
Reply to comments of Topic Editor 

 

The topic editor knows the topic very well and his comments are indeed helpful in improving the 

quality of this MS. We are grateful to Prof. John M. Huthnance for a careful checking and comments on 

the MS. All comments are addressed point by point, each starting with an original comment and followed 

by a response in italic, as follows. 

 

Topic Editor Decision: Publish subject to minor revisions (review by editor) (20 Feb 2019) by John M. 

Huthnance 

 

Comments to the Author: 

Dear Authors. 

Thank-you for your revised manuscript. I still have trouble with some of your statements about (non) 

stationarity and especially nonlinearity as detailed in “Comments” below. Referee 1 (Huang) also commented 

on this and I think you have not yet addressed all his comments. He also asked for a comparison with the 

results of EMD-BPNN (his point 1) and demonstration that there is a mode mixing problem with EMD (his 

point 2); you respond to these points in your response but in the revised paper I do not see either of what is 

asked for. Also at the end of your response to referee 2 you say “We have stated some factors affecting the 

SST prediction in the revised manuscript” but I do not see any more about this in the revised manuscript. 

Hence I am still asking for “minor” revision and wish to see the manuscript again myself. Please also note 

that all comments will be available when any final version is published and readers will be able to see how 

you have addressed them. 

Yours sincerely 

John Huthnance 

 

Response: Thank you for these comments. On behalf of my co-authors, we thank Prof. John M. 

Huthnance very much for giving us an opportunity to revise our manuscript, we appreciate editor and 

reviewers very much for their positive and constructive comments and suggestions on our manuscript.  

We elaborated and compared the results of different SST predictions based on the two improved EMD 

methods in Sections 3.1 and 3.2 and Section 5 Case study. We knew that once an intermittent signal appears 

in the actual signal, the EMD decomposition method would produce a Mode Mixing Problem based on 

previous literature such as Colominas et al. (2012), Wang et al. (2012) and Tang et al. (2015). The Mode 

Mixing Problem causes the essential modal function to lose its physical meaning.  

Factors affecting the SST prediction results include: the length and interval of the time series of the 

database, as well as different sample sources because their values are also different. We added the relevant 

explanations in the conclusions.  
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Comments 

Line 9. Please delete “novel” (Referee 1) 

Response: Thank you for the suggestion. We removed it. 

 

Lines 48-49. “. . the nonlinear and non-stationary characteristics are obvious.” You have not yet defined “non-

linear”! The definition is in lines 51-52: “the change of the output is not proportional to the change of the 

input”. To claim “nonlinear” you need evidence that the SST is not proportional to its “input” – what is the 

input? I agree the SST is “non-stationary” but not because of “high randomness” so not “due to” (line 47). 

Response: Thank you for the comment. Since SST changes are high randomness and irregular, we 

consider SST to be non-linear and non-stationary.  

 

Line 56. “deterministic” here but “high randomness” in line 48. Which? 

Response: Thank you for the comment. “deterministic” here means the “clearly” high randomness. 

 

Line 56. “non-linear” needs evidence. 

Line 56. “non-stationary” – I agree but you have not justified this. 

Response: Thank you for the comment. Since SST changes are high randomness and irregular, we 

consider SST to be non-linear and non-stationary. And we also can find it in many previous literatures. 

 

Line 59. You imply that the trend is orthogonal; Referee 1 objected. Maybe “. . obtain several periodic signals 

orthogonal to each other and a trend.” 

Line 59. Are the EMD IMFs in fact orthogonal? Lines 87-88 “decomposing it via EMD . . . In contrast to the 

EEMD method, the CEEMD also ensures that the IMF set is quasi-complete and orthogonal. . .” suggests 

EMD IMFs are not orthogonal. 

Response: Thank you for the comment. The IMFs are orthogonal components, but the trending 

component is not orthogonal to any IMF component. We corrected it. 

 

Lines 59-60. You can delete “the method can decompose the stronger nonlinear and non-stationary signals”; 

it is repeated in line 62. 

Response: Thank you for the suggestion. We deleted it. 

 

Line 67. What is “essential modal function”? Please define it. If you mean “IMF”, say “IMF”. 

Response: Thank you for the comment. “essential modal function” means “IMFs” and we corrected it. 

 

Lines 72-73. These need to make clear the difference between EEMD and CEEMD. What is the difference 

between the EEMD “white noise” and the CEEMD “set of noise signals”? 

Response: Thank you for the comment. The difference between EMD, EEMD and CEEMD is as follows: 

Empirical Mode Decomposition (EMD) is a relatively slow decomposition method and it has a 

problem called mode mixing. This is defined as either a single IMF consisting of widely disparate scales, 

or a signal of similar scale captured in different IMF’s. To overcome mode mixing two noise assisted 

methods have emerged.  

Ensemble Empirical Mode Decomposition (EEMD) adds a fixed percentage of white noise to the 

signal before decomposing it. This step is repeated N times after which all results are averaged. EEMD 



improves the mode-mixing problem but it cannot completely reconstruct the input signal from the 

resulting components. 

