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Abstract. Monitoring Sea Surface Salinity (SSS) is important for understanding and forecasting the ocean circulation. It is 

even crucial in the context of the acceleration of the water cycle.  Until recently, SSS was one of the less observed essential 

ocean variables. Only sparse in situ observations, mostly closer to 5 meters depth than the surface, were available to estimate 

the SSS. The recent satellite ESA Soil Moisture and Ocean Salinity (SMOS), NASA Aquarius SAC-D and Soil Moisture 10 

Active Passive (SMAP) missions have made possible for the first time to measure SSS from space. 

The SSS drivers can be quite different than the temperature ones. The model SSS can suffer from significant errors coming 

not only from the ocean dynamical model but also the atmospheric precipitation and evaporation as well as ice melting and 

river runoff. Satellite SSS can bring a valuable additional constraint to control the model salinity. 

This article presents the analysis of an Observing System Experiment (OSE) conducted with the ¼° resolution Mercator Ocean 15 

analysis and forecasting system. SSS data assimilation constrains the model SSS to be closer to the observations in a coherent 

way with the other data sets already routinely assimilated in an operational context. Globally, the SMOS SSS assimilation has 

a positive impact in salinity over the top 30 meters. Comparisons to independent data sets show a small but positive impact. 

The sea surface height (SSH) has also been impacted by implying a reinforcement of Tropical Instability Waves (TIWs) during 

the El-Niño 2015/16 event. Finally, this study helped us to progress in the understanding of the biases and errors that can 20 

degrade the SMOS SSS performance. 

1 Introduction 

Recent progress in data treatment of Sea Surface Salinity (SSS) from space make possible their assimilation in ocean analysis 

systems (Boutin et al., 2017). Since 2009 the launch of the European Space Agency (ESA) Soil Moisture and Ocean Salinity 

(SMOS) mission in 2009, then the launchs of NASA’a Aquarius in 2011 and Soil Moisture Active Passive (SMAP) in 2015, 25 

SSS are available and have been used in many studies (e.g., Tang et al., 2017, Vinogradova et al., 2014; Toyoda et al., 2015, 

Reul et al., 2013). 

Here we present the impact of assimilating SSS observations from space into the global ¼° Mercator Ocean operational system 

(see Lellouche et al., 2013) evaluated in the SMOS Niño 2015 project (https://www.godae-oceanview.org/projects/smos-

Niño15). The changes induced by assimilating the satellite SSS in addition to the observation data operationally assimilated  30 

http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS
http://www.remss.com/missions/smap
https://www.godae-oceanview.org/projects/smos-nino15
https://www.godae-oceanview.org/projects/smos-nino15
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are analyzed. The focus has been primarily on the 2015-2016 El Niño event, in which strong SSS anomalies are seen in the 

Tropical Pacific in both model and observations (Hasson et al., 2018; Gasparin and Roemmich, 2016; Guimbard et al., 2017). 

The salinity plays an important role in the ocean-atmosphere coupling in this region by isolating the ocean interior due to the 

formation of a Barrier Layer. It is then not only the thermocline depth that is of importance but also the halocline when it 

becomes shallower than the thermocline.  5 

The most striking event in the global ocean for the year 2015 was the strong El Niño event.  It is as strong as the 1997 one, see 

section 2.6 in (Von Schuckmann et al., 2018). Several El Niño Southern Oscillation (ENSO) indices are used to monitor the 

tropical Pacific and based on Sea Surface Temperature (SST) anomalies averaged on different regions (e.g. NINO3.4 for the 

Nino3.4 region in the central Pacific, see Barnston et al., (1997)). Because the maximum of the SST anomalies stays off the 

eastern coast of South and Central America, it was more likely to be a Modoki El Niño (Ashok and Yamagata, 2009) or a 10 

central Pacific El Niño (Kao and Yu, 2009) than a classical eastern Pacific El Niño. 

Warm anomalies began to build in the western pacific in 2014 triggered by Westerly Wind Bursts but did not lead to the 

development of an El Niño in the year.  Moreover, as suggested by McPhaden et al., (2015), the presence of El Niño precursors 

in early‐2014 helped the development of a strong El Niño at the end of 2015. Anomalously eastward currents along the equator 

and in the NECC continued a pattern from 2014. This is associated with an increase in precipitation and an eastward shift in 15 

fresh surface salinities. A strong equatorial SSS anomaly in 2015 has been observed and described, see for example (Hasson 

et al., 2018; Gasparin and Roemmich, 2016). The Pacific freshening is due to a strong ITCZ in 2015, but advection by 

anomalous eastward currents also plays a role in the SSS changes. The difference of the two annual anomalies in 2014 and 

2015 in our control run (see section 3) is shown in Fig. 1. The 2015–2016 El Niño is also the first important climatic event 

fully captured by the SMOS satellite where negative SSS anomalies have been observed between 0 and 15°N around 170°W 20 

from mid‐2014 to mid‐2015 (Boutin et al., 2016). 

Data assimilation experiments conducted within the SMOS Niño 2015 project (https://www.godae-

oceanview.org/projects/smos-Niño15) are helping to prepare the assimilation of space SSS data and allow testing their impact 

on short term ocean forecast and analysis. To evaluate the impact of SSS observations from satellites on ocean monitoring and 

forecast systems in a realistic context, Observing System Experiments (OSEs) were conducted with the UK Met Office and 25 

Mercator Ocean global ocean forecast systems. The OSE approach is conducted by comparing two assimilation experiments 

which are identical except that the satellite SSS are withheld in the analysis in one of the experiments. The differences between 

the two simulations highlight the “impact” of the withheld observations. SST, SLA and in situ observations are assimilated as 

currently done in the operational systems, see Martin et al., (2018). Similar OSE approaches are generally used to evaluate 

observation networks in the ocean data assimilation community of GODAE OceanView (Oke et al., 2015, Lea et al., 2014).  30 

Experiments conducted within the SMOS Niño15 project to test the impact of the satellite SSS data were carefully designed 

and analyzed to ensure robust conclusions on the impact of SSS measurements on ocean analysis. The system used for the 

OSE is based on the operational ocean monitoring and forecasting system operated at Mercator Ocean. The use of such system 

ensures that conclusions are relevant for such operational applications.  

https://www.godae-oceanview.org/projects/smos-nino15
https://www.godae-oceanview.org/projects/smos-nino15
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To assess the benefit of assimilating SSS from satellite in a realistic context, all observations from the Global Ocean Observing 

System (GOOS) that are assimilated in real time ocean analysis or reanalysis are also assimilated. SST, in situ temperature and 

salinity observations (from moorings, drifting platforms, ships) and along track Sea Level Anomalies in the so-called Reference 

simulation are assimilated (hereafter REF). OSEs conducted were designed to assess the impact of weekly products as the 

system has a weekly assimilation cycle.  5 

It is recommended to withhold part of the usually assimilated observations from the OSEs to have fully independent data to 

compare with, see Fuji et al., (2015). The TAO mooring salinity data were not assimilated and kept for verification. Even if 

restricted to the few mooring points, those data are the only ones to provide long term time series of daily temperature and 

salinity observations.  

