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Abstract A novel predictive model is built for eddy propagation trajectory using the 19 

multiple linear regression method. This simple model has related various oceanic 20 

parameters to eddy propagation position changes in the northern South China Sea 21 

(NSCS). These oceanic parameters mainly represent the effects of   and mean flow 22 

advection on the eddy propagation. The performance of the proposed model is 23 

examined in the NSCS based on five years of satellite altimeter data, and 24 

demonstrates its significant forecast skills over a 4-week forecast window comparing 25 

to the traditional persistence method. It is also found that the model forecast accuracy 26 

is sensitive to eddy polarity and forecast season.  27 

28 



3 
 

1. Introduction 29 

Mesoscale eddies are coherent rotating structures that are ubiquitous over most of the 30 

world’s oceans (Chelton et al., 2007). They play an important role in the transport of 31 

momentum, heat, mass and chemical and biological tracers, thereby become critical 32 

for issues such as general circulation, water mass distribution, ocean biology and 33 

climate change (Wang et al., 2012; Dong et al., 2014; Zhang et al., 2014; Ma et al., 34 

2016; Li et al., 2017). Therefore, forecasting the eddy propagation positions 35 

accurately is not only important scientifically but also important practically for 36 

problems such as ocean observing systems designing, fishing planning, and 37 

underwater acoustic detecting.  38 

 39 

Traditionally, ocean dynamical models were used as the tool of predicting the 40 

evolution of ocean eddies (Robinson et al., 1984). Since mesoscale eddies are often 41 

associated with strong nonlinear processes and their dynamical mechanisms are quite 42 

different, the operational forecast of eddies has been a big challenge to ocean 43 

numerical model. Much progress has been made in recent years in eddy-resolving 44 

ocean prediction. With the data assimilation and the increasing of model resolution, 45 

the model increases forecast skill. Daily forecast errors of eddy center positions in the 46 

northwestern Arabian Sea and Gulf of Oman are 44-68 km in 1/12o global HYCOM 47 

model, and reach to 22.5-37 km in 1/32o NLOM model (Hurlburt et al., 2008). The 48 

forecast skill and predictability of dynamical models can only be increased by better 49 

assimilation schemes (initialization), sufficient data (especially the subsurface), and 50 

improving resolution (physics and computing) (Rienecker et al., 1987; Oey et al., 51 

2005). These restrictions preclude the all-pervading operational use of dynamical 52 

models when these initial data and computing power are not feasible due to some 53 

reasons.  54 

 55 

In this paper, we developed a simple statistical model to predict the eddy positions 1-4 56 

weeks in advance using only the past positions of the eddy and its surrounding fields. 57 
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Our “test block” of ocean is the northern South China Sea (NSCS). South China Sea 58 

is a semi-enclosed sea under the dramatic influence of the East Asian Monsoon and 59 

Kuroshio intrusion (Liu and Xie, 1999; Shaw, 1991). Due to the variable external 60 

forcing and complex topography, mesoscale eddies show obvious geographic 61 

distributions and various characteristics (Wang et al., 2003; Xiu et al., 2010; Chen et 62 

al., 2011), but the common character is the overall westward tendency of eddy 63 

trajectories no matter of the eddy polarity (Fig. 1). We will first analyze the pattern 64 

and dynamics of the common westward movement of eddies in the NSCS, then 65 

choose the potential predictors and develop a simple predictive model for eddy 66 

propagation trajectories, and finally evaluate the model performance and discuss the 67 

impact of eddy polarity and season on the forecast accuracy. 68 

2. Data and Methods 69 

2.1 Data 70 

The sea level anomalies (SLA) are from the Archiving, Validation and Interpretation 71 

of Satellite Oceanographic data (AVISO, ftp://ftp.aviso.oceanobs.com/) (Ducet et al., 72 

2000). The product merges the measurements of TOPEX/Poseidon, European Remote 73 

Sensing Satellite (ERS-1/2), Geosat Follow-on, Jason-1/2, and Envisat, and spans the 74 

period from October 14, 1992 to August 7, 2013. Its temporal resolution is weekly, 75 

and its spatial resolution is 0.25o latitude by 0.25o longitude. To estimate the 76 

large-scale geostrophic currents, we use the absolute dynamic topography (ADT), 77 

which consists of the SLAs and a mean dynamic topography (MDT). The method for 78 

calculating the MDT was introduced by Rio and Hernandez (2004), and the data is 79 

also distributed by AVISO. 80 

 81 

The monthly climatology of observed ocean temperature and salinity from U.S. Navy 82 

