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 Abstract 8 

 9 

The numerical modeling of two-dimensional surface wave development under the action of wind 10 

is performed. The model is based on three-dimensional equations of potential motion with free 11 

surface written in a surface-following non-orthogonal curvilinear coordinate system where depth 12 

is counted from moving surface.  Three-dimensional Poisson equation for velocity potential is 13 

solved iteratively. Fourier transform method, the second-order accuracy approximation of 14 

vertical derivatives on a stretched vertical grid and the fourth-order Runge-Kutta time stepping 15 

are used. Both the input energy to waves and dissipation of wave energy are calculated on the 16 

basis of the earlier developed and validated algorithms. A one-processor version of the model for 17 

PC allows us to simulate an evolution of wave field with thousands degrees of freedom over 18 

thousands of wave periods. A long-time evolution of two-dimensional wave structure is 19 

illustrated by the spectra of wave surface and input and output of energy. 20 

 21 

 22 

1. Introduction 23 

Development of waves under the action of wind is a process that is difficult to simulate 24 

since surface waves are very conservative and change their energy for hundreds and thousands 25 

periods. This is why the most popular method is spectral modeling. Waves as physical objects in 26 

this approach are actually absent, since evolution of spectral distribution of wave energy is 27 

simulated. The description of input and dissipation in this approach is not connected directly 28 

with the formulation of the problem, but it is rather adopted from other branches of wave theory 29 

where waves are the objects of investigation. However, the spectral approach turned out to be the 30 

only method capable to describe the space and time evolution of wave field in the ocean. The 31 

phase resolving models (or 'direct' models) designed for reproducing waves themselves cannot 32 

compete with spectral models since a typical size of domain in such models does not exceed 33 

several kilometers. Such domain includes just several thousands of large waves. Nevertheless, 34 

direct wave modeling plays an ever-increasing role in geophysical fluid dynamics, because it 35 

gives the possibility to investigate the processes which cannot be reproduced with spectral 36 

models. One of such problems is that of extreme wave generation. (Chalikov, 2009; Chalikov, 37 

Babanin, 2016a).Direct modeling is also a perfect instrument for development of 38 

parameterization of physical processes for spectral wave models. Besides, such models can be 39 

used for direct simulation of wave regimes of small water basins, for example, port harbors. 40 

Other approaches of direct modeling are discussed in (Chalikov et al. 2014; Chalikov, 2016) 41 

Until recently, direct modeling was used for reproduction of quasi-stationary wave 42 

regime when wave spectrum essentially did not change. A unique example of direct numerical 43 

modeling of surface wave evolution is given in (Chalikov and Babanin, 2014)where 44 

development of wave field was calculated with use of a two-dimensional model based on full 45 
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potential equations written in the conformal coordinates. The model included algorithms for 46 

parameterization of input and dissipation of energy (a description of similar algorithms is given 47 

below). The model successfully reproduced an evolution of wave spectrum under the action of 48 

wind. However, strictly one-dimensional (unidirected) waves are not realistic; hence, the full 49 

problem of wave evolution should be formulated on the basis of three-dimensional equations. An 50 

example of such modeling is given in the current paper.  51 

 52 

2. Equations 53 

 54 

Let us introduce a non-stationary surface-following non-orthogonal coordinate system: 55 

 , , ( , , ),x y z t            ,                                                                     (1)  56 

where ),,(),,(  tyx  is a moving periodic wave surface given by the Fourier series  57 

    , ,, ,
x x y y

k l k l

M k M M l M

h    
     

   ,             (2) 58 

where xM and yM are the numbers of modes in directions   and  , respectively, while  ,k l  are 59 

Fourier expansion basis functions. The 3-D equations of potential waves in the system of 60 

coordinates (1) at 0   take the following form: 61 

 2 21                    ,                          (3) 62 

  2 2 2 2 21
1

2
p                   ,              (4) 63 

          ,                (5)64 

  65 

where   is the operator: 66 

    2 2( ) 2 ( ) 2 ( ) ( ) ( )                     ,            (6) 67 

capital fonts   are used for domain 0   while the lower case    refers to 0.   68 

 It is suggested in (Chalikov et al., 2014) that it is convenient to represent velocity 69 

potential   as a sum of two components, i.e., an analytical (‘linear’) component 70 

  , , ,0      and an arbitrary (‘non-linear’) component F, j = F x ,J ,0( )( ): 71 

j =j +j, F = F+F.                 (7)  72 

The analytical component  satisfies Laplace equation: 73 

0      ,                                     (8) 74 

with known solution:   75 

 , ,

,

( , , ) expk l k l

k l

k       ,                                                                      (9)  76 

( ,k l  are Fourier coefficients of surface analytical potential  at 0  ). The solution satisfies 77 

boundary conditions: 78 

0 :

: 0

 



  

   
              (10) 79 

The nonlinear component satisfies an equation: 80 
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               ,          (11)  81 

Eq. (11) is solved with the boundary conditions: 82 

0 : 0

: 0





  

   
             (12) 83 

 The derivatives of linear component  in (6) are calculated analytically. The scheme 84 

combines 2-D Fourier transform method in the ‘horizontal surfaces’ and a second-order finite-85 

difference approximation on a stretched staggered grid defined by relation 1j j      (  is 86 

a vertical step, while 1j  at the surface). The stretched grid provides increase of accuracy of 87 

approximation for the exponentially decaying modes. The values of stretching coefficient   lie 88 

within the interval 1.01-1.20. A finite-difference second-order approximation of Eq. (10) on a 89 

non-uniform vertical grid is quite straightforward. Equation (11) is solved as Poisson equations 90 

with iterations over the right-hand side. A detailed description of the scheme and its validation is 91 

given in (Chalikov, 2016). 92 

 Equations (3) – (5) are written in a non-dimensional form by using the following scales: 93 

length L where 2L is (dimensional) period in the horizontal direction; time L1/2g-1/2 and velocity 94 

potential 2/12/3 gL  (g is acceleration of gravity). The pressure is normalized by water density, so 95 

that the pressure scale is Lg. Equations (3) – (5) are self-similar to the transformation with 96 

respect to L. All the results presented in this paper are nondimensional.  97 

 98 

3. Energy input and dissipation 99 

 100 

 Input energy to waves describes a pressure term p  in a dynamic boundary condition (4). 101 

