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Responses to Referee # 2: 

The submitted work proposes a regression model to forecast the trajectories of eddies 

in the South China Sea. The method is based on using the velocity field obtained 

through the Maximum Cross Correlation technique applied to sea level anomalies as 

capturing the combination of several dynamical components (self-propagating beta 

effect, advection by mean flow, etc.). The basic dynamical idea of applying the MCC 

to altimetry to analyze trajectories of eddies was introduced several years ago (e.g. 

L.L. Fu JGR, 2006). The novelty here is to go a step forward to develop a linear 

regression model to forecast such trajectories and assuming some dynamical elements 

affecting eddies propagation. The authors compare their approach against forecasting 

using a "persistence" approach. 

Response: Thanks so much for the helpful comments. We made every effort to clarify 

our results and improve our manuscript according to your comments. Next our 

response to each comment will be labeled in blue. 

 

From my point of view, there are not great concerns on the scientific content of the 

paper. The authors discuss quite adequately the main assumptions leaving for future 

work potential refinements of their methodology. However, the major drawback when 

one is trying to provide a forecast method is to analyze with major detail the 

robustness in the choice of parameters.  

Response: During the past 20 years, mesoscale eddies in the South China Sea (SCS) 

have drawn much attention, and their statistical characteristics, generation 

mechanisms, and impact on the atmosphere and ocean have been widely studied (e.g., 

Wang et al., 2003; Chen et al., 2011; Li et al., 2017). However, studies on the forecast 

of eddies in the SCS are rare because of their complex dynamics and high nonlinearity. 

Just recently, Xu et al. (2018) used modern ocean dynamical model to predict two 

eddy cases in the northern SCS, found the eddy propagation paths can be predicted 

only when the eddy amplitude is larger than 8 cm. To the best of my knowledge, our 

work is the first attempt at forecasting the eddy propagation trajectories statistically in 
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the SCS, and our forecasted results (forecast distance error is 86.6-106.5 km from the 

third to fourth week) are comparable with those of dynamical model  (forecast 

distance error is 81-132 km from the third to fifth week). Comparing to the dynamical 

method, our simple statistical method don’t need boundary and forcing conditions and 

partial differential equation discretization, thus the computation is much faster than 

ocean models. Also our model is independent of eddy amplitude, and the forecast 

distance error is comparable with that of the dynamical model. Therefore, our study 

may provide an alternative and fast means for an operational forecast, which is 

especially useful to practical applications, such as naval military operation. 

 

There are some aspects the authors should present more carefully: 

* The different choices of window search and time lag. The authors indicate the upper 

sizes of such values for the mesoscale in SCS (lines 107-109) but some quantitative 

indications on how it affects the results is necessary. 

Response: Thanks for the comment. The MCC method used in this study is the same 

as that of Fu et al. (2006, 2009), which is a little different with that of Emery et al. 

(1986). In the method of Emery et al., the correlations of the image in the subwindow 

with all the neighboring ones in the whole window at the next time are computed, and 

the speed and direction of the maximum correlations can be estimated. While in the 

method of Fu et al., the correlations of the SLA at a given location with all the 

neighboring SLA at various time lags are computed, and the speed and direction of 

the maximum correlations can be estimated. The underlying reason of their difference 

may be due to the low time-space resolution of SLA comparing with other satellite 

images, such as AVHRR.  

 

In the MCC method, the size of the time-space window for computing the correlations 

were determined by the time and space scales of interests. To focus on the global 

mesoscale eddy, the time lags were limited to less than 70 days and the dimension of 

the window was less than 400 km. However, the time lags should be limited to less 

than 42 days in the SCS, since many correlation coefficients are below the 95% 
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confidence level at larger time lags (Zhuang et al., 2010). Besides, Chen et al. (2011) 

found that eddies propagate with 5.0-9.0 cm/s in the northern SCS. Thus the search 

radius can be generally limited as 300 km (9.0 cm/s*42 days300 km) to reduce 

incidence of spurious MCC vectors. We add several sentences in the introduction of 

MCC method to clarity the parameters and their setting.  

 

* The regression coefficients are computed over a limited temporal interval 

(1992-2008). The authors should analyze the stability of these coefficients as a 

function of the chosen time interval and how the results depend on it. 