Generalized Digital Environment Model (GDEM-Version 3.0) is used to calculate the 83 

phase speed of nondispersive baroclinic Rossby waves in the NSCS. It has a 84 

horizontal resolution of 0.25o latitude by 0.25o longitude, and 78 standard depths from 85 
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0 to 6600 m with the vertical resolution varying from 2 m at the surface to 200 m 86 

below 1600 m (Canes, 2009).  87 

 88 

The NSCS eddy trajectory data is derived from the 3rd release of the global eddy 89 

dataset (http://cioss.coas.oregonstate.edu/eddies/). The eddy center positions within 90 

their trajectories are recorded at 7-day time intervals. A detailed description of the 91 

eddy trajectory dataset can be found in Chelton et al. (2011). To forecast the eddy 92 

trajectory 1-4 weeks in advance using the last position of the eddy, only eddies with a 93 

lifetime of 5 weeks or longer are retained in this study. 94 

2.2 The Maximum Cross-Correlation Method 95 

The maximum cross-correlation (MCC) method is a space-time lagged technique, 96 

which can estimate the surface motions from time-sequential remote sensing images. 97 

It has been successfully used to track clouds from geosynchronous satellite data 98 

(Leese et al., 1971), to compute sea-ice motion (Ninnis et al., 1986) and advective 99 

surface velocities (Emery et al., 1986) from sequential infrared satellite images, and to 100 

determine the propagation velocities of ocean eddies from satellite altimeter data (Fu, 101 

2006, 2009). The MCC method used in this study is the same as that of Fu (2009), 102 

which is a little different with that of Emery et al. (1986). In the method of Emery et 103 

al., the correlations of the image in the subwindow with all the neighboring ones in 104 

the whole window at the next time are computed, and the speed and direction of the 105 

maximum correlation can be estimated. While in the method of Fu (2009), the 106 

correlations of the SLA at a given location with all the neighboring SLA at various 107 

time lags are computed, and the speed and direction of the maximum correlation can 108 

be estimated. The reason of their difference may be due to the low time-space 109 

resolution of SLA comparing with other infrared satellite images.  110 

 111 

The MCC method mainly consists of two procedures (Fu, 2009): first, the 112 

cross-correlations of the SLA time series ( h ) with others within a certain range box 113 

are computed for some time lags ( T ) in multiples of 7 days (time resolution of SLA 114 
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data) at each grid node location ( ,x y ) as: 115 

 , ( , , ) ( , , ) ( , , )x yC x y T h x y t h x x y y t T               (1) 116 

where x  and y  are the spatial lags and the over bar means time averaging. 117 

Second, the position of the maximum correlation at each time lag ( T ) is identified 118 

and a speed can be derived from the time lag and the distance of this position from the 119 

origin. Then an average speed vector ( ,u v ) weighted by the correlation coefficients is 120 

calculated from the estimates at various time lags as: 121 
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 (2) 122 

where iC  is the maximum correlation at iT , and ix , iy  are the distances 123 

between the position of maximum correlation and the origin. The average velocities 124 

are then assigned to the eddy movement velocities at the given grid point.  125 

 126 

To focus on the global mesoscale eddy, the time lags were limited to less than 70 days 127 

and the dimension of the window was less than 400 km (Fu, 2009). While in the 128 

NSCS, the time lags should be limited to less than 42 days, since many correlation 129 

coefficients are below the 95% confidence level at larger time lags (Zhuang et al., 130 

2010). Besides, Chen et al. (2011) found that eddies propagate with 5.0-9.0 cm/s in 131 

the NSCS. Thus the search radius can be generally limited as 300 km (9.0 cm/s*42 132 

days300 km) to reduce incidence of spurious MCC vectors. Since the mean flow 133 

and associated eddy propagation in the SCS have seasonal variability, we divided the 134 

weekly SLA data from 1992 to 2013 into four groups according to four seasons 135 

(winter: December-February, spring: March-May, summer: June-August, autumn: 136 

Septermber-November). Then the seasonal climatological eddy propagation velocities 137 

can be estimated from the same seasonal group at intervals of 1 week using the MCC 138 

method. 139 

2.3 The Multiple Linear Regression Model 140 

To develop a simple statistical predictive model for relating various oceanic 141 

parameters to eddy propagation position changes, the multiple linear regression 142 

method is used for developing such statistical forecast model. The multiple linear 143 
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regression is a linear approach to modeling the relationship between the response and 144 

explanatory variables. This classical method has many practical uses in oceanography 145 

and meteorology, such as the prediction of Arctic sea ice extent (Zhang, 2015), the 146 

estimation of subsurface salinity profile (Bao et al, 2019), the estimation of 147 

anthropogenic CO2 accumulation in the Southern Ocean (Matear and McNeil, 2003), 148 

the forecast of typhoon track (Aberson and Sampson, 2003) and intensity (Demaria 149 

