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Highlights 8 

• A novel SST predicting method based on the hybrid improved EMD algorithms and BP neural network 9 

method are proposed in this paper.  10 

• SST prediction results based on the hybrid EEMD-BPNN and CEEMD-BPNN models are compared and 11 

discussed.  12 

• Cases study of SST in the North Pacific shows that the proposed hybrid CEEMD-BPNN model can 13 

effectively predict the time-series SST. 14 

 15 

Abstract: Sea surface temperature (SST) is the major factor that affects the ocean-atmosphere interaction, 16 

and in turn the accurate prediction of SST is the key to ocean dynamic prediction. In this paper, an SST 17 

predicting method based on improved empirical mode decomposition (EMD) algorithms and back-18 

propagation neural network (BPNN) is proposed. Two different EMD algorithms have been applied 19 

extensively for analyzing time-series SST data and some nonlinear stochastic signals. Ensemble empirical 20 

mode decomposition (EEMD) algorithm and Complementary Ensemble Empirical Mode Decomposition 21 

(CEEMD) algorithm are two improved algorithms of EMD, which can effectively handle the mode-mixing 22 

problem and decompose the original data into more stationary signals with different frequencies. Each 23 

Intrinsic Mode Function (IMF) has been taken as an input data to the back-propagation neural network model. 24 

The final predicted SST data is obtained by aggregating the predicted data of individual IMF. A case study, 25 

of the monthly mean sea surface temperature anomaly (SSTA) in the northeastern region of the North Pacific, 26 

shows that the proposed hybrid CEEMD-BPNN model is much more accurate than the hybrid EEMD-BPNN 27 

model, and the prediction accuracy based on BP neural network is improved by the CEEMD method. 28 

Statistical analysis of the case study demonstrates that applying the proposed hybrid CEEMD-BPNN model 29 
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is effective for the SST prediction. 30 
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 35 

1 Introduction 36 

The Sea Surface Temperature (SST) is a main factor in the interaction between the ocean and the 37 

atmosphere (Wiedermann et al., 2017; He et al., 2017), and it characterizes the combined results of ocean 38 

heat (Buckley et al., 2014; Griffies et al., 2015), dynamic processes (Takakura et al., 2018). It is a very 39 

important parameter for climate change and ocean dynamics process, reflects sea-air heat and water vapor 40 

exchange. Small changes in sea temperature can have a huge impact on the global climate. The well-known 41 

El Niño and La Niña phenomena are caused by abnormal changes in SST (Chen et al., 2016a; Zheng et al., 42 

2016). 43 

Therefore, scholars have begun to observe the SST in recent years, the observation of the SST is 44 

important (Kumar et al., 2017; Sukresno et al., 2018). Accurate observation and effective prediction of the 45 

SST are very important (Hudson et al., 2010). Predicting the SST in advance can enable people to take 46 

appropriate measures to reduce the impact on daily life and reduce unnecessary losses. However, due to the 47 

high randomness of the monthly mean sea surface temperature anomaly (SSTA), the nonlinear and non-48 

stationary characteristics are obvious. At present, there is no clear and feasible method with high accuracy to 49 

effectively predict the SST (Zhu et al., 2015; Chen et al., 2016b; Khan et al., 2017). 50 

In mathematics and science, a nonlinear system is a system in which the change of the output is not 51 

proportional to the change of the input. Nonlinear dynamical systems, describing changes in variables over 52 

time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems. 53 

A stationary process is a stochastic process whose unconditional joint probability distribution does not change 54 

when shifted in time. Consequently, parameters such as mean and variance also do not change over time. The 55 

variation of SST is a deterministic non-linear dynamic system and a non-stationary time series data. Empirical 56 

Mode Decomposition (EMD) is a state-of-the-art signal processing method proposed by Huang et al. (1998). 57 

This method can decompose the signal data of different frequencies step by step according to the 58 

characteristics of the data and obtain several periodic and trending signals orthogonal to each other, the 59 
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method can decompose the stronger nonlinear and non-stationary signals into weaker nonlinear and non-60 

stationary signals (Wang et al., 2015; Amezquita-Sanchez and Adeli,2015; Wang et al., 2016; Kim and Cho, 61 

2016). However, there were some problems of the EMD method, such as mode mixing (Huang and Wu, 2008; 62 

