
709 Remote Sensing Centre (NERSC) in Bergen, Norway, for hosting us for a duration of
710 the project and wish to thank Dr. Knut-Arild Lisæter for his guidance while working at
711 NERSC. We gratefully acknowledge Professor Lisa Beal, Dr. Shane Elipot and the rest of
712 the ASCA team from the Rosenstiel School of Marine and Atmospheric Science (RSMAS),
713 University of Miami, for granting us permission to replicate the Agulhas transport proxy
714 methods. Shane Elipot was supported by the U.S. National Science Foundation through
715 the ASCA project, Award OCE-1459543.

716 **References**

717 Anderson, L. A., McGillicuddy, D. J., Maltrud, M. E., Lima, I. D., and Doney, S. C.: Im-
718 pact of eddy-wind interaction on eddy demographics and phytoplankton community
719 structure in a model of the North Atlantic Ocean, *Dynamics of Atmospheres and*
720 *Oceans*, 52, 80–94, <https://doi.org/10.1016/j.dynatmoce.2011.01.003>, 2011.

721 Andres, M., Park, J.-H., Wimbush, M., X-H, Z., Chang, K., and Ichikawa, H.: Study
722 of the Kuroshio / Ryukyu Current System Based on Satellite-Altimeter and in situ
723 Measurements, *Journal of Oceanography*, 64, 937–950, 2008.

724 Antonov, J. I. and Levitus, S.: World ocean atlas 2005. Vol. 2, Salinity, 2006.

725 Backeberg, B. C., Johannessen, J. A., Bertino, L., and Reason, C. J.: The greater Agulhas
726 Current system: An integrated study of its mesoscale variability, *Journal of Physical*
727 *Oceanography*, 1, 29–44, 2008.

728 Backeberg, B. C., Bertino, L., and Johannessen, J. A.: Evaluating two numerical advec-
729 tion schemes in HYCOM for eddy-resolving modelling of the Agulhas Current, *Ocean*
730 *Science*, pp. 173–190, 2009.

731 Backeberg, B. C., Penven, P., and Rouault, M.: Impact of intensified Indian Ocean winds
732 on mesoscale variability in the Agulhas system, *Nature Climate Change*, 2, 608–612,
733 <https://doi.org/10.1038/nclimate1587>, 2012.

734 Backeberg, B. C., Counillon, F., Johannessen, J. a., and Pujol, M. I.: Assimilating along-
735 track SLA data using the EnOI in an eddy resolving model of the Agulhas system,
736 *Ocean Dynamics*, pp. 1121–1136, <https://doi.org/10.1007/s10236-014-0717-6>, 2014.

737 Beal, L. M.: A Time Series of Agulhas Undercurrent Transport, *Journal of Physical*
738 *Oceanography*, 39, 2436–2450, <https://doi.org/10.1175/2009JPO4195.1>, 2009.

739 Beal, L. M. and Eliot, S.: Broadening not strengthening of the Agulhas Current since
740 the early 1990s, *Nature Publishing Group*, 540, 570–573, <https://doi.org/10.1038/nature19853>, 2016.

742 Beal, L. M., De Ruijter, W. P. M., Biastoch, A., and Zahn, R.: On the role of the
743 Agulhas system in ocean circulation and climate., *Nature*, 472, 429–36, <https://doi.org/10.1038/nature09983>, 2011.

745 Beal, L. M., Elipot, S., Houk, A., and Leber, G. M.: Capturing the Transport Variability
746 of a Western Boundary Jet: Results from the Agulhas Current Time-Series Experiment
747 (ACT)*, *Journal of Physical Oceanography*, 45, 1302–1324, <https://doi.org/10.1175/JPO-D-14-0119.1>, 2015.

749 Biastoch, A. and Krauss, W.: The Role of Mesoscale Eddies in the Source Regions of the
750 Agulhas Current, *Journal of Physical Oceanography*, 29, 2303–2317, 1999.

751 Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian
752 coordinates, 37, 55–88, 2002.

753 Braby, L., Backeberg, B. C., Ansorge, I., Roberts, M. J., Krug, M., and Reason, C. J. C.:
754 Observed eddy dissipation in the Agulhas Current, *Geophysical Research Letters*, 43,
755 8143–8150, <https://doi.org/10.1002/2016GL069480>, 2016.

756 Cai, W.: Antarctic ozone depletion causes an intensification of the Southern Ocean
757 super-gyre circulation, *Geophysical Research Letters*, 33, 1–4, <https://doi.org/10.1029/2005GL024911>, 2006.