and Kaplan, 1994), Maddan-Julian Oscillation forecast (Seo, 2008), and ENSO 150 

prediction (Dominiak and Terray, 2005).  151 

 152 

In this study, the predictands (dependent variables) are the zonal and meridional 153 

displacements at each forecast time from the initial position (Table 1). The choice of 154 

the predictors based on physical analysis will be shown in detail in Section 3. Since 155 

the variables used for the regression involve different scales and units, it is 156 

inappropriate to use them directly, as it may cause the fitting to deviate from the 157 

physical constraints. Thus all the variables are normalized with their anomalies 158 

divided by their corresponding standard deviations before the regressing. After that, 159 

the normalized predicted zonal (meridional) displacement DX (DY) can be estimated 160 

using a multiple linear regression method: 161 

 , ,
1

1, 4
n

j i j i
i

DX a P j


     (3) 162 

 , ,
1

1, 4
n

j i j i
i

DY b P j


     (4) 163 

where the subscript j refers to the forecast interval (1-4 weeks), the subscript i refers 164 

to the serial number of normalized predictors (P), n represents the number of selected 165 

predictors; a and b donate the regression coefficients of predictors onto DX and DY, 166 

respectively.  167 

 168 

There are a total of 8 regression equations, i.e., both the meridional and zonal 169 

directions for the weeks of 1-4. We separate the whole eddy trajectories into two sets: 170 

one for regressing and the other for forecasting. At week-1, we used 1981 (76%) eddy 171 
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trajectory segments (a segment is the distance between two neighboring eddy center 172 

positions at 7-day interval on a single eddy trajectory) of 283 eddy trajectories during 173 

1992-2008 for regressing, and 623 (24%) eddy trajectory segments of 81 eddy 174 

trajectories during 2009-2013 for forecasting. The other forecast experiments for 2, 3, 175 

and 4 weeks maintain the same periods for regressing and forecasting. To evaluate the 176 

overall forecast ability of the model, the mean forecast error is defined as the 177 

averaged distance (D) between the predicted eddy positions and the satellite observed 178 

eddy positions following great circle distance (Ali et al., 2007): 179 

 arccos[sin sin cos cos cos( )]o F o F o FD R Y Y Y Y X X    (5) 180 

where R is the earth radius, oX  ( FX ) and oY ( FY ) represent the observed (predicted) 181 

longitude and latitude in degrees, respectively.  182 

3. Dynamics of Eddy Propagation in the NSCS and Choice of 183 

Predictors 184 

3.1 Pattern and Dynamical Analysis of Eddy Propagation in the 185 

NSCS 186 

One of the most important steps in the development of a regression model is the 187 

choice of independent variables (predictors). In choosing the potential predictors, the 188 

candidates should have a physical link (direct or indirect) with the eddy propagation. 189 

To investigate the dynamical factors associated with eddy propagation in the NSCS, 190 

the pattern of eddy propagation speeds should be estimated firstly.  191 

 192 

Instead of a Lagrangian description of the movement of individual eddies as reported 193 

in the previous studies (e.g., Wang et al., 2003; Chen et al., 2011), the space-time 194 

lagged MCC method provides an Eulerian description of the pattern of eddy 195 

propagation speeds (Fu, 2009). As shown in Fig. 2a and 2d, the MCC method has 196 

mapped the propagation speeds of eddies in the NSCS for the winter and summer 197 

season, respectively. The propagation of eddies is generally westward in the ocean 198 
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interior and southward in the western boundary with the typical speed of 4-10 cm/s. 199 

The propagation direction of eddies generated southwest of Taiwan is southwestward 200 

along the 200-2000 m isobaths, indicating the steering effects of the ocean’s 201 

bathymetry. There are two distinct differences between the winter season and the 202 

summer season: one is that the eddy propagation speed in winter is relatively larger 203 

than that in summer; and the other is that the influence of the western boundary 204 

current can be clearly seen near 16oN-18oN along the Vietnam coast in winter, 205 

creating an organized band of southward eddy propagation pattern, while this cannot 206 

be found in summer. The different patterns of the eddy propagation speed in winter 207 

and summer have revealed several details of the mean flow in the SCS: the large-scale 208 

circulation under the influence of northeasterly winter monsoon is stronger than that 209 

in the southwesterly summer monsoon, and the robust western boundary current in 210 

winter becomes relatively weak and unorganized in summer.  211 

 212 

Eddies also have their own westward drift under the planetary   effect in the 213 

absence of any mean flow (Nof, 1981, Cushiman-Roisin, 1994). Their propagation 214 

speed is approximately the phase speed of the first baroclinic Rossby waves with 215 

preferences for small poleward and equatorward deflection of cyclonic and 216 

anticyclonic eddies in the global ocean, respectively (Chelton et al., 2007). 217 