Dissipation cannot be described with use of potential equations, but for realistic description of 102 

wave dynamics, dissipation of wave energy should be taken into account, i.e., we should include 103 

in equations (3) and (4) additional terms which, strictly speaking, contradict the assumption of 104 

potentiality.  105 

 3.1 Energy input from wind 106 

 According to the linear theory(Miles, 1957), the Fourier components of surface pressure 107 

p  are connected with those of surface elevation through the following expression: 108 

  , , , , , ,i i i ,a
k l k l k l k l k l k l

w

p p h h


 


                                                                        (13) 109 

where , , , ,, , ,k l k l k l k lh h      , are real and imaginary parts of elevation   and the so-called  -110 

function (i.e., Fourier coefficients at COS and SIN, respectively); /a w   is a ratio of air and 111 

water densities, respectively. Hence, for derivation of shape of beta-function it is necessary to 112 

simultaneously measure wave surface elevation and non-static pressure on the surface. 113 

Experimental measurement of surface pressure is a very difficult problem since the 114 

measurements should be done very close to a moving surface, preferably, with a surface-115 

following sensor. Such measurements are done quite seldom, especially, in the field. The 116 

measurements were carried out for the first time by a team of authors both in laboratory and field 117 

(Snyder et al, 1981; Hsiao and Shemdin, 1983; Hasselmann and Bösenberg, 1991; Donelan et al., 118 

2005, 2006).  The data obtained in this way allowed constructing an imaginary part of beta-119 
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function used in some versions of wave forecasting models (Rogers et al. 2012). The second way 120 

of beta-function evaluation is based on the results of numerical investigations of statistical 121 

structure of the boundary layer above waves with use of Reynolds equations and an appropriate 122 

closure scheme. In general, this method works so well that many problems in the technical fluid 123 

mechanics are often solved using numerical models, not experimentally. This method was being 124 

developed beginning from (Chalikov, 1978, 1986), followed by (Chalikov and Makin, 1991; 125 

Chalikov and Belevich, 1992; Chalikov, 1995). The results were implemented in 126 

WAVEWATCH model, i.e., a third-generation wave forecast model (Tolman and Chalikov, 127 

1996) and thoroughly validated against the experimental data in the course of developing 128 

WAVEWATCH-III (Tolman et al., 2014). This method was later improved on the basis of more 129 

advanced coupled modeling of waves and boundary layer (Chalikov and Rainchk, 2010; 130 

hereafter CR), while the beta-function used in WAVEWATCH-III was corrected and extended 131 

up to high frequencies. Direct calculation of energy input to waves requires both real and 132 

imaginary parts of the beta-function. The total energy input to waves depends on imaginary part 133 

of   -function, while the moments of higher order depend both on imaginary and real parts of 134 

. This is why full approximation constructed in CR was used in the current work. Note that in the 135 

range of relatively low frequencies the new method is very close to the scheme implemented in 136 

WAVEWATCH-III. 137 

 It is a traditional suggestion that both coefficients are the functions of virtual 138 

nondimensional frequency cos / cosk kU U c      (where k and U are the 139 

nondimensional radian frequency and wind speed, respectively; kc is a phase speed of the kth 140 

mode;   is an angle between wind and wave mode directions).  Most of the schemes for 141 

calculations of  -function consider a relatively narrow interval of nondimensional frequencies142 

 . In the current work, the range of frequencies covers an interval  0 10p   , and 143 

occasionally the values of 10  can appear. This is why the function derived in (Chalikov and 144 

Rainchik, 2010) through coupled simulations of waves and boundary layer, is used here. Wave 145 

model is based on potential equations for a flow with free surface, extended with an algorithm 146 

for breaking dissipation (see below description of the breaking dissipation parameterization). 147 

Wave boundary layer (WBL) model is based on Reynolds equations closed with K   scheme; 148 

solutions for air and water are matched through the interface. The  -function obtained in CR 149 

was used for evaluation of accuracy of the surface pressure p calculations. A shape of  -150 

function connecting surface elevations and surface pressure, is studied up to high 151 

nondimensional wave frequencies both in positive and negative (i.e., for wind opposite to waves) 152 

domains. The data on β-function exhibit wide scatter, but since the volume of data was quite 153 

large (47 long-term numerical runs allowed us to generate about 1,400,000 values of  ), the 154 

shape of β-function was defined with satisfactory accuracy up to very high nondimensional 155 

frequencies  50 50  . As a result, the data on  -function in such a broad range, allow us 156 

to calculate wave drag up to very high frequencies and to explicitly divide the fluxes of energy 157 

and momentum transferred by the pressure and molecular viscosity. This method is free of 158 

arbitrary assumptions on the drag coefficient dC ; and, on the contrary, such calculations allow 159 

investigating the nature of wave drag (see Ting et al., 2012) 160 

 It was indicated above that an initial wave field is assigned as superposition of linear 161 

modes which amplitudes are calculated with JONSWAP spectrum with peak wave number162 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-11
Manuscript under review for journal Ocean Sci.
Discussion started: 20 February 2018
c© Author(s) 2018. CC BY 4.0 License.



