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Abstract. An established tidal model, validated for present-day conditions, is used to investigate the effect of large levels of

sea-level rise (SLR) on tidal characteristics around Australasia. SLR is implemented through a uniform depth increase across

the model domain, with a comparison between the implementation of coastal defences or allowing low-lying land to flood.

The complex spatial response of the semi-diurnal M2 constituent does not appear to be linear with the imposed SLR. The most

predominant features of this response are the generation of new amphidromic systems within the Gulf of Carpentaria, and large5

amplitude changes in the Arafura Sea, to the north of Australia, and within embayments along Australia’s north-west coast.

Dissipation from M2 notably decreases along north-west Australia, but is enhanced around New Zealand and the island chains

to the north. The diurnal constituent, K1, is found to decrease in amplitude in the Gulf of Carpentaria when flooding is allowed.

Coastal flooding has a profound impact on the response of tidal amplitudes to SLR by creating local regions of increased tidal

dissipation and altering the coastal topography. Our results also highlight the necessity for regional models to use correct open10

boundary conditions reflecting the global tidal changes in response to SLR.

1 Introduction

Fluctuations in sea-level at both short and long time scales have had, and will have, a significant influence upon societies in

proximity of the coast. Coastal areas are attractive locations for human populations to settle for multiple reasons; the land

is often flat and well-suited for agriculture and urban development, whilst coastal waters can be used for transport, trade,15

and as a source of food. Being a large island nation, 85% of the population of Australia (approximately 19.9 million people;

ABS, 2016) live within 50 kilometers of the ocean, and the recreation and tourism industries located along the coast are a key

part of Australia’s economy (Watson, 2011). As such, Australia is particularly sensitive to both short term fluctuations in sea

level (e.g. tidal and meteorological effects) and long term changes in mean sea level (MSL). Tidal changes in sea level are a

major influencing factor on coastal morphology, navigation and ecology (Allen et al., 1980; Stumpf and Haines, 1998), and the20

combination of extreme peaks in tidal amplitude (associated with long period lunar cycles, Pugh and Woodworth, 2014) with

storm surges (associated with severe weather events) can be a key component of unanticipated extreme water levels (Haigh

et al., 2011; Pugh and Woodworth, 2014; Muis et al., 2016). With sea levels around Australia forecast to rise by up to 0.7 m

by the end of the century (McInnes et al., 2015; Zhang et al., 2017), understanding how tidal ranges are expected to vary

with changing MSL is crucial for determining the potential implications for urban planning and coastal protection strategies in25

low-lying areas.
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As the dynamical response of the oceans to gravitational forcing, tides are sensitive to a variety of parameters, including

water depth and coastal topography. Such changes in bathymetry may have an impact on the speed at which the tide propagates

and the dissipation of tidal energy, and it may change the resonant properties of an ocean basin. As an extreme example, during

the Last Glacial Maximum (when sea level was approximately 120 m lower than present day) the tidal amplitude of the M2

constituent in the North Atlantic was greater by a factor of two or more because of amplified tidal resonances there (Egbert5

et al., 2004; Wilmes and Green, 2014). Consequently, understanding the ocean tides’ response to changing sea level has been a

subject of recent research, at both regional (Greenberg et al., 2012; Pelling et al., 2013; Pelling and Green, 2013; Carless et al.,

2016) and global scales (Müller et al., 2011; Pickering et al., 2017; Wilmes et al., 2017; Schindelegger et al., 2018).

Current estimates of the global average change in sea level over the last century suggest a rise of between 1.2–1.7mm yr−1

(Church et al., 2013; Hay et al., 2015; Dangendorf et al., 2017; IPCC, 2013). However, significant inter-annual and decadal-10

scale fluctuations have occurred during this period, for example over the period 1993–2009, global sea-level rise (SLR) has

been estimated at 3.2 mm yr−1 (Church and White, 2011; IPCC, 2013). Studies suggest that global sea level may rise by up

to 1 m by the end of the 21st century, and by up to 3.5 m by the end of the 22nd century (Vellinga et al., 2009; DeConto

and Pollard, 2016). However, sea-level change is neither temporally nor spatially uniform as a multitude of physical processes

contribute to regional variations (Cazenave and Llovel, 2010; Slangen et al., 2012). Part of this signal is attributed to increasing15

ocean heat content causing thermal expansion of the water column, but most of the rise and acceleration in sea level is due to

enhanced mass input from glaciers and ice sheets (Church et al., 2013). The effect of vertical land motion, specifically Glacial