Theoretically, the phase speed of the first baroclinic Rossby wave is 1 1RC R  , 218 

where the first baroclinic Rossby radius of deformation 1R  is estimated using the 219 

climatological GDEM temperature and salinity data. Figure 2b (2e) shows the 220 

theoretical phase speed of nondispersive baroclinic Rossby waves calculated from 221 

GDEM winter (summer) climatological temperature and salinity data. The direction 222 

of the phase speed is due west and the magnitude increases from about 2 cm/s in the 223 

north latitude to 12 cm/s in the south latitude. It should be noted that the difference 224 

between the winter and summer distributions of the phase speed of the first baroclinic 225 

Rossby wave is relatively small. The underlying reason is that the variation of 226 
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seasonal stratification in the upper layer has little effect on the seasonal distribution of 227 

the first baroclinic Rossby deformation radius (Chelton et al, 1998, Cai et al., 2008). 228 

 229 

The differences between the satellite observed propagation speed (Fig. 2a and 2d) and 230 

the propagation speed induced by the   effect (Fig. 2b and 2e) in winter and 231 

summer are shown in Fig. 2c and 2f, respectively, which may represent the 232 

propagation speed caused by the advection of mean flow. To further illustrate the 233 

advection effect of mean flow, the winter (summer) mean dynamic topography is 234 

superimposed on the propagation speed caused by the mean flow. As can be seen, 235 

there is a good spatial correlation (0.61 in the zonal direction and 0.52 in the 236 

meridional direction, both of which are significant at the 95% confidence level) 237 

between the cyclonic eddy propagation speed advected by the mean flow and the large 238 

scale surface cyclonic circulation in winter, both of which are centered northwest of 239 

the Luzon Island (Fig. 2c). Due to the weak cyclonic gyre in the NSCS, the spatial 240 

correspondence in summer is not as obvious as that in winter (Fig. 2f). Since the 241 

propagation speed induced by the   effect is westward, this tendency is reinforced 242 

by the mean flow in the north, but compensated by the mean flow in the south. 243 

Because the mean flow in the south is not so strong, it is not able to reverse eddy 244 

propagation from its westward motion induced by the   effect as in the Antarctic 245 

Circumpolar Current region (Klocker and Marshall, 2014) no matter in winter or 246 

summer. 247 

 248 

To explore other possible causes of eddy propagation, Fig. 3a shows the annual mean 249 

eddy propagation speed. The most striking pattern is that the eddy propagation speed 250 

is accelerated markedly on the northern continental shelf of the NSCS (also can be 251 

seen in Fig. 2a and 2d), corresponding well to the region of negative maximum 252 
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meridional topographic T

f dH

H dy
  , where H  is the water depth. Their correlation 253 

is -0.40, which is significant at the 95% confidence level. This relatively good 254 

correspondence suggests that besides the planetary   effect and advection of mean 255 

flow, the topographic   effect also contributes to the eddy propagation in some 256 

regions where the bathymetry gradient cannot be neglected. 257 

3.2 Choice of Predictors 258 

As mentioned above, the mean flow advection and the effects of   (both planetary 259 

and topographic) are closely related with the eddy propagation. These factors should 260 

be considered as the potential predictors, and the seasonal climatological eddy zonal 261 

and meridional motions (U_CLIM V_CLIM) derived from the MCC are calculated to 262 

represent the effects of   and the mean flow advection. It is noted that we have tried 263 

to decompose U_CLIM and V_CLIM into the effects of   and the mean flow 264 

advection and incorporate them into the regression model, but found no improvement 265 

of the forecast skill. 266 

 267 

In reality, the large-scale circulation evolves during the forecast period, this synoptic 268 

effect of mean flow advection should also be taken into account. To help account for 269 

the time variation of the mean flow advection, the current zonal and meridional 270 

absolute geostrophic flows (U_ADT, V_ADT) derived from the satellite data are 271 

evaluated at the beginning of the forecast time along the eddy trajectory. Besides, the 272 

persistence factors should also be considered in the regression model, since they 273 

contain the “latest” pattern of eddy propagation under the effects of   and the mean 274 

flow advection. The chosen persistence factors are the initial eddy position (LON, 275 

LAT) and the eddy motion past 1-week (U_PAST, V_PAST). All the chosen eight 276 

predictors are listed in Table 2, and can be derived along the eddy trajectories. They 277 

can be divided into two categories: 1) P1-P6 related to climatology and persistence, 278 
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i.e., “static predictors”, and 2) P7-P8 related to the changing environmental conditions, 279 

i.e., “synoptic predictors”.  280 

 281 

The relative contribution of each predictor on each forecast period is illustrated by the 282 

normalized regression coefficient (Table 3). The larger the normalized regression 283 

coefficient, the greater its contribution to the individual forecast equation. Persistence 284 

factors (U_PAST, V_PAST) are initially the most important predictors, while after 2 285 

weeks the most important predictors are the climatology factors (U_CLIM, V_CLIM). 286 

