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Numerical modeling of surface wave development under the action of wind
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Abstract

The numerical modeling of two-dimensional surface wave development under the action of wind
is performed. The model is based on three-dimensional equations of potential motion with free
surface written in a surface-following non-orthogonal curvilinear coordinate system where depth
Is counted from moving surface. Three-dimensional Poisson equation for velocity potential is
solved iteratively. Fourier transform method, the second-order accuracy approximation of
vertical derivatives on a stretched vertical grid and the fourth-order Runge-Kutta time stepping
are used. Both the input energy to waves and dissipation of wave energy are calculated on the
basis of the earlier developed and validated algorithms. A one-processor version of the model for
PC allows us to simulate an evolution of wave field with thousands of degrees of freedom over
thousands of wave periods. A long-time evolution of two-dimensional wave structure is
illustrated by the spectra of wave surface and input and output of energy.

1. Introduction

Phase resolving modeling of sea waves is the mathematical modeling of surface waves
including explicit simulations of surface elevation and velocity field evolution. Compared with
the spectral wave modeling, the phase resolving modeling is more general since it reproduces a
real visible physical process and is based on the well-formulated full equations. The phase
resolving models usually operate with a large number of freedom degrees. In general, this
method is more complicated and requires more computational resources. The simplest way of
such modeling is the calculation of a wave field evolution based on the linear equations. Such
approach allows reproducing the main effects of the linear wave transformation due to
superposition of wave modes, reflections, refractions etc. This approach is useful for many
technical applications while it cannot reproduce a nonlinear nature of waves and the
transformation of wave field due to nonlinearity. Another example of a relatively simple object is
a case of the shallow-water waves. The nonlinearity can be taken into account in the more
sophisticated models derived from the fundamental fluid mechanics equations with some
simplifications. The most popular approach is based on nonlinear Schrodinger equation of
different orders (see Dysthe, 1979) obtained by expansion of the surface wave displacement.
This approach is also used for solving the problem of freak waves. The main advantage of a
simplified approach is that it allows reducing a three-dimensional (3-D) problem to a two-
dimensional one (or 2-D problem to 1-D problem). However, it is not always clear which of the
non-realistic effects are eliminated or included in the model after simplifications. This is why the
most general approach being developed over the past years is based on the initial two-
dimensional or three-dimensional equations (still potential). All the tasks based on these
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equations can be divided into two groups: the periodic and non-periodic problems. An
assumption of periodicity considerably simplifies construction of numerical models though such
formulation can be applied to the cases when the condition of periodicity is acceptable, for
example, when domain is considered as a small part of a large uniform area. For limited domains
with no periodicity the problem becomes more complicated since the Fourier presentation cannot
be used directly.

From the point of view of physics, the problem of phase resolving modeling can be
divided into two groups: the adiabatic and non-adiabatic modeling. A simple adiabatic model
assumes that the process develops with no input or output of energy. Being not completely free
of limitations, such formulation allows investigating the wave motion on the basis of true initial
equations. Including the effects of input energy and its dissipation is always connected with the
assumptions that generally contradict an assumption of potentiality, i.e., new terms added to the
equations should be referred to as pure phenomenological. This is why treatment of a non-
adiabatic approach is often based on quite different constructions.

All the phase resolving models use the methods of computational mathematics and inherit
all their advantages and disadvantages, i.e., on one side, the possibility of a detailed description
of the processes, on the other side, a bunch of the specific problems connected with the
computational stability, space and time resolution. Mathematical modeling produces tremendous
volumes of information the processing of which can be more complicated than the modeling
itself.

The phase resolving wave modeling takes a lot of computer time since it normally uses a
surface-following coordinate system, which considerably complicates the equations. The most
time-consuming part of the model is an elliptic equation for velocity potential usually solved
with iterations. Luckily, for a two-dimensional problem this trouble is completely eliminated by
use of the conformal coordinates reducing the problem to a one dimensional system of equations
which can be solved with high accuracy (Chalikov and Sheinin, 1998). For a three-dimensional
problem, the reduction to a two-dimensional form is evidently impossible; hence, the solution of
a 3D elliptical equation for velocity potential becomes an essential part of the entire problem.
This equation is quite similar to the equation for pressure in a non-potential problem. It follows
that the 3-D Euler equations, being more complicated, still can be solved over acceptable
computer time.

There is a large volume of papers devoted to the numerical methods developed for
investigation of wave processes over the past decades. It includes a Finite Difference Method
(Engsig-Karup et al., 2009, 2012), , a Finite Volume Method (Causon et al., 2010), a Finite
Element Method (Ma and Yan, 2010; Greaves, 2010), a Boundary (Integral) Element Method
(Grue and Fructus, 2010), Spectral Methods (Ducroset et al., 2007, 2012, 2016;
Touboul and Kharif, 2010; Bonnefoy et al., 2010). These include a Smoothed Particle
Hydrodynamics method (Dalrymple et al., 2010), a Large Eddy Simulation Method (LES) (Issa
et al., 2010; Lubin and Caltagirone J.-P. (2010), a Moving Particle Semi-implicit method (Kim et
al., 2014), a Constrained Interpolation Profile method (Zhao, 2016), a Method of Fundamental
Solutions (Young et al., 2010) and a Meshless Local Petrov—Galerkin method (Ma, 2010). Fully
nonlinear model should be applied to many problems.. Most of the models were designed for
engineering applications such as overturning waves, broken waves, waves generated by
landslides, freak waves, solitary waves, tsunamis, violent sloshing waves, interaction of extreme
waves with beaches, interaction of steep waves with the fixed structures or with different floating
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structures. The references given above make less than one percent of the publications on those
topics