Several studies (Reul et al., 2013 or Lee et al., 2012) show that SSS measured from space can bring new information. Recently, 10 

(Toyoda et al., 2014; Hackert et al., 2014) show the impact of assimilating Aquarius data in the Pacific region both in uncoupled 

and coupled ocean-atmosphere systems. In a recent paper, Chakraborty et al., (2014) show that the migration of the 

thermohaline fronts at the eastern edge of the western Pacific warm pool can be more realistic with the assimilation of Aquarius 

SSS. Data assimilation of Aquarius SSS can also help to better understand the variability of salinity structure in the Bay of 

Bengal (Seelanki et al., 2018). Finally, SSS assimilation from space is promising in an operational context both for ocean and 15 

seasonal forecasting. 

Nevertheless, technical challenges are still open to assimilate SSS data efficiently in the context of global ocean analysis and 

forecasting. The assimilation of satellite SSS observations is challenging because of the various complex biases, see Köhl et 

al, (2014). The difference between the forecast and the satellite SSS can be 5 times larger than the misfit between the forecast 

and near surface ARGO salinity. The signal to noise ratio is still not high today, thus retrievals algorithms must be improved.  20 

Careful analysis of the SSS data sets shows that a bias correction is needed before their assimilation as shown by Martin 

(2016). To have an optimal analysis, the hypothesis of un-biased errors has to be respected. This article details the bias 

correction scheme and the error estimation scheme used in the data assimilation system for those data. This is a necessary step 

to have a positive impact of SSS data assimilation. 

The structure of this article is as follows: after a description of the OSE where the operational system, the bias correction, the 25 

SSS observation error and the presentation of the experimental design are described in section 2, the effect of the SMOS SSS 

data assimilation is discussed in section 3, while discussions and conclusions are provided in section 4. 

2. OSE approach 

The OSE are conducted with the global ¼° ocean analysis and forecasting system running in real time at Mercator Ocean. 

Detailed descriptions of the system can be found in (Lellouche et al., 2013; Lellouche et al., 2018). After a brief description of 30 

the system configuration, we will describe the data assimilation components that were specifically developed or adapted for 

the SSS data assimilation in detail. 
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2.1 Ocean model and configuration 

The Mercator Ocean real time analysis and forecast is based on the version 3.1 of the NEMO ocean model (Madec, 2016), 

which uses a ¼° ORCA grid. The water column is discretized into 50 vertical levels, including 22 levels within the upper 100 

m, with 1-m resolution at the surface to 450-m resolution at the bottom. The system has been initialized in autumn 2006, using 

temperature and salinity profiles from the EN4 climatology (Good et al., 2013).  5 

The ocean model is forced by atmospheric fields from the European Centre for Medium-Range Weather Forecasts-Integrated 

Forecast System (ECMWF-IFS) at 3-hr resolution to reproduce the diurnal cycle. Momentum and heat turbulent surface fluxes 

are computed by using (Large and Yeager 2009) bulk formulae. Due to large known biases in precipitation, a satellite-based 

large-scale correction of precipitation is applied to the precipitation fluxes. This correction has been inferred from the 

comparison between the Remote Sensing Systems (RSS) Passive Microwave Water Cycle (PMWC) product (Hilburn, 2009) 10 

and the IFS ECMWF precipitation (Lellouche et al., 2013). 

A monthly river runoff climatology is built with data on coastal runoff from 100 major rivers from the Dai et al. (2009) database 

instead of Dai and Trenberth (2002). This database uses new data, mostly from recent years, streamflow simulated by the 

Community Land Model version 3 (Verstentein et al., 2004) to fill the gaps, in all lands areas except Antarctica and Greenland. 

At high latitudes the effect of iceberg melting is also parameterized. The lack of interannual variability of the largest rivers is 15 

known to lead to large errors in the surface ocean salinity in the analysis and forecast. There is no SSS relaxation term to any 

climatology like in the operational case. More details concerning parameterization of the terms included in the momentum, 

heat and freshwater balances (i.e, advection, diffusion, mixing and surface fluxes) can be found in (Lellouche et al., 2018). 

2.2 Assimilated Observations 

2.2.1 Regular observation data 20 

All ocean observations assimilated in the real time forecasting system are assimilated in the same way in the OSEs presented 

here. Along track SLA observations distributed by CMEMS (http://marine.copernicus.eu/) referenced to an unbiased Mean 

Dynamic Topography (MDT) based on the CNES/CLS 2013 MDT are used. Gridded satellite SST OSTIA observations Level 

4 (L4: SST analysis using  optimal interpolation (OI) on a global 0.054 degree grid) are assimilated each week in addition to 

SST measurements from the in situ database delivered by the CORIOLIS centre (http://www.coriolis.eu.org/). Assimilation of 25 

in situ temperature and salinity profiles from this database are from Argo floats, XBT, CTDs, moorings, gliders and sea 

mammals. The assimilation of those routine observations in the OSEs provides a realistic context for the global ocean observing 

system so that the experiments address the complementarity of the different data sets with satellite SSS. The only exception is 

the TAO mooring observations of salinity that are withheld from the analysis and kept as independent observations to evaluate 

the performance of the assimilation experiment and the impact of the SSS assimilation. The SSS in the real time system is only 30 

constrained at large scale by in-situ observations, mostly Argo floats that usually start to measure at 5 meters depth.  

http://marine.copernicus.eu/
http://www.coriolis.eu.org/
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2.2.2 SSS from space 

In this study, we assimilate a SMOS Level 3 (L3: provided on a grid, but with no in-filling) SSS product at 0.25° resolution. 