759 Chassignet, E. P., Hurlburt, H. E., Martin, O., Halliwell, G. R., Hogan, P. J., Wallcraft,
760 A. J., Baraille, R., and Bleck, R.: The HYCOM (HYbrid Coordinate Ocean Model) data
761 assimilative system, 65, 60–83, <https://doi.org/10.1016/j.jmarsys.2005.09.016>, 2007.

762 Chelton, D. B., DeSzeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.: Geograph-
763 ical Variability of the First Baroclinic Rossby Radius of Deformation, *Journal of Phys-
764 ical Oceanography*, 28, 433–460, [https://doi.org/10.1175/1520-0485\(1998\)028<0433:GVOTFB>2.0.CO;2](https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2), 1998.

766 de Ruijter, W. P. M., van Leeuwen, P. J., and Lutjeharms, J. R. E.: Generation and
767 Evolution of Natal Pulses: Solitary Meanders in the Agulhas Current, *Journal of Phys-
768 ical Oceanography*, 29, 3043–3055, [https://doi.org/10.1175/1520-0485\(1999\)029<3043:GAEONP>2.0.CO;2](https://doi.org/10.1175/1520-0485(1999)029<3043:GAEONP>2.0.CO;2), 1999.

770 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae,
771 U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg,
772 L. V. D., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J.,
773 and Dee, D. P.: The ERA-Interim reanalysis : configuration and performance of the
774 data assimilation system, pp. 553–597, <https://doi.org/10.1002/qj.828>, 2011.

775 Dijkstra and de Ruijter, W.: On the Physics of the Agulhas Current : Steady Retroflection
776 Regimes, Jounrnal of Physical Oceanography, 31, 2971–2985, 2001.

777 Durgadoo, J., Loveday, B., Reason, C., Penven, P., and Biastoch, A.: Agulhas Leakage
778 Predominantly Responds to the Southern Hemisphere Westerlies, Jounrnal of Physical
779 Oceanography, 43, 2113–2131, <https://doi.org/10.1175/JPO-D-13-047.1>, 2013.

780 Eliot, S. and Beal, L.: Characteristics , Energetics , and Origins of Agulhas Current
781 Meanders and their Limited Influence on Ring Shedding, Journal of Physical Oceano-
782 graphy, 45, 2294—2314, 2015.

783 Eliot, S. and Beal, L. M.: Observed Agulhas Current sensitivity to interannual and
784 long-term trend atmospheric forcings, Journal of Climate, In press, 2018.

785 Fu, L.-L., Chelton, D., Le Traon, P.-Y., and Morrow, R.: Eddy Dynamics From Satellite
786 Altimetry, Oceanography, 23, 14–25, <https://doi.org/10.5670/oceanog.2010.02>, 2010.

787 George, M. S., Bertino, L., O.M, J., and A, S.: Validation of a hybrid coordinate
788 ocean model for the Indian Ocean, Journal of Operational Oceanography, 3, 25–38,
789 <https://doi.org/10.1080/1755876X.2010.11020115>, 2010.

790 Gordon, A. L.: Oceanography: The brawnies retroflection, Nature, 421, 904–905,
791 <https://doi.org/10.1038/421904a>, 2003.

792 Gordon, A. L., Lutjeharms, J. R., and Gründlingh, M. L.: Stratification and circulation at
793 the Agulhas Retroflection, Deep Sea Research Part A. Oceanographic Research Papers,
794 34, 565–599, [https://doi.org/10.1016/0198-0149\(87\)90006-9](https://doi.org/10.1016/0198-0149(87)90006-9), 1987.

795 Hermes, J. C., Reason, C., and Lutjeharms, J.: Modeling the Variability of the Greater
796 Agulhas Current System, Journal of climate, 20, 3131–3146, <https://doi.org/10.1175/JCLI4154.1>, 2007.

798 Holton, L., Deshayes, J., Backeberg, B., Loveday, B., Hermes, J., and Reason, C.: Spatio-
799 temporal characteristics of Agulhas leakage: a model inter-comparison study, Climate
800 dynamics, 48, 2107–2121, 2017.

801 Imawaki, S., Uchida, H., Ichikawa, H., and Fukasawa, M.: Satellite altimeter monitoring
802 the Kuroshio transport south of Japan, Geophysical Research Letters, 28, 17–20, 2001.

803 Loveday, B. R., Durgadoo, J. V., Reason, C. J., Biastoch, A., and Penven, P.: Decoupling
804 of the Agulhas leakage from the Agulhas Current, Journal of Physical Oceanography,
805 44, 1776–1797, <https://doi.org/10.1175/JPO-D-13-093.1>, 2014.

806 Lutjeharms, J. R. E.: The Agulhas Current, 2006.

807 Maul, G. A., Mayer, D. A., and Bushnell, M.: Statistical relationships between local sea
808 level and weather with Florida-Bahamas cable and Pegasus measurements of Florida
809 Current volume transport, Journal of Geophysical Research, 95, 3287–3296, 1990.