Isostatic Adjustment (GIA), should also come under consideration; however around the Australian coastline the effect is small

(White et al., 2014). Additionally, trends in the amplitude of the M2 constituent around Australia are as much as 80% of the

magnitude of the trend seen in global MSL (Woodworth, 2010), thus the impact of changing tides upon regional variations in20

sea-level should not be underestimated.

Here, we expand previous tides and SLR investigations to the shelf seas surrounding Australia, which have received little

attention so far despite the north-west Australian shelf alone being responsible for a large amount of energy dissipation com-

parable to that of the Yellow sea or the Patagonian shelf (Egbert and Ray, 2001). Here, we study the region’s tidal response

to a uniform SLR signal, and consider the impact of coastal defences (inundation of land allowed or coastal flood-defenses25

implemented) on the tidal response. Wide areas of this region experience large tides at present, and areas such as the Gulf

of Carpentaria are influenced by tidal resonances (Webb, 2012). It is therefore expected that we will see large differences in

the tidal signals with even moderate SLR, as it is known that a (near-) resonant tidal basin is highly sensitive to bathymetric

changes (e.g., Green, 2010). In what follows we introduce OTIS, the dedicated tidal modeling software used, and the simu-

lations performed (Sections 2.1–2.3). To ground our considerations of future tides on a firm observational basis, we conduct30

extensive comparisons to tide gauge data in Section 2.4. Section 3 presents the results, and the paper concludes in the last

section with a discussion.
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Figure 1. a) Bathymetry of the model domain and tide gauge sites used in the analysis (colored dots): cf Table 1. Locations at which M2

trends were estimated are shown in red. Regions mentioned in subsequent sections of the paper are marked on the map: I - Eighty Mile

Beach, II - King Sound, III - Joseph Bonaparte Gulf, IV - Van Dieman Gulf, V - Yos Sudarso Island, VI - Torres Strait, VII - Bass Strait, VIII

- Gulf St. Vincent, IX - Spencer Gulf, X - Arafura Islands, XI - Wellesley Islands. b) Co-tidal chart of the M2 constituent amplitude for the

control simulation. Black lines represent co-phase lines with 60◦ separation.
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Table 1. Start and end dates of the analyzed tide gauge records, including names and running index for identification in Figure 1

Station ID Name Time Span Source

1 Mourilyan Harbour 1986–2014 GESLA

2 Townsville 1980–2014 GESLA

3 Hay Point 1985–2014 UHSLC

4 Gladstone 1982–2014 UHSLC

5 Brisbane 1985–2016 GESLA

6 Lord Howe Island 1992–2014 GESLA

7 Fort Denison 1965–2017 GESLA

8 Spring Bay 1986–2017 GESLA

9 Burnie 1985–2014 GESLA

10 Williamstown 1976–2014 UHSLC

11 Geelong 1976–2014 UHSLC

12 Portland 1982–2014 GESLA

13 Port Adelaide 1976–2014 GESLA

14 Port Lincoln 1967–2014 UHSLC

15 Thevenard 1966–2014 GESLA

16 Esperance 1985–2017 GESLA

17 Fremantle 1970–2014 GESLA

18 Canarvon 1991–2014 GESLA

19 Cocos Islands 1991–2017 GESLA

20 Port Hedland 1985–2014 UHSLC

21 Broome 1989–2017 UHSLC

22 Darwin 1991–2017 GESLA

23 Weipa 1986–2014 GESLA

24 Booby Island 1990–2017 UHSLC

2 Modeling future tides

2.1 Model configuration and control simulation

We use OTIS, the Oregon State University Tidal Inversion Software, to simulate the effects of SLR on the tides around Aus-

tralia. OTIS is a portable, dedicated, numerical shallow water tidal model which has been used extensively for both global

and regional modeling of past, present, and future ocean tides (e.g., Egbert et al., 2004; Pelling and Green, 2013; Wilmes and5