5 

 

100pk  .The initial value 0 6   was chosen, i.e.,a ratio of the nondimensional wind speed at 163 

height 0 / 2 2 /100   and the phase speed 1/ 2

0 0c k   is equal to 6. Such a high ratio corresponds 164 

to initial stages of wave development. The values of   for other wave numbers are calculated 165 

by assuming that wind profile is logarithmic: 166 

 

1

0 0
0

0 00

ln ln cos
2 2

k
k

k

c

c z z

 




 
    

 
,             (14) 167 

where 00z  is effective nondimensional roughness for the initial wind profile, while 0z  is the 168 

actual roughness parameter that depends on the energy in a high-frequency part of spectrum and 169 

on the wind profile. We call it ‘effective’, since very close to the surface the wind profile is not 170 

logarithmic (Chalikov, 1995; Tolman, Chalikov, CR). The value of this parameter depends on 171 

the wind velocity and energy in a high-wave number interval of wave spectrum, as well as on the 172 

length scale of the problem. All these effects are possible to include by matching the wave model 173 

with a one dimensional WBL model(Ting et al, 2012). Here, a simplified scheme for the 174 

roughness parameter is chosen. It is well known that the roughness parameter (as well as a drag 175 

coefficient) decreases with decrease of the inverse wave age. In our case wind speed is fixed, and 176 

dependence for the nondimensional roughness parameter is constructed on the basis of the results 177 

obtained in CR: 178 

 0 0015z z  ,                (15) 179 

where 3

00 10z   is the initial value of the roughness parameter. Eq. (15) approximates 180 

dependence of the effective roughness at the stage of wave development. Note that the results are 181 

not sensitive to variation of the roughness parameter within reasonable limits. 182 

 183 

3.2 High wave number energy dissipation  184 

 185 

A nonlinear flux of energy directed to the small wave numbers produces downshifting of 186 

spectrum, while an opposite flux forms a shape of spectral tail. The second process can produce 187 

accumulation of energy near ‘cut’ wave number. Both processes become more intensive with 188 

increase of energy input. Growth of amplitudes at high wave numbers is followed by the growth 189 

of local steepness and numerical instability. This phenomenon well known in numerical fluid 190 

mechanics is eliminated by use of a highly selective filter simulating nonlinear viscosity. To 191 

support stability, additional terms are included into the right hand sides of equations (3) and (4): 192 

,

, , ,

k l

k l k l k lE


 



 


,              (16) 193 

,l

, , ,

k

k l k l k lF


 



 


             (17) 194 

 195 

( ,k lE and ,k lF are Fourier amplitudes of the right-hand sides of equations (3) and (4) while factor 196 

,k l is calculated using a formula: 197 
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
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 
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 


            (18) 198 

where k and l are components of wave number k , while coefficients dk and 0k are defined by the 199 

expressions: 200 

    
1/2

2 2
1 12

d m x y m x m yk d M M l k d M k k d M


  

  
 

                     (19) 201 

    
1/2

2 2
1 1

0 x y x yk M M l k M k k M


  

  
 

           (20) 202 

where 0.1mc  , 0.75md  .   Expressions (18) - (20) can be interpreted in a straightforward way: 203 

the value of ,k l is equal to zero inside the ellipse with semi-axes m xd M  and m yd М ; then it grows 204 

linearly with k up to the value mc and is equal to mc outside the outer ellipse. This method of 205 

filtration that we call ‘tail dissipation’ was developed and validated with a conformal model by 206 

Chalikov and Sheinin (1998). The sensitivity of the results to the parameters in (18) - (20) is not 207 

high. The aim of the algorithm is support of smoothness and monotonicity of wave spectrum 208 

within a high wave number range.  Since the algorithm affects amplitudes of small modes, it 209 

actually does not reduce the total energy, though it efficiently prevents development of 210 

numerical instability. Note that any long-term calculations cannot be performed without ‘tail 211 

dissipation’ eliminating development of the numerical instability at high wave numbers. 212 

 213 

 3.3 Dissipation due to wave breaking 214 

 215 

 The main process of wave dissipation is wave breaking. This process is taken into 216 

account in all spectral wave forecasting models similar to WAVEWATCH (see Tolman and 217 

Chalikov, 1996).Since there are no waves in spectral models, no local criteria of wave breaking 218 

can be formulated. This is why breaking dissipation is represented in spectral models in a 219 

distorted form. Areal breaking occurs in relatively narrow areas of physical space; however, 220 

spectral image of such breaking is stretched over the entire wave spectrum, while in reality the 221 

breaking decreases height and energy of dominant waves. This contradiction occurs because 222 

waves in spectral models are assumed as linear ones, while in fact the breaking occurs in 223 

physical space with nonlinear sharp wave, usually composed of several modes.  224 

The mechanics of wave breaking at developed wave spectrum differs from that in a wave 225 

field represented by few modes, normally considered in many theoretical and laboratory 226 

investigations. Since the breaking in laboratory conditions is initiated by special assigning of 227 

amplitudes and phases, it cannot be similar to the breaking in natural conditions. To some 228 

degree, the wave breaking is similar to development of extreme wave that appears suddenly with 229 

no pronounced prehistory (Chalikov and Babanin, 2016a, 2016b). There are no signs of 230 

modulational instability in both phenomena, which suggests a process of taking energy from 231 

other modes. The evolution leading to breaking or ‘freaking’ seems just opposite: full energy of 232 

main wave remains nearly constant while the columnar energy is focusing around the crest of 233 

this wave which becomes sharper and unstable. Probably, even more frequent cases of wave 234 
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breaking and extreme wave appearance can be explained by local superposition of several 235 

modes. 236 

The instability of interface leading to breaking is an important and poorly developed 237 

problem of fluid mechanics. In general, this essentially nonlinear process should be investigated 238 

for a two-phase flow. Such approach was demonstrated, for example, by Iafrati (2001). 239 

However, the progress in solving this highly complicated problem is not too fast.   240 

The problem of breaking parameterization includes two points: (1) establishing of a 241 

criterion of breaking onset and (2) developing of an algorithm of breaking parameterization. The 242 

problem of breaking is discussed in details in Babanin (2011). Chalikov and Babanin (2012) 243 

performed numerical investigation of the processes leading to breaking. It was found that a clear 244 

predictor of breaking, formulated in dynamical and geometrical terms, probably does not exist. 245 