Wu and Huang, 2009). 63 

To solve this problem, Wu and Huang (2009) proposed the Ensemble Empirical Mode Decomposition 64 

(EEMD) method by adding different white noise in each ensemble member to suppress mode mixing. Yeh et 65 

al. (2010) added two opposite-signal white noises to the time-series data sequence, and proposed an improved 66 

algorithm for EEMD, Complete Ensemble Empirical Mode Decomposition (CEEMD). The decomposition 67 

effect is equivalent to EEMD, and the reconstruction error caused by adding white noise is reduced (Tang et 68 

al., 2015). At present, the EMD model and its improved algorithms had been widely used in many fields on 69 

ocean science, such as storm surge and sea level rise (Wu et al., 2011; Lee, 2013; Ezer and Atkinson, 2014), 70 

tidal amplitude (Cheng et al., 2017; Pan et al., 2018) and wave height (Duan et al., 2016; Sadeghifar et al., 71 

2017; López et al., 2017). These studies and applications reflected that the EMD model and its improved 72 

algorithms can effectively reduce the non-stationarity of the time-series data, which helps further analysis 73 

and processing. 74 

For nonlinear prediction, the more commonly used methods are curve fitting (Motulsky and Ransnas, 75 

1987), gray-box model (Pearson and Pottmann, 2000), homogenization function model (Monteiro et al., 76 

2008), neural network (Deo et al., 2001; Wang et al, 2015; Kim et al., 2016) and so on. Among them, Back-77 

Propagation Neural Network (BPNN) (Lee, 2004; Jain and Deo, 2006; Savitha and Al, 2017; Wang et al., 78 

2018) has certain advantages in dealing with nonlinear problems, it is a basic machine learning algorithm 79 

and its principle is simple and operability is strong, so in ocean science and engineering it has been widely 80 

used. 81 

In view of non-stationary and nonlinear monthly mean SST, the EEMD, CEEMD and BP neural network 82 

will be used here to study how to improve the accuracy of SST prediction. The improved hybrid EMD-BPNN 83 

models will be established for the prediction of SSTA in the northeastern region of the Pacific Ocean. 84 

 85 

2 Data collection 86 

The SST time-series data in this study is from NOAA Optimum Interpolation Sea Surface Temperature 87 

(OISST) official website (Reynolds et al., 2007; Banzon et al., 2016; https://www.ncdc.noaa.gov/oisst/data-88 

access). The NOAA 1/4°daily OISST is an analysis constructed by combining observations from different 89 
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platforms (satellites, ships, buoys) on a regular global grid. There are two kinds of OISST, named after the 90 

relevant satellite SST sensors. These are the Advanced Very High Resolution Radiometer (AVHRR) and 91 

Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E); the AVHRR dataset 92 

is used in this study. The average annual sea surface temperature in North Pacific (0°N-60°N, 100°E-100°W) 93 

during January 1982 to December 2016 is shown in Fig.1.  94 

 95 

Fig.1 Average annual sea surface temperature in North Pacific during Jan 1982 to Dec 2016 (35-years). 96 

 97 

It has been shown that the sea surface temperature anomaly in the northeastern Pacific in the ten years 98 

2006-2016 was 2.0°C warmer than in previous ten years 1996-2006. Previous studies (Bond et al., 2015) 99 

showed that in the spring and summer of 2014, the high SST area of the northeastern Pacific had expanded 100 

to coastal ocean waters, which affected the weather in coastal areas and the lives of fishermen, and even 101 

affected the temperature in Washington, USA, causing interference to daily life. 102 

In this study, we select the northeastern region of the North Pacific Ocean (in Fig.1, 40°N-50°N, 150°W-103 

135°W) to measure sea surface temperature. The time-series data of SST for the study area from January 104 

1982 to December 2016 with a data length of 420 months was obtained from OISST-V2 (Fig. 2). The monthly 105 

mean sea surface temperature anomaly (SSTA) was used in the analysis and calculation. As shown in Fig. 106 

2(a), it can be found the overall time-series data is very messy, nonlinear and random from the perspective 107 

of the image. 108 

 109 
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 110 

Fig.2 The time-series of sea surface temperature in the study area. (a) SST anomaly (1982-2016, 35 years); 111 

