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Abstract.  

Sustainable management and utilisation of the Northwest European Shelf Seas (NWS) could benefit from reliable forecasts 10 

of the marine environment on monthly-to-seasonal timescales. Recent advances in global seasonal forecast systems, and 

regional marine reanalyses for the NWS, allow us to investigate the potential for seasonal forecasts of the state of the NWS.  

We identify three possible approaches to address this issue: A) basing NWS seasonal forecasts directly on output from the 

Met Office’s GloSea5 global seasonal forecast system; B) developing empirical downscaling relationships between large-

scale climate drivers predicted by GloSea5, and the state of the NWS; and C) dynamically downscaling GloSea5 using a 15 

regional model. We reject A) after showing that the GloSea5 system is inadequate for simulating the NWS directly. Turning 

to B), we explore empirical relationships between the winter North Atlantic Oscillation (NAO), and NWS variables 

estimated using a regional reanalysis. We find some statistically significant relationships, and present a skilful prototype 

seasonal forecast for English Channel sea surface temperature. 

We then consider the potential of C). We find large scale relationships between inter-annual variability in the boundary 20 

conditions and inter-annual variability modelled on the shelf, suggesting that dynamic downscaling may be possible. We also 

show that for some variables there are opposing mechanisms correlated to the NAO, for which dynamic downscaling may 

improve on the skill possible with empirical forecasts. We conclude that there is potential for the development of reliable 

seasonal forecasts for the NWS, and consider the research priorities for their development. 
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1. Introduction 

1.1. Background 

The Northwest European Shelf seas (NWS) are of wide economic, environmental and political importance. They support 

many ecosystem services and human activities, including fisheries, energy extraction and transmission (both renewable and 

non-renewable), shipping and waste removal. Most of these services and activities are sensitive to the variable environmental 5 

conditions under which they operate, for example: 

 Shipping (transport and industrial) and offshore oil/gas and renewable operations are sensitive to wind/wave 

conditions and currents; 

 The capacity of sea-floor gas distribution networks is sensitive to bottom temperature (with capacity decreased in 

cold conditions when demand is likely to be highest; 10 

 Commercial and recreational fisheries are sensitive to large-scale primary production and the seasonal evolution of 

the marine food web, which in turn are sensitive to surface temperature, salinity and seasonal re-stratification (see 

e.g. Fernandes 2015); 

 Some specific commercial species have a life cycle or food web which is sensitive to near-bottom temperature (see 

e.g. Dulvy et al. 2008; Pörtner and Farrell 2008; Pörtner and Peck 2010; Jones et al. 2015; Pinnegar et al. 2017); 15 

 Coastal installation operations may be sensitive to local flooding (surge events), to sea temperatures (e.g. ambient 

temperatures for power station cooling), and to consequential local ecosystem impacts (e.g. blocking of intakes by 

jellyfish blooms, environmental quality issues) (Schneider et al. 2015; Brown et al. 2016; Dawson et al. 2016). 

Because of these sensitivities, the ability to predict variations in the marine environment is of great potential value for marine 

operations, management, planning and conservation. Weather and wave forecasting are of course well-established tools, and 20 

more recently operational forecasting of marine environmental variables such as temperature, salinity and currents for a few 

days ahead has matured to the extent that daily forecasts are now widely and freely available (e.g. for European regional seas 

through the Copernicus Marine Environment Monitoring Service http://marine.copernicus.eu/). Centennial climate 

projections are also available for the NWS (Tinker et al. 2016), but there is an important gap between these timescales. Over 

the last 10 years significant progress has been made on prediction at multi-annual to decadal time-scales (Hughes et al. 2017; 25 

McCarthy et al. 2017; MCCIP 2017), that may be particularly compatible with policy and legislation review and reporting 

cycles (Frost et al. 2016) as well as business planning and investment timeframes. In this paper we examine the prospects for 

prediction of the marine environment on a timeframe of 1-6 months ahead. 

One can envisage many potential applications for marine predictions at this extended range. For example, setting and 

management of fishing quotas for maximum sustainable yield could take account of likely conditions for recruitment in that 30 

year, energy producers and suppliers could anticipate winter seasons with higher than usual demand and/or stress on the 

offshore supply network, and environmental regulators could use early warning of regions at increased risk of water quality 

issues to target monitoring resources at those regions. But first we must demonstrate that a useful level of predictive skill is 
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achievable on these timescales. Of course, on the 3-6-month timescale, environmental variations are dominated by the 

seasonal cycle, and this is normally factored into existing decision-making processes. Here we are asking whether we can 

predict anomalies relative to the average seasonal cycle (e.g. unusually cold winters or unusually stormy autumns). 