The most evident criterion of breaking is the breaking itself, i.e., the process when some part of 246 

upper portion of sharp wave crest is falling down. This process is usually followed by separation 247 

of detached volume of liquid into water and air phases. Unfortunately, there is no possibility to 248 

describe this process within the scope of potential theory. 249 

Some investigators suggest using the physical velocity approaching the rate of surface 250 

movement in the same direction as a criterion of breaking onset. This is incorrect, since the 251 

kinematic boundary condition suggests that these quantities are exactly equal to each other. It is 252 

quite clear that the onset of breaking can be characterized by appearance of non-single-value 253 

piece of surface. This stage can be investigated with two-dimensional model which due to a high 254 

flexibility of the conformal coordinates allows us to reproduce a surface with the inclination in 255 

the Cartesian coordinates larger than 90 degrees. (In the conformal coordinates the dependence 256 

of elevation on curvilinear coordinate is always single-value). The duration of this stage is 257 

extremely short, the calculations being always interrupted by the numerical instability with sharp 258 

violation of conservations laws (constant integral invariants, i.e., full energy and volume) and 259 

strong distortion of the local structure of flow. Numerous numerical experiments with conformal 260 

model showed that after appearance of non-single value, the model never returns to stability. 261 

However, introducing of appearance of the non-single-surface as a criterion of breaking 262 

instability even in conformal model is impossible, since a behavior of model at a critical point is 263 

unpredictable, and the run is most likely to be terminated, no matter what kind of 264 

parameterization of breaking is introduced. It means that even in a very precise conformal 265 

model, stabilization of solution should be initiated prior to breaking. 266 

Consideration of exact criterion for breaking onset for the models using transformation of 267 

the coordinate type (1) is useless, since the numerical instability in such models arises not 268 

because of the breaking approaching but because of appearance of large local steepness. Multiple 269 

experiments with direct 3-D wave model show that appearance of local steepness 270 

 max ,
x y

  
 

 exceeding 2 (that corresponds to a slope of about 60 degrees) is always 271 

followed by numerical instability. Decrease of time step does not make any effect. As seen, a 272 

surface with such slope is very far from being a vertical ‘wall’, when real breaking starts. 273 

However, an algorithm for breaking parameterization must prevent appearance of large local 274 

steepness. The situation is similar to the numerical modeling of turbulence (LES technique), 275 

where the local highly selective viscosity is used to prevent appearance of too large local 276 

gradients of velocity. The description of breaking in direct wave modeling should satisfy the 277 

following conditions. (1) It should prevent large local gradients of elevation; in our case the 278 
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breaking algorithm should prevent the onset of instability at each point of half million of grid 279 

points over more than 100 thousand of time steps.(2) It should describe in a more or less realistic 280 

way the loss of kinetic and potential energies with preservation of balance between them. (3) It 281 

should preserve the volume. It was suggested in (Chalikov, 2005) that an acceptable scheme can 282 

be based on the local highly selective diffusion operator with special diffusion coefficient. 283 

Several schemes of such type were validated, and finally the following scheme was chosen: 284 

1E J B B   

 


   

     
   

    
,            (21) 285 

1F J B B   

 


   

     
   

    
,           (22) 286 

where F and F are the right-hand sides of equations (3) and (4) including the terms introduced 287 

by (16) – (20). It was suggested in the first versions of the scheme that diffusion coefficient 288 

depends on a local slope, however, such scheme did not prove to be very reliable since it did not 289 

prevent all of the events of numerical instability. A scheme based on the calculation of the local 290 

curvilinearity  and  turned out to be a lot more reliable. The calculations of 75 different 291 

runs were performed with full 3-D model in (Chalikov et al, 2014) over period of 350t  (70,000 292 

time steps). The total number of values used for the calculations of dependence in Fig. 1 (thick 293 

curve) is about 6 billion. The normal probability calculated with the same dispersion is shown by 294 

thin curve.  295 

 296 

 297 

Figure 1. Probability of curvilinearity   . 298 

Thick curve calculated with full 3-D model; 299 

thin curve is a probability calculated over  300 

ensemble of linear modes with the same 301 

spectrum. 302 

 303 

 304 

It is seen that the probability of large negative values of curvilinearity is by orders larger than the 305 

probability calculated over  ensemble of linear modes with the same spectrum. 306 

 The curvilinearity turned out to be very sensitive to the shape of surface. This is why it 307 

was chosen as a criterion of breaking approach. Coefficients B  and B depend nonlinearly on 308 

the curvilinearity 309 
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cr

B

cr

C
B

  



 

   

 

 
 


               (24) 311 

 312 

where   and  are horizontal steps in x and y direction in grid space, and coefficients are313 

2.0BC  , 50cr cr

     . Algorithm (21) - (24) does not change the volume and decreases the 314 

local potential and kinetic energy. It is assumed that the lost momentum and energy are 315 
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transferred to current and turbulence (see Chalikov and Belevich, 1992). Besides, the energy also 316 

goes to other wave modes. The choice of parameters in (21) - (24) is based on simple 317 

considerations: local piece of surface can closely approach the critical curvilinearity but not 318 

exceed it. The values of the coefficients are picked with reserve to provide stability of long runs.  319 

 We do not think that the suggested breaking parameterization is a final solution of the 320 

problem. Other schemes will be tried in the next version of the model. However, the results 321 

presented below show that the scheme is reliable and provides a realistic energy dissipation rate. 322 

 323 

4. Calculations and results 324 

 325 

The elevation and surface velocity potential fields are approximated in the current 326 

calculations by 256хМ  and 128yM  modes in directions x and y. The corresponding grid 327 

includes N (1024 512)x yN     knots. The vertical derivatives are approximated at vertical 328 

stretched grid 1 , ( 1,2,3..., )j j wd d j L     where =1.2and 10wL  . The small number of 329 

levels used for solution of the equation for nonlinear component of the velocity potential is 330 

possible because just a surface vertical derivative for the velocity potential  / 0    is 331 

required. The velocity potential mainly consists of an analytical component ,while a nonlinear 332 

component provides but small correction. To reach an accuracy of solution 610  for equation 333 

(11), no more than two iterations were usually sufficient. 334 

 The parameters chosen were used for solution of the problem of wave field evolution 335 

over acceptable time (of the order of 10 days). The initial conditions were assigned on the basis 336 

of empirical spectrum JONSWAP (Hasselmann et al, 1973)with a maximum placed at wave 337 

number 100pk  with angle spreading  
256

cosh .Details of initial conditions are of no 338 

importance because an initial energy level is quite low.  339 

The total energy of wave motion p kЕ E E   ( pE  - is potential energy, while kE is 340 

kinetic energy) is calculated with the following formulas: 341 

 342 

 2 2 2 20.25 , 0.5p k x y zE E       ,             (25) 343 

 344 

where single bar denotes averaging over the  and  coordinates, while double bar denotes 345 

averaging over entire volume.  The derivatives in (25) are calculated according to transformation 346 