(b) Annual SST (1982-2016, 35 years); (c) SST anomaly (2012-2016, 5 years). 112 

 113 

3 Decomposition of SSTA 114 

The purpose of this study is to combine the EEMD algorithm and the CEEMD decomposition algorithm 115 

respectively with the BP neural network algorithm to establish a new prediction model, an improved hybrid 116 

EMD-BPNN model. The EEMD and CEEMD algorithms are performed on the monthly mean SSTA data to 117 

obtain a series of intrinsic mode functions (IMFi). Each IMFi is predicted by a BP neural network and then 118 

each IMFi is reconstructed to obtain the predicted value of SSTA. 119 

3.1 Decomposition by the EEMD algorithm 120 

The SSTA in Fig. 2(a) has been decomposed based on the ensemble empirical mode decomposition 121 

(EEMD algorithm), and seven IMF components and a residual component RES (Residue) are obtained as 122 

shown in Fig. 3. It can be seen from Fig. 3 that the first three intrinsic mode function components IMF1, 123 

Dec-11 Dec-12 Dec-13 Dec-14 Dec-15 Dec-16
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 Year

 

S
S

T
A

(°
C

)

 

1985 1990 1995 2000 2005 2010 2015
10

11

12

13

14

15

 Year

 

A
n
n
 S

S
T

(°
C

)

(a) SSTA (1982-2016)

(b) Ann SST (1982-2016) (c) SSTA (2012-2016)

Jan-85 Jan-90 Jan-95 Jan-00 Jan-05 Jan-10 Jan-15
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 Year

 

 

S
S

T
A

(°
C

)

 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-101
Manuscript under review for journal Ocean Sci.
Discussion started: 28 November 2018
c© Author(s) 2018. CC BY 4.0 License.



6 

 

IMF2, and IMF3 still exhibit strong nonlinearity and non-stationarity. The IMF4 to IMF7 and the final trend 124 

term RES have some periodicity and relatively regular fluctuation, and the non-stationary and nonlinear 125 

properties are less than the first three components. The trend term RES reflects that the overall trend of SSTA 126 

has gradually increased since 1982. As the non-stationarity of each IMFi is gradually reduced, the EEMD 127 

algorithm will reduce the influence of non-stationarity on prediction. The absolute error (ERR) of the 128 

decomposition can been calculated by the following Formula (1). 129 

( ) ( ) ( ) ( )
7

1

i

i

a t S t I t R t
=

 
= − + 

 
                        (1) 130 

where, a(t) is the absolute error (ERR), S(t) the original SSTA observation data, Ii(t) the i-th component 131 

of the IMF (IMFi), and R(t) the trend term (RES). 132 

 133 

Fig.3 IMF components and the trend item RES of monthly mean SSTA over the study area based on the 134 

EEMD algorithm during 1982-2016. 135 

 136 

The absolute error (ERR) based on EEMD algorithm is shown in Fig. 4. It can be seen from the figure 137 

Year

1985 1990 1995 2000 2005 2010 2015
-0.5
0.0
0.5
1.0

-0.5

0.0

0.5

-0.5

0.0

0.5

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

 

R
E

S

Jan             Jan             Jan             Jan             Jan             Jan              Jan

 

IM
F

7

 

IM
F

6

 

IM
F

5

 

IM
F

4

 

IM
F

3

 

IM
F

2

 

IM
F

1

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-101
Manuscript under review for journal Ocean Sci.
Discussion started: 28 November 2018
c© Author(s) 2018. CC BY 4.0 License.



7 

 

that the ERR of 420 months after decomposition is basically below 0.01 °C, and the ERR exceeds 0.01 °C in 138 

five months: June 1989, September 1993, July 1998, May 1999 and March 2010.  139 

In addition to June 1989, the other four monthly data with a large ERR occurred during the El Niño 140 

period. The maximum error is in March 2010, the actual value is -0.1204 °C, the result based on EEMD 141 

algorithm is -0.1325 °C, the ERR of decomposition is 0.0121 °C; the minimum error, in April 1987, is 142 

1.73×10-5 °C. The overall mean ERR based on EEMD algorithm is 0.0035 °C and the order of magnitude is 143 

10-3. 144 

 145 

Fig. 4 The ERR of monthly mean SSTA over the study area based on the EEMD algorithm during 1982-2016. 146 