L3 products are qualified (quality controlled) and processed at the Data Production Center (CPDC) of the Centre Aval de 

Traitement des Données SMOS (CATDS CEC-LOCEAN) (Boutin et al., 2017). Compared to Level 2 products (L2: SSS 

values at the native swath resolution) they benefit from additional corrections. These are 18-day products sampled at 25km 5 

resolution provided every 4 days (the precise description of the time filtering is in the documentation at 

http://www.catds.fr/Products/Available-products-from-CEC-OS/L3-Debiased-Locean-v2). We have checked that this 

temporal resolution fits well the model resolution and the weekly analysis window. In practice, the gridded SSS which is the 

closest to the analysis date (the fourth day of the week) provides the SSS data for the cycle. The model counterpart is the time 

average over the cycle. Due to a low signal to noise ratio, the assimilation of the SSS data is limited in the latitudinal band 10 

between 40°S and 40°N. 

2.3 Data Assimilation Scheme 

The assimilation scheme implemented in the real time Mercator Ocean systems is based on a reduced order Kalman Filter 

called SAM2 (Système d’Assimilation Mercator V2) and is described in Lellouche et al., (2013) and Lellouche et al., (2018).  

2.3.1 Background Error Covariances 15 

The SAM2 system uses a background error covariance matrix based on a reduced basis of multivariate model anomalies built 

from a fixed collection of model anomalies. The anomalies are computed from a previous simulation for a period of 8 years 

with the in-situ bias correction, detailed in the section 2.3.3. The forecast error covariances rely on a fixed basis, seasonally 

variable ensemble of anomalies calculated from this long experiment. A significant number of anomalies are kept from one 

analysis to the other, thus ensuring error covariance continuity. The aim is to obtain an ensemble of anomalies representative 20 

of the error covariance (Oke et al., 2008), which provide an estimate of the error on the ocean state at a given period of the 

year. The localization of the error covariance is performed assuming a zero-covariance beyond a distance defined as twice the 

local spatial correlation scale. These spatial correlation scales are also used to select the data around the analysis point. The 

model correction (analysis increment) is a linear combination of these anomalies. This correction is applied incrementally over 

the assimilation cycle temporal window using an incremental analysis update, see (Bloom et al., 1996; Benkiran and Greiner 25 

2008). 

2.3.2 Observation Error Covariances 

The observation errors specified in the assimilation scheme are assumed to be uncorrelated with each other.  Observation errors 

include representativity errors specified as a fixed error map and an instrumental error.  Representativity errors concerning in 

situ observations were calculated a posteriori from a reanalysis over the period 2008-2012. The method (Desroziers et al., 30 

http://www.catds.fr/Products/Available-products-from-CEC-OS/L3-Debiased-Locean-v2
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2005) consists of the computation of a ratio, which is a function of observation errors, innovations and residuals. These 

estimated errors are constant throughout the year. 

The instrumental errors of SLA, SST and in situ measurements are summarized in Table 1. Fig. 2a shows the representativity 

error used for the in-situ SSS and an example of the resulting salinity error (Fig. 2b) for in-situ data for the week 20-27 January 

2016. The SSS error from space used in the is detailed in SAM2 (2.5 and estimated during the bias correction scheme 5 

procedure. 

2.4 Bias correction scheme 

2.4.1 Bias correction scheme for large scale 3D temperature and salinity: in-situ T/S 

Contrary to sea level anomalies data, biases between model and data exist for subsurface quantities such as temperature and 

salinity. As with the time-varying error components, such biases can often be related to the use of a coarser grid for data or to 10 

systematic errors in the forcing (Leeuwenburgh, 2007). 

As written in Lellouche et al., (2013), a 3DVar bias correction is applied for large scale 3D temperature and salinity fields. 

The aim of this bias correction is to correct the large-scale, slowly evolving errors of the model, whereas the SAM assimilation 

scheme is used to correct the smaller scales of the model forecast error. 

This is applied separately to the model’s prognostic T/S equations from in-situ profile innovations calculated over the preceding 15 

month on a coarse grid (1°x1°). This bias is the minimizer of the cost function given by the Eq. 1. 

J(𝒙)= 1
2⁄ 𝒙𝑻 B

-1 𝒙+ 1
2⁄ (d-H 𝒙)𝑻R

-1
(d-H 𝒙)                                                                    (𝟏) 

where  𝑑 =   <Salinity𝒊𝒏−𝒔𝒊𝒕𝒖 > - <Salinity𝒎𝒐𝒅𝒆𝒍 > for salinity field 

d is the innovation vector of T/S, i.e the mean (<>) innovation of in-situ T/S over 1 month in a 1°x1° grid boxes. 𝒙 

is the temperature or salinity in-situ bias to estimate, B denotes the background error covariance of the 3D bias, d 

is the innovation vector, H is the observation operator, R is the observation covariance error. The vertical grid is a 

coarse grid (only 23 levels) which is different of the model vertical grid (50 levels). For example, the in-situ 

innovation at sea surface for T/S is calculated from the average of model and observations between 0 and 11 meters depth. 

  

Because temperature and salinity biases are not necessarily correlated at large scales, these two variables are processed 

separately. Spatial correlations in B are modeled by means of an anisotropic Gaussian recursive filter (Wu et al., 1992; 

Riishøjgaard, 1998; Purser et al., 2003). Finally, bias correction of T, S and dynamic height are computed and interpolated on 

the model grid and applied as tendencies in the model prognostic equations with a 1-month time scale. 20 

2.4.2 Bias correction scheme for large scale SSS large: SSS from space 

Earlier attempts to assimilate SSS data have shown the importance of using unbiased satellite SSS data while implementing 

rigorous quality control in an upstream process (Tranchant et al., 2015).  In this study, the bias control of satellite SSS has 



7 

 

been modelled by modifying the current T/S bias (in-situ) correction 3Dvar cost function (Eq. 1).  An extra term to take into 

account biases in the satellite SSS data has been added and denoted ξ in the 3DVar cost function (Eq.2). The new SSS bias is 

the minimizer of the cost function given by the Eq. 2.  

 

J(𝒙,ξ)= 1
2⁄ 𝒙𝑻 B

-1 𝒙+ 1
2⁄ (d-H 𝒙)𝑻R

-1
(d-H 𝒙)                                                                    (𝟐) 5 

                + 1
2⁄ 𝝃𝑻𝑩𝝃

−1𝝃 + 1
2⁄ (𝒅𝝃 − H 𝝃)

𝑻
𝑹𝝃

−1(𝒅𝝃 − H 𝝃)                                      

where  𝒅𝝃=(<SSS𝑺𝑴𝑶𝑺 > −𝝃) −  <SSS𝒎𝒐𝒅𝒆𝒍(𝟎.𝟓𝒎) >  

Here, 𝒅𝝃 is the innovation of SSS bias at surface, i.e the mean (<>) innovation of SMOS SSS over 1 month on a 1°x1° grid. 