(1). An equation of integral energy p kE E E  evolution can be represented in the following 347 

form: 348 

 b t

dE
I D D N

dt
    ,                         (26)  349 

where I is the integral input of energy from wind (Eqs. (13) – (15); bD is a rate of energy 350 

dissipation due to the wave breaking (Eqs. (21) – (24)); tD is a rate of energy dissipation due 351 

to33filtration of high-wave number modes (‘tail dissipation’, Eqs. (16) – (20)); N is an integral 352 

effect of the nonlinear interactions described by the right-hand side of the equations when 353 

surface pressure p  is equal to zero. The differential form for calculation of the energy 354 
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transformation can be, in principle, derived from Eqs. (3) – (5), but here a more convenient and 355 

simple method was applied. Different rates of integral energy transformations can be calculated 356 

with help of fictitious time steps (i.e., apart from the basic calculations). For example, the value 357 

of I   is calculated by the following relation: 358 

 359 

 1 t t tI E E
t

 


,                (27) 360 

 361 

where t tE  is the integral energy of wave field obtained after one time step with the right side of 362 

equation (4) containing only the surface pressure calculated with Eqs. (13) – (15). For 363 

calculation of the dissipation rate due to filtration, the right-hand side of the equations contains 364 

just the terms introduced in Eqs. (16), (17), while for calculation of the effects of breaking, only 365 

the terms introduced in (21) – (22) are in use.   366 

 An evolution of the characteristics calculated by formula (27) is shown in Fig. 2. 367 

 368 

 369 

Figure 2. Evolution of integral 370 

characteristics of solution, rate of 371 

evolution of integral energy multiplied 372 

by
710 ) due to: 1 – tail dissipation tD   373 

(Eqs. 16-20); 2 – breaking dissipation 374 

bD  (Eqs. 21-24); 3 – input of energy 375 

from wind I (Eqs. 13-15);  4 – balance 376 

of energy t bI D D  . Curve 5 377 

shows the evolution of wave energy378 

510 E . Vertical bars of grey color 379 

show the instantaneous values; thick 380 

curve shows the smoothed behavior.   381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

Up to the end of integration, the sum of all energy transition terms (tail dissipation tD , breaking 394 

dissipation bD and energy input I ) is approaching zero (curve 4), and the energy growth E  395 

(Curve 5) stops. Then the energy tends to decrease, but we are not sure about the nature of this 396 

effect. Such behavior can be explained by a fluctuating character of mutual adjustment of input 397 
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and dissipation or simply by worsening of the approximation because of the downshifting 398 

process. Note that opposite to a more or less monotonic behavior of tail dissipation (Curve 1), 399 

the breaking dissipation is highly intermittent, which is consistent with common views on the 400 

nature of wave breaking. 401 

 The data on evolution of wave spectrum are shown in Fig. 3.  402 

 403 

 404 

 405 

Figure 3. The wave spectra  hS r    406 

integrated over angle      in the polar 407 

coordinates and averaged over 408 

consequent intervals of length about 409 

100 units of nondimensional time t. 410 

The spectra are growing and shifting 411 

from right to left. 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 The 2-D wave spectrum ( , )S k l  0 ,x y yk M M l M     averaged over 13 time 424 

intervals of length equal to 100t  , was transferred to the polar coordinates ( , )pS r425 

 / 2 / 2, 0 xr M        and then averaged over angle   to obtain 1-D spectrum  hS r : 426 

    ,h pS r S r r   .              (28) 427 

An angle 0   coincides with the direction of windU , /180.    428 

 The wave spectra  hS r  calculated by averaging over angle   in the polar coordinates 429 

and averaged over consequent intervals of length about 100 units of nondimensional time tare 430 

presented in Fig. 3. The spectra increase and move from high to low wave numbers, i.e., they 431 

undergo downshifting. A maximum value of  hS r  increases as much as 152 times. According 432 

to the data in Fig. 2, the total energy increases 44 times. This difference is explained by the 433 

spectrum narrowing and by the overlapping effect (i.e., decrease of high-frequency spectrum for 434 

long fetches).  The 3-Dimages of wave spectrum   10log ,S k l are shown in Fig. 4.  435 

 436 
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 437 

 438 

Figure 4 Sequence of 3-D images 439 

of   10lg ,S k l   where each 440 

panel corresponds to single curve 441 

in Fig. 3.  442 

he left side refers to wave number 443 

 y yl M l M     and front 444 

side – to  k M k M   .  445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

As seen, each spectrum consists of separated peaks and holes1. This phenomenon was first 464 

observed and discussed by Chalikov et al (2014). The repeated calculations with different 465 

resolution showed that such structure of 2-D spectrum is typical.  It cannot be explained by fixed 466 

combination of interacting modes, since in different runs (with the same initial conditions but 467 

different set of phases for the modes) peaks are located in different locations in Fourier space.  468 

 Another presentation is given in Fig 5where the   10log ,S r , averaged over the 469 

successive seven period length 200t  , is given. The first panel with a mark 0 refers to initial 470 

conditions. Disturbances within the range (125 150)k   reflect initial adjustment of the input 471 

and dissipation at high wave number slope of spectrum. The pictures characterize well the 472 

downshifting and angle spreading of spectrum due to nonlinear interactions.   473 

 Evolution of the integrated over angles   wave spectrum  hS r  can be described with 474 

the equation 475 

 476 

                                                           
1The wave spectrum looks rather like La Sagrada Familia (Gaudi) in Barcelona than the St. Mary  

Axe ('Pickle' ) in London. 
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 