Two-dimensional approach (like conformal method) considers a strongly idealized wave
field, since even monochromatic waves in the presence of lateral disturbances quickly obtain a
two-dimensional structure. The difficulty arising is not a direct result of increase of dimension.
The fundamental complication is that the problem cannot be reduced to a two-dimensional
problem, and even for the case of a double-periodic wave field the problem of solution of
Laplace-like equation for velocity potential arises. The majority of the models designed for
investigation of three-dimensional wave dynamics are based on simplified equations such as the
second order perturbation methods in which higher order terms are ignored. Overall, it is unclear
which effects are missing in such simplified models.

The most sophisticated method is based on full three dimensional equations and surface
integral formulations (Beale, 2001; Xue et al., 2001; Grilli et al., 2001; Clamond and Grue, 2001,
Clamond et al, 2005, 2006; Fructus et al., 2005; Guyenne et al., 2006; Fochesato et al., 2006).
Fully nonlinear, three-dimensional water waves, which extends an approach was suggested by
Craig and Sulem (1993) originally given in the two-dimensional setting. The model is based
upon Hamiltonian formulation (Zakharov, 1968) which allows reducing a problem of surface
variables computation by introducing Dirichlet—Neumann operator which is expressed in terms
of its Taylor series expansion in homogeneous powers of surface elevation. Each term in this
Taylor series can be obtained from the recursion formula and efficiently computed using fast
Fourier transform.

The main advantage of the boundary integral equation methods (BIEM) is that they are
accurate and can describe highly nonlinear waves. A method of solution of Laplace equation is
based on use of Green’s function, which allows us to reduce a 3-D water-wave problem to a 2-D
boundary integral problem. The surface integral method is well suited for simulation of the wave
effects connected with very large steepness, specifically, for investigation of a freak wave
generation. These methods can be applied both to periodic and non-periodic flows. The methods
do not impose any limitations on wave steepness, so they can be used for simulation of the
waves that even approach breaking (Grilli et al., 2001) when the surface obtains a non-single
value shape. The method allows us to take into account bottom topography (Grue and Fructus,
2010) and investigate an interaction of waves with the fixed structures or with the freely-
responding floating structures (Liu et al., 2016, Gou et al., 2010).

However, the BIEM method seems to be quite complicated and time-consuming being
applied to a long-term evolution of a multi-mode wave field in large domains. The simulation of
relatively simple wave fields illustrates an application of the method, and it is unlikely that the
method can be applied to the simulation of a long-term evolution of a large-scale multi-mode
wave field with a broad spectrum. Implementation of a multi-pole technique for a general
problem of the sea wave simulation (Fochesato et al., 2006) can solve the problem but obviously
leads to the considerable algorithmic difficulties.

Currently, the most popular in oceanography approach is a HOS (High Order Scheme)
model developed by Dommermuth and Yue (1987); West et al. (1987). The HOS is based on a
paper by Zakharov (1968), where a convenient form of the dynamic and kinematic surface
conditions was suggested. Equations used by Zakharov were not intended for modeling, but
rather for investigation of stability of finite amplitude waves. In fact, a system of coordinates
where depth is counted from the surface, was used, but the Laplace equation for velocity
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potential was taken in its traditional form. However, the Zakharov’s followers have accepted this
idea literally. They used two coordinate systems: a curvilinear surface-fitting system for surface
conditions and the Cartesian system for calculation of a surface vertical velocity. The analytic
solution for velocity potential in the Cartesian coordinate system is known. It is based on the
Fourier coefficients on a fixed level, while the true variables are the Fourier coefficients for the
potential on a free surface. Here a problem of transition from one coordinate system to another
arises. This problem is solved by expansion of the surface potential into the Taylor series in the
vicinity of the surface. An accuracy of this method depends on that of representation of an
exponential function with a finite number of the Taylor series. For the small-amplitude waves
and for a narrow wave spectrum, such accuracy is evidently satisfactory. However, for the case
of a broad wave spectrum that contains many wave modes, the order of the Taylor series should
be high. The problem is now that the waves with high wave numbers are superposed over the
surface of larger waves. Since the amplitudes of a surface potential attenuate exponentially, an
amplitude of a small wave at a positive elevation increases, and on the contrary, it can approach
zero at negative elevations. It is clear that such setting of HOS model cannot reproduce high-
frequency waves, which actually reduces the nonlinearity of the model. This is why such model
can be integrated for long periods using no high frequency smoothing. Besides, an accuracy of
calculation of vertical velocity on the surface depends on full elevation at each point. Hence, the
accuracy is not uniform along a wave profile. A substantial increase of the Taylor expansion
order can definitely result in the numerical instability due to occasional amplification of modes
with high wave numbers. The authors of a surface integral method shared a similar point of view
(Clamond et al., 2005). We should note, however, that comparison of HOS method based on the
West et al., (1987) approach using a method of the surface integral for an idealized wave field
(Clamond et al., 2006) shows quite acceptable results. It was shown in the previous paper that a
method suggested by Dommermuth et al., (1987) demonstrates poorer divergence of the
expansion for vertical velocity than for method by West et al., (1987). The HOS model has been
widely used (for example, Tanaka, 2001; Toffoli et al., 2010; Touboul and Kharif, 2010) and it
has shown its ability to efficiently simulate the wave evolution (propagation, nonlinear wave—
wave interactions, etc.) in a large-scale domain (Ducrozet et al., 2007, 2012). It is obvious that
the HOS model can be used for many practical purposes. Recently, Ecole Centrale Nantes,
LHEEA Laboratory (CNRC) announced that the non-linear wave models based on High-Order
Spectral (HOS) are published as an open source (https://github.com/LHEEA/HOS-ocean/wiki).