1.2. State of the art and possible approaches to NWS seasonal forecasts 

Recent progress in climate modelling and prediction has shown that skilful predictions are possible several months ahead for 5 

some key elements of European climate. For example, Scaife et al., (2014) show substantial skill in predicting the winter 

North Atlantic Oscillation (NAO) index 1-4 months ahead. There is even significant skill in predicting the winter NAO 

index one year ahead (Dunstone et al. 2016). The NAO is a key determinant of the nature of the European winter (e.g. 

Hurrell 1995) with a positive NAO index indicating mild, wet conditions and a negative NAO index indicating cold, dry 

conditions. This predictive skill has been exploited to demonstrate predictability in a number of user-relevant variables, e.g. 10 

relating the phase of the NAO index to the likely number of transport disruption (road, rail and air) impacts (Palin et al. 

2016), but so far there has been less attention to seasonal predictability of marine variables (e.g. Hobday et al. 2016) . 

To address the problem of seasonal prediction for the NWS we must consider how to derive marine variables from the 

seasonal climate predictions. The seasonal predictions are produced from global ocean-atmosphere climate models which are 

initialised with observed conditions and run forward in time through the 1-6 month forecast period. Because the climate is 15 

not perfectly predictable on these timescales an ensemble of runs is used to derive a probabilistic prediction. To turn this into 

a prediction for NWS marine variables, three possible approaches can be envisaged: 

A. Read off the NWS marine variables (temperature, salinity, currents) directly from the underlying climate model; 

B. Use observations to derive empirical relationships between large-scale climate indices (e.g. NAO index) and the 

marine quantity of interest, for instance this could be for a fishery metric like Cod recruitment ( Stige et al. 2006; 20 

Engelhard et al. 2014) or Squid abundance (van der Kooij et al. 2016), then input the forecast climate index to the 

empirical model to get a forecast of the quantity of interest (‘empirical downscaling’); 

C. Use the marine and atmospheric variables predicted by the climate model as inputs to a higher resolution regional 

model of the NWS (‘dynamical downscaling’). 

Approach (A) is appealingly simple but is unlikely to be successful. The ocean resolution of the global seasonal forecast 25 

system GloSea5 used by Scaife et al., (2014) is around 20 km in the NWS region, with 18 vertical levels in the top 50 m. 

While this is high by the standards of current global seasonal prediction systems it is still insufficient to resolve many 

features of the NWS circulation. Further, in common with most global climate models the GloSea5 system does not 

represent key shelf seas processes such as tidal mixing. While this has been shown to be a successful approach in other 

regions (e.g. Hobday et al. 2016 used this approach in Australia) we will show later that these deficiencies effectively rule 30 

out option (A) as a credible approach for the NWS.  
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1.3. Scope of this study 

A number of scientific and technical developments have recently come together to enable us, for the first time, to assess the 

potential for seasonal forecasts for the NWS: first, the demonstration of skill of global seasonal forecasting systems in 

predicting key European climate indices several months ahead (e.g. Scaife et al. 2014); secondly the development of regional 

oceanographic models of the NWS, proven for use in operational prediction (O'Dea et al. 2012); and thirdly the combination 5 

of the regional NWS models with historical observations, to produce a consistent estimate of the time-varying state of the 

NWS over recent decades (‘regional NWS reanalysis’, Wakelin et al. 2014). The NWS regional model allows us to 

investigate the prerequisites of the dynamical downscaling approach (C), while the reanalysis allows us to investigate in 

detail the mechanisms of year-to-year variability, and so evaluate which elements of the NWS state are likely to be 

predictable. For the mean climate, the dynamical downscaling approach (C) has been shown to add value to the simple 10 

approach (A) of reading off variables from the underlying global climate model (e.g. Mathis et al. 2013). 

In this study we use the above building blocks to evaluate the potential of seasonal predictability for the NWS. We address 

the following questions in turn: 

1) How well does the global seasonal prediction system GloSea5 represent the state and inter-annual variability of the 

NWS? (Approach A); 15 

2) Can a regional reanalysis adequately represent the inter-annual variability of the NWS? If so can we use it as a 

proxy to understand mechanisms of variability in the real world? 