Response: Thanks for the comment. Two sensitive forecast experiments (Table R1) in 

different temporal intervals were performed to further evaluate the stability and 

effectiveness of our model. As we can see, when the regressed temporal interval is 

shorter than that of this study, the number of eddy trajectories for the regressing is 

expected less and the forecast errors increases 0.5-3.9 km over 1-4 week forecast 

window. When the regressed temporal interval is longer than that of this study, the 

number of eddy trajectories for the regressing is expected larger and the forecast 

errors decreases 0.3-3.2 km over 1-4 week forecast window. The forecast errors have 

small fluctuation (The stand deviation (Sd) is relatively small from 0.4-3.6 over 1-4 

weeks), indicating the stability and effectiveness of the results of our model. 

 

Table R1. Settings of two sensitive forecast experiments and our study 

 Regressed  

Time Interval 

Regressed Eddy 

Trajectory No. 

Predicted Time 

Interval 

Predicted Eddy 

Trajectory No. 

Exp1 1992-2006 247 2007-2013 117 

Exp2 1992-2010 321 2011-2013 43 

This study 1992-2008 283 2009-2013 81 

 

Table R2. Comparison of forecast distance errors (km) of two sensitive forecast 

experiments and our study  
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 Week-1 Week-2 Week-3 Week-4 

Exp1 38.6 65.6 88.2 110.4 

Exp2 37.8 63.9 84.3 103.3 

This study 38.1 64.8 86.6 106.5 

Sd 0.4 0.9 2.0 3.6 

 

* The regression model introduces a climatological term U_CLIM estimated from the 

MCC. How this climatology is built remains unclear? Is a mean over the same 

regression period (weekly, monthly, seasonal, ....)? How it depends on such 

climatology? Such questions should be clarified in a quantitative way. 

Response: Thanks for the comment. Since the mean flow and associated eddy 

propagation in the SCS have pronounced seasonal variability, we followed Zhuang et 

al. (2010) and divided the weekly SLA data from 1992 to 2013 into four groups 

according to four seasons (winter: 12-2, spring: 3-5, summer: 6-8, autumn: 9-11). 

Then the seasonal climatological propagation velocities (U_CLIM, V_CLIM) can be 

estimated in the same seasonal group using the MCC method of Fu (2006, 2009).  

We add several explanations in this Section 2.2 to clarity it.  

 

Finally, the structure of the paper is decompensated with a central section ("Results") 

that mixes the methodological approach, the results and discussions. The "Data and 

Methods" section (section 2) include two subsections devoted to present datasets and 

to explain the MCC respectively, while the forecasting model is presented in detail in 

subsection 3.2 "Model Development" as part of the Results section (section 3). MCC 

is relevant for the system they propose but is just one of the elements of their 

methodology and is a well-known classical method in the context of the oceanography. 

Thus my suggestion is that the regression model should immediately follow the MCC 

description, both elements more coherently integrated in the "Data and methods" 

section and leaving the Results section to show the performance of the forecasting 

system. 
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Response: Thanks for the suggestion. We add a new Section 2.3: The Multiple Linear 

Regression Model in the "Data and methods" section to describe the regression model. 

Considering the importance of the selection of the predictors based on the dynamical 

analysis, we add a new Section 3: “Dynamics of Eddy Propagation in the NSCS and 

Choice of Predictors”, and leave Section 4: “Performance of the Multiple Regression 

Model” to show the performance of the forecasting system exclusively in the revised 

version. 

 

Apart from these considerations I have the following list of small comments: 

Section 2.2 and 3.1 (but also in the whole manuscript): In the text there is an abuse of 

the "eddy" word. Sometimes "eddy" is used in the context of deviation respect to a 

statistical mean while sometimes is used to refer to a dynamical coherent structure (an 

eddy). The MCC velocity field as applied to SLA maps is not only representative of 

the evolution of coherent eddies but also include many other structures as waves, 

filaments, fronts, etc. that may also evolve and propagate. Thus the velocity field are 

not necessarily the velocity of eddies understood as coherent structures alone. This 

must be mentioned and a careful use of the word "eddy" along the whole manuscript 

should be checked to avoid misinterpretations.  

Response: Thank you for the comment. Yes, the MCC method cannot distinguish the 

various forms of mesoscale variability, such as filaments, fronts, and planetary waves. 

In the study of the pattern and velocity of global ocean eddies, Fu (2009) pointed out: 

when the space and time lags of the correlation analysis are chosen for the mesoscales, 

the MCC estimated velocities can represent the speed and direction of the propagation 

of ocean eddies. Chelton et al. (2011) compared the latitudinal variation of the mean 

eddy speed computed from the global eddy trajectories with that from the MCC 

method of Fu (2009), and found they are comparable well.  