 147 

3.2 Decomposition by the CEEMD algorithm 148 

The SSTA has been decomposed based on the complementary ensemble empirical mode decomposition 149 

(CEEMD algorithm) and seven IMF components and a residual component RES (Residue) are obtained as 150 

shown in Fig. 5. It can be seen when comparing the decomposition results based on EEMD and CEEMD 151 

algorithms that although the mode components decomposed by CEEMD algorithm are different from the 152 

corresponding results decomposed by EEMD, the nonlinearities and non-stationarities of the eight modes 153 

decomposed by the two decomposition algorithms are gradually decreasing, and the final trend term RES is 154 

an upward trend. Both decomposition algorithms confirm the characteristic of gradual increase for the overall 155 

trend of the data series. 156 

The absolute error (ERR) obtained based on the CEEMD algorithm is shown in Fig. 6. It can be seen 157 

from the figure that the ERR of 420 months data after decomposition is less than 5×10−16 °C, and the accuracy 158 
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is very better. The maximum error is 4.48×10-16 °C in March 2016; the minimum error is zero. The overall 159 

mean ERR based on CEEMD algorithm is 6.10×10-17 °C and the order of magnitude is 10-17. By comparing 160 

the results and errors of the above two decomposition algorithms, it can be seen that the error based on the 161 

improved algorithm (CEEMD) is much smaller than the error based on EEMD algorithm. Because more 162 

white noise with opposite sign had been added in CEEMD algorithm, the reconstruction error caused by 163 

the white noise has been reduced over it in EEMD algorithm. 164 

 165 

Fig.5 IMF components and the trend item RES of monthly mean SSTA over the study area based on the 166 

CEEMD algorithm during 1982-2016. 167 

 168 

Year

Fig.5

1985 1990 1995 2000 2005 2010 2015
-0.2
0.0
0.2
0.4

-0.5

0.0

0.5

-0.6

0.0

0.6

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

 

R
E

S

Jan             Jan             Jan             Jan             Jan             Jan              Jan

 

IM
F

7

 

IM
F

6

 

IM
F

5

 

IM
F

4

 

IM
F

3

 

IM
F

2

 

IM
F

1

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-101
Manuscript under review for journal Ocean Sci.
Discussion started: 28 November 2018
c© Author(s) 2018. CC BY 4.0 License.



9 

 

 169 

Fig. 6 The ERR of monthly mean SSTA over the study area based on the CEEMD algorithm during 1982-170 

2016. 171 
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4 SSTA prediction model 173 
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steps as follows. First, original SST datasets are decomposed into certain more stationary signals with 190 

different frequencies by EEMD. Second, BP neural network is used to predict each IMF and the residue RES. 191 

A rolling forecasting process is studied. The prediction is made using the previous data for one step ahead. 192 

Finally, the prediction results of each IMF and the residue RES are aggregated to obtain the final SST 193 

prediction results. The flowchart of SST prediction model based on hybrid improved empirical mode 194 

decomposition algorithm (improved EMD algorithm) and back-propagation neural network (BPNN)is shown 195 

in Fig. 7. The SST prediction model has been abbreviated as hybrid improved EMD-BPNN model in the 196 

following article. 197 

 198 

Fig.7 The flowchart of SST prediction model based on hybrid improved empirical mode decomposition 199 

algorithm (improved EMD algorithm) and back-propagation neural network (BPNN). 200 

 201 

5 Case study: SSTA prediction based on the hybrid improved EMD-BPNN models 202 
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analyze with the prediction results. 209 

Since the nonlinearity of the IMF1 to IMF3 is still relatively strong, a three-layer BP neural network 210 

structure has been chosen and independently analyze and predict each month. For the IMF4 and subsequent 211 

modes, since the nonlinearity and non-stationarity have been degraded relative to the first three modes, a BP 212 

neural network with 12 nodes at input layer and output layer has been used to train and predict SSTA. 213 

The prediction results of each mode decomposition component based on the EEMD algorithm are shown 214 

in Fig. 8. The absolute errors of the predicted value and the actual value are shown in Table 1. Root mean 215 

square error (RMSE) is used as metrics to access the performance of the two different models. 216 