      ( )
h

t b

dS r
I r D r D r N r

dt
    ,            (29)  477 

 478 

 479 

Figure 5. Sequence of 2-D images of 480 

 10lg ( , )S k l averaged over 481 

consequent seven periods length 482 

200t  . Numbers indicate the 483 

period of averaging (first panel marked 484 

0, refers to initial conditions). 485 

Horizontal and vertical axes 486 

correspond to wave numbers k and l 487 

correspondingly 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

where      , ,  and ( )t bI r D r D r N r are the spectra of the input energy, tail dissipation, breaking 504 

dissipation and a rate of nonlinear interactions, all obtained by integration over angles  . All of 505 

the spectra shown below were obtained by transformation of 2-D spectra into the polar 506 

coordinate  ,r  and then integrated over angles   within the interval  / 2, / 2  . The 507 

spectra can be calculated using an algorithm similar to the algorithm (27) for integral 508 

characteristics. For example, the spectrum of energy input  ,I k l   is calculated as follows: 509 

       , , , /t t t

c cI k l S k l S k l t   ,                                  (30) 510 

where  ,c x yS k k  is a spectrum of columnar energy  calculated by relation 511 

  
0

2 2 2 2 2 2 2 2

, , , , , , , ,

1
( , )

2
c k l k l k l k l k l k l k l k l

H

S k l h h u u v v w w d       



 
        

 
                    (31) 512 

where grid values of velocity components , ,u v w  are calculated by relations: 513 

 , ,u v w                 ,            (32) 514 

and , , ,,  and k l k l k lu v w  are their Fourier coefficients. 515 
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 For calculation of  ,x yI k k the fictitious time steps t are made only with a term 516 

responsible for the energy input, i.e., surface pressure p . Spectrum  ,I k l was averaged over the 517 

periods 100t  , then transformed into a polar coordinate system and integrated in Fourier 518 

space over angles  within the interval  / 2, / 2 .   519 

 The evolution of input spectra (Fig. 6) is, in general, similar to that of wave spectra 520 

shown in Fig. 3. Note that a maximum of spectra is located at the maximum of wave spectra 521 

since the input depends mainly on spectral density, while the dependence on frequency is less 522 

important. 523 

 524 

 525 

 526 

Figure 6. The spectrum of energy 527 

input  I r   integrated over angle    528 

in the polar coordinates and averaged 529 

over consequent intervals of length 530 

about 100 units of nondimensional 531 

time t. 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 Algorithm (29) – (32) was applied for calculation of the dissipation spectra due to 545 

dumping of a high-wave number part of spectrum (tail dissipation) and for calculation of the 546 

spectrum of breaking dissipation. In the first case, the fictitious time step was made taking into 547 

account the terms described by Eqs (16) – (20), while in the second case the time step was made 548 

using the terms described by Eqs (21) – (24).  549 

 The spectra of tail dissipation calculated similar to spectra  I r are shown in Fig. 550 

7.Dissipation occurs at the periphery of spectrum, outside the ellipse with semi-axes m xd M  and551 

m yd М 2.This is why such dissipation, averaged over angles, seems to affect a middle part of 1-D 552 

spectrum. The tail dissipation effectively stabilizes the solution. 553 

 The breaking dissipation averaged over angles is presented in Fig. 8.As seen, the 554 

breaking dissipation has a maximum at spectral peak. It does not mean that in the vicinity of 555 

wave peak the probability of large curvilinearity is quite high. The high rate of breaking 556 

dissipation can be explained by high wave energy in the vicinity of wave peak. The energy lost 557 

                                                           
2The 2-D Fourier spectral ‘tail’ looks like ‘peacock’ tail. 
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through breaking, described by the diffusion mechanism, correlates with the energy of breaking 558 

waves. Opposite to high wave number dissipation which regulates shape of spectral tail, the 559 

breaking dissipation forms the main energy-containing part of spectrum.  560 

The diffusion mechanism suggested in (21), (22) modifies an elevation and surface 561 

stream function in a close vicinity of breaking point. The amplitudes of side perturbation are 562 

small and decrease very quickly over the distance from a breaking point.  563 

 564 

 565 

Figure 7. Tail dissipation spectra 566 

 tD r   integrated over angle   in 567 

the polar coordinates and averaged over 568 

consequent intervals of length about 569 

100 units of nondimensional time t. 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

Figure 8, Breaking dissipation spectra  bD r   582 

integrated over angle    in the polar coordinates 583 

and averaged over consequent intervals of length 584 

about 100 units of nondimensional time t. 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 
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An example of profile of the energy input due to breaking  bD x is given in Fig. 9. As 600 

seen, energy input is fluctuating around the breaking point. A diffusion operator chosen for 601 

breaking parameterization not only decreases total energy but also redistributes the energy 602 

between Fourier modes in Fourier space. 603 

In general, for the specific conditions considered in the paper, the breaking is an 604 

occasional process taking place in a small part of domain. The kurtosis of input energy due to the 605 

breaking  ,bD   , i.e., the value  606 

 
2

4 2 3b bKu D D


                 (33) 607 

is of the order of 310 , which corresponds to plain function with occasional separated peaks. 608 

 609 

 610 

Figure 9. Example of energy input due to breaking ( )bD x . 611 

  612 

The number of breaking points in terms of percentage of the total number of points is given in 613 

Fig. 10. As seen, the number of breaking events is going down to 600t  and then is growing up 614 

to the end of the calculations. The number of breaking events is not directly connected with 615 

intensity of breaking, which is seen when comparing Fig. 10 and curve 2 in Fig.1. 616 

 617 

 618 

Figure 10. Evolution of number of wave breaking events 619 

bN    expressed in percentage of the number of grid points 620 

x yN N . 621 

 622 

  623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

An integral term describing nonlinear interaction N in Eq. (26) is small, but the magnitude of 632 

spectrum  N r  is comparable with input  I r  and dissipation  tD r  and  bD r  terms. The 633 

presentation of term ( )N r  in a form shown in Figs. (6) – (8) is not clear. This is why the spectra 634 
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810 ( )N r  averaged over interval 100t   are plotted separately in Fig. 11 for the last eight 635 

intervals (thick curves) together with the wave spectrum  610 hS r . In general, the shapes of 636 

spectrum  N r agree with the conclusions of the quasi-linear Hasselmann (1962) theory. At low 637 

wave number slope of spectrum the nonlinear influx of energy is positive while at the opposite 638 

slope it is negative. This process produces shifting of spectrum to the lower wave number 639 