The synoptic predictors (U_ADT, V_ADT) contribute less to the forecast equations 287 

comparing with persistence and climatology. The underlying reason may be that the 288 

week to week variations are too large so the representation of the initial U_ADT and 289 

V_ADT to the actual velocities in the 4-week window is not as good as the U_CLIM 290 

and V_CLIM. 291 

4. Performance of the Multiple Regression Model 292 

4.1 Comparison with the persistence method 293 

To evaluate the performance of our prediction model, the persistence method and our 294 

model are used to predict the eddy trajectories during 2009-2013. The persistence 295 

method is a benchmark comparison and reference forecast widely accepted in the 296 

atmospheric and oceanic sciences (Mittermaier, 2008; Müller et al., 2012), which is 297 

defined as 1t t   , where   is any parameter, and t is a distance time step. In this 298 

study,   refers to the eddy propagation speed and the persistence means no change 299 

of propagation speed from the initial state (Fig. 4a). The root-mean-square error 300 

(RMSE) and correlation coefficient between the predicted and actual longitudes 301 

(latitudes), and mean distance errors of our model and persistence method over a 302 

4-week horizon are computed.  303 

 304 

Table 4 lists the comparison of prediction results. It shows that our multiple linear 305 
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regression model beats the persistence method and indicates our model has some 306 

forecast skill (Table 5): the RMSE between the predicted and the actual longitudes 307 

(latitudes) throughout the 4-week horizon is 32.7-89.2 km (29.5-73.5 km) with the 308 

correlation coefficients >0.93 (>0.95).  309 

 310 

As an example, Fig. 5 compares the 1-2 weeks forecast performances of our model 311 

(blue) and the persistence method (green) with the observation (red). Generally, the 312 

eddy trajectory predicted 1-2 weeks in advance by our model coincides well with the 313 

observed trajectory with an overall average error of 27.6 km (week-1) and 42.5 km 314 

(week-2), and even the convoluted pattern can be reproduced properly (Fig. 5 (right)) 315 

though the mean error is slightly larger than the smooth case. In contrast, although the 316 

persistence forecast trajectory at week-1 is relatively consistent with the observation 317 

(Fig. 5a and 5b), the persistence method cannot forecast the eddy trajectories properly 318 

when the forecast horizon increases (Fig. 5c and 5d). To further compare their 319 

differences, their forecast distance errors are normalized with the Rossby radius on 320 

each forecast grid over 4-week forecast window, respectively. The correlation 321 

between the normalized forecast distance errors of the persistence method and our 322 

model decreases from 0.67 at week-1 to 0.38 at week-4. This is consistent with the 323 

above judgement and confirms the superiority of our multiple linear regression model 324 

over the persistence method. 325 

4.2 Sensitive Performance of Different Eddy Polarity and Season 326 

Previous studies have shown that anticycloinc eddies and cyclonic eddies in the NSCS 327 

have different dynamic characteristics, such as generation sites, rotation speeds and 328 

propagation trajectories, and the seasonal variability of these eddies is robust (Wang et 329 

al., 2006; Wang et al., 2008; Li et al., 2011). Two natural questions arise: 1) is there 330 

any difference on the model forecast ability between anticyclonic eddies (Fig. 1a) and 331 

cyclonic eddies (Fig. 1b)? 2) If so, is there any difference on the forecast ability for 332 



14 
 

one type of eddies in winter (Fig. 7a and 8a) and summer (Fig. 7b and 8b)? This 333 

section will explore the different model performances on two types of eddies and 334 

during different seasons in the NSCS. 335 

 336 

The period considered for regressing and predicting the anticyclonic eddy and 337 

cyclonic eddy positions is the same as that used in developing the predictive model in 338 

Section 2.3. The mean forecast errors of anticyclonic (cyclonic) eddies from week-1 339 

to week-4 are 36.9 km (41.1 km), 62.6 km (68.1 km), 81.0 km (88.5 km), and 102.0 340 

km (108.2 km), respectively (Fig. 6). These results show that the forecast errors of 341 

anticyclonic eddies are smaller than those of cyclonic eddies in all forecast horizon, 342 

and the maximum error difference can reach 7.5 km at week-3. To investigate the 343 

underlying reasons of different model performances for anticyclonic eddies and 344 

cyclonic eddies, we use the persistence error ( 2 2 2 cosCC AB BC AB BC        in 345 

Fig. 4a) at week-1 as an index to measure the difficulty of trajectory forecast. The 346 

underlying reason in physics is that CC , which includes the effects of winding angel 347 