Opposite to the HOS method based on the analytical solution of Laplace equation in the
Cartesian coordinates, a group of models is based on direct solution of the equation for velocity
potential in the curvilinear coordinates (Engsig-Karup et al, 2009, 2012; Chalikov et al., 2014).
The main advantage of the surface-following coordinate system is that a variable surface is
mapped onto the fixed plane. Since wave motion is very conservative, the high accuracy
numerical schemes should be used for a good description of nonlinearity and spectrum
transformation. This most universal approach is being developed at the Technical University of
Denmark (see Engsig-Karup, 2009). Actually, the models ModelWave3D developed at TUD are
targeted at solution of a variety of problems including such problems as modeling of wave
interaction with submerged objects as well as the simulation of wave regime in the basins with
real shape and topography.

The model is based on the equations of potential flow with a free surface. An effect of
variable bathymetry is taken into account by wusing a so-called o -coordinate,
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(straightening out the bottom and surface). At vertical surfaces a normal derivative of the
velocity potential is equal to zero. A flexible-order approximation for spatial derivatives is used.
The most time-consuming part of this mode is a 3-D equation for the velocity potential. The
strategy of the model development is directed at exploiting architectural features of modern
GPUs for the mixed precision computations. This approach is tested using a recently developed
generic library for fast prototyping of PDE (Partial Differential Equations) solvers. The new
wave tool is applicable for solving and analyzing of a variety of large-scale wave problems in the
coastal and offshore engineering. A description of the project and references can be found at site
(http://wwwz2.compute.dtu.dk/~apek/OceanWave3D/).

Comparison of ModelWave3D with HOS model was presented by Ducrozet et al., (2012).
It was shown that both model demonstrate high accuracy, but HOS model shows better
performance. Note, that comparison of speed of models in this case is not indicative since
ModelWave3D was designed for investigation of complicated processes, taking into account the
real shape of basin, variable depth and even presence of engineering constructions. All these
features obviously are not included in HOS model.

Development of waves under the action of wind is a process that is difficult to simulate
since surface waves are very conservative and change their energy for hundreds and thousands of
periods. This is why the most popular method is spectral modeling. Waves as physical objects in
this approach are actually absent, since evolution of spectral distribution of wave energy is
simulated. The description of input and dissipation in this approach is not connected directly
with the formulation of the problem, but it is rather adopted from other branches of wave theory
where waves are the objects of investigation. However, the spectral approach turned out to be the
only method capable of describing the space and time evolution of wave field in the ocean. The
phase resolving models (or 'direct’ models) designed for reproducing waves themselves cannot
compete with spectral models since a typical size of domain in such models does not exceed
several kilometers. Such domain includes just several thousands of large waves. Nevertheless,
direct wave modeling plays an ever-increasing role in geophysical fluid dynamics, because it
gives the possibility to investigate the processes which cannot be reproduced with spectral
models. One of such problems is that of extreme wave generation. (Chalikov, 2009; Chalikov,
and Babanin, 2016a). Direct modeling is also a perfect instrument for development of
parameterization of physical processes for spectral wave models. Besides, such models can be
used for direct simulation of wave regimes of small water basins, for example, port harbors.
Other approaches of direct modeling are discussed in (Chalikov et al., 2014; Chalikov, 2016)

Until recently, direct modeling was used for reproduction of quasi-stationary wave
regime when wave spectrum essentially did not change. An unique example of direct numerical
modeling of surface wave evolution is given in Chalikov and Babanin (2014)where development
of wave field was calculated with use of a two-dimensional model based on full potential
equations written in the conformal coordinates. The model included algorithms for
parameterization of input and dissipation of energy (a description of similar algorithms is given
below). The model successfully reproduced an evolution of wave spectrum under the action of
wind. However, strictly one-dimensional (unidirected) waves are not realistic; hence, the full
problem of wave evolution should be formulated on the basis of three-dimensional equations. An
example of such modeling is given in the current paper.