Complete Ensemble Mode Decomposition (CEEMD) is also a noise-assisted method. Similarly the 

method decomposes the signal with N different noise realizations but here the results are averaged after 

each component is found. CEEMD solves the mode mixing problem and it provides an exact 

reconstruction of the input signal. 

(1) EMD – slow and possibly suffers from mode-mixing;  

(2) EEMD – slower but partly solves mode-mixing, however signal cannot be reconstructed exactly. 

(3) CEEMD – slowest but solves the mode-mixing problem and the signal can be reconstructed 

exactly from the components. 

 

Lines 83-84. “can effectively reduce the non-stationarity of the time-series data”. Surely the non-stationarity 

has to remain somewhere in the IMFs and RES? 

Response: Thank you for the comment. Each IMF component decomposed by the every EMD method 

contains local characteristic signals with different time scales of the original signal.  

 

Lines 57-90 overall need to be properly organised as a logical sequence, EMD then EEMD then CEEMD, to 

avoid repetition (e.g. lines 72-73 and 74-76 describe the same thing, EEMD), clarify the differences and 

exactly what is orthogonal. 

Response: Thank you for the comment. The difference between EMD, EEMD and CEEMD is as follows: 

(1) Empirical Mode Decomposition (EMD) is a relatively slow decomposition method and it has a 

problem called mode mixing. This is defined as either a single IMF consisting of widely disparate scales, 

or a signal of similar scale captured in different IMF’s. To overcome mode mixing two noise assisted 

methods have emerged. EMD – slow and possibly suffers from mode-mixing. (2) Ensemble Empirical 

Mode Decomposition (EEMD) adds a fixed percentage of white noise to the signal before decomposing 

it. This step is repeated N times after which all results are averaged. EEMD improves the mode-mixing 

problem but it cannot completely reconstruct the input signal from the resulting components. EEMD – 

slower but partly solves mode-mixing, however signal cannot be reconstructed exactly. (3) Complete 

Ensemble Mode Decomposition (CEEMD) is also a noise-assisted method. Similarly the method 

decomposes the signal with N different noise realizations but here the results are averaged after each 

component is found. CEEMD solves the mode mixing problem and it provides an exact reconstruction 

of the input signal. CEEMD – slowest but solves the mode-mixing problem and the signal can be 

reconstructed exactly from the components. 

 

Lines 130-131. “. . then each IMFi is reconstructed to obtain the predicted value of SSTA.” I think you mean 

“. . then the IMFi are recombined to obtain the predicted value of SSTA.” You already have each IMFi (line 

130) so each IMFi does not need to be “reconstructed”. 

Response: Thank you for the comment. We corrected it.  

 

Line 141. “still exhibit strong nonlinearity and non-stationarity”. Some non-stationarity can be seen in figure 

3, e.g. sub-periods with larger and longer-period variance, but it would help if you said what non-stationarity 

the reader is supposed to see. Figure 3 cannot show nonlinear dependence on the input since we do not know 

the input. 

Line 142. “the non-stationary and nonlinear properties are less”. Again, how do we see non-stationary 



properties? The figure cannot show nonlinear properties since we do not know the input. 

Response: Thank you for the comment. We can see that the first three intrinsic mode function 

components still have strong irregular oscillations and periodic changes, and so can be found out non-

stationary. We removed the relevant description about the nonlinear property.  

 

Line 144. “. . As the non-stationarity of each IMFi is gradually reduced, . .” I think you mean “. . As the non-

stationarity of IMFi decreases with increasing i, . .”  

Response: Thank you for the suggestion We corrected it.  

 

Lines 156-157. “. . and the order of magnitude is 10^-3.” This can be deleted (unnecessary) and is not an 

accurate description of 0.0035°C. 

Response: Thank you for the suggestion We removed it.  

 

Line 166. Delete “nonlinearities and” unless you can show non-linear dependence on an input. 

Response: Thank you for the suggestion We deleted it.  

 

Line 166. “eight” -> “seven”; the eighth series is RES which is definitely non-stationary! 

Response: Thank you for the suggestion We corrected it.  

 

Line 177. “. . and the order of magnitude is 10^-17.” This can be deleted (unnecessary) and is not an accurate 

description of 6.10×10^-17°C. 

Response: Thank you for the suggestion We deleted it.  

 

Lines 223, 225. Delete “nonlinearity” unless you can show non-linear dependence on an input. 

Response: Thank you for the suggestion We deleted it.  

 

Lines 225, 226. “since” (line 225) implies that these two lines are related. How? 

Response: Thank you for the suggestion We corrected it.  

 

Line 226. Do the “12 nodes” correspond to 12 months in the year? 

Line 234. N = 12? Please be explicit. 

Response: Thank you for the suggestion We added a supplementary explanation.  

 

Lines 240-241. To have “error (Max ERR) of the first decomposition component IMF1” you have to have 

“true” 2017 values for IMF1 as well as the predicted values. You need to say how you obtain the “true” values 

of IMF1. It seems to imply that you did the decomposition for 1982-2017 as well as for 1982-2016. Likewise 

for the other IMFi and RES. I guess the IMFs for these two decomposition periods differ in 1982-2016, 

although perhaps very little for IMF1 until the very end of 2016. 