 

To focus on the global mesoscale eddy, Fu (2009) chose less than 70 days as the time 

lags and less than 400 km as the dimension of the window. In this work, the time lags 

should be limited to less than 42 days in the SCS, since many correlation coefficients 
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are below the 95% confidence level at larger time lags (Zhuang et al., 2010). The 

search radius can be generally limited as 300 km (9.0 cm/s*42 days300 km, since 9 

cm/s is the maximum eddy speed in the northern SCS (Chen et al. (2011) )) .We add 

several sentences in the introduction of MCC method to explain this. 

 

Section 3.1 (fig. 2b, e and lines148-165): Perhaps I’m wrong but I don’t appreciate 

much differences between the winter and summer distributions of the phase speed of 

the first baroclinic Rossby wave. I may suppose that it is because at such latitudes the 

seasonal stratification does not change too much? A small comment may guide the 

general readers. 

Response: Good comment. Yes, the difference between the winter and summer 

distributions of the phase speed of the first baroclinic Rossby wave is relatively small. 

The underlying reason is that the variation of seasonal stratification in the upper layer 

has little effect on the seasonal distribution of the first baroclinic Rossby deformation 

radius (Chelton et al, 1998, Cai et al., 2008). We add this comment and two references 

in the revised manuscript to guide the general readers. 

 

Section 3.2 Model Description. It is needed to introduce the opportune equations 

representing the linear regression model with the variables involved besides of listing 

them in table 2. 

Response: Thanks for the suggestion. The predicted zonal (meridional) displacement 

DX (DY) can be estimated using a multiple linear regression approach: 
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1
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
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

     (2) 

where the subscript j refers to the forecast interval (1-4 weeks), the subscript i refers 

to the serial number of eight normalized predictors (P), a and b donate normalized 

regression coefficients of predictors onto DX and DY, respectively. To distinguish the 

input predictors, the forecasted variables, and the related regression equations clearly, 
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To introduce the opportune equations representing the linear regression model, we 

revise Table 1 and 3, add a new Table 2 and add a new Section 2.3 in the revised 

manuscript.  

 

Section 3.2: If I have understood, the MCC fields introduced into U_CLIM and 

V_CLIM are the characteristic mean from the whole altimetric period computed at 

intervals of 1 week? Please may you clarify it? See the remark above. 

Response: Yes, U_CLIM and V_CLIM are the characteristic mean estimated using the 

MCC. Since the mean flow and associated eddy propagation in the SCS have 

pronounced seasonal variability, we followed Zhuang et al. (2010) and divided the 

weekly SLA data from 1992 to 2013 into four groups according to four seasons 

(winter: 12-2, spring: 3-5, summer: 6-8, autumn: 9-11). Then the seasonal 

climatological propagation velocities (U_CLIM, V_CLIM) can be estimated from the 

same seasonal group at intervals of 1 week using the MCC method of Fu (2006, 2009).  

We add several explanations in this Section 2.2 to clarity it.  

 

Section 3.2: The initial step in the forecasting procedure is to provide an initial 

starting point of a given eddy. How is this provided, manually upon a first visual 

inspection of maps or using some method to automatically identify coherent structures 

in SLA maps? Please precise. 

Response: Thanks for the comment. We used the SCS eddy trajectory data derived 

from the 3rd release of the global eddy dataset. 

(http://cioss.coas.oregonstate.edu/eddies/). This eddy dataset is developed based on 

the weekly AVISO SLA data by Chelton et al. (2011), and contains several parameters 

of the detected eddies at 7-day time interval, such as: eddy positions, eddy radius, 

eddy amplitude. We have clarified this in the Section 2.1 in the revised manuscript.  

 

Line 207: How the predictands and predictors are normalized? please explain. 

Response: Thank you for the comment. Suppose X is the time series of one predictor 

(or predictand), it is normalized by: 
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X
X




 
  

where, X   is the normalized X,  is the mean of X, and is the sample standard 

deviation. We add one sentence in the text to explain it. 

 

Line 217: "There are a total of 8 regression equations...", please see the comments 

above. 

Response: We add two Equations in Section 2.3 to show the opportune regression 

equations with the input predictors, the forecasted variables, and the related equations 

coefficients listed in Table 1, 2, and 3 in the revised manuscript.  

 

Lines 232 and following and Table 3: The table caption and the description of the 

parameters listed in the table are not enough detailed. Why the RMSE is given in 

degrees? The use of parentheses in the table whether they mean latitudes, persistence 

or predicted may somehow confuse the reader. Please clarify it and try to make a more 

detailed description in the table caption which is extremely synthetic. An interesting 

way of presenting the differences between the persistence method and the proposed 

method could be to normalize distances with the Rossby radius on grid size in order to 

see if their differences are relevant or not. 