To get an optimal set of parameters (weights, spatial scales and errors), several estimations were performed with data 

withdrawing. In Fig. 3, examples of salinity bias near the surface (𝒙) without (a) (Eq.1) and with (c) (Eq. 2) the SSS bias term 10 

(ξ) are shown. The patterns are similar except at the equator where the SSS bias (Fig3b) influences the bias correction of 

salinity (Fig 3c) with smaller scales. There may also be opposite sign but amplitudes are the same. In this example, a persistent 

large innovations at several depths (11m, 41 m and 79 m) (not shown here) may induce a larger bias of salinity (negative 

anomaly) at sea surface near 120°W/20°S. 

2.5 SSS observation error 15 

The Desroziers diagnostic (Desroziers et al., 2005) is commonly used for estimating observation error statistics and is used 

here to adapt the observation error from the background and analysis residuals calculated in the bias correction, see also 

(Lellouche et al., 2018). Following Desroziers et al., (2005), the observation error of the bias 𝑹𝝃  is optimal when is equal to 

the statistical expectation of the cross-product between the residual 𝒅𝝃
𝒂 and the innovation 𝒅𝝃 of the SSS bias, see Eq. 3. 

𝑹𝝃 =  𝑬 [𝒅𝝃.𝒅𝝃
𝒂]            (3) 20 

Actually, 𝑹𝝃  is estimated iteratively (n=5) by an iterative boot-strap method computed on a 3°x3° grid. Five successive 

analyses are made followed by five estimates of the Desroziers ratio 𝒓𝝃
𝒊  expressed as Eq. 4 for an analysis i. 

𝒓𝝃
𝒊 =

𝑬 [𝒅𝝃.𝒅𝝃

𝒂𝒊]

𝑹𝝃
𝒊             (4) 

From an observation error a priori 𝑹𝝃
𝒐 and by the successive ratio 𝒓𝝃

𝒊=𝟏,𝒏
, we obtain Eq.5: 

𝑹𝝃 = 𝒓𝝃
𝟏 … 𝒓𝝃

𝒏 𝑹𝝃
𝒐 𝒘𝒊𝒕𝒉 𝒓𝝃

𝒊=𝟏,𝒏 =
𝑬 [𝒅𝝃.𝒅𝝃

𝒂𝒊]

𝑹𝝃
𝒊=𝟏,𝒏              (5) 25 

The a priori error 𝑹𝝃
𝒐  is a combination of a zonally varying error, together with an increase over regions with sparse in-situ 

data and near the coast. This increase varies with the cycle. It means that the SSS bias could not be estimated accurately in the 

absence of in situ data, and hence will have no impact in the assimilation in those regions void of in situ data. Fig. 4 shows an 
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example of the final Desroziers ratio 𝒓𝝃
𝟓. It illustrates how the fixed zonal error is increased near the equator and reinforced 

near central America where in situ data are sparse. There is also a local increase near Samoa (170°W-13°S), probably due to 

RFI pollution. Several simulations have been done with and without bias correction in order to check the validity of the 

estimated SSS errors  in the data assimilation scheme SAM2. 

Finally, for each weekly analysis, the total observation error of satellite SSS (SMOS) prescribed in the data assimilation scheme 5 

is the maximum of the above observation error estimated during the bias correction process and the measurements error 

(𝑹𝒊𝒏𝒔𝒕𝒓.) supplied by the data producers (used as a threshold) , see Eq. 6. These measurement error estimates bring smaller 

scales than can be estimated by the Desroziers diagnostic. 

𝑹𝑻𝒐𝒕 = 𝒎𝒂𝒙(𝑹𝝃 , 𝑹𝒊𝒏𝒔𝒕𝒓.)                                 (6) 

2.4 OSE design 10 

Two parallel simulations were produced, the REF experiment and the SMOS experiment (hereafter SMOSexp) see Table 2. 

The only difference is the assimilation of the SSS SMOS observations. Both experiments begin in January 2014 from the same 

initial conditions coming from a previous reanalysis using only the bias correction of T/S without any data assimilation. The 

period covers the onset and development of the El-Niño 2015 event. The length of the OSE should at least cover one year, 

more if possible, as it takes 3 months for the system to be in equilibrium with the new data assimilated. This “adjustment” 15 

period is longer for observations deeper in the ocean (below the thermocline). Here, up to 2-year simulations are analyzed 

(2014-March2016). 

The comparison between the two simulations highlights the impact of the SSS data assimilation on the ocean circulation and 

the comparison to the other observations (independent or not) will allow us to verify the coherency between the different 

observation networks and the way they are assimilated. 20 

3. OSE analysis 

Different diagnostics are now used to assess the impact of SSS data assimilation on the analysed model fields. First the analysis 

from the REF and SMOSexp simulations are evaluated against the assimilated observations. Then, the 3D fields of the 

simulations with and without SSS data assimilated are compared and the changes in the surface and subsurface fields are 

analysed. Finally, TAO/TRITON array salinity observations which are deliberately with-held and delayed time 25 

ThermoSalinoGraph (TSG) which are not assimilated in the analysis of all experiments are used to conduct independent 

analysis observation comparison. The analysis focuses on the tropical Pacific region during the Niño 2015 event. 
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3.1 Assessment of the misfit reduction based on the data assimilated in the analysis 

3.1.1 Assimilation diagnostics 

The REF and SMOSexp simulations differ only by assimilating satellite SSS data (Table 2).  We first check the success of the 

assimilation procedure in reducing the misfit from the assimilated SSS observations within the prescribed error bar. We then 

look at the Root-Mean-Square (RMS) of in-situ salinity observation innovations near 6 meters depth  in both simulations. The 5 

model forecast range used in this comparison is from 1 to 7 days. 