Response: Thank you for the comment. We have actual values for 2017, so we can use it to compare 

against predicted values based on actual values for 1982-2016.  

 

Tables 1 and 2. The format of the values in any row should be the same for max/min/mean ERR and for 

RMSE. 



Response: Thank you for the comment. But We are sorry that we did not understand this and we thought 

we kept the same format -- all values reserved to the last four digits of the decimal point. 

 

Table 1 row RES. RMSE has to be greater than mean ERR. Also Mean ERR is too small; (Min ERR x 11 + 

Max ERR) / 12 exceeds Mean ERR. 

Response: Thank you for the comment. This is our typo error and we corrected it. 

 

Line 248. Delete “nonlinearity and” unless you can show non-linear dependence on an input. 

Response: Thank you for the suggestion We deleted it.  

 

Lines 273, 274. Please state a criterion for “satisfactory” and do not change it for CCEMD. At present you 

imply 0.3°C for EEMD and 0.1°C for CCEMD. And include the “°C”. 

Response: Thank you for the comment. Indeed, how to evaluate satisfaction is a very difficult thing. 

However, we believe that the error of the prediction results obtained is less than 0.1°C, which is already 

a very good prediction result.  

 

Lines 281-283. Better “The correlation coefficient between the prediction values based on the CEEMD-

BPNN model and observations is 0.97 indicating a significance level of 0.001. The result . . 2017 was 

predicted”  

Response: Thank you for the comment. We corrected it. 

 

Lines 286-287. Better “. . Table 3 shows that prediction results of the hybrid CEEMD and BPNN model are 

much better than with the EEMD-BPNN . .” 

Response: Thank you for the comment. We corrected it. 

 

Line 288. Delete “and nonlinear” unless you can show non-linear dependence on an input. 

Response: Thank you for the comment. We corrected it. 

 

Line 303. You can omit “respectively” (unnecessary). 

Response: Thank you for the comment. We corrected it. 

 

Line 307. “. . components (IMF1, . .” 

Response: Thank you for the comment. We corrected it. 

 

Line 308. Justify or omit “strong nonlinearity and non-stationarity. As the nonlinearity gradually decreases” 

Response: Thank you for the comment. We deleted it. 

 

Line 310. Better “. . preliminary, based . .” 

Response: Thank you for the comment. We corrected it. 
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Highlights 8 

• A novel SST predicting method based on the hybrid EMD algorithms and BP neural network method 9 

isare proposed in this paper.  10 

• SST prediction results based on the hybrid EEMD-BPNN and CEEMD-BPNN models are compared and 11 

discussed.  12 

• Cases study of SST in the North Pacific shows that the proposed hybrid CEEMD-BPNN model can 13 

effectively predict the time-series SST. 14 

 15 

Abstract: Sea surface temperature (SST) is the major factor that affects the ocean-atmosphere interaction, 16 

and in turn the accurate prediction of SST is the key to ocean dynamic prediction. In this paper, an SST 17 

predicting method based on empirical mode decomposition (EMD) algorithms and back-propagation neural 18 

network (BPNN) is proposed. Two different EMD algorithms have been applied extensively for analyzing 19 

time-series SST data and some nonlinear stochastic signals. Ensemble empirical mode decomposition 20 

(EEMD) algorithm and Complementary Ensemble Empirical Mode Decomposition (CEEMD) algorithm are 21 

two improved algorithms of EMD, which can effectively handle the mode-mixing problem and decompose 22 

the original data into more stationary signals with different frequencies. Each Intrinsic Mode Function (IMF) 23 

has been taken as an input data to the back-propagation neural network model. The final predicted SST data 24 

is obtained by aggregating the predicted data of individual IMF. A case study, of the monthly mean sea surface 25 

temperatureSST anomaly (SSTA) in the northeastern region of the North Pacific, shows that the proposed 26 

hybrid CEEMD-BPNN model is much more accurate than the hybrid EEMD-BPNN model, and the 27 

prediction accuracy based on BP neural network is improved by the CEEMD method. Statistical analysis of 28 

the case study demonstrates that applying the proposed hybrid CEEMD-BPNN model is effective for the SST 29 



2 

 

prediction. 30 

 31 
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 35 

1 Introduction 36 

The Sea Surface Temperature (SST) is a main factor in the interaction between the ocean and the 37 

atmosphere (Wiedermann et al., 2017; He et al., 2017; Wu et al., 2019a), and it characterizes the combined 38 

results of ocean heat (Buckley et al., 2014; Griffies et al., 2015; Wu et al., 2019b), dynamic processes 39 

(Takakura et al., 2018). It is a very important parameter for climate change and ocean dynamics process, 40 

reflects sea-air heat and water vapor exchange. Small changes in sea temperature can have a huge impact on 41 

the global climate. The well-known El Niño and La Niña phenomena are caused by abnormal changes in SST 42 