(downshifting). Opposite to the Hasselmann’s theory, these results are obtained by solution of 640 

full three-dimensional equations. It would be interesting to compare our results with the 641 

calculations of Hasselmann’s integral. Unfortunately, neither of the existing programs of such 642 

type permits 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

Figure 11. Sequence of wave spectra 653 

 hS r  (thick curves) and nonlinear 654 

input term  N r   (thin curves) 655 

averaged over consequent eight periods 656 

of length 100t    starting from 6th 657 

period.  658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

doing calculations with such a high resolution that was used in the current model. Note that 674 

nonlinear interactions also produce widening of spectrum. 675 

 Obviously, the nonlinearity is quite an important property of surface waves. The 676 

contribution of nonlinearity can be estimated, for example, by comparison of the kinetic energy 677 
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of linear component  2 2 20.5l x y zE       and the total kinetic energy kE  (Fig. 12). A ratio 678 

/l kE E  as a function of time remains very close to 1, which proves that the nonlinear part of 679 

energy makes up just a small percentage of the total energy. It does not mean that the role of 680 

nonlinearity is small; its influence can manifest itself over large time scales. 681 

 682 

 683 

Figure 12. Time evolution of ratio684 

/l kE E
 . 685 

 686 

 687 

 688 

 689 

 The time evolution of integral spectral characteristics is presented in Fig. 13. 690 

 691 

Figure 13. Time evolution of: weighted frequency w    692 

(1) (Eq. 34); spectral peak frequency p  (2); full 693 

energy E   (3) (Eq. 25). Thin curves are empirical 694 

97distance passed by the spectral peak. 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

Curve 1 corresponds to the weighted frequency p  707 
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1/2

p

kSdkdl

Sdkdl


 
 
 
 




,               (34) 708 

where integrals are taken over the entire Fourier-domain. The value wk  is not sensitive to the 709 

details of spectrum, hence, it well characterizes the position of spectrum and its shifting. Curve2  710 

describes evolution of the spectral maximum. The step shape of curve corresponds to the 711 

fundamental property of downshifting. Opposite to the common views, development of spectrum 712 

occurs not monotonically, but by appearance of a new maximum at lower wave number as well 713 

as by attenuation of the previous maximum. Curve 3 describes the change of total energy714 

p kE E E  . As seen all three curves have a tendency for saturation (decrease of evolution rate). 715 

 The numerical experiment reproduces the case when development of wave field occurs 716 

under the action of permanent and uniform wind. This case corresponds to JONSWAP 717 

experiment. Despite large scatter, the data allow us to construct empirical approximations of 718 

wave spectrum, as well as to investigate the evolution of spectrum as a function of fetch .F  In 719 

particular, it is suggested that the frequency of spectral peak changes as
1/3F 

,while full energy 720 

grows linearly with .F Neither of the dependences can be exact, since they do not take into 721 

account the approaching to a stationary regime. Besides, the dependence of frequency on fetch is 722 

singular at 0.F   723 

 The value of fetch in periodic problem can be calculated by integration of peak phase 724 

velocity 
1/2

pc k


 over time.  725 

 
0

t

p
t

F c dt                  (35) 726 

The JONSWAP dependencies for the wave number of spectral peak pk and full energy E  are 727 

shown in Fig 13 by thin curves. Dependence 1/3

p F is qualitatively valid. Dependence of the 728 

total energy on fetch does not look like a linear one, but it is worth to note that JONSWAP 729 

dependence is evidently inapplicable to a very small and large fetch. 730 

 731 

5. Discussion 732 

 733 

A model based on the full three-dimensional equations potential motion with free surface 734 

was used for simulation of development of wave fields. The model is written in the surface-735 

following nonstationary non-orthogonal coordinate system.  The details of numerical scheme and 736 

the results of validation of the model were described in (Chalikov et al, 2014). The main 737 

difference between the given model and HOS model (Ducroset et al, 2017) is that our model is 738 

based on direct solution of 3-D equations for velocity potential. This approach is similar to that 739 

developed at Technical University of Denmark (TUD, see Engsig-Karup et al, 2009). Actually, 740 

the models developed at TUD are directed to solution of a variety of problems including such 741 

problems as modeling of wave interaction with submerged objects and simulation of wave 742 

regime in the basins with real shape and topography.  743 

In the current paper a three-dimensional model was used for simulation of development 744 

of wave field under the action of wind and dissipation. The input energy is described by single 745 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-11
Manuscript under review for journal Ocean Sci.
Discussion started: 20 February 2018
c© Author(s) 2018. CC BY 4.0 License.



20 

 

term, i.e., surface pressure p in Eq. (4). It is traditionally assumed that the complex pressure 746 

amplitude in Fourier space is linearly connected with the complex elevation amplitude with a 747 

complex coefficient called   function. Such simple formulations can be imperfect. Firstly, it is 748 

assumed that wave field is represented by superposition of linear modes with slowly changing 749 

amplitudes and phase velocity obeying the linear dispersive relation. This assumption is valid 750 

only for a low-frequency part of spectrum. In reality, the amplitudes of medium and high-751 

frequency modes undergo fluctuations created by reversible interactions. A solid dispersion 752 

relation does not connect their phase velocities with wave number. Besides, it is also quite 753 

possible that the suggestion of linearity of the connection between pressure and elevation 754 

amplitudes is not precise, i.e.,   function can depend on amplitudes of modes. 755 

We are not familiar with any observation data that can be used for formulation of a more 756 

sophisticated scheme for calculation of the input energy to waves. The only method that can give 757 

more or less reliable results is mathematical modeling of the statistical structure of turbulent 758 

boundary layer above a curvilinear moving surface, which characteristics satisfy kinematic 759 

conditions. As a whole, the problem of boundary layer seems even more complicated than the 760 

wave problem itself. Some early attempts to solve this problem were made on the basis of the 761 

finite difference two-dimensional model of boundary layer written in the simple surface 762 

following coordinate (see review Chalikov, 1986). Waves were assigned as a superposition of 763 

linear modes with random phases corresponding to the empirical wave spectrum. This approach 764 

was quite accurate since it did not take into consideration the nonlinear properties of surface (for 765 

example, the sharpness of real waves and the absence of dispersive relation for waves of medium 766 

and high frequencies. The next step was formulation of coupled models for boundary layer and 767 

potential waves, both written in the conformal coordinates (Chalikov, Rainchik, 2014). The 768 

calculations showed that pressure field consists mostly of random fluctuations not directly 769 

connected with waves. A small part of these fluctuations is in phase with surface disturbances. 770 