Fig. 6 shows the time-series of Root-Mean-Square Errors (RMSEs) between the model near-surface salinity (6 m depth) 

compared to in situ observations (dotted lines) and between the model SSS (0.5 m depth) compared to the bias-corrected 

SMOS SSS (solid lines) for both simulations (REF in black, SMOSexp in red). As expected, the SMOS SSS data assimilation 

clearly leads to a significant reduction in the innovations of the SMOS data. Global, Tropical Pacific (and central Pacific 10 

(Niño3.4) regional statistics are shown. The global RMSE to SMOS data is around 0.28 pss (practical salinity scale) in the 

reference simulation and reduced to 0.21 pss when debiased SMOS data are assimilated, corresponding to an error reduction 

of 24%. This shows that the combination of bias correction and data assimilation perform well. The innovation of the in-situ 

salinity observations is also slightly reduced by 5%. This shows that the assimilation of SMOS SSS observations do not 

introduce overall incoherent information and reduce the misfit to the in-situ observations. It also confirms that SSS errors 15 

estimated in the bias correction procedure and used in the assimilation scheme are well tuned and the data bring coherent 

information. Consequently, large scales  biases are removed well. SPEAK ABOUT WESTERN PACIFIC it is better SAYS 

ABOUT absolute rmseSimilar results are found for all the Tropical regions with a SMOS SSS RMSE reduction of 25%, and 

an in-situ salinity RMSE reduction of 5%, see Table 3. It should be mentioned that the number of in situ salinity observation 

per week is not always sufficient to ensure robust statistics in small regions. 20 

Time series and maps of the misfits between observation and model forecasts are complementary to analyse the temporal and 

spatial variability of the model observation differences. Fig. 7 shows the mean and root-mean-square differences of daily mean 

SSS in the analysis fields in REF and SMOSexp compared to the original (non-debiased)  SMOS data over the year 2015 for 

the Tropical Pacific Ocean. 

The mean SSS bias in REF exhibits large scale patterns, coinciding with the 2015 SSS anomaly for the open ocean (Fig. 1). 25 

Large bias is also found in the Indonesian Archipelago. In contrast, the bias is effectively reduced in SMOSexp as well as the 

root-mean-square differences that is reduced to less than 0.2 PSS (black isohaline) in most of the Tropical Pacific Ocean. 

Assimilation of surface salinity observations from satellite has a slight impact on subsurface salinity fields. The mean RMSE 

and the percentage of RMSE difference of the salinity profiles (mainly from Argo floats) are computed over the entire period 

and the global domain (Fig. 8). There is a slight decrease in the first 20 meters below the surface when SSS data are assimilated 30 

additionally to in situ salinity data. It shows that the additional information brought by the SSS is in agreement with the salinity 

in situ observation close to the surface. It can even help improving the global salinity representation in the first 20 meters by 

better constraining the model forecast with the satellite SSS. 
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In situ temperature innovations in the global domain as well as in the Tropical Pacific region do not show significant changes. 

The same is found for SLA (SALTO/DUACS along track) and SST innovations (OSTIA L4). SSS data assimilation has a 

quite-neutral impact on the innovations associated with those observations.  

3.1.1 Impact of assimilating SMOS data during El-Niño 2015/16 

We now look at the changes in the analysed surface and subsurface fields due to the SSS data assimilation by comparing the 5 

3D analysis of the REF and SMOSexp experiments.  At basin scale, the REF simulation already agrees well with the 2015 

mean deduced from the “unbiased” CATDS SMOS observations (Fig. 9). SMOS data assimilation induced changes in the 

order of 0.2 pss. It tends to weaken the salinity negative anomaly represented in the REF simulation within the ITCZ and SPCZ 

regions. This is in agreement with (Kidd et al., 2013) that show an overestimation of the ECMWF precipitation in the tropics 

compared to satellite observations. Elsewhere, the SMOS data assimilation increases the salinity. Large changes also occurred 10 

in the coastal zones (Indonesian archipelago and Central America coast), even if the specified error on SSS data was larger in 

those regions than in the open ocean.  

The associated vertical salinity changes to the SMOS SSS data assimilation at the equator are represented on Fig. 10. The 

largest magnitudes (saltier) are found in the first 50 m depth and along the coastal bathymetry, elsewhere changes are very 

small, less than 0.05 pss. Overall, at the equator (excepted in coastal areas), the data assimilation of SMOS SSS leads to fresher 15 

waters in the East and saltier waters in the West for the year 2015.  

The highest variability of the surface salinity at monthly scale during the year 2015 is found within the ITCZ, SPCZ and in the 

Eastern Pacific fresh pool, in both simulations and SMOS observations (not shown). SMOS assimilation decreases the intensity 

of the variability of the SSS, in agreement with the observed variability. In summary, the SSS assimilation acts to counteract 

the precipitation excess, with a visible result on the salinity both in terms of time mean but also in term of variability. 20 

During the Niño2015 event, a strong salinity anomaly pattern developed in the Tropical Pacific (Gasparin et Roemmich 2016), 

see also Figure 1. This anomaly corresponds to the ITCZ and SPCZ areas. Fig. 11 shows the evolution of the SSS at 5°N, the 

latitude where the salinity anomaly is the largest (Hackert et al., 2014). Both the REF and SMOSexp simulations represent the 

decrease in time of the salinity peaking in fall 2015 at this latitude, for the longitude between 160°E and 120°W. Note that this 

salinity anomaly is lower in the SMOS data (SMOS SSS is saltier) with a smaller extent. The Eastern freshwater pool extended 25 

further west during 2015, but it was fresher in the REF simulation compared to the SMOSexp experiment.  

While the impact of SSS assimilation is neutral on the other variables (temperature and SSH) in terms of data assimilation 

diagnostics (RMSE), it is not the case at seasonal time scales. 

SSS data assimilation has also an impact on the other surface variables. SST differences at 5°N and velocity differences at the 

equator are represented on Fig.12. The differences are mainly associated with the wave propagation seen in all the surface 30 

fields. In the freshwater pool, the SMOS data assimilation weakens the freshening and induces a slight warming of about 

0.05°C (Fig12b).  At the equator, the zonal eastward advection is enhanced (positive pattern at the east of the date line) from 

January to October 2015 (Fig.12c) which has the effect of helping the Warm Water Pool migration to the east. This effect is 



11 

 

known to promotes the ocean-atmosphere coupling and thus the triggering of El Niño. In the Eastern basin, there is also an 

increase of the westward propagation during Autumn 2015 that are possibly linked to the increase of Tropical Instability Waves 

(TIWs), see Figure  13.  