Green, 2014; Green et al., 2017). It is highly accurate both in the open ocean and in coastal regions (Stammer et al., 2014), and

it is computationally efficient. The model solves the linearized shallow-water equations (e.g., Hendershott, 1977) given by
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∂U

∂t
+ f×U =−gH∇(ζ − ζEQ− ζSAL)−F (1)

∂ζ

∂t
=−∇ ·U (2)

where U is the depth integrated volume transport, which is calculated as tidal current velocity u times water depth H . f

is the Coriolis vector, g denotes the gravitational constant, ζ stands for the tidal elevation with respect to the moving seabed,

ζSAL denotes the tidal elevation due to ocean self-attraction and loading (SAL), and ζEQ is the equilibrium tidal elevation. F5

represents energy losses due to bed friction and barotropic-baroclinic conversion at steep topography. The former is represented

by the standard quadratic law:

FB = Cdu|u| (3)

where Cd = 0.003 is a non-dimensional drag coefficient, and u is the total velocity vector for all the tidal constituents. The

parameterization for internal tide drag, Fw = C|U|, includes a conversion coefficientC, which is defined as (Zaron and Egbert,10

2006; Green and Huber, 2013)

C(x,y) = γ
(∇H)2NbN̄

8π2ω
(4)

Here, γ = 50 is a scaling factor, Nb is the buoyancy frequency evaluated at the sea bed, N̄ is the vertical average of the

buoyancy frequency, and ω is the frequency of the tidal constituent under evaluation. Values of both Nb and N̄ follow from the

prescription of horizontally uniform stratification N(z) =N0 exp(−z/1300), where N0 = 5.24×10−3 s−1 has been obtained15

from a least-squares fit to present-day climatological hydrography (Zaron and Egbert, 2006).

The model solves equations (1)–(2) using forcing from the astronomical tide generating potential only (represented by ζEQ

in Eq. (1)), with the SAL term being derived from TPXO8 (Egbert and Erofeeva, 2002, updated version). An initial spin-up

from rest over 7 days is followed by a further 15 days of simulation time, on which harmonic analysis is performed to obtain

the tidal elevations and transports. Here, we investigate the two dominating semi-diurnal and diurnal tidal constituents, M2 and20

K1 respectively. The model bathymetry comes from the ETOPO1 dataset (Amante and Eakins, 2009, see Fig. 1 for the present

domain), which was averaged to 1⁄20
◦ horizontal resolution. For the control run with present-day water depths, the domain

model heights at the open boundaries were constrained to elevation data from a coarser-resolution global OTIS run, taken from

Wilmes et al. (2017). TPXO8 was used to validate the model (alongside tide gauge data at 24 locations); see Section 2.4.

2.2 Dissipation computations25

The computation of tidal dissipation rates, D, was done following Egbert and Ray (2001):

D =W −∇ ·P (5)
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Here, W is the work done by the tide-generating force and P is the energy flux given by

W = gρ〈U · ∇(ηSAL + ηEQ)〉 (6)

P = g〈ηU〉 (7)

where the angular brackets mark time-averages over a tidal period.

2.3 Implementing Sea-Level Rise5

The model runs are split into two sets. In the first, we allow low-lying grid cells to flood as sea level rises, whereas in the

second set we introduce vertical walls at the present-day coastline. Following Pelling et al. (2013), we denote these sets “flood”

(FL) and “no flood” (NFL), respectively. A range of SLR scenarios corresponding to predicted global mean sea level increases

from large scale ice sheet collapses (Wilmes et al., 2017) are investigated in both sets. This is done via the implementation of

a uniform depth increase across the entire domain of 1, 3, 5, 7, and 12 m. Boundary conditions for each of the SLR scenarios10

are generated from global simulations. The 5, 7, and 12 m SLR NFL runs were taken directly from Wilmes et al. (2017) and

the remaining global simulations were carried out following the methodology outlined in Wilmes et al. (2017) but with varying

global sea-level changes and allowing for inundation in the FL runs. Additionally, we simulated tidal responses to future

changes in water depth extrapolated from geocentric sea-level trend patterns as observed by satellite altimetry (cf. Carless

et al., 2016; Schindelegger et al., 2018). While such projections contain not only the actual long-term trend of sea level but15

also significant (sub-)decadal variability, little difference was found for tidal perturbations with respect to our uniform SLR

scenarios (see supporting information). It is also unknown how the magnitude and spatial variation of the trend pattern may

change over the period of time required to equate a uniform SLR, especially with the larger scenarios considered here. Hence

in the following, the focus is on the uniform SLR scenarios. We choose to show results for the 1 m and 7 m SLR simulations

because they best exemplify the changes to tidal characteristics across the domain, and also correspond to a high but probable20

level for the end of this century and an extreme case in which large levels of ice sheet collapse has occurred, respectively (e.g.,