2. Equations
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Let us introduce a non-stationary surface-following non-orthogonal coordinate system:

(:g:X! ‘9:y1 422_77(51‘9’7)1 r=t, (1)
where n(x, y,t) =n(&,9,7) is a moving periodic wave surface given by the Fourier series

77(5"917): Z Z hk,l(z—)®k,l’ (2)

-M, <k<M, -M <I<M,
where k and | are components of wave number vector k, h,, () are Fourier amplitudes for
elevations 77(&,9,7),M,and M are the numbers of modes in directions & and 3, respectively,

while ©,, are Fourier expansion basis functions, represented as matrix:
cos(k§+19) -M, <k<M,,-M <I<0
B cos(k&) -M, <k<0,1=0 (3)
K] sin(ke) 0<k<M,,1=0
sin(ké+19)  -M, <k<M,,0<I<M,
The 3-D equations of potential waves in the system of coordinates (1) at £ <0 take the
following form:

N, =—1:0: =10y + (L4} +775 ) D, 4)
1
0. == {0k + s~ (L+n +0f) @2 )-n-p, (5)
D + Dy + D =Y (D), (6)
where Y is the operator:
Y() =27, O +275 0 g + (722 +7105) O = (72 +15) O (7)

capital fonts @ are used for domain ¢ <0 while the lower case ¢ refersto =0.Term p in (5)
described the pressure on surface £ =0.

It is suggested in (Chalikov et al., 2014) that it is convenient to represent velocity
potential @ as a sum of two components, i.e., an analytical (‘linear’) component

o, (gB = d_D(cf, 3,0)) and an arbitrary (‘non-linear’) component F, (f =F (X,J,O)):

j =+, F=F+F. ®)
The analytical component @ satisfies Laplace equation:

D, + Dy +D,, =0, 9)
with known solution:

B(£.9.6.0)= 22, @) exp(K|S)o,. (10)

(where |k|:(k2 +I2)1/2, ., are Fourier coefficients of surface analytical potential p at ¢ =0).

The solution satisfies boundary conditions:
c=0: ®=¢

. (11)
c—o>-—n: O, >0
The nonlinear component satisfies an equation:
D, + Dy + D, =Y(D)+ (D), (12)
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Eq. (12) is solved with the boundary conditions:
c=0: ®=0

. 13
¢—>-o: O, -0 (13)

The derivatives of linear component ®in (7) are calculated analytically. The scheme
combines 2-D Fourier transform method in the ‘horizontal surfaces’ and a second-order finite-
difference approximation on a stretched staggered grid defined by relation AZ;,, = YAS; (AS s

a vertical step, while j=1at the surface). The stretched grid provides increase of accuracy of
approximation for the exponentially decaying modes. The values of stretching coefficient y lie
within the interval 1.01-1.20. A finite-difference second-order approximation of vertical
operators in Eq. (12) on a non-uniform vertical grid is quite straightforward. Equation (12) is
solved as Poisson equations with iterations over the right-hand side. A each time step the
iterations start with right-side calculated at previous time step. The initial elevation was
generated as superposition of linear waves corresponding to JONSWAP spectrum (Hasselmann
et al., 19734) with random phases. The initial Fourier amplitudes for surface potential were
calculated by formulas of linear wave theory. A detailed description of the scheme and its
validation is given in Chalikov et al., (2014) and Chalikov (2016).

Equations (4) — (6) are written in a non-dimensional form by using the following scales:
length L where 27L is (dimensional) period in the horizontal direction; time L¥2g™ and velocity
potential L*'?g*? (g is acceleration of gravity). The pressure is normalized by water density, so
that the pressure scale is Lg. Equations (4) — (6) are self-similar to the transformation with
respect to L. The dimensional size of domain 2zL, so scaled size is 2z. All the results
presented in this paper are nondimensional. Note that the number of Fourier modes can be

different in x and y directions. In this case is assumed that two length scales L, and L, are used.
The nondimensional length of domain in y-direction remains equal 2z and factor r=L, /L, is
introduced in definition of differentiation in Fourier space.

3. Energy input and dissipation

Input energy to waves describes a pressure term p in a dynamic boundary condition (5).

The tangent stress on the surface cannot be taken into account in potential formulation.
Dissipation cannot be also described with use of potential equations, but for realistic description
of wave dynamics, dissipation of wave energy should be taken into account, i.e., we should
include in equations (4) and (5) additional terms which, strictly speaking, contradict the
assumption of potentiality.