( )
2

1

1
RMSE

N

n nn
x y

N =
= −                         (2) 217 

where, xn and yn are the observed and the predicted values respectively, N is the number of data used for 218 

the performance evaluation. Results are shown in Table 1.  219 

 220 

Fig. 8 SSTA prediction results based on the hybrid EEMD-BPNN model of each individual component in 221 

2017. 222 
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Table 1. The absolute errors ERRs of the SSTA prediction results of each individual component based on the 224 

hybrid EEMD-BPNN model (unit: °C). 225 

 Max ERR Min ERR Mean ERR RMSE 

IMF1 0.2197 0.0014 0.1424 0.1486 

IMF2 0.2166 0.0323 0.1297 0.1673 

IMF3 0.1872 0.0051 0.1070 0.1245 

IMF4 0.1602 1.6869×10-4 0.0663 0.0857 

IMF5 0.0158 0.0010 0.0089 0.0104 

IMF6 3.8766×10-4 1.9752×10-4 2.7221×10-4 0.0003 

IMF7 5.2662×10-4 1.6387×10-4 1.7907×10-4 0.0002 

RES 5.4859×10-4 2.2308×10-4 2.4766×10-4 0.0002 

 226 

It can be seen from Fig. 8 and Table 1 that the maximum absolute error (Max ERR) of the first 227 

decomposition component IMF1 based on the hybrid EEMD-BPNN model is 0.2197 °C in January. The 228 

minimum absolute error (Min ERR) is 0.0014 °C, which is in August. The prediction ability of the second 229 

mode decomposition component IMF2 is roughly equivalent to the IMF1, and the mean absolute error (Mean 230 

ERR) of the first three intrinsic mode function components IMF1, IMF2, and IMF3 are between 0.10 °C and 231 

0.15 °C. The mean absolute errors of the IMF4 and IMF5 are 0.0663 °C and 0.0089 °C, respectively, and the 232 

prediction accuracy based on the hybrid EEMD-BPNN model is roughly equivalent to the decomposition 233 

accuracy of the EEMD algorithm. The prediction errors of the last two intrinsic mode function components 234 

and the residue RES are on the order of 10-4. It can be seen that as the nonlinearity and non-stationarity of 235 

the series data decreases, the error of the prediction results becomes smaller and smaller. 236 

According to the same method, the eight mode components decomposed by CEEMD algorithm have 237 

been analyzed and predicted. The prediction results and error analysis have been shown in Fig. 9 and Table 238 

2. It can be seen from Fig. 9 and Table 2 that the maximum error of the first decomposition component IMF1 239 

based on the hybrid CEEMD-BPNN model is 0.1779 °C in May. The minimum error is 0.0068 °C, which is 240 

in June.  241 

The prediction ability of the second mode decomposition component IMF2 is roughly equivalent to the 242 

IMF1. Except for the four months of May, September, October, and November, the accuracies of prediction 243 

results of other months are satisfactory. The prediction results of the first three intrinsic mode function 244 
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components IMF1, IMF2, and IMF3 are basically the same as the actual data. In the prediction results of the 245 

fourth mode component IMF4, except for slight error in December, the prediction ability is better. The 246 

predicted results of the last three intrinsic mode function components IMF5, IMF6, IMF7 and the residue 247 

RES are basically consistent with the observation results. 248 

 249 

Fig. 9 SSTA prediction results based on the hybrid CEEMD-BPNN model of each individual component in 250 

2017. 251 
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Table 2. The absolute errors ERRs of the SSTA prediction results of each individual component based on the 253 

hybrid CEEMD-BPNN model (unit: °C). 254 

 Max ERR Min ERR Mean ERR RMSE 

IMF1 0.1779 0.0068 0.0827 0.0987 

IMF2 0.1643 0.0413 0.0811 0.1124 

IMF3 0.1521 0.0160 0.0713 0.1006 

IMF4 0.0851 0.0211 0.0324 0.0427 

IMF5 0.0052 8.7694×10-5 0.0021 0.0029 

IMF6 0.0103 5.7748×10-5 0.0043 0.0056 

IMF7 0.0017 3.6026×10-5 9.1374×10-4 0.0010 

RES 3.0342×10-5 2.0163×10-6 1.1572×10-5 1.5017×10-5 

 255 

The prediction results of the monthly mean SSTA in 2017 are obtained by reconstructing the mode 256 

decomposition components (Fig. 10) and the absolute error (ERR) of prediction results has been shown in 257 