(Chen et al., 2016a; Zheng et al., 2016). 43 

Therefore, scholars have begun to observe the SST in recent years, the observation of the SST is 44 

important (Kumar et al., 2017; Sukresno et al., 2018). Accurate observation and effective prediction of the 45 

SST are very important (Hudson et al., 2010). Predicting the SST in advance can enable people to take 46 

appropriate measures to reduce the impact on daily life and reduce unnecessary losses. However, due to the 47 

high randomness and irregular of the monthly mean sea surface temperature anomaly (SSTA), the nonlinear 48 

and non-stationary characteristics are obvious. At present, there is no clear and feasible method with high 49 

accuracy to effectively predict the SST (Zhu et al., 2015; Chen et al., 2016b; Khan et al., 2017). 50 

In mathematics and science, a nonlinear system is a system in which the change of the output is not 51 

proportional to the change of the input. Nonlinear dynamical systems, describing changes in variables over 52 

time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems. 53 

A stationary process is a stochastic process whose unconditional joint probability distribution does not change 54 

when shifted in time. Consequently, statistical parameters such as mean and variance also do not change over 55 

time. The variation of SST is a deterministic non-linear dynamic system and a non-stationary time series data. 56 

Empirical Mode Decomposition (EMD) is a state-of-the-art signal processing method proposed by Huang et 57 

al. (1998). This method can decompose the signal data of different frequencies step by step according to the 58 

characteristics of the data and obtain several orthogonal components and a trending componentperiodic and 59 
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trending signals orthogonal to each other, the method can decompose the stronger nonlinear and non-60 

stationary signals (Wang et al., 2015; Amezquita-Sanchez and Adeli,2015; Wang et al., 2016; Kim and Cho, 61 

2016). The empirical mode decomposition (EMD) method is powerful and adaptive in analyzing nonlinear 62 

and non-stationary data sets. It provides an effective approach for decomposing a signal into a collection of 63 

so-called intrinsic mode functions (IMFs), which can be treated as empirical basis functions (Duan et al., 64 

2016). However, there were some problems withof the EMD method, such as mode mixing (Huang and Wu, 65 

2008; Wu et al., 2008; Wu and Huang, 2009). 66 

Once an intermittent signal appears in the actual signal, the EMD decomposition method will produce 67 

a Mode Mixing Problem. The Mode Mixing Problem causes the essential modal function (IMFs) to lose its 68 

physical meaning. This is defined as either a single IMF consisting of widely disparate scales, or a signal of 69 

similar scale captured in different IMF’s. To overcome mode mixing two noise assisted methods have 70 

emerged. Ensemble Empirical Mode Decomposition (EEMD) adds a fixed percentage of white noise to the 71 

signal before decomposing it. This step is repeated N times after which all results are averaged. EEMD 72 

improves the mode-mixing problem but it cannot completely reconstruct the input signal from the resulting 73 

components. Complete Ensemble Mode Decomposition (CEEMD) is also a noise-assisted method. Similarly 74 

the method decomposes the signal with N different noise realizations but here the results are averaged after 75 

each component is found. CEEMD solves the mode mixing problem and it provides an exact reconstruction 76 

of the input signal. 77 

In addition, the Mode Mixing Problem will also make the algorithm of Empirical Mode Decomposition 78 

unstable, and any disturbance may generate a new intrinsic mode function. In order to solve this problem, 79 

scholars have proposed the use of noise-assisted processing methods, Ensemble empirical mode 80 

decomposition (EEMD) and Complementary Ensemble Empirical Mode Decomposition (CEEMD). The 81 

white noise has been added to the original signal to change the extreme point distribution of the signal in the 82 

EEMD method, while in the CEEMD method, a set of noise signals have been added to the original signal to 83 

change the extreme point distribution of the signal. To solve this problem, Wu and Huang (2009) proposed 84 

the Ensemble Empirical Mode Decomposition (EEMD) method by adding different white noise in each 85 

ensemble member to suppress mode mixing. Yeh et al. (2010) added two opposite-signal white noises to the 86 

time-series data sequence, and proposed an improved algorithm for EEMD, Complete Ensemble Empirical 87 

Mode Decomposition (CEEMD). The decomposition effect is equivalent to EEMD, and the reconstruction 88 

error caused by adding white noise is reduced (Tang et al., 2015). At present, the EMD model and its 89 
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improved algorithms had been widely used in many fields on ocean science, such as storm surge and sea 90 

level rise (Wu et al., 2011; Lee, 2013; Ezer and Atkinson, 2014), tidal amplitude (Cheng et al., 2017; Pan et 91 

al., 2018) and wave height (Duan et al., 2016; Sadeghifar et al., 2017; López et al., 2017). These studies and 92 

applications reflected that the EMD model and its improved algorithms can effectively reduce the non-93 

stationarity of the time-series data, which helps further analysis and processing. 94 