3.1 Energy input from wind

According to the linear theory(Miles, 1957), the Fourier components of surface pressure
p are connected with those of surface elevation through the following expression:

Ps + ip—k,—l :&(ﬂk,l +iﬁ—k,—l )(hk,l + ih—k,—l )7 (14)
Pu

where h,,h, ., B B, are real and imaginary parts of elevation 7 and the so-called /3 -

function (i.e., Fourier coefficients at COS and SIN, respectively); p,/p, is a ratio of air and
;
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water densities. Eg. (14) is a standard presentation of pressure above multi-mode surface. It

. , . .
means that every wave mode with amplitude (hkz,I +h% )12 initiates the pressure mode with

B

amplitude (p,fy,+pfky_| )Uzshifted by phase of wave mode by angle «=atan———. Both
kI

coefficients in (14) are function of ratio of wind velocity at half of mode length height 4,, /2 to

virtual phase velocity. Hence, for derivation of shape of beta-function it is necessary to
simultaneously measure wave surface elevation and non-static pressure on the surface.
Experimental measurement of surface pressure is a very difficult problem since the
measurements should be done very close to a moving surface, preferably, with a surface-
following sensor. Such measurements are done quite seldom, especially, in the field. The
measurements were carried out for the first time by a team of authors both in laboratory and field
(Snyder et al, 1981; Hsiao and Shemdin, 1983; Hasselmann and Bosenberg, 1991; Donelan et al.,
2005, 2006). The data obtained in this way allowed constructing an imaginary part of beta-
function used in some versions of wave forecasting models (Rogers et al.,, 2012). Such
measurements and their processing are quite complicated since wave-produced pressure
fluctuations are masked by turbulent pressure fluctuations. The second way of beta-function
evaluation is based on the results of numerical investigations of statistical structure of the
boundary layer above waves with use of Reynolds equations and an appropriate closure scheme.
In general, this method works so well that many problems in the technical fluid mechanics are
often solved using numerical models, not experimentally (Gent and Taylor, 1976; Riley et al.,
1982; Al-Zanaidi and Hui, 1984).. This method was being developed beginning from (Chalikov,
1978, 1986), followed by (Chalikov and Makin, 1991; Chalikov and Belevich, 1992; Chalikov,
1995). The results were implemented in WAVEWATCH model, i.e., a third-generation wave
forecast model (Tolman and Chalikov, 1996) and thoroughly validated against the experimental
data in the course of developing WAVEWATCH-III (Tolman et al., 2014). This method was
later improved on the basis of more advanced coupled modeling of waves and boundary layer
(Chalikov and Rainchk, 2010), while the beta-function used in WAVEWATCH-III was
corrected and extended up to high frequencies. Direct calculation of energy input to waves
requires both real and imaginary parts of the beta-function. The total energy input to waves
depends on imaginary part of g -function, while the moments of higher order depend both on

imaginary and real parts of . This is why full approximation constructed in (Chalikov and

Rainchik, 2010) was used in the current work. Note that in the range of relatively low
frequencies the nw method is very close to the scheme implemented in WAVEWATCH-III.

It is a traditional suggestion that both coefficients are the functions of virtual
nondimensional frequency Q =, U cosy =U /¢, cosy (where o, , and U are the

nondimensional radian frequency and wind speed, respectively; c, , is a phase speed of the Kt
mode; y is an angle between wind and wave mode directions). Most of the schemes for
calculations of g -function consider a relatively narrow interval of nondimensional frequencies
Q. In the current work, the range of frequencies covers an interval (0 < <10), and

occasionally the values of Q >10 can appear. This is another reason why the function derived in
(Chalikov and Rainchik, 2010) through coupled simulations of waves and boundary layer, is
used here. Wave model is based on potential equations for a flow with free surface, extended
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with an algorithm for breaking dissipation (see below description of the breaking dissipation
parameterization). Wave boundary layer (WBL) model is based on Reynolds equations closed
with K —& scheme; solutions for air and water are matched through the interface. The S -
function was used for evaluation of accuracy of the surface pressure p calculations. A shape of
3 -function connecting surface elevations and surface pressure, is studied up to high
nondimensional wave frequencies both in positive and negative (i.e., for wind opposite to waves)
domains. The data on g-function exhibit wide scatter, but since the volume of data was quite
large (47 long-term numerical runs allowed us to generate about 1,400,000 values of 3 ), the
shape of g-function was defined with satisfactory accuracy up to very high nondimensional
frequencies(—50 < Q2 <50). As a result, the data on A -function in such a broad range, allow us

to calculate wave drag up to very high frequencies and to explicitly divide the fluxes of energy
and momentum transferred by the pressure and molecular viscosity. This method is free of
arbitrary assumptions on the drag coefficientC, ; and, on the other hand, such calculations allow

investigating the nature of wave drag (see Ting et al., 2012).
The most reliable data on g -function are concentrated in interval —10 <2 <10 (negative

values of Q correspond wave modes running against wind). real and imaginary parts of beta
function are shown in Fig. (1). It is an corrected version of approximation given in Chalikov and
Rainchik (2010), where data at negative Q were interpreted erroneously. In current calculations
the modes running against wind are absent.

o1 " Figure 1. Real (dashed curve) and imaginary (solid curve)
5k ] parts of S -function.
0 <
. b \‘
_5 3 ;’ %
¢ X
!
—70 1 A
: [}
I 1
—-75 H :
-1 -5 0 &5 10
y;

368
Function S can be approximated by formulas:

By +a,(Q-0)+a (Q-Q) Q,<Q

P = {ﬂoJrao(QQO)al(QQo)2 Q<Q,’ o
f+a,(Q-9Q,) Q<Q,

B.=1 8(Q-Q) Q,<0<Qq,, (16)
f-2,(Q-Q,) Q,<Q
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where the coefficients are:
Q,=0.02277,Q, =1.20,Q, =-18.8,Q, = 21.2, 3, =0.02277,a, = 0.09476, a, = —0.3718,
a, =14.80, b, =-0.02, b, =-148.0.