Table 3. It can be seen from the figure and table that the prediction results based on the EEMD-BPNN model 258 

have larger ERRs in January and August, exceeding 0.3 °C, and the accuracies of prediction results in other 259 

months are satisfactory (the ERR is less than 0.3). The prediction accuracy based on the CEEMD-BPNN 260 

model is satisfactory, except for the ERR exceeding 0.1 °C in October, and the prediction ability based on 261 

the CEEMD-BPNN model is generally better than that of the EEMD-BPNN model.  262 

 263 

Fig. 10 Monthly SSTA prediction results based on the hybrid improved EMD-BPNN models in 2017. 264 
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 265 

Table 3. The absolute errors ERRs of the SSTA prediction results based on the two different hybrid improved 266 

EMD-BPNN models (unit: °C). 267 

 EEMD-BPNN model CEEMD-BPNN model  EEMD-BPNN model CEEMD-BPNN model 

Jan 0.3188 0.0623 Sep 0.0687 0.0132 

Feb 0.1780 0.0103 Oct 0.0545 0.1607 

Mar 0.0867 0.0063 Nov 0.2651 0.0101 

Apr 0.2153 0.0137 Dec 0.1290 0.0183 

May 0.0854 0.0102 Min ERR 0.0545 0.0063 

Jun 0.1662 0.0224 Max ERR 0.5068 0.1607 

Jul 0.2474 0.0077 Mean ERR 0.1935 0.0289 

Aug 0.5068 0.0112 RMSE 0.2299 0.0512 

 268 

 Correlation coefficient between the prediction values based on the CEEMD-BPNN model and 269 

observations is shown that the value of the correlation coefficient that indicates a significance level of 0.001 270 

and the correlation coefficient reached 0.97. The result  indicates that SSTA in 2017 had been predicted 271 

accurately by the CEEMD-BPNN model. As can be seen from the above discussions, the ERR of 272 

decomposition components based on the EEMD and CEEMD algorithms will affect the accuracy of the final 273 

prediction results. Table 3 shows that predicting results of the hybrid CEEMD and BPNN model are 274 

ameliorated a lot as compared to the EEMD-BPNN direct predicting model. This is because after CEEMD, 275 

the original unsteady and nonlinear data are changed into certain components that have fixed frequency and 276 

periodicity. The CEEMD algorithm with less decomposition error has less error in the final prediction results, 277 

which proves that the CEEMD method has more advantages in data decomposition than the EEMD method. 278 

At the same time, we can find that the final prediction error of the two prediction models mainly comes from 279 

the first three mode decomposition components, and the error of the last five components has little effect on 280 

the accuracy of the final prediction results. 281 

 282 

6 Conclusions 283 

This paper presents a novel SST predicting method based on the hybrid improved EMD algorithms and 284 

BP neural network method to process the SST data with strong nonlinearity and non-stationarity. Through 285 
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EEMD and CEEMD algorithms, SSTA time-series data are decomposed into different IMFs and a residue 286 

RES. BP neural network is applied to predict individual IMFs and the residue RES. Final results can be 287 

obtained by adding the predicting results of individual IMFs and RES.  288 

In order to illustrate the effectiveness of the proposed approach, a case study was carried out. SSTA 289 

prediction results based on the hybrid EEMD-BPNN model and hybrid CEEMD-BPNN model are discussed 290 

respectively. In comparison, the proposed hybrid CEEMD-BPNN model is much better and its prediction 291 

results are more accurate.  292 

From the absolute error of the prediction results of each component IMF and the absolute error of the 293 

predicted SSTA, the prediction error of SSTA mainly comes from the prediction of the first three mode 294 

decomposition component (IMF1, IMF2 and IMF3), because the first three mode components still have 295 

strong nonlinearity and non-stationarity. As the nonlinearity gradually decreases, the absolute error of the 296 

prediction results gradually decreases. 297 

SST prediction has been only preliminary carried out based on the two improved EMD algorithms and 298 

BP neural network in this paper. The results show that the hybrid CEEMD-BPNN model is more accurate in 299 

predicting SST. This work can provide a reference for predicting SST and El Niño in the future. In the follow-300 

up study, how to improve the forecast duration is the focus of this work. 301 
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