Wilmes et al., 2017). The simulations with 12 m of SLR have little physical justification, but they allow us to assess how any

tidal trends seen up to 7 m, if they appear, may evolve for even higher levels of SLR.

2.4 Model Validation

For validation of our numerical experiments, time series of hourly sea level data from 24 stations around Australasia were25

obtained from the Global Extreme Sea Level Analysis Version 2 (GESLA-2; Woodworth et al., 2017) and the University of

Hawaii Sea Level Center (UHSLC; Caldwell et al., 2015); see Table 1. With few exceptions, record lengths are short; but

all time series span at least 28 years to allow for an appropriate representation of the 18.61-year nodal cycle in lunar tidal

constituents (Haigh et al., 2011). Upon removal of years missing more than 25% of hourly observations, a three-tiered least-

squares fitting procedure was applied to (i) extract mean M2 and K1 tidal constants of amplitudeH and phase lagG, (ii) deduce30

linear trends inH andG for both constituents over the complete time series at each station, and (iii) estimate the corresponding
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Figure 2. The constituent amplitude at each tide gauge position calculated from GESLA and UHSLC data and the model control simulation

for a) M2 and b) K1. The solid line marks the zero difference line. The dashed lines mark one standard deviation of the difference.

long-term trend in MSL. 10 out of 24 tide gauge stations yielded statistically insignificant M2 amplitude trends at the 95%

confidence level and were thus excluded from the model trend validation below; see Fig. 1 for a graphical illustration.

The processing protocol, essentially taken from Schindelegger et al. (2018), is based on a separation of tidal and non-tidal

residuals from the longer-term MSL component through application of a 4-day moving average with Gaussian weighting. The

high-frequency filter residuals obtained were then harmonically analyzed for 68 tidal constituents using the Matlab® UTide5

software package (Codiga, 2011), with analysis windows either set to the entire time series (step i) or shifted on an annual

basis (step ii). In both cases, we configured UTide for standard least squares and a white-noise approach in the computation of

confidence intervals. Subsequent regressions of annual M2 tidal constants were performed with a functional model composed

of a linear trend, a lag one-year autocorrelation, AR(1), and sinusoids to account for nodal modulations. Trends in MSL were
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likewise determined through regression under AR(1) assumptions, upon a priori reduction of the influence of the 18.61-year

equilibrium tide.

A regression of the constituent amplitudes calculated from the OTIS control simulation for the present-day bathymetry

against the M2 and K1 amplitudes from harmonic analysis of the tide gauge data (Fig. 2) reveals that the model performs

well at all sample sites except at stations Williamstown and Geelong (see Fig. 1 and Table 1). Here, simulated amplitudes5

are overestimated by a factor of five (M2) and two (K1), respectively. Both of stations lie on the coast of Port Phillip Bay, a

shallow bay isolated from the Bass Strait by two peninsulas. The eastern peninsula is long and narrow, and not resolved in the

model bathymetry due to the spatial averaging performed on the source ETOPO1 dataset. As such, the tidal wave from the

Bass Strait penetrates into the bay and builds up in amplitude through reflection at lateral boundaries. Excluding Williamstown

and Geelong from the comparison, we obtain a root mean square (RMS) error for the constituent amplitudes of 17 cm for M210

and 2 cm for K1, while correlation coefficients are at 0.97 and 0.99 respectively. Estimates of the median absolute difference

between model and test stations can be used to quantify possible biases in a robust way (Stammer et al., 2014); corresponding

values are 8 cm for M2 and 1 cm for K1 irrespective of whether stations in Port Phillip Bay are included or not. Median phase

differences with respect to the tide gauge estimates are 21◦ for M2 and 3◦ for K1. These statistics give confidence in the model’s

accuracy and in the assertion that areas where the disagreement between model and tide gauge data is largest are where the15

resolution of the model has not resolved fine-structure coastal features.