It was indicated above that an initial wave field is assigned as superposition of linear
modes of which amplitudes are calculated with JONSWAP spectrum with initial peak wave
numberkg =100.The initial value U /c‘; =6 was chosen, i.e., a ratio of the nondimensional

wind speed at height of half of initial peak wave length A,/2=27/100 and the phase speed
c‘; :(kg)_ﬂ2 is equal to 6. Such a high ratio corresponds to initial stages of wave development.

Wind velocity 602 remains constant during all time of integration. The values of Q for other
wave numbers are calculated by assuming that wind profile is logarithmic:

Q, :iln@[lni]_ cosy, (17)

Ck,l 2ZO Z00
where z,, is effective nondimensional roughness for the initial wind profile, while z, is the

actual roughness parameter that depends on the energy in a high-frequency part of spectrum and
on the wind profile. We call it ‘effective’, since very c, lose to the surface the wind profile is not
logarithmic (Chalikov, 1995; Tolman and Chalikov, 1996; Chalikov and Rainchik, 2010). The
value of this parameter depends on the wind velocity and energy in a high-wave number interval
of wave spectrum, as well as on the length scale of the problem. All these effects are possible to
include by matching the wave model with a one dimensional WBL model(Ting et al., 2012).
Here, a simplified scheme for the roughness parameter is chosen. It is well known that the
roughness parameter (as well as a drag coefficient) increases with decrease of the inverse wave
age. In our case wind speed is fixed, and dependence for the nondimensional roughness
parameter is constructed on the basis of the results obtained in (Chalikov and Rainchik, 2010):

z, =152,,Q), (18)
wherez,, =107 is the initial value of the roughness parameter. Eq. (18) approximates

dependence of the effective roughness at the stage of wave development. Note that the results are
not sensitive to variation of the roughness parameter within reasonable limits.

3.2 High wave number energy dissipation

A nonlinear flux of energy directed to the small wave numbers produces downshifting of
spectrum, while an opposite flux forms a shape of spectral tail. The second process can produce
accumulation of energy near ‘cut’ wave number. Both processes become more intensive with
increase of energy input. Growth of amplitudes at high wave numbers is followed by the growth
of local steepness and numerical instability. This well-known phenomenon in numerical fluid
mechanics is eliminated by use of a highly selective filter simulating nonlinear viscosity. To
support stability, additional terms are included into the right hand sides of equations (4) and (5):

on
a:I = Ek,l — KTk (19)
o,
P = Fk,l M 1P (20)
T
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(E.,and F, are Fourier amplitudes of the right-hand sides of equations (4) and (5) while factor

4, is calculated using a formula:

0 k| <k,
2
K|k
Hhy =1 €k, [ﬁ} ke <[k| <k, (21)
0 d
Coks k| >k,

where k and | are components of wave number k|, while coefficients k, andk, are defined by the

expressions:

2 2\ V2
K, =d;MXMy((I|k|_ldex) +(k|k|‘1dm|v|y) ) (22)

2 2 -1/2
kO:MXMy((I|k|lMX) +(k|k|1|v|y)j (23)
wherec,, =0.1,d, =0.75. Expressions (18) - (20) can be interpreted in a straightforward way:

the value of 4, , is equal to zero inside the ellipse with semi-axesd M, and d M ; then it grows

linearly with |k|up to the value c,and is equal toc, outside the outer ellipse. This method of

filtration that we call ‘tail dissipation’ was developed and validated with a conformal model by
Chalikov and Sheinin (1998). The sensitivity of the results to the parameters in (21) - (23) is not
high. The aim of the algorithm is support of smoothness and monotonicity of wave spectrum
within a high wave number range. Since the algorithm affects the amplitudes of small modes, it
actually does not reduce the total energy, though it efficiently prevents development of
numerical instability. Note that any long-term calculations cannot be performed without ‘tail
dissipation’ eliminating development of the numerical instability at high wave numbers.

3.3 Dissipation due to wave breaking

The main process of wave dissipation is wave breaking. This process is taken into
account in all spectral wave forecasting models similar to WAVEWATCH (see Tolman and
Chalikov, 1996).Since there are no waves in spectral models, no local criteria of wave breaking
can be formulated. This is why breaking dissipation is represented in spectral models in a
distorted form. A real breaking occurs in relatively narrow areas of physical space; however,
spectral image of such breaking is stretched over the entire wave spectrum, while in reality the
breaking decreases height and energy of dominant waves. This contradiction occurs because
waves in spectral models are assumed as linear ones, while in fact the breaking occurs in
physical space with nonlinear sharp wave, usually composed of several modes. However,
progress has been gradually made in spectral wave modeling over the past decade. One important
outcome is that the wave breaking term in the state-of-art wave models now accounts for the threshold-
behavior of dominant wave breaking, that is, waves won't break unless their steepness exceeds a threshold
(Alves and Banner, 2003; Babanin et al., 2010).