The ensemble empirical mode decomposition (EEMD) method is a noise assisted empirical mode 95 

decomposition algorithm. The CEEMD works by adding a certain amplitude of white noise to a time series, 96 

decomposing it via EMD, and saving the result. In contrast to the EEMD method, the CEEMD also ensures 97 

that the IMF set is quasi-complete and orthogonal. The CEEMD can ameliorate mode mixing and 98 

intermittency problems. The CEEMD is a computationally expensive algorithm and may take significant 99 

time to run. 100 

For nonlinear prediction, the more commonly used methods are curve fitting (Motulsky and Ransnas, 101 

1987), gray-box model (Pearson and Pottmann, 2000), homogenization function model (Monteiro et al., 102 

2008), neural network (Deo et al., 2001; Wang et al, 2015; Kim et al., 2016) and so on. Among them, Back-103 

Propagation Neural Network (BPNN) (Lee, 2004; Jain and Deo, 2006; Savitha and Al, 2017; Wang et al., 104 

2018) has certain advantages in dealing with nonlinear problems, it is a basic machine learning algorithm 105 

and its principle is simple and operability is strong, so in ocean science and engineering it has been widely 106 

used. 107 

In view of non-stationary and nonlinear monthly mean SST, the EEMD, CEEMD and BP neural network 108 

will be used here to study how to improve the accuracy of SST prediction. The hybrid EMD-BPNN models 109 

will be established for the prediction of SSTA in the northeastern region of the Pacific Ocean. 110 

2 Data collection 111 

The SST time-series data in this study is from the NOAA Optimum Interpolation Sea Surface 112 

Temperature (OISST) official website (Reynolds et al., 2007; Banzon et al., 2016; 113 

https://www.ncdc.noaa.gov/oisst/data-access). The NOAA 1/4°daily OISST is an analysis constructed by 114 

combining observations from different platforms (satellites, ships, buoys) on a regular global grid. There are 115 

two kinds of OISST, named after the relevant satellite SST sensors. These are the Advanced Very High 116 

Resolution Radiometer (AVHRR) and Advanced Microwave Scanning Radiometer on the Earth Observing 117 

System (AMSR-E); the AVHRR dataset is used in this study. The average annual sea surface temperature in 118 

North Pacific (0°N-60°N, 100°E-100°W) from January 1982 to December 2016 is shown in Fig.1.  119 

https://www.ncdc.noaa.gov/oisst/data-access
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It has been shown that the sea surface temperature anomaly in the northeastern Pacific in the ten years 120 

2006-2016 was 2.0°C warmer than in the previous ten years 1996-2006. Previous studies (Bond et al., 2015) 121 

showed that in the spring and summer of 2014, the high SST area of the northeastern Pacific had expanded 122 

to coastal ocean waters, which affected the weather in coastal areas and the lives of fishermen, and even 123 

affected the temperature in Washington, USA, causing interference to daily life. 124 

In this study, we select the northeastern region of the North Pacific Ocean (in Fig.1, 40°N-50°N, 150°W-125 

135°W) to measure sea surface temperature. The time-series data of SST for the study area from January 126 

1982 to December 2016 with a data length of 420 months was obtained from OISST-V2 (Fig. 2). The monthly 127 

mean sea surface temperature anomaly (SSTA) was used in the analysis and calculation. As shown in Fig. 128 

2(a), it can be found the overall time-series data is very messy, nonlinear and random from the perspective 129 

of the image. 130 

 131 

Fig.1 Average annual sea surface temperature in North Pacific during Jan 1982 to Dec 2016 (35-years). 132 
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 133 

Fig.2 The time-series of sea surface temperature in the study area. (a) SST anomaly (1982-2016, 35 years); 134 

(b) Annual SST (1982-2016, 35 years); (c) SST anomaly (2012-2016, 5 years). 135 

3 Decomposition of SSTA 136 

The purpose of this study is to combine the EEMD algorithm and the CEEMD decomposition algorithm 137 

respectively with the BP neural network algorithm to establish a prediction model, a hybrid EMD-BPNN 138 

model. The EEMD and CEEMD algorithms are performed on the monthly mean SSTA data to obtain a series 139 

of intrinsic mode functions (IMFi). Each IMFi is predicted by a BP neural network and then each the IMFi 140 

are recombinedis reconstructed to obtain the predicted value of SSTA. 141 

3.1 Decomposition by the EEMD algorithm 142 

The SSTA in Fig. 2(a) has been decomposed based on the ensemble empirical mode decomposition 143 

(EEMD algorithm), and seven IMF components and a residual component RES (Residue) are obtained as 144 

shown in Fig. 3.  145 
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 146 

Fig.3 IMF components and the trend item RES of monthly mean SSTA over the study area based on the 147 

EEMD algorithm during 1982-2016. 148 

 149 

It can be seen from Fig. 3 that the first three intrinsic mode function components IMF1, IMF2, and IMF3 150 

still exhibit strong nonlinearity and non-stationarity because they have strong irregular oscillations and 151 

periodic changes. The IMF4 to IMF7 and the final trend term RES have some periodicity and relatively 152 

regular fluctuation, and the non-stationary and nonlinear properties are less than the first three components. 153 