3) Do the predictable climate indices (e.g. NAO index) provide actual predictive skill for the NWS? (Approach B); 

4) What are the prospects for improving NWS seasonal forecasts? (including prerequisites for Approach C). 

Given the answers to (1-4), we conclude by assessing the prospects for seasonal prediction on the NWS and the likely pros 20 

and cons of empirical and dynamical downscaling approaches (B) and (C), and suggest near-term priorities for applications 

and research. 

2. Method 

We use data from two modelling systems (NWS reanalysis (CO5) and GloSea5) and several observation datasets. Firstly, we 

describe and compare the two modelling systems, before introducing the observations datasets and the analysis techniques. 25 

2.1. NWS Reanalysis (CO5) 

The Met Office provides a reanalysis of the NW European shelf seas to the Copernicus Marine Environment Monitoring 

Service: this has been extensively described and validated (O'Dea et al. 2012; Wakelin et al. 2014), but here we give a brief 

overview. 

The NWS Reanalysis is based on the NEMO Coastal Ocean model version 5 (CO5) implementation (Figure 1). This is on a 30 

regional 7 km grid extending from 40°4’ N, 19° W to 65° N 13° E, with 50 terrain following levels (s-levels, Siddorn and 

Furner 2013). The simulations run from 1983-2013. The model surface forcings were calculated with the Coordinated Ocean 
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Research Experiments (CORE) bulk formulae (Large and Yeager 2009), using ERA Interim data (ERAI; Dee et al. 2011). 

The ocean lateral boundary forcings before 1990 were taken from a simulation from the Forecasting Ocean Assimilation 

Model (FOAM, Bell et al. 2000), after which they were taken from the global reanalysis used to initialise the GloSea5 

seasonal forecasting system. The river forcings were taken from the E-HYPE dataset (Donnelly et al. 2013) and include 

inter-annual variations. The CO5 reanalysis assimilates Sea Surface Temperature (SST) from satellites.  5 

The use of CORE bulk formulae will have a few important implications for this study. For example, the bulk formulae 

assume that the surface air temperature has an infinite heat reservoir, and so the SST will tend to follow the surface air 

temperature, rather than the opposite which occurs in reality. This will affect the relationship between the SST and surface 

air temperature. Furthermore, the CORE bulk formulae receive the downward component of the short-wave- and long-wave- 

radiation, and calculate the upward component internally. This must be considered when interpreting the driving radiation 10 

fluxes, which are not net fluxes. 

2.2. GloSea5 

The GloSea5 seasonal forecast system is described in detail by MacLachlan et al. (2014). Here we give a brief description, 

and focus on the difference between its ocean component and that of the CO5 NWS Reanalysis. GloSea5 is based on the Met 

Office Hadley Centre climate model HadGEM3-GC2 (Williams et al. 2015). This is a coupled climate model combining the 15 

MetUM atmosphere model (N216, ~0.7° horizontal resolution, Walters et al. 2011; Brown et al. 2012), the ocean model 

NEMO (Megann et al. 2014), the land surface scheme JULES (Best et al. 2011), and the sea-ice model CICE (Hunke and 

Lipscomb 2010). The ocean model component is run on the ORCA025 grid - a 0.25° tri-polar grid (~27 km at the equator), 

with 75 horizontal z layers (of which 18 (24) are within the top 50 m (100 m)). NEMO ORCA025 is run with a data analysis 

system (3D-Var) to assimilate a range of observations, including SST (in-situ and along track satellite, mostly AVHRR 20 

(Pathfinder) and (A)ATSR (ESA), although some AMSRE are used during the GHRSST period), sea-surface height 

(altimetry from AVISOv3 along track), sea ice concentration (OSI-SAF), and water column structure (ARGO floats).  

To make seasonal forecasts, a set of GloSea5 simulations are run to form a forecast ensemble and re-forecast (hindcast) 

ensemble. Every day, 2 ensemble members are initialised and run forward for 216 days. The previous 3-weeks are combined 

into a 42-member ensemble to make a 6-month forecast, which is updated weekly. A re-forecast ensemble is also run every 25 

week (with the same modelling system) to correct bias and drift in the forecasts. This includes 4 start dates for the relevant 

month, for each of the previous 23 years, run forward for 216 days. The forecast ensemble is used to predict how the 

following 6 months will compare to this climatology. The system is also run as a continuous reanalysis (the GloSea5 ocean 

and sea-ice global reanalysis) from 1990-2015 to provide initial conditions for the ocean component of the hindcast 

ensemble. The atmospheric initial conditions for the forecast are taken from the Met Office operational weather forecast 30 

system, and the hindcast atmosphere is initialised from ERA-interim. 