The mechanics of wave breaking at developed wave spectrum differs from that in a wave
field represented by few modes, normally considered in many theoretical and laboratory

investigations (e.g., Alberello et al., 2018). Since the breaking in laboratory conditions is initiated
11
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by special assigning of amplitudes and phases, it cannot be similar to the breaking in natural
conditions. To some degree, the wave breaking is similar to development of extreme wave that
appears suddenly with no pronounced prehistory (Chalikov and Babanin, 2016a, 2016b). There
are no signs of modulational instability in both phenomena, which suggests a process of taking
energy from other modes. The evolution leading to breaking or ‘freaking’ seems just opposite:
full energy of main wave remains nearly constant while the columnar energy is focusing around
the crest of this wave which becomes sharper and unstable. Probably, even more frequent cases
of wave breaking and extreme wave appearance can be explained by local superposition of
several modes.

The instability of interface leading to breaking is an important and poorly developed
problem of fluid mechanics. In general, this essentially nonlinear process should be investigated
for a two-phase flow. Such approach was demonstrated, for example, by lafrati (2001).
However, the progress in solving this highly complicated problem is not too fast.

The problem of breaking parameterization includes two points: (1) establishing of a
criterion of breaking onset and (2) developing of an algorithm of breaking parameterization. The
problem of breaking is discussed in details in Babanin (2011). Chalikov and Babanin (2012)
performed numerical investigation of the processes leading to breaking. It was found that a clear
predictor of breaking, formulated in dynamical and geometrical terms, probably does not exist.
The most evident criterion of breaking is the breaking itself, i.e., the process when some part of
upper portion of sharp wave crest is falling down. This process is usually followed by separation
of detached volume of liquid into water and air phases. Unfortunately, there is no possibility to
describe this process within the scope of potential theory.

Some investigators suggest using the physical velocity approaching the rate of surface
movement in the same direction as a criterion of breaking onset. This is incorrect, since the
kinematic boundary condition suggests that these quantities are exactly equal to each other. It is
quite clear that the onset of breaking can be characterized by appearance of non-single-value
piece of surface. This stage can be investigated with two-dimensional model which due to a high
flexibility of the conformal coordinates allows us to reproduce a surface with the inclination in
the Cartesian coordinates larger than 90 degrees. (In the conformal coordinates the dependence
of elevation on curvilinear coordinate is always single-value). The duration of this stage is
extremely short, the calculations being always interrupted by the numerical instability with sharp
violation of conservations laws (constant integral invariants, i.e., full energy and volume) and
strong distortion of the local structure of flow. Numerous numerical experiments with conformal
model showed that after appearance of non-single value, the model never returns to stability.
However, introducing of appearance of the non-single-surface as a criterion of breaking
instability even in conformal model is impossible, since a behavior of model at a critical point is
unpredictable, and the run is most likely to be terminated, no matter what kind of
parameterization of breaking is introduced. It means that even in a precise conformal model,
stabilization of solution should be initiated prior to breaking.

Consideration of exact criterion for breaking onset for the models using transformation of
the coordinate type of (1) is useless, since the numerical instability in such models arises not
because of the breaking approaching but because of appearance of large local steepness. Multiple
experiments with direct 3-D wave model show that appearance of local steepness

max((%7 ax’a%y) exceeding =~ 2 (that corresponds to a slope of about 60 degrees) is always

12
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followed by numerical instability but instability can happen far before reaching this value.
Decrease of time step does not make any effect. As seen, a surface with such slope is very far
from being a vertical ‘wall’, when real breaking starts. However, an algorithm for breaking
parameterization must prevent a numerical instability. The situation is similar to the numerical
modeling of turbulence (LES technique), where the local highly selective viscosity is used to
prevent appearance of too large local gradients of velocity. The description of breaking in direct
wave modeling should satisfy the following conditions. (1) It should prevent the onset of
instability at each point of half million of grid points over more than 100 thousand of time
steps.(2) It should describe in a more or less realistic way the loss of kinetic and potential
energies with preservation of balance between them. (3) It should preserve the volume. It was
suggested in (Chalikov, 2005) that an acceptable scheme can be based on the local highly
selective diffusion operator with special diffusion coefficient. Several schemes of such type were

validated, and finally the following scheme was chosen:
0 0, On

_ (97]
7]——E +J1'Y =B, —L+—B,—~ ) 24
’ 7 (65 585 09 983] ( )

——+— 25
o o 09 ‘o9 (25)
where F and F are the right-hand sides of equations (4) and (5) including the terms introduced

¢1:F¢+J‘1(i8 . %p a—q”)

in terms of Fourier coefficients by (19) — (23), B, and B, are diffusion coefficients. It was

suggested in the first versions of the scheme that diffusion coefficient depends on a local slope,
however, such scheme did not prove to be very reliable since it did not prevent all of the events
of numerical instability. A scheme based on the calculation of the local curvilinearity 7., and7,,

turned out to be a lot more robust. The calculations of 75 different runs were performed with full
3-D model in (Chalikov et al., 2014) over period of t =350 (70,000 time steps). The total number
of values used for the calculations of dependence in Fig. 2 (thick curve) is about 6 billion. The
normal probability calculated with the same dispersion is shown by thin curve.