The trend term RES reflects that the overall trend of SSTA has gradually increased since 1982. As the non-154 

stationarity of each IMFi decreases with increasing iis gradually reduced, the EEMD algorithm will reduce 155 

the influence of non-stationarity on prediction. The absolute error (ERR) of the decomposition can been 156 

calculated by the following Formula (1). 157 
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of the IMF (IMFi), and R(t) the trend term (RES). 160 

The absolute error (ERR) based on the EEMD algorithm is shown in Fig. 4. It can be seen from the 161 

figure that the ERR of 420 months after decomposition is basically below 0.01 °C, and the ERR exceeds 162 

0.01 °C in five months: June 1989, September 1993, July 1998, May 1999 and March 2010.  163 

In addition to June 1989, the other four monthly data with a large ERR occurred during the El Niño 164 

period. The maximum error is in March 2010, the actual value is -0.1204 °C, the result based on EEMD 165 

algorithm is -0.1325 °C, the ERR of decomposition is 0.0121 °C; the minimum error, in April 1987, is 166 

1.73×10-5 °C. The overall mean ERR based on the EEMD algorithm is 0.0035 °C and the order of magnitude 167 

is 10-3. 168 

 169 

Fig. 4 The ERR of monthly mean SSTA over the study area based on the EEMD algorithm during 1982-2016. 170 

 171 

3.2 Decomposition by the CEEMD algorithm 172 

The SSTA has been decomposed based on the complementary ensemble empirical mode decomposition 173 

(CEEMD algorithm) and seven IMF components and a residual component RES (Residue) are obtained as 174 

shown in Fig. 5. It can be seen when comparing the decomposition results based on EEMD and CEEMD 175 

algorithms that although the mode components decomposed by CEEMD algorithm are different from the 176 

corresponding results decomposed by EEMD, the nonlinearities and non-stationarities of the eightseven 177 

modes decomposed by the two decomposition algorithms are gradually decreasing, and the final trend term 178 

RES is an upward trend. Both decomposition algorithms confirm the characteristic of a gradual increase in 179 

the overall trend of the data series. 180 
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 181 

Fig.5 IMF components and the trend item RES of monthly mean SSTA over the study area based on the 182 

CEEMD algorithm during 1982-2016. 183 
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The absolute error (ERR) obtained based on the CEEMD algorithm is shown in Fig. 6. It can be seen 185 

from the figure that the ERR of 420 months data after decomposition is less than 5×10−16 °C, and the accuracy 186 
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mean ERR based on CEEMD algorithm is 6.10×10-17 °C and the order of magnitude is 10-17. By comparing 188 

the results and errors of the above two decomposition algorithms, it can be seen that the error based on the 189 

improved algorithm (CEEMD) is much smaller than the error based on the EEMD algorithm. Because more 190 

white noise with the opposite sign had been added in CEEMD algorithm, the reconstruction error caused 191 

by the white noise has been reduced over it in EEMD algorithm. 192 
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 193 

Fig. 6 The ERR of monthly mean SSTA over the study area based on the CEEMD algorithm during 1982-194 

2016. 195 
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4 SSTA prediction model 197 

4.1 The BP neural network 198 

Artificial Neural Network (ANN) is an information processing approach based on the biological neural 199 

network (López et al., 2015; Kim et al., 2016). In theory, ANN can simulate any complex nonlinear 200 
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layers. One of the most widely used ANN models is the back propagation neural network (BPNN, Wang et 203 

al., 2018) algorithm based on the BP algorithm. 204 

The BPNN algorithm is a multi-layer feedforward network trained according to the error back 205 

propagation algorithm and is one of the most widely used deep learning algorithms. The BP network can be 206 
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descent method. When applied to SST predicting, the input data are monthly mean SST in previous months 209 

and the output data are predicted SST time-series data. The desired data for comparison is the observed actual 210 
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steps as follows. First, original SST datasets are decomposed into certain more stationary signals with 214 

different frequencies by EEMD. Second, the BP neural network is used to predict each IMF and the residue 215 

RES. A rolling forecasting process is studied. The prediction is made using the previous data for one step 216 

ahead. Finally, the prediction results of each IMF and the residue RES are aggregated to obtain the final SST 217 

prediction results. The flowchart of the SST prediction model based on hybrid improved empirical mode 218 

decomposition algorithm (improved EMD algorithm) and back-propagation neural network (BPNN)is shown 219 

in Fig. 7. The SST prediction model has been abbreviated as a hybrid improved EMD-BPNN model in the 220 

following article. 221 

 222 

Fig.7 The flowchart of SST prediction model based on hybrid improved empirical mode decomposition 223 

algorithm (improved EMD algorithm) and back-propagation neural network (BPNN). 224 

 225 

5 Case study: SSTA prediction based on the hybrid improved EMD-BPNN models 226 

In order to study the effects of the two improved EMD algorithms (EEMD and CEEMD) on the 227 

prediction results, and to analyze the prediction ability of BP neural network, the following experiments were 228 

carried out. Predict SSTA results in 2017 and analyze the prediction abilities of different mode decomposition 229 

data based on EEMD and CEEMD algorithms. The experiment content is as follows: the BP neural network 230 

is trained with the decomposition data of each mode from 1982 to 2016, and the SSTA in 2017 is predicted 231 

by the trained neural network, and the observation results of 12 months in 2017 are used to compare and 232 
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analyze with the prediction results. 233 