Additional comparisons with gridded M2 data were performed using the TPXO8 inverse solution, linearly interpolated to

the grid of the model domain (see http://volkov.oce.orst.edu/tides for details). The RMS difference between the model and the

TPXO8 data is 7 cm for M2, and 2 cm for K1. The variance capture (VC) of the control was also calculated to see how well

the overall character of the tidal constituents was represented (e.g., Pelling and Green, 2013):20

VC = 100

[
1−

(
RMSD

S

)2
]

(8)

where RMSD is the RMS difference between the control simulation and TPXO8, and S denotes the RMS standard deviation

of the TPXO8 amplitudes. The VC is above 96% for M2 and 97% for K1.

For validation of the simulated M2 changes under SLR, we followed Schindelegger et al. (2018) and condensed measured

M2 trends (∂H,∂G) and MSL rates (∂s) to response coefficients in amplitude (rH = ∂H/∂s) and phase (rG = ∂G/∂s).25

Simulated amplitude and phase changes from the 1 m FL run at the location of 14 tide gauges were interpolated from nearest

neighbor cells and also converted to ratios of rH and rG. Graphical comparisons in Fig. 3 indicate that the model captures the

sign of the observed M2 amplitude response in 10 out of 14 cases and reproduces large fractions of the in situ variability at

approximately half of the analyzed stations (e.g., Booby Island, Brisbane, Geelong, Port Hedland, Broome). A similar figure for

K1 can be found in the supporting information. Model-to-data disparities on the northeastern seaboard (Hay Point, Gladstone)30

are markedly reduced in comparison to Schindelegger et al. (2018, their Fig. 7) due to the higher horizontal resolution of

our setup in a region of ragged coastline features. Neither the increase of M2 amplitudes at Townsville nor the pronounced

reduction of the tide at Fort Denison (Sydney harbor) can be explained by SLR perturbations in the tidal model; both signals
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Figure 3. Observed and modeled M2 response coefficients in (a) amplitude H and (b) phase lag G per meter of SLR. Model values (red

squares) are based on the 1-m FL simulations, while tide gauge estimates at 14 out of 24 locations are shown in black. Error bars correspond

to two standard deviations, propagated from the trend analyses of sea level and annual tidal estimates of M2. Stations with insignificant

phase trends (at the 95% confidence level) are shown as white markers in panel (b). Numbers at the end of the station labeling indicate mean

observed M2 amplitudes (cm)

may be the effect of periodic dredging to maintain acceptable water depths for port operations; cf. Devlin et al. (2014) for a

similar analysis. The decrease of the small M2 tide at Spring Bay, Tasmania, (20 cm m−1 of SLR) remains puzzling though,

given that the gauge is open to the sea and unaffected by harbor activities or variable river discharge rates. Mechanisms other

than SLR, such as modulation of the internal tide due to stratification changes along its path of propagation (Colosi and

Munk, 2006) or variations in barotropic transports induced by thermocline deepening (Müller, 2012), need to be thoroughly5

addressed to complete the picture of secular changes in the surface tide. Furthermore, uncertainty in the bathymetric data due to

sparsity of sounding observations may induce additional errors. Despite these limitations, our 1 m FL simulation captures good

portions of the patterns of M2 amplitude changes seen in tide gauge records around Australasia. Moreover, on time scales of

9



centuries, water column depth changes due to SLR will outweigh tidal perturbations from other physical mechanisms. Hence,

we conclude that our simulations lend themselves well for analysis of probable future tidal changes over a wider area.

3 Results

The control run exemplifies the typical tidal environment of the model domain (Figs. 1b and 4a). M2 has large amplitudes along

the north-west coast of Australia and within Joseph Bonaparte Gulf and Van Dieman Gulf. To the south-west of Australia lies5

a clockwise-rotating amphidrome, responsible for the westwards propagation of the tidal wave across the north Australian

shelf. The interaction of this wave with the confined topography of the Arafura Sea leads to a complex tidal pattern with a

notable amphidrome north of the Gulf of Carpentaria. The tide rotates anti-clockwise around New Zealand towards the east

coast of Australia, where large amplitudes can be seen between Hay point and Gladstone. K1 is dominated by a single am-

phidrome located within the Gulf of Carpentaria, with raised amplitudes to the north and south of this point (see the supporting10

information).