515

70° T T y T y Figure 2. Probability of curvilinearity

_z 1. . Thick curve calculated with full 3-
10 F e ’
D model; thin curve is a probability

107% - - calculated over ensemble of linear
) ; modes with the same spectrum.
e .
Eg . . : : : |
—-60 40 —-20 0 20 40 60
h

rr

527
It is seen that the probability of large negative values of curvilinearity is by orders larger than the
probability calculated over ensemble of linear modes with spectra generated by nonlinear
model.
The curvilinearity turned out to be very sensitive to the shape of surface. This is why it
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was chosen as a criterion of breaking approach. Coefficients B, and B,depend nonlinearly on
the curvilinearity

2 cr

B, = e T T (29)
0 Mee 2 Mz

B — AgCBﬂﬁg Mg <77§6rt 57

g cr ( )
0 Mg =Mz

where AE and A( are horizontal steps in x and y direction in grid space, and coefficients are
Cy =20, 1. =n4 =-50. Algorithm (24) - (27) does not change the volume and decreases the

local potential and kinetic energy. It is assumed that the lost momentum and energy are
transferred to current and turbulence (see Chalikov and Belevich, 1992). Besides, the energy also
goes to other wave modes. The choice of parameters in (24) - (27) is based on simple
considerations: local piece of surface can closely approach the critical curvilinearity but not
exceed it. The values of the coefficients are picked with reserve to provide stability of long runs.

We do not think that the suggested breaking parameterization is a final solution of the
problem. Other schemes will be tried in the next version of the model. However, the results
presented below show that the scheme is reliable and provides a realistic energy dissipation rate.

4. Calculations and results

The elevation and surface velocity potential fields are approximated in the current
calculations by M, =256and M =128modes in directions x and y. The corresponding grid

includes N, xN, =(1024x512) knots. The vertical derivatives are approximated at vertical
stretched gridd¢;,, = xd&;, (J=1,2,3...,L,)wherev =1.2 andL, =10. The small number of

levels used for solution of the equation for nonlinear component of the velocity potential is
possible because just a surface vertical derivative for the velocity potential o®/0¢ (g = O)is

j+l

required. The velocity potential mainly consists of an analytical component ¢ ,while a nonlinear

component provides but small correction. To reach an accuracy of solution £ =107° for equation
(11), no more than two iterations were usually sufficient.

The parameters chosen were used for solution of the problem of wave field evolution
over acceptable time (of the order of 10 days). The initial conditions were assigned on the basis
of empirical spectrum JONSWAP (Hasselmann et al., 1973)with a maximum placed at wave

numberk ; =100with angle spreading(coshy/)256.Details of initial conditions are of no

importance because an initial energy level is quite low.
The total energy of wave motion E=FE +E, (E, - is potential energy, whileE, is

Kinetic energy) is calculated with the following formulas:

E,= 0.257°, E, = O.S(gox2 +g05 +(pzz), (28)
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where single bar denotes averaging over the & and 9coordinates, while double bar denotes
averaging over entire volume. The derivatives in (25) are calculated according to transformation
(1). An equation of integral energy E =E +E, evolution can be represented in the following

form:
Z—E=T+E+E+ﬁ, (29)

where 1 is the integral input of energy from wind (Egs. (14) — (18); Fbis a rate of energy
dissipation due to the wave breaking (Egs. (24) — (27)); E is a rate of energy dissipation due to

filtration of high-wave number modes (‘tail dissipation’, Egs. (19) — (23)); N is an integral effect
of the nonlinear interactions described by the right-hand side of the equations when surface
pressure p is equal to zero. The differential form for calculation of the energy transformation can
be, in principle, derived from Egs. (4) — (6), but here a more convenient and simple method was
applied. Different rates of integral energy transformations can be calculated with help of

fictitious time steps (i.e., apart from the basic calculations). For example, the value of (S
calculated by the following relation:

= 1 B
I - Et+At _ Et) ’ 30
al &

where E"™* is the integral energy of wave field obtained after one time step with the right side of
equation (6) containing only the surface pressure calculated with Egs. (14) — (18). For
calculation of the dissipation rate due to filtration, the right-hand side of the equations contains
just the terms introduced in Egs. (19) - (23), while for calculation of the effects of breaking, only
the terms introduced in (24) — (27) are in use.
An evolution of the characteristics calculated by formula (30) is shown in Fig. 3.
592

2 R Figure 3. Evolution of integral

characteristics of solution, rate of
evolution of integral energy multiplied

by10") due to: 1 — tail dissipation D,
(Egs. 19-23); 2 — breaking dissipation
D, (Egs. 24-27); 3 — input of energy
from wind | (Egs. 14-18); 4 — balance
of energy |1+D,+D,. Curve 5

0.6
0.4

0.2 .
shows the evolution of wave energy

10°E . Vertical bars of grey color
sho