( , measuring the trajectory curvature) and the eddy propagation distances in the 348 

former and latter periods (AB and BC, measuring the eddy propagation speed), is an 349 

integral characteristic of eddy trajectory. The correlation between this integrated index 350 

and eddy trajectory forecast error is relatively high with R=0.62 (Fig. 4b), which is 351 

significant at the 95% confidence level and shows its ability of measuring the inherent 352 

difficulty of trajectory forecast: the larger the index, the more difficult the trajectory 353 

forecast, thus the larger the forecast error. Because the indices (mean persistence 354 

errors) of all the anticyclonic and cyclonic eddy trajectories in the NSCS are 46.6 km 355 

and 53.0 km, respectively, it is not difficult to understand why the mean forecast error 356 

of anticyclonic eddy trajectories is smaller than that of cyclonic eddy trajectories in 357 

the NSCS. The index difference between anticyclonic and cyclonic eddy trajectories 358 

is caused by these different trajectory patterns (Fig. 1a and 1b), which could be due to 359 

the opposing meridional drifts of anticyclonic and cyclonic eddies expected from the 360 

combination of   effect and self-advection (Morrow et al., 2004). 361 
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 362 

Figure 7c (Fig. 8c) shows the mean forecast errors of anticyclonic (cyclonic) eddy 363 

trajectories in winter and summer over a 4-week horizon. Because the mean 364 

persistence error (42.0 km) of anticyclonic eddy trajectories in winter is smaller than 365 

that (51.9 km) in summer, as expected, the mean forecast error of anticyclonic eddy 366 

trajectories in winter is smaller than that in summer for all cases. This is also the case 367 

for the cyclonic eddy: since the mean persistence error (54.6 km) of cyclonic eddy 368 

trajectories in winter is relatively larger than that (52.8 km) in summer, the mean 369 

forecast error of cyclonic eddy trajectories in winter is larger than that in summer. The 370 

index difference of one type of eddy trajectories between winter and summer is also 371 

caused by the different trajectory patterns. Why do the anticyclonic and cyclonic 372 

eddies follow different trajectories in winter (Fig. 7a and 8a) and summer (Fig. 7b and 373 

7b)? One possible dynamical reason is the different interactions between the eddies 374 

and seasonal mean flows. Other underlying factors such as eddy generation 375 

mechanisms and eddy-topography interactions in different seasons may also 376 

contribute. This is beyond the scope of this study and needs further investigation 377 

using numerical models. 378 

5. Summary and Discussion 379 

In this study, we have investigated the underlying dynamics of the eddy propagation 380 

in the NSCS and found their propagation is mainly driven by the combination of the 381 

planetary   effect and mean flow advection. In addition, the topographic   effect 382 

also has some contribution to the eddy propagation where the bathymetry gradient 383 

cannot be neglected, like the steep continental shelf in the NSCS (Fig. 1a). 384 

 385 

Based on the dynamical analysis, predictors are chosen and a simple statistical 386 

predictive model for relating various oceanic parameters to eddy propagation position 387 

changes is developed using the multiple linear regression method. This predictive 388 

model is made up of eight predictands (zonal and meridional displacements over 1-4 389 
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weeks) and eight predictors (six static predictors, two synoptic predictors). The six 390 

static predictors are associated with the initial position, the zonal and meridional 391 

motions past 1-week, and the climatological eddy zonal and meridional motions. The 392 

other two synoptic predictors account for the time variation of the mean flow 393 

advection. Results showed that this simple model has significant forecast skills over a 394 

4-week forecast horizon comparing the traditional persistence method. Moreover, the 395 

model performance is sensitive to eddy type and forecast season: 1) the predicted 396 

trajectory errors of anticyclonic eddies are smaller than those of cyclonic eddies; 2) 397 

the predicted trajectory errors of anticyclonic eddies in winter are smaller than those 398 

in summer; while the contrary is the case for the cyclonic eddy. The predictive model 399 

performance strongly depends on the inherent difficulty of trajectory forecast.  400 

 401 

Although the performance of the proposed predictive model is encouraging, it could 402 

be refined further. Further improvement may be possible by including the effect of 403 

eddy-eddy interactions on the eddy propagation, which is supposed to help induce the 404 

eddy trajectory curve or loop (Early et al., 2011). Another possible improvement is to 405 

use artificial neural network (ANN) in developing the forecast model. ANN has been 406 

successfully used in the predicting cyclone tracks (Ali et al., 2007) and loop current 407 

variation (Zeng et al, 2015). ANN can represent both linear and non-linear 408 

relationships learned directly from the data being modeled. It mainly contains three 409 

layers: the input layer, the hidden layer, and the output layer. To be consistent with the 410 

multiple linear regression model, both the input layer and the output layer include the 411 