In general, for both constituents, the amplitude changes are not linear with respect to the imposed level of SLR (cf. Idier

et al., 2017; Pickering et al., 2017, where tidal amplitudes across the European Shelf changed non-proportionally with SLR

greater than 2 m). Relative changes are larger for lower SLR scenarios (e.g. 1 m) than for the higher SLR scenarios (e.g. 7 m).

No significant differences between the FL and NFL scenarios for 1 m SLR can be seen, likely due to the fact that allowing land15

to flood at a 1 m SLR scenario only increased the wetted area by 12 grid cells (on our 1166 x 2000 computational grid), while

at 7 m SLR 3320 new ocean grid cells were generated. Accordingly, for larger sea-level increases the differences between the

Fl and NFL scenarios become more pronounced due to the increased number of flooded cells. A detailed analysis of the impact

of SLR on M2, and more peripherally K1, is given below; the most common locations discussed are shown in Fig. 1a.

3.1 Effect of SLR on the M2 tide20

SLR brings some fairly significant changes to the M2 tidal systems around Australia. Many of the regions which stand out as

having high M2 amplitude at present (see Fig. 1b) suffer a marked reduction in amplitude with increasing SLR (Fig 5a and c).

To the north-west of Australia, amplitudes decrease in regions centered around King Sound, around Joseph Bonaparte Gulf,

within Van Dieman Gulf and across the Timor Sea. The reduction in amplitude to the north-east of Van Dieman Gulf comes

alongside the formation of a new amphidrome; the phase lines that run north-south in the Arafura Sea (Fig. 1b) move closer25

together before coalescing to form an amphidromic point. A further amphidromic point emerges in the south-east of the Gulf

of Carpentaria, around the Wellesley Islands, when a virtual amphidromic point (an amphidrome over land) moves north to

become real (an amphidrome over the ocean). Both these points form some time between 3 and 5 m SLR (not shown). The

amphidrome that sits north of the Gulf of Carpentaria (Fig. 4a) moves northwards with SLR in both the FL and NFL scenarios,

eventually becoming virtual at the higher SLR scenarios by moving over Yos Sudarso Island. This movement is therefore30

associated with the change in the propagation properties of the incoming tidal wave, rather than the inundation of Yos Sudarso

Island which occurs at 5 m SLR and above.
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Figure 4. The constituent phase lags with respect to the Greenwich Meridian (deg) for the control (left) and 7 m SLR (right) simulations for

M2 (top) and K1 (bottom)

The Torres Strait features a sharp divide between a large positive and small or weakly negative amplitude difference on

its west and east sides respectively. The strait is shallow and dotted with islands, restricting the flow of the tides. Absolute

amplitudes on the east side are initially elevated compared to the west (Fig. 1b) but this difference is mitigated with increasing

SLR, as the larger volume of the channel allows for enhanced tidal transports across the strait (Figs. 5a and c).

In the remaining part of the domain the M2 amplitudes around the coast of New Zealand and along the east coast of5

Australia, particularly between Hay Point and Gladstone (Fig. 1a, points 3 and 4), both increase with SLR. In the Bass Strait,

shown in Fig. 6, the amplitude also increases along with SLR, however there is a slight drop in amplitude at 1 m SLR at the

eastern entrance of the Strait and within Port Phillip Bay (the location of the Geelong and Williamstown tide gauges). These

decreases quickly disappear at higher SLR. Along the south coast of Australia the amplitudes also increase with SLR, but

the simulated perturbations there are generally smaller in magnitude than in the north (see also Schindelegger et al., 2018).10

Increased tidal amplitudes at the head and mouth of Spencer Gulf (Fig. 6a) are associated with a slight weakening of a standing

wave like pattern where M2 amplitudes increase from the sea towards inland (Fig. 1b). However, this feature does not evolve

proportionally with the imposed level of SLR (see Fig. 6c for the 7 m case). To the east, in Gulf St. Vincent, there is a similar,

if stronger, standing wave-like pattern (Fig. 1b). Here, the elevated amplitudes proximity to the coast increase in line with