Since the nonlinearity of the IMF1 to IMF3 is still relatively strong, a A three-layer BP neural network 234 

structure has been chosen and independently analyze and predict each month. For the IMF4 and subsequent 235 

modes, since the nonlinearity and the non-stationarity have been degraded relative to the first three modes, a 236 

BP neural network with 12 nodes at input layer and output layer has been used to train and predict SSTA. 237 

The prediction results of each mode decomposition component based on the EEMD algorithm are shown 238 

in Fig. 8. The absolute errors of the predicted value and the actual value are shown in Table 1.  239 

 240 

Fig. 8 SSTA prediction results based on the hybrid EEMD-BPNN model of each individual component in 241 

2017. 242 

Root mean square error (RMSE) is used as metrics to access the performance of the two different models. 243 

( )
2

1

1
RMSE

N

n nn
x y

N =
= −                         (2) 244 

where, xn and yn are the observed and the predicted values respectively, N is the number of data used for 245 

the performance evaluation and N is 12 in this study. Results are shown in Table 1.  246 
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Table 1. The absolute errors ERRs of the SSTA prediction results of each individual component based on the 248 

hybrid EEMD-BPNN model (unit: °C). 249 

 Max ERR Min ERR Mean ERR RMSE 

IMF1 0.2197 0.0014 0.1424 0.1486 

IMF2 0.2166 0.0323 0.1297 0.1673 

IMF3 0.1872 0.0051 0.1070 0.1245 

IMF4 0.1602 1.6869×10-4 0.0663 0.0857 

IMF5 0.0158 0.0010 0.0089 0.0104 

IMF6 3.8766×10-4 1.9752×10-4 2.7221×10-4 0.0003 

IMF7 5.2662×10-4 1.6387×10-4 1.7907×10-4 0.0002 

RES 5.4859×10-4 2.2308×10-4 2.4766×10-42.7766×10-4 0.00020.0003 

 250 

It can be seen from Fig. 8 and Table 1 that the maximum absolute error (Max ERR) of the first 251 

decomposition component IMF1 based on the hybrid EEMD-BPNN model is 0.2197 °C in January. The 252 

minimum absolute error (Min ERR) is 0.0014 °C, which is in August. The prediction ability of the second 253 

mode decomposition component IMF2 is roughly equivalent to the IMF1, and the mean absolute error (Mean 254 

ERR) of the first three intrinsic mode function components IMF1, IMF2, and IMF3 are between 0.10 °C and 255 

0.15 °C. The mean absolute errors of the IMF4 and IMF5 are 0.0663 °C and 0.0089 °C, respectively, and the 256 

prediction accuracy based on the hybrid EEMD-BPNN model is roughly equivalent to the decomposition 257 

accuracy of the EEMD algorithm. The prediction errors of the last two intrinsic mode function components 258 

and the residue RES are on the order of 10-4. It can be seen that as the nonlinearity and non-stationarity of 259 

the series data decreases, the error of the prediction results becomes smaller and smaller. 260 

According to the same method, the eight mode components decomposed by CEEMD algorithm have 261 

been analyzed and predicted. The prediction results and error analysis have been shown in Fig. 9 and Table 262 

2. It can be seen from Fig. 9 and Table 2 that the maximum error of the first decomposition component IMF1 263 

based on the hybrid CEEMD-BPNN model is 0.1779 °C in May. The minimum error is 0.0068 °C, which is 264 

in June.  265 

The prediction ability of the second mode decomposition component IMF2 is roughly equivalent to the 266 

IMF1. Except for the four months of May, September, October, and November, the accuracies of prediction 267 

results of other months are satisfactory. The prediction results of the first three intrinsic mode function 268 
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components IMF1, IMF2, and IMF3 are basically the same as the actual data. In the prediction results of the 269 

fourth mode component IMF4, except for a slight error in December, the prediction ability is better. The 270 

predicted results of the last three intrinsic mode function components IMF5, IMF6, IMF7 and the residue 271 

RES are basically consistent with the observation results. 272 

 273 

Fig. 9 SSTA prediction results based on the hybrid CEEMD-BPNN model of each individual component in 274 

2017. 275 
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Table 2. The absolute errors ERRs of the SSTA prediction results of each individual component based on the 277 

hybrid CEEMD-BPNN model (unit: °C). 278 

 Max ERR Min ERR Mean ERR RMSE 

IMF1 0.1779 0.0068 0.0827 0.0987 

IMF2 0.1643 0.0413 0.0811 0.1124 

IMF3 0.1521 0.0160 0.0713 0.1006 

IMF4 0.0851 0.0211 0.0324 0.0427 

IMF5 0.0052 8.7694×10-5 0.0021 0.0029 

IMF6 0.0103 5.7748×10-5 0.0043 0.0056 

IMF7 0.0017 3.6026×10-5 9.1374×10-4 0.0010 

RES 3.0342×10-5 2.0163×10-6 1.1572×10-5 1.5017×10-5 

 279 

The prediction results of the monthly mean SSTA in 2017 are obtained by reconstructing the mode 280 

decomposition components (Fig. 10) and the absolute error (ERR) of prediction results have been shown in 281 