810 Penven, P., Herbette, S., and Rouault, M.: Ocean Modelling in the Agulhas Current
811 System, in: Nansen-Tutu Conference Proceedings, pp. 17–21, <https://doi.org/10.1017/CBO9781107415324.004>, 2011.

813 Reason, C. J. C.: Subtropical Indian Ocean SST dipole events and southern African
814 rainfall, Geophysical Research Letters, 28, 2225–2227, 2001.

815 Renault, L., McWilliams, J. C., Penven, P., Renault, L., McWilliams, J. C., and Pen-
816 ven, P.: Modulation of the Agulhas Current Retroflection and Leakage by Oceanic
817 Current Interaction with the Atmosphere in Coupled Simulations, Journal of Physical
818 Oceanography, 47, 2077–2100, <https://doi.org/10.1175/JPO-D-16-0168.1>, 2017.

819 Robinson, I. S.: Measuring the oceans from space: the principles and methods of satellite
820 oceanography, Springer Science & Business Media, 2004.

821 Rouault, M. and Lutjeharms, J.: Estimation of sea-surface temperature around southern
822 Africa from satellite-derived microwave observations., South African journal of science,
823 99, 489–493, 2003.

824 Rouault, M., White, S. A., Reason, C. J. C., Lutjeharms, J. R. E., and Jobard, I.:
825 Ocean Atmospheric Interaction in the Agulhas Current Region and a South African

826 Extreme Weather Event, Weather and Forecasting, 17, 655–669, [https://doi.org/10.1175/1520-0434\(2002\)017<0655:OAIITA>2.0.CO;2](https://doi.org/10.1175/1520-0434(2002)017<0655:OAIITA>2.0.CO;2), 2002.

828 Rouault, M. J. and Penven, P.: New perspectives on Natal Pulses from satellite ob-
829 servations, Journal of Geophysical Research: Oceans, 116, 1–14, <https://doi.org/10.1029/2010JC006866>, 2011.

831 Rouault, M. J., Mouche, A., Collard, F., Johannessen, J. A., and Chapron, B.: Mapping
832 the Agulhas Current from space : An assessment of ASAR surface current velocities,
833 Journal of Geophysical Research, 115, 1–14, <https://doi.org/10.1029/2009JC006050>,
834 2010.

835 Smith, L., , Boudra, D., and R, B.: A Wind-Driven Isopycnic Coordinate Model of the
836 North and Equatorial Atlantic Ocean 2 . The Atlantic Basin Experiments, Journal of
837 Geophysical Research, 95, 105–128, 1990.

838 Sprintall, J. and Revelard, A.: The Indonesian Throughflow response to Indo-Pacific
839 climate varability, Journal of Geophysical Research: Oceans, 119, 1161–1175,
840 <https://doi.org/10.1002/2013JC009533>.Received, 2014.

841 Tsugawa, M. and Hasumi, H.: Generation and Growth Mechanism of the Natal
842 Pulse, Jounrnal of Physical Oceanography, 40, 1597–1612, <https://doi.org/10.1175/2010JPO4347.1>, 2010.

844 Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino,
845 M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen,
846 S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A.
847 C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof,
848 A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Holm, E., Hoskins, B. J.,
849 Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J., Morcrette,
850 J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A.,
851 Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Quarterly Journal
852 of the Royal Meteorological Society, 131, 2961–3012, <https://doi.org/10.1256/qj.04.176>,
853 2005.

854 van Sebille, E., Beal, L. M., and Biastoch, A.: Sea surface slope as a proxy for
855 Agulhas Current strength, *Geophysical Research Letters*, 37, 2–5, <https://doi.org/10.1029/2010GL042847>, 2010.

857 Yan, X. M. and Sun, C.: An altimetric transport index for Kuroshio inflow northeast
858 of Taiwan Island, *Science China Earth Sciences*, 58, 697–706, <https://doi.org/10.1007/s11430-014-5024-z>, 2015.

860 Yang, H., Lohmann, G., Wei, W., Dima, M., Ionita, M., and Liu, J.: Intensification
861 and poleward shift of subtropical western boundary currents in a warming climate,
862 *Journal of Geophysical Research: Oceans*, 121, 4928–4945, <https://doi.org/10.1002/2015JC010796>, 2016.

864 Zhu, X. H., Ichikawa, H., Ichikawa, K., and Takeuchi, K.: Volume transport variability
865 southeast of Okinawa Island estimated from satellite altimeter data, *Journal of Ocean-
866 graphy*, 60, 953–962, <https://doi.org/10.1007/s10872-005-0004-8>, 2004.