SLR (Fig. 6c). Moving further west along the south coast of Australia, the amphidromic point off the south-west coast moves15
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Figure 5. The difference in M2 amplitude (m) between the FL and control simulation (i.e. FL - Control) for 1 m SLR (a) and 7 m SLR (c)

alongside the difference between the NFL and FL simulations (i.e. NFL - FL) for 1 m SLR (b) and 7 m SLR (d). The scale applied to (a)

and (c) is relative to the applied SLR scenario. Regions that appear blue in b) and d) are where the FL amplitude is greater than the NFL

amplitude; as such coastal areas which have been flooded will appear blue.

southwards with increasing SLR (Fig. 4a and b), with a faster progression in the NFL than in the FL runs. Note that, almost

universally across the domain, the amplitudes seen in the NFL runs are higher than those in the FL runs (Figs. 5d and 6d). It is

clear that allowing flooding to occur suppresses the magnitude of any SLR effect upon tidal amplitude.

Additionally, we have repeated our control and future simulations using boundary conditions taken from TPXO8, i.e., us-

ing present day boundary conditions, instead of those from global SLR simulations. In these runs the magnitude and spatial5

distribution of the amplitude changes are vastly different from the results presented above. Figure 7 demonstrates, and allows

for a comparison of, the pattern of amplitude changes seen for M2 north of Australia in these runs. Especially striking is the

difference in magnitude of tidal amplitude increases along the east coast of Australia. Applying present-day boundary con-

ditions leads to a very strong underestimation of the amplitude changes in this area (the differences exceed 40 cm in some

locations). Similarly pronounced is the difference on the north-west coast where the run with present day boundary conditions10

overestimates the amplitude decreases. In large parts of the Arafura Sea, the tidal amplitude responses are of opposite sign in

response to the different boundary conditions. This is a key result and it highlights the importance of applying correct boundary

condition for regional simulations which take into account the far-field change occurring outside the model domain.
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Figure 6. Same as Fig. 5 but showing the south coast of Australia.

Figure 7. The difference in M2 amplitude (m) between the FL and control simulation (i.e. FL - Control) for 7 m SLR using boundary

conditions generated from a global 7 m SLR scenario (left) and using boundary conditions generated from TPXO8 (right).

Figure 8a displays the dissipation associated with the M2 tidal constituent for the control simulation. It is evident that a

majority of the energy is lost at the coast and on the shelf, especially around sharp and shallow bathymetric features. There is a

remarkable reduction in dissipation along the north-west coast of Australia with SLR, matching areas with a marked decrease

in tidal amplitude (Fig. 8b). There are small pockets of dissipation increases in proximity to the coast in the north-west,

associated with areas of enhanced flooding. Much of the dissipation increases within the domain comes from the undersea5
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Figure 8. The dissipation (W m−2) associated with the M2 constituent across the entire model domain (left) and the difference in dissipation

between the 7 m FL simulation and the control run (i.e. FL - Control, right).

Figure 9. The dissipation totals (GW) across the model domain above and below (inset) the depth of the 200 m isobath of the control

bathymetry.

ridges and trenches to the north and south of New Zealand, as well as the east side of the Torres Strait, the area between Hay

Point and Gladstone on the east coast of Australia (at the southern extent of the Great Barrier Reef), and both ends of the Bass

Straight. All of these areas are associated with an increase in M2 amplitude with SLR.

The impact upon the total dissipation across the domain by allowing flooding is illustrated in Fig. 9. In both the NFL and

FL runs, dissipation increases with SLR; the dissipation generated by areas with increased amplitudes outweighs the loss of5

dissipation in areas of decreased amplitude. With amplitudes in the NFL runs being much higher than in the FL runs the

corresponding dissipation is higher, and the gap in dissipation between the NFL and FL simulations widens with increasing

SLR. At 12 m SLR the NFL dissipation begins to plateau whilst the FL dissipation continues to rise. Overall, dissipation on the

shelf (nominally above the 200 m isobath, accounting for approximately 7% of the water covered area of the domain) amounts

to about half of the energy dissipated in deeper water.10
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Figure 10. Same as Fig. 5 but for the K1 constituent