same predictors and predictands as the regression model, respectively. The hidden 412 

layer consists of two layers of neural variables. Through iterations on backward 413 

propagation of the error, the neural network learns by itself to achieve an optimum 414 

weighting function and a minimum error. The forecast errors of ANN for 1-4 weeks 415 

are listed in Table 4. We can see that some improvements (0.3-4.2 km during 1-4 416 
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weeks forecast horizon) have been shown comparing with the linear regression 417 

method. Recently, Jiang et al. (2018) have found the deep learning algorithm of neural 418 

networks performs better than the simple ANN for the parameterization of 419 

typhoon-ocean feedback in typhoon forecast models. These enhancements (both 420 

physics and algorithms) are topics warranting future research and development. 421 

 422 

Data availability. The SLA and MDT data can be downloaded from AVISO 423 

(ftp://ftp.aviso.oceanobs.com/), and the NSCS eddy trajectory data can be derived 424 

from the 3rd release global eddy dataset (http://cioss.coas.oregonstate.edu/eddies/). 425 
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Figure and Table Captions 553 

Figure 1. The trajectories of (a) anticyclonic and (b) cyclonic eddies with lifetime5 554 

weeks in the northern South China Sea (SCS). The solid circle represents the ending 555 

position of each trajectory. In Fig. 1a, TI: Taiwan Island, LI: Luzon Islands, VN: 556 

Vietnam. The two isobaths are for 200 m and 2000 m, respectively. 557 

Figure 2. Winter climatology of (a) eddy propagation speed directions (vectors) and 558 

magnitudes (color, cm/s), (b) The phase speed directions (vectors) and magnitudes 559 

(color, cm/s) of the first baroclinic Rossby wave. (c) The speed difference (vectors) 560 

between (a) and (b) superimposed on the winter mean absolute dynamic topography 561 

(color, cm). (d), (e) and (f) are the same as (a), (b) and (c), respectively, but for the 562 

summer. 563 

Figure 3. (a) Annual mean of eddy propagation speed directions (vectors) and 564 

magnitudes (color, cm/s). (b) Meridional distribution of the topographic   effect 565 

(color shading).  566 

Figure 4. (a) Schematic of persistence method. A, B, and C are three observed eddy 567 

positions on the trajectory every 1 week interval. C' is the predictive eddy position 1 568 

week in advance by persistence method, that is BC'=AB. Thus CC' is the persistence 569 

error at week-1. (b) Scatterplot of persistence error versus forecast error of our model 570 

at week-1 with best fit linear regression. 571 

Figure 5. A comparison of the satellite observed trajectory (red), the predicted 572 

trajectory by our model (blue) and persistence trajectory (green) at (a) week-1, (c) 573 

week-2. (b), (d) are the same as (a) and (c), respectively, but for a recurved trajectory. 574 

The biweekly eddy positions on each trajectory are shown by the solid circles. The 575 

ending position of each trajectory is represented by the solid triangle. 576 

 577 

Figure 6. Comparison of the mean forecast errors between anticyclonic eddies (red) 578 

and cyclonic eddies (blue) over a 4-week window. 579 
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Figure 7. The trajectories of anticyclonic eddies in (a) winter and (b) summer with 580 

lifetime5 weeks in the northern South China Sea. The solid circle represents the 581 

ending position of each trajectory. (c) Comparison of their mean forecast errors over a 582 

4-week window. 583 

Figure 8. The same as Fig. 6, but for the cyclonic eddies. 584 

 585 

Table 1. The eight predictands used in the predictive model. 586 

Table 2. The eight predictors used in the predictive model. 587 

Table 3. Normalized regression coefficients ai, j (bi, j) for use with the eddy zonal 588 

(meridional) motion prediction equation. 589 

Table 4. Comparison of mean forecast distance errors (km) of the persistence, 590 

multiple linear regression (MLR), and artificial neural network (ANN) method. 591 

Table 5. Statistics of our muliple linear regression model for different forecast time of 592 

eddy propagation positions in terms of longitudes (latitudes). 593 
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Vietnam. The two isobaths are for 200 m and 2000 m, respectively.  602 
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Figure 2. Winter climatology of (a) eddy propagation speed directions (vectors) and 606 

magnitudes (color, cm/s), (b) The phase speed directions (vectors) and magnitudes 607 

(color, cm/s) of the first baroclinic Rossby wave. (c) The speed difference (vectors) 608 

between (a) and (b) superimposed on the winter mean absolute dynamic topography 609 

(color, cm). (d), (e) and (f) are the same as (a), (b) and (c), respectively, but for the 610 

summer. 611 
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 614 

Figure 3. (a) Annual mean of eddy propagation speed directions (vectors) and 615 

magnitudes (color, cm/s). (b) Meridional distribution of the topographic   effect 616 