Another effect of SSS changes can be viewed on Barrier layers which are quasi-permanent in the Tropical Pacific. Barrier 

Layer Thickness (BLT) can influence the air-sea interaction, ocean heat budget, climate change and onset of ENSO events, 5 

(Maes et al., 2002; Maes et al., 2004). The barrier layer acts as a barrier to turbulent mixing of cooler thermocline waters into 

mixed layer and thereby plays an important role in the ocean surface layer heat budget (Lukas and Lindstrom, 1991). The 

Hovmöller diagram of BLT at 5°N is shown on Figure 13 for both experiments. It shows the occurrence of thick BLT in the 

eastern Pacific ([130°W – 140°W]) in September to November which corresponds to measurements taken during strong El 

Niño events (Mignot et al., 2007). Note also that the eastward displacement of the thick barrier layer has already been observed 10 

during previous El Nino events, see Qu et al., (2014). 

From Figure 12a and Figure 13, we show that the Eastern and Central Pacific are saltier in the SMOSexp experiment which 

induce a decrease of the stratification and then a decreased BLT. This effect could also induce a mixing enhancement that 

could be also enhanced by TIWs activity. From a long-term TAO mooring record at 0°N 140° W, Moum et al., (2009) suggest 

that mixing may always be enhanced during the passage of TIWs. Consequently, even if TIWs are less active during a El-Nino 15 

phase than in a La Nina phase, it was interesting to investigate the TIW propagation signature in SSH. Moreover, Yin et al., 

(2014) and Lee et al., (2012) show also the capability of monitoring TIWs by Aquarius and SMOS data. Lyman et al., (2007) 

show that 33‐day TIWs are associated with the first meridional mode Rossby wave. Hovmöller of daily anomalies of SSH at 

4°N filtered at 33 days are shown in Fig. 14. For both experiments, the westward propagation of TIW is shown in the Eastern 

part of the basin. A reinforcement of the TIWs in the Central Pacific near 140°W (the slope is steeper) appears during the 20 

second half of 2015 in the SMOSexp experiment (0.35 m/s) compared to the REF experiment (0.25 m/s). As mentioned above, 

this could be correlated to the decrease of BLT, see Figure 13. On the contrary, a weakening of TIWs appears during the 

August-September period in the eastern part of the basin for the SMOSexp experiment. The same kind of impact have been 

shown recently in Hackert et al., (2014)  for the initialization of the coupled forecast, where a positive impact of SSS 

assimilation is provided on surface layer density changes via Rossby waves. They also show that these density perturbations 25 

provide the background state to amplify equatorial Kelvin waves and ENSO signal. 

3.2 Evaluation of the analysis toward independent observations 

We now compare the analysed fields to independent observations, i.e. withheld from all assimilation experiments. This will 

allow verifying that the changes in the physical fields induced by the SMOS data assimilation are in agreement with external 

sources of information. For this purpose, the TAO mooring (salinity) observations and the reprocessed TSG data from the 30 

French SS Observation Service were withheld from all experiments. This is therefore a fully independent validation. 
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3.2.1 Comparisons to TAO mooring 

TAO moorings deliver high frequency measurements at fixed locations. Such platforms allow us to look at high frequency 

variability that is not captured by drifting platforms. The hourly analysed salinity is collocated at the TAO mooring positions 

for the REF and SMOSexp simulations. Fig. 15 shows the time evolution of TAO salinity observations (valid at 1 m depth) at 

three mooring locations in the equatorial Pacific (warm pool, cold tongue and salt front) compared to the model (analysis) for 5 

the REF and SMOSexp OSE experiments at the first level (~0.5 m depth). Assimilated SMOS data have also been added. In 

this example, the salinity evolution of the REF experiment (in green) appears less correlated with the TAO salinity mooring 

observations (black dots). The SMOSexp simulation shows a better agreement, except for some strongly variable events. The 

differences between the SMOSexp simulation and TAO non-assimilated observations are most of the time less than 0.1 pss. 

The high frequency variability seen in the observations is also reproduced in the assimilative simulations, with a better 10 

agreement when SMOS data are assimilated, except during some specific periods. Tang et al., (2017) also found some 

disagreement between the TAO observations and SMAP/SMOS observations and Argo analysis during short periods. There is 

an improvement in the cold tongue during the end of summer, in fall 2015 and during the last 2 months of the SMOS simulation 

(15a) in the region where the data assimilation of SMOS reduces the freshening. Globally, an improvement occurs also in the 

warm pool (15b) over the entire period. One interesting feature is that when TAO mooring data are missing during a long 15 

period near the salt front, the SSS from the SMOSexp experiment is different but closer to TAO mooring when measurements 

come back, Fig. 15c. Obviously, the assimilated 4-days SMOS data are smoother but are able to capture the large scale 

variability. This also shows the level of accuracy we need to capture higher variability. The precipitation rate superimposed 

on the SSS proves that it is not the only process that plays a role in the salinity variability. Indeed, a high precipitation rate 

does not induce necessarily a strong freshening at the sea surface where advection, vertical mixing and SSS SMOS data 20 

assimilation can counteract its effect. This also shows that the observation error should not be increased locally depending on 

the precipitation. 

These three examples show a positive impact but it is also interesting to have a global view of all TAO moorings over the 

2015/2016 El-Niño event. As in (Martin et al., 2018), Fig. 16 shows the differences in RMSD from hourly TAO mooring 

salinity values at 1 m depth calculated over the period 1st Jan 2014 to 16th March 2016. The impact of the SMOS assimilation 25 

is contrasted by showing negative (positive) values which indicates that it reduces (increases) the RMSD. The impact is positive 

and more significant in the western Tropical Pacific near the dateline and in the western Pacific up to 5°N. The impact is quite 

neutral and even negative in the eastern tropical Pacific (140°W-110°W) between 2°S and 2°N where generally (i) the SMOS 

bias is larger (Fig. 4b), (ii) there are few in-situ SSS data (Fig. 2) and (iii) where the observation error is larger (Fig. 5). Actualy, 

the impact of SMOS SSS assimilation is larger in the ITCZ and SPCZ regions as shown also in the Fig. 9d.  This reflects the 30 

overestimation of E-P that the data assimilation tends to correct and the SMOSexp experiment is saltier in regions where 

precipitation is higher. Finally, during the El-Niño 2015/2016 event, there is a small positive impact overall from the SMOS 

assimilation with a reduction in RMSD from 0.326 to 0.316 pss (about 3%). 
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3.2.1 Comparisons to ship SSS 

Post processed TSG observations from the French SSS Observation Service  (SSS-OS;  (http://www.legos.obs-

mip.fr/observations/sss) were collected along the routes of voluntary merchant ships, see Alory et al., 2015. The SSS estimates 

have a ~2.5 km resolution along the ship track with an estimated error close to 0.08 pss. Salinity analysed fields from REF and 

SMOSexp simulations are collocated to the TSG observations. Salinity observations from vessel mounted thermosalinographs 5 

allow validation of the short time and space scales of near surface salinity. Two ship routes (Fig. 17) that cross the Tropical 

Pacific Ocean in June 2015 are chosen to verify that salinity changes when SSS SMOS data are assimilated are in agreement 

with such observations.  