Response: Thanks for the helpful comment. According to the comment, we make 

three changes in Table 5 in the revised version (Table 3 in the older version): (1) One 

note describing the parameters below the table is added below the table in the revised 

version; (2) The RMSE is given in km, which is consistent with mean distance error; 

(3) To make this table more clearly, the forecast results of the persistence method is 

removed from this table, and incorporated into the new Table 4 in the new version.  

 

We follow the last suggestion and compare the differences between the persistence 

method and the proposed method by normalizing distances with the Rossby radius on 

each forecast grid over 4-week forecast window. As can be seen from Figure R1, their 

correlation decreases from 0.67 at week-1 to 0.38 at week-4. This further verifies the 



 

resu

alth

obse

whe

the 

Figu

met

best

 

Sum

pola

quit

affe

this 

illus

Res

ult of the 

hough the pe

ervation, th

en the forec

revised man

ure R1. S

thod vs. the 

t fit linear re

mmary and 

arity but pe

te common 

ect the perfo

section bu

strated. 

sponse: Tha

comparison

ersistence f

he persisten

cast horizon

nuscript. 

catterplot o

normalized

egression at

Discussion

rhaps other

and linked 

ormance. So

ut some exa

nks for the 

n of foreca

forecast traje

nce method

n increases.

of the norm

d forecast di

t week-1 (a)

: The autho

r processes 

to eddy dyn

ome comme

amples on h

comment. A

9 

ast distance

ectory at w

d cannot fo

 We add se

malized for

istance erro

), week-2 (b

ors only tes

as dissipati

namical par

ents or disc

how the for

Actually, in

e errors be

week-1 is rel

orecast the 

everal sente

recast dista

ors of out lin

b), week-3 (

st the perfor

on, merging

rameters as 

ussions on 

recast are in

n the develop

etween the 

latively con

eddy trajec

ences to sho

ance errors 

near regress

(c) and wee

rmance on 

g or splittin

for exampl

that should

n such case

ping proces

two meth

nsistent with

ctories prop

ow this poin

of persist

sion model 

ek-4 (d). 

seasonality

ng which ca

le vorticity 

d be welcom

es could als

ss of our mo

hods: 

h the 

perly 

nt in 

 

ence 

with 

y and 

an be 

may 

me in 

o be 

odel, 



10 
 

we have tried to incorporate the eddy dynamical parameters, such as eddy radius, 

eddy amplitude, eddy rotational speed, and eddy vorticity into our model, but sadly, 

no improvements have been shown. The underlying reasons may be that the 

propagation of eddies are related to strong nonlinear processes, which have not been 

fully understood and resolved.   

 

Another possible improvement in the model forecast skill is to use artificial neural 

network (ANN) in developing the forecast model. ANN has been successfully used in 

the predicting cyclone tracks (Ali et al., 2007) and loop current variation (Zeng et al, 

2015), and the salinity profile estimation from satellite surface observations (Bao et 

al., 2019). ANN can represent both linear and non-linear relationships learned directly 

from the data being modeled. It mainly contains three layers: the input layer, the 

hidden layer, and the output layer. To be consistent with the multiple linear regression, 

the input layer also includes the same eight predictors, and the output layer includes 

the two predictands. The hidden layer consists of two layers of neural variables. 

Through iterations on backward propagation of the error, the neural network learns by 

itself to achieve an optimum weighting function and a minimum error. The forecast 

errors of ANN for 1-4 weeks are listed in Table R3. We can see that some 

improvements (0.3-4.2 km during 1-4 weeks forecast horizon) have been shown 

comparing with linear regression method. We add these sentences in the Summary 

and Discussion Section of the revised manuscript. 

Table R3. Comparison of forecast distance errors (km) of three methods  

Forecast weeks Persistence Linear Regression ANN 

1 47.6 38.1 37.8 

2 95.2 64.8 64.1 

3 135.0 86.6 84.7 

4 180.5 106.5 102.3 

 

Figures: 
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In fig 1 the subplot C is part of the results and I recommend to move it to the results 

section. 

Response: Good suggestion. We move subplot C in Figure 1 to the results section as 

new Figure 6 in the revised version. 

 

Fig 2 is very small in size and hard to appreciate the velocity fields. 

Response: Thanks for the comment. We redraw Figure 2 with the 2*3 subplots to 

enlarge each panel and make the velocity fields more distinguishable.  
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