(color shading). 617 
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 620 

Figure 4. (a) Schematic of persistence method. A, B, and C are three observed eddy 621 

positions on the trajectory every 1 week interval. C' is the predictive eddy position 1 622 

week in advance by persistence method, that is BC'=AB. Thus CC' is the persistence 623 

error at week-1. (b) Scatterplot of persistence error versus forecast error of our model 624 

at week-1 with best fit linear regression. 625 
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 628 

Figure 5. A comparison of the satellite observed trajectory (red), the predicted 629 

trajectory by our model (blue) and persistence trajectory (green) at (a) week-1, (c) 630 

week-2. (b), (d) are the same as (a) and (c), respectively, but for a recurved trajectory. 631 

The biweekly eddy positions on each trajectory are shown by the solid circles. The 632 

ending position of each trajectory is represented by the solid triangle. 633 
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 635 

Figure 6. Comparison of the mean forecast errors between anticyclonic eddies (red) 636 

and cyclonic eddies (blue) over a 4-week window. 637 
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Figure 7. The trajectories of anticyclonic eddies in (a) winter and (b) summer with 642 

lifetime5 weeks in the northern South China Sea. The solid circle represents the 643 

ending position of each trajectory. (c) Comparison of their mean forecast errors over a 644 

4-week window. 645 
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 648 

Figure 8. The same as Fig. 6, but for the cyclonic eddies. 649 

  650 

651 
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Table 1. The eight predictands used in the predictive model  652 

 653 

Predictand Symbol 

1-week zonal displacement DX1 

1-week meridional displacement DY1 

2-week zonal displacement DX2 

2-week meridional displacement DY2 

3-week zonal displacement DX3 

3-week meridional displacement DY3 

4-week zonal displacement DX4 

4-week meridional displacement DY4 

 654 

655 
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Table 2. The eight predictors used in the predictive model 656 

 657 

Predictor Symbol 

Initial longitude (LON) P1 

Initial latitude (LAT) P2 

Eddy zonal motion past 1-week (U_PAST) P3 

Eddy meridional motion past 1-week (V_PAST) P4 

Climatological eddy zonal motion from MCC (U_CLIM) P5 

Climatological eddy meridional motion from MCC (V_CLIM) P6 

Initial zonal absolute geostrophic flow (U_ADT) P7 

Initial meridional absolute geostrophic flow (V_ADT) P8 

658 
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Table 3. Normalized regression coefficients ai, j (bi, j) for use with the eddy zonal (meridional) 659 

motion prediction equation 660 

 661 

 j=1 j=2 j=3 j=4 

i=1 -0.10 (0.03) -0.14 (0.04) -0.18 (0.05) -0.24 (0.06) 

i=2 0.10 (0.02) 0.13 (0.01) 0.16 (0.00) 0.18 (-0.03) 

i=3 0.26 (0.00) 0.21 (0.03) 0.19 (0.07) 0.18 (0.09) 

i=4 -0.02 (0.19) -0.01 (0.10) 0.01 (0.08) 0.00 (0.08) 

i=5 0.14 (0.09) 0.19 (0.13) 0.23 (0.16) 0.26 (0.16) 

i=6 0.05 (0.17) 0.07 (0.23) 0.09 (0.26) 0.16 (0.27) 

i=7 -0.05 (0.02) -0.07 (0.02) -0.07 (0.02) -0.07 (0.03) 

i=8 -0.03 (-0.07) -0.01 (-0.08) 0.02 (-0.09) 0.04 (-0.09) 

 662 

663 
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Table 4. Comparison of mean forecast distance errors (km) of the persistence, multiple linear 664 

regression (MLR), and artificial neural network (ANN) method 665 

 666 

Forecast weeks Persistence MLR ANN 

1 47.6 38.1 37.8 

2 95.2 64.8 64.1 

3 135.0 86.6 84.7 

4 180.5 106.5 102.3 
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Table 5. Statistics of our multiple linear regression model for different forecast time of eddy propagation positions in terms of longitudes (latitudes) 667 

 668 

Forecast weeks 
Total/Predicted  

Number of Points 
RMSE, km Correlation Coefficient Mean Distance Error, km 

1 2604/623 32.7 (29.5) 0.99 (0.99) 38.1 

2 2310/549 55.1 (47.3) 0.97 (0.98) 64.8 

3 2016/475 72.5 (61.4) 0.95 (0.97) 86.6 

4 1722/401 89.2 (73.5) 0.93 (0.95) 106.5 

Note: the total/predicted number of points refers to the eddy positions at 7-day time interval in the whole/predicted eddy trajectories during 1992-2013/2009-2013; 669 

the RMSE is the root mean square error between the predicted and the observed longitude (latitude). 670 

  671 