Fig. 17 shows the comparison between the TSG salinity observations (in red) along the Matisse ship route collocated with the 

REF (black dashed line) and SMOSexp (black line) salinity analyzed fields. The variability of the SSS measurements, lower 10 

than the daily frequency, is well represented in both simulations with only small differences of less than 0.2 pss except in the 

freshwater on the eastern part of the basin.  In this region, the salinity dropped down to less than 34.0 PSS. The REF simulation 

differs from the TSG data by more than 0.5 pss within the freshwater pool, marked by a very sharp salinity front. The SMOSexp 

simulation shows a much better agreement with the SSS from the TSG observations: even if the differences remain large, the 

misfit is reduced.   15 

This confirms once again that the weakening of the freshening in the freshwater pool in the eastern Pacific induced by the 

SMOS data assimilation is realistic, as it is seen by different in situ observation platforms. 

4. Discussion and conclusions 

The L3 SMOS CATDS data used in this study is considered as an “unbiased” product. Yet, they still contain some residual 

biases that must be removed prior to bias correction and data assimilation. It was one of the major challenge of this study: to 20 

estimate the residual SSS bias, and to estimate a suitable observation error for the data assimilation system. It was made 

possible using an analysis of the residuals and errors with a statistical technique (Desroziers et al., 2005). The “debiased” data 

could then be assimilated by the SAM2 assimilation scheme which relies on the unbiased hypothesis. The bias estimated by 

the ocean forecasting system can also be used to correct the L3 SMOS CATDS data for other purposes. 

The system was carefully tuned and tested to efficiently assimilate the new SSS observations before running the longer 25 

simulations that are analyzed here. The proper specification of the observation operator and error covariance matrix were also 

based on discussions with the data provider. This study helped us to progress in the understanding of the biases and errors that 

can degrade the SMOS SSS performance. 

Nevertheless, there is still room for improvement. For instance, we used a zonal error as input to the error estimation with the 

Dezroziers technique. It could be beneficial to take into account the smaller scales linked to a shallow stratification that arises 30 

with strong precipitations and/or river runoff.  

http://www.legos.obs-mip.fr/observations/sss
http://www.legos.obs-mip.fr/observations/sss
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The SMOS data need accurate in-situ data (not only at the surface) to correct their own biases and estimate a suitable error 

(including data/system representativity). When enough data is available, SMOS really acts as a gap filler. There is a clear 

impact on the scales about 1°-2°. This can be seen on the Fig. 12 (Hovmöller), and additional spectral analyses (not shown) 

confirm this finding. So, it is important for future satellite SSS to provide a good accuracy in this band. It also shows that 

background error correlation length-scales used in the bias correction scheme could be optimized by improving the in-situ 5 

network and the SSS SMOS accuracy. 

Globally, the SSS data assimilation slightly improves the simulation compared to a simulation assimilating only observations 

of in situ, SST and SLA data. It highlights that no incoherent information was brought by the SSS data compared to the other 

assimilated observations. When looking at the impact of the SMOS SSS assimilation, we found a positive impact in salinity 

with respect to in-situ data over the top 30 meters. The root mean square error (RMSE) of in-situ surface salinity is reduced in 10 

all regions of the Tropical Pacific. The impact varies depending on the region and can reach 10%  in the North Tropical Pacific 

where the SSS anomaly is the strongest. Comparisons to independent TAO/Triton data corroborate the fact that the impact of 

SMOS SSS assimilation is larger in the ITCZ and SPCZ regions. This also reflects that the overestimation of E-P is corrected 

by data assimilation through salting in regions where precipitations are higher. 

There is a few impact on the SST. For instance, the area of the SST warmer than 28.5°C was little affected. It means that the 15 

local impact on the air-sea coupling is negligible. But, an impact on SSH have been seen through TIWs which have been 

reduced and then strengthened in the eastern part of the basin during the last half of the 2015 year.  The wave activity can be 

linked to the Barrier Layer Thickness which has also been impacted through a positive feedback. Another result can be seen 

on the strengthened Eastward advection of the warm pool in 2015 (Fig. 12, Hovmöller of zonal velocity difference). It means 

that SMOS SSS assimilation has a non-local impact on the ocean-atmosphere dynamics. These findings are close to those of 20 

Hackert et al., (2014) with a global ocean-atmosphere coupled model but benefits in term of seasonal forecasting have still to 

be quantified.  

The next step will be to assimilate SSS from space at higher latitudes where low sea surface temperature (SST) degrades the 

brightness temperature sensitivity to SSS (Sabia et al., 2014). A longer ocean reanalysis with continuously improved SSS 

SMOS (available for over 9 years) and SMAP (available since 2015) data could bring new information on the water cycle.  25 

The focus of this study was on the tropical Pacific. But the system is global, and, in spite of RFI pollution near some coasts, 

we found clear improvements near the Amazon, Rio Del Plata, … So, the benefit from assimilating SMOS SSS is not restricted 

to the equatorial band. Its positive impact near the mid-latitudes major rivers is a chance to better monitor the strengthening of 

the water cycle (Durack, 2015). 

 30 
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Figure 1:  SSS anomalies (pss) in 2014 (top) and 2015 (bottom): mean salinity difference (model (control run) – WOA2013). 
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(a) 

(b) 

Figure 2: Representativity error of in-situ SSS (Rrepr.) (a) and salinity error of in-situ data at sea surface (b) over the Tropical 

Pacific and used in the data assimilation system for the week 20-27 January 2016. 
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(a) 

(b) 

 (c) 

Figure 3: Example of model salinity bias (x) near the surface (Eq. 1a) calculated from in-situ data between 0 and 10 m depth only 

(a), of SSS bias (ξ) (Eq. 1b) calculated from in-situ data between 0 and 10 m depth and SMOS SSS (b) an salinity bias (x) (Eq. 1a 5 
+Eq. 1b) from in-situ data between 0 and 10 m and SMOS SSS (c) in the Tropical Pacific (week 20-27 January 2016). 