The calculated values of  in Eq. (13) have large dispersion. However, since the volume of data 771 

was very large, the shape of  -function was found with high-level accuracy. Probably, 772 

approximation of   used in the current work can be considered as most adequate. We are 773 

planning additional investigations based on coupled wind-wave models.  The next step in 774 

investigations of Wave boundary Layer (WBL)should use a three-dimensional LES approach. 775 

Note that even availability of large volume of data on the structure of WBL does not make the 776 

problem of parameterization of wind input in spectral wave models easily solvable, since the 777 

pressure is characterized by a broad continuous spectrum created by nonlinearity. 778 

The wave breaking is obviously even more complicated than the input energy. 779 

Nevertheless, this problem can be simplified, if common ideas used in the numerical fluid 780 

mechanics are accepted. For example, in LES modeling the more or less artificial viscosity is 781 

introduced to prevent too large local velocity gradients. It is a fact that the numerical instability 782 

terminating computations precedes wave breaking. Hence, the scheme should prevent breaking 783 

approach to preserve stability of the numerical scheme. Hence, a wave model should contain the 784 

algorithms preventing appearance of too large slopes. The criterion of breaking is introduced not 785 

for recognizing of the breaking itself, but for the choice of places where it might happen (or, 786 

unfortunately, might not happen). Finally, the algorithm should produce local smoothing of 787 

elevation (and surface potential). The algorithm should be highly selective so that ‘breaking’ 788 

would occur within narrow intervals and not affect the entire area. The exact criteria of breaking 789 

events (most evident of them is the breaking itself) cannot be used for parameterization of 790 
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breaking since in coordinate system (1) the numerical instability occurs long before breaking. In 791 

our opinion, the most sensitive parameter indicating potential instability is the curvilinearity 792 

(second derivative) of elevation. 793 

In the current work, the breaking is parameterized by diffusion algorithm with the 794 

nonlinear coefficient diffusion providing high selectivity of smoothing. We admit that such 795 

approach can be realized in many different forms. The same situation is observed in a problem of 796 

turbulence modeling for parameterization of subgrid scales. 797 

We can finally conclude that the physics included in the wave model is still based on a 798 

shaky ground. Nevertheless, the result of the calculations looks quite realistic, which convinces 799 

us that the approach deserves further development. 800 

The numerical models of waves similar to that considered in the paper have a lot of 801 

important applications. Firstly, they are a perfect tool for development of physical 802 

parameterizations schemes in spectral wave models. Secondly, the direct model can be used in 803 

future for numerical simulation of wave processes in the basins of small and medium size. These 804 

investigations can be based on HOS model (Ducroset et al, 216) or the model used in the current 805 

paper. However, the most universal approach seems to be developed at the Technical University 806 

of Denmark (see Engsig-Karup, 2009). Any model used for a long-term simulation of wave field 807 

evolution should include the algorithms describing transformation of energy, similar to those 808 

considered in the current paper. 809 
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 883 

 Figure captions 884 

 885 

Figure 1. Probability of curvilinearity  . Thick curve calculated with full 3-D model; thin 886 

curve is a normal probability. 887 

Figure 2. Evolution of integral characteristics of solution, rate of evolution of integral energy 888 

multiplied by 710 ) due to: 1 – tail dissipation tD  (Eqs. 16-20); 2 – breaking dissipation bD (Eqs. 889 

21-24); 3 – input of energy from wind I (Eqs. 13-15);  4 – balance of energy t bI D D  . Curve 890 

5 shows the evolution of wave energy 510 E . Vertical bars of grey color show the instantaneous 891 

values; thick curve shows the smoothed behavior.   892 

Figure 3. The wave spectra  hS r  integrated over angle   in the polar coordinates and 893 

averaged over consequent intervals of length about 100 units of nondimensional time t. The 894 

spectra are growing and shifting from right to left. 895 

Figure 4 Sequence of 3-D images of  10lg ( , )S k l where each panel corresponds to single curve 896 

in Fig. 3. The left side refers to wave number  y yl M l M    and front side – to 897 

 0 xk k M   898 

Figure 5. Sequence of 2-D images of  10lg ( , )S k l  averaged over consequent seven periods 899 

length 200t  . Numbers indicate the period of averaging (first panel marked 0, refers to initial 900 

conditions). Horizontal and vertical axes correspond to wave numbers k and l correspondingly 901 

Figure 6. The spectrum of energy input ( )I r   integrated over angle   in the polar coordinates 902 

and averaged over consequent intervals of length about 100 units of nondimensional time t. 903 

Figure 7. Tail dissipation spectra  tD r  integrated over angle   in the polar coordinates and 904 

averaged over consequent intervals of length about 100 units of nondimensional time t. 905 

Figure 8, Breaking dissipation spectra  bD r  integrated over angle   in the polar coordinates 906 

and averaged over consequent intervals of length about 100 units of nondimensional time t. 907 

Figure 9. Example of energy input due to breaking  bD x .  908 

Figure 10. Evolution of number of wave breaking events bN  expressed in percentage of the 909 

number of grid points .x yN N  910 

Figure 11. Sequence of wave spectra  hS r   (thick curves) and nonlinear input term  I r  (thin 911 

curves) averaged over consequent eight periods of length 100t   starting from 6th period.  912 

Figure 12. Time evolution of ratio /l kE E  . 913 

Figure 13. Time evolution of: weighted frequency w  (1) (Eq. 34); spectral peak frequency p  914 

(2); full energy E  (3) (Eq. 25). Thin curves are empirical dependence for peak wave number and 915 

energy. F is a distance passed by the spectral peak. 916 
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