Table 3. It can be seen from the figure and table that the prediction results based on the EEMD-BPNN model 282 

have larger ERRs in January and August, exceeding 0.3 °C, and the accuracies of prediction results in other 283 

months are satisfactory (the ERR is less than 0.3). The prediction accuracy based on the CEEMD-BPNN 284 

model is satisfactory, except for the ERR exceeding 0.1 °C in October, and the prediction ability based on 285 

the CEEMD-BPNN model is generally better than that of the EEMD-BPNN model.  286 

 287 

Fig. 10 Monthly SSTA prediction results based on the hybrid improved EMD-BPNN models in 2017. 288 
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Table 3. The absolute errors ERRs of the SSTA prediction results based on the two different hybrid improved 289 

EMD-BPNN models (unit: °C). 290 

 EEMD-BPNN model CEEMD-BPNN model  EEMD-BPNN model CEEMD-BPNN model 

Jan 0.3188 0.0623 Sep 0.0687 0.0132 

Feb 0.1780 0.0103 Oct 0.0545 0.1607 

Mar 0.0867 0.0063 Nov 0.2651 0.0101 

Apr 0.2153 0.0137 Dec 0.1290 0.0183 

May 0.0854 0.0102 Min ERR 0.0545 0.0063 

Jun 0.1662 0.0224 Max ERR 0.5068 0.1607 

Jul 0.2474 0.0077 Mean ERR 0.1935 0.0289 

Aug 0.5068 0.0112 RMSE 0.2299 0.0512 

 291 

The cCorrelation coefficient between the prediction values based on the CEEMD-BPNN model and 292 

observations is  0.97 indicating a significance level of 0.001.shown that the value of the correlation 293 

coefficient that indicates a significance level of 0.001 and the correlation coefficient reached 0.97. The result  294 

indicates that SSTA in 2017 had beenwas predicted accurately by the CEEMD-BPNN model. As can be seen 295 

from the above discussions, the ERR of decomposition components based on the EEMD and CEEMD 296 

algorithms will affect the accuracy of the final prediction results. Table 3 shows that predicting prediction 297 

results of the hybrid CEEMD and BPNN model are much better than with the EEMD-BPNN.ameliorated a 298 

lot as compared to the EEMD-BPNN direct predicting model. This is because after CEEMD, the original 299 

unsteady and nonlinear data are changed into certain components that have fixed frequency and periodicity. 300 

The CEEMD algorithm with less decomposition error has less error in the final prediction results, which 301 

proves that the CEEMD method has more advantages in data decomposition than the EEMD method. At the 302 

same time, we can find that the final prediction error of the two prediction models mainly comes from the 303 

first three mode decomposition components, and the error of the last five components has little effect on the 304 

accuracy of the final prediction results. 305 

 306 

6 Conclusions 307 

This paper presents aan SST predicting method based on the hybrid EMD algorithms and BP neural 308 

network method to process the SST data with nonlinearity and non-stationarity. Through EEMD and CEEMD 309 
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algorithms, SSTA time-series data are decomposed into different IMFs and a residue RES. BP neural network 310 

is applied to predict individual IMFs and the residue RES. Final results can be obtained by adding the 311 

predicting results of individual IMFs and RES.  312 

In order to illustrate the effectiveness of the proposed approach, a case study was carried out. SSTA 313 

prediction results based on the hybrid EEMD-BPNN model and the hybrid CEEMD-BPNN model are 314 

discussed respectively. In comparison, the proposed hybrid CEEMD-BPNN model is much better and its 315 

prediction results are more accurate.  316 

From the absolute error of the prediction results of each component IMF and the absolute error of the 317 

predicted SSTA, the prediction error of SSTA mainly comes from the prediction of the first three mode 318 

decomposition components (IMF1, IMF2 and IMF3), because the first three mode components still have 319 

strong nonlinearity and non-stationarity. As the nonlinearity gradually decreases, the absolute error of the 320 

prediction results gradually decreases. 321 

SST prediction has been only preliminary carried out, based on the two improved EMD algorithms and 322 

BP neural network in this paper. The results show that the hybrid CEEMD-BPNN model is more accurate in 323 

predicting SST. This work can provide a reference for predicting SST and El Niño in the future. In the follow-324 

up study, how to improve the forecast duration is the focus of this work. 325 

It should be noted that some factors affecting the SST prediction results include: the length and interval 326 

of the time series of the database, as well as different data sources because their values are also different. The 327 

SST time-series data in this study is based on NOAA Optimum Interpolation Sea Surface Temperature 328 

(OISST) datasets from January 1982 to December 2016. 329 
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