 

 



23 

 

 

Figure 4: Example of Desroziers ratio (3°X3°) (see Eq. 3) estimated and applied to the a-priori error (bottom). (week 20-27 

January 2016) 

 

Figure 5: Example of SSS error (Eq. 4) of SMOS over the Tropical Pacific and used in the data assimilation system for the week 20-5 
27 January 2016. 

 

 



24 

 

(a) 

(b) 

(c) 
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Figure 6:  RMSE of SSS with respect to SMOS data (solid lines) and RMSE of salinity near 6 meter depth with respect to in situ 

salinity data (dashed lines), in the 1-6 day forecast fields in REF (black lines) and SMOSexp (red line) in the global domain (a), the 

Tropical Pacific (b) and in the Niño3.4 region (c). RMSEs are evaluated for each weak and the mean 𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅ of the in-situ salinity 

are denoted in the legend. The regions used here have south-west and north-east corners defined as: Tropical Pacific [30°S, 120°E] 

to [30°N,70°W]; Niño3.4 [5°S, 170°W] to [5°N, 120°W]. 5 

 

 

 

 

Figure 7: Mean difference (top) and root-mean-square-difference (bottom) of monthly mean SSS with respect to the SMOS data 10 
(model minus SMOS) in the analysis fields in REF (left) and SMOSexp (right) experiments on 2015 year. 
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Figure 8: Average salinity RMSE (pss) compared to all in situ measurements (left) over the period 1st Jan 2014 to 2st Mar 2016 in 

global domain for the REF (green line) and SMOSexp (red line) experiments as a function of depth over the top 50 m. The 

corresponding percentage of RMSE difference of all in situ salinity measurements between REF and SMOSexp experiments (right) 

(positive difference implies a reduction in RMSE by the SSS assimilation). 
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Figure 9: Mean October 2015 SSS estimation from the REF experiment (top, left), the SMOSexp experiment (top, right), the SMOS 

SSS measurements (left, bottom) and annual mean difference (2015) between the SMOSexp and REF experiment (bottom, right). 

The isohaline 34.8 pss is the (black solid line) is represented.  
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Figure 10: Vertical section along the equator of the mean model salinity difference between the SMOSexp and REF experiments 

for the year 2015. 
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Figure 11: Hovmöller of SSS at 5°N for the REF (left) and SMOSexp (middle) and SMOS data (right) 
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Figure 12:  Hovmöller ofdifferences in SSS (left), SST(middle) at 5°N and sea surface zonal velocity (U) (right) at the equator 

between the SMOSexp and the REF experiment in 2015. 
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Figure 13:  Hovmöller of Barrier Layer Thickness (BLT) at 5°N for the REF experiment in (left) and for the SMOSexp 

(right) experiment in 2015. 
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Figure 14: Hovmöller of 28–40 day (33 days) band‐passed SSH anomalies at 4°N referenced to the temporal annual mean of June-

December 2015 for REF experiment (left) and for SMOSexp experiment (right). The propagation speeds of 0.25 and 0.35 m/s 

(solid lines) are representative of the propagation speed for the 28–40 day bands. 5 

. 
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(a) 

 

(b) 
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(c) 

 

Figure 15: Time evolution of the hourly TAO observed salinity (black), the hourly model REF (green), SMOSexp (red) simulations 

and the assimilated SMOS data (magenta) at three different TAO moorings locations, cold tongue (a) (125°W,7.97°N), warm pool 

(b) (165°E,4.99°S) and (c) salt front (170°W,4.99°S) from January 2015 to March 2016. The precipitation rate (blue line) coming 5 
from the atmospheric ECMWF forcing is superimposed  

 

Figure 16. Difference in model salinity RMSD (pss) at 1 m depth calculated against the 1 m depth TAO mooring salinity values 

(SMOSexp -REF) calculated over the period 1st Jan 2014 to 16th March 2016 (negative/positive difference implies a 10 
reduction/increase in RMSD by the SMOS assimilation). Moorings are only included if they have more than 1 week of measurements 

during the period. 
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(a) 

(b) (c)  

Figure 17: Ship route of the Matisse with TSG salinity observations (PSS) (a) and TSG Salinity observations compared to near sea 

surface salinity analysis (b,c) from the OSEs (red line= observations, dashed line= REF, black solid line = SMOSexp).  A zoom 

(orange rectangle) is shown on figure (c). 5 
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Instrumental errors (Rinst.) 

Altimetry 

JASON2, ALTIKA/SARAL 2 cm 

HAIYANG-2A 4 cm 

SST 

OSTIA L4 0.5°C 

In-situ at sea surface 

XBT, moorings, Argo floats, sea mammals 0.03°C and 0.0075 pss  

Table 1:  Instrumental errors used for the current operational system. 

 

Experiment 

name 

Period Assimilated observations SSS product 

Reference 

(REF) or  

control run 

Jan 2014- March 2016 Regular observation data 

without satellite SSS. 

No SSS assimilation 

SMOSexp Jan 2014 - March 2016 Regular observation data 

plus 

SMOS satellite SSS 

observations. 

4-day 0.25°x0.25° SMOS 

data from LOCEAN 

(L3-Debiased-Locean-v2) 

Table 2: Experiment descriptions. 
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Regions 

[south-west to north-east corners] 

Percentage of RMSE difference of SSS when SMOS SSS is 

assimilated and mean number of observations 

SMOS SSS In situ salinity near 6 m depth 

% Mean number of 

obs./week 

% Mean number of 

obs./week 

Global ocean 24 % 372,000 4.7 % 1500 

Tropical Pacific 

[30°S, 120°E] to [30°N,70°W] 

26 %  165,000 7.9 % 500 

Niño 3.4 

[5°S, 170°W] to [5°N,120°W] 

23 %  9,500 4.8 % 36 

Niño 4 

[5°S, 160°E] to [5°N,150°W] 

22 %  9,500 6.7 % 38 

Niño 3 

[5°S, 150°W] to [5°N,90°W] 

25 %  11,400 3.3 % 57 

North Tropical Pacific 

[8°N, 160°E] to [20°N,100°W]  

30 %  22,300 10 % 33 

South Tropical Pacific 

[20°S, 160°E] to [8°S,90°W] 

24 % 24,000 6.6 % 64 

 

Table 3: Percentage of RMSE difference of SSS for SMOS and for in-situ salinity at 6 m depth in different regions. The average 

number of SSS data assimilated per week is also indicated. 5 