3.2 Effect of SLR on the K1 tide

The changes to K1 are relatively small in comparison to the changes seen for the semi-diurnal constituent. The main point of

interest is the amphidromic system in the Gulf of Carpentaria. Figure 10 shows an initial negative amplitude response in the

north and south of the Gulf, while there are slight increases in amplitude north of Yos Sudarso Island and in the Java Sea. The

position of the amphidromic system is relatively stable with SLR, as evident from the constituent phase plots in Fig. 4c and 4d,5

and it is evident that K1 suffers a decrease in amplitude around the Gulf of Carpentaria with SLR. Comparing Fig. 10c and 10d,

a majority of the amplitude difference occurring in the FL scenario is negated when impermeable coastlines are implemented.

The dissipation for which K1 is responsible in the domain is approximately seven times smaller than that of M2, and therefore

not discussed further.

3.3 Synthesis10

One of the most striking characteristics of the response of the semi-diurnal constituents to SLR is the drop in amplitude

along the north-west coast of Australia, an area where a large amount of dissipation occurs in the control. We associate this

feature with the altered propagation properties of the incoming tidal wave, as the imposed sea-level change in our simulations

represents a significant fraction of the average water depth across the shelf; for instance the 7 m SLR scenario increases the
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depth of the Gulf of Carpentaria by∼10%. As the tidal system goes from hosting a single wave propagating across the Arafura

Sea to something more complex with multiple amphidromes within the basin, the semi-diurnal resonant response on the shelf

is interrupted. This dynamical change may explain the drop in amplitudes to the north-west of Australia.

4 Discussion

It has been shown here, using a validated tidal model, that the tidal characteristics around Australia are sensitive to water5

column depth changes due to SLR. We show significant changes in tidal amplitudes due to the SLR, with the largest change

in amplitude being 15% of the SLR signal south of Papua New Guinea and north-east of Van Dieman Gulf. The model

can reproduce considerable fractions of the tidal amplitude change signals seen in the tide gauge record. This is a strong

indication that the observed changes in tides are, at least in part, driven by sea level changes, and adds further motivation for

our investigation.10

Somewhat surprisingly, the responses of the tides to SLR are very different in both their sign and spatial patterns depending

on how the open boundary conditions are implemented. Furthermore, in the simulations with TPXO8 data on the open bound-

ary, the amplitude changes along the north east coast, home to several population centers, are strongly underestimated. The take

home message here is that, opposite to what has often been assumed (e.g., Pelling and Green, 2013), simulations of the effect

of SLR on tides for certain regions should not use present day boundary conditions, even if the open boundary is in the far15

field. There are also pronounced differences between the FL and NFL simulations. Consequently, to make accurate predictions

of the future tides, local coastal defence strategies need to be known, because allowing land to flood could mitigate increases

in the tidal range induced by the rising sea level. If this information is not obtainable, both scenarios need to be investigated.

However, this introduces another problem: most of Australia’s largest cities lie on or near the coast, and many of them are

close to the areas which may experience the largest tidal changes with SLR. It thus opens for an interesting investigation to see20

if unpopulated areas of the coastline could be flooded to mitigate the rising sea-level in a hybrid FL-NFL scenario. Adopting a

more dynamical perspective, numerical tests employing wave forcing of different periods are proposed to distinguish if the tidal

response of certain areas within the domain is largely due to resonance or frictional effects (Idier et al., 2017). Additionally, an

investigation into the coupling of tidal changes for expected magnitudes of SLR and storm surges (Muis et al., 2016) within

the domain could provide further insight and guidance to the future planning of coastal defenses around Australia.25

In conclusion, the series of simulations presented here have shown that the tidal amplitudes along the northern coast of

Australia and around the Sahul shelf region are particularly sensitive to SLR. Coastal population centers such as Adelaide and

Mackay are predicted to have to deal with the consequences of increased tidal amplitudes with increasing SLR. SLR appears

to be moving the semi-diurnal constituents away from resonance on the shelf and only have a small impact on the diurnal

constituents in the Gulf of Carpentaria. The implementation of flooding can have a significant impact on the response of the30

tide by locally increasing dissipation, and should be considered essential for future tidal modeling with SLR.
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