GloSea5 shows improved year-to-year predictions of the major modes of variability compared to the previous system 

(GloSea4, Arribas et al. 2011). Predictions of the El Niño–Southern Oscillation are improved with reduced errors in the 
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West Pacific. GloSea5 shows unprecedented levels of forecast skill and reliability for both the North Atlantic Oscillation and 

the Arctic Oscillation (MacLachlan et al. 2014).  

2.3. Comparison between NWS Reanalysis and GloSea5  

The GloSea5 ocean and sea-ice global reanalysis and CO5 NWS reanalysis differ in a number of ways. Both rely on the 

ocean model NEMO, but run with grids of different horizontal and vertical resolutions. The GloSea5 global reanalysis 5 

system is a coupled global model system designed to capture the key components of the global climate system in order to 

make a seasonal forecast, having used data assimilation over a wide range of variables to constrain the model. Conversely, 

the CO5 NWS reanalysis is a regional reanalysis, where a higher resolution ocean model is (one-way) forced from ERA 

Interim atmosphere forcing, using SST-only data assimilation. Effectively, the CO5 NWS reanalysis has a higher resolution 

and better representation of the NWS physics, whereas the GloSea5 global reanalysis has global scope and assimilates a 10 

wider range of observations. Both have high enough resolution to include an open Dover Strait allowing a route for Atlantic 

water into the southern North Sea which is important for simulating the local seasonal cycle of salinity.  

The CO5 NWS reanalysis requires lateral boundary conditions (GloSea5 is a global model system and so doesn’t need them) 

which are taken from FOAM before 1990 and from the GloSea5 Reanalysis thereafter. The change from FOAM to the 

GloSea5 Reanalysis led to a discontinuity that was important for variables such as sub-surface temperature and salinity in the 15 

open ocean - these variables are not used in this study but may influence the NWS fields that are.  

An important difference between the two simulations is that the CO5 NWS reanalysis is a shelf seas model that includes all 

the key shelf seas processes whereas the ORCA025, being a global model, neglects some important processes, including 

dynamic tides.  

There are also key differences in the riverine forcings, and the treatment of the Baltic Sea. The CO5 NWS reanalysis uses 20 

river forcings (with inter-annual variability) from the E-HYPE river model (which gives too much discharge), and treat the 

Baltic as an open boundary where T and S are relaxed to Swedish Meteorological and Hydrological Institute (SMHI) model 

forcings. GloSea5 uses a river climatology, and model’s the Baltic explicitly (although at too coarse a resolution to 

accurately simulate the complex interaction between the Baltic and NWS shelf sea). 

2.4. Observations 25 

Much of the evaluation of the CO5 NWS reanalysis (Wakelin et al. 2014) focused on the mean state of the model. Here we 

are more interested in the modelled temporal variability, and so undertake additional evaluation. We compare the model to 

limited observed time-series to assess its performance at replicating several observed events. Here we describe the observed 

time-series.  

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-1
Manuscript under review for journal Ocean Sci.
Discussion started: 22 January 2018
c© Author(s) 2018. CC BY 4.0 License.



7 

 

2.4.1. Southern North Sea Ferry data 

Ferries are well established vessels of opportunity for oceanographic measurements taking regular long-term samples of 

surface water while the ship is on passage between ports (Bean et al. 2017). Observations can be in the form of samples 

taken by crew for subsequent testing in a laboratory or more sophisticated “Ferry boxes” as packages of instruments that 

semi-autonomously monitor temperature, salinity and other water properties. We use the monthly salinity data from the ferry 5 

on the Harwich to Hook of Holland route, which took quasi-weekly temperature and salinity samples at 9 standard stations 

between 1971 and 2012 (Joyce 2006) and is reported in the ICES Report on Ocean Climate (Larsen et al. 2016) and MCCIP 

Report Cards (Dye et al. 2013). We use point time-series from this dataset to compare to the model. 

2.4.2. Western Channel Observatory (WCO) 

The Western Channel Observatory (WCO) is an oceanographic time-series in the Western English Channel (Smyth et al. 10 

2015). In situ measurements are undertaken fortnightly at open shelf station E1 (50.03˚N, 4.37˚W) using the research vessels 

of the Plymouth Marine Laboratory and the Marine Biological Association. We compare time-series of temperature and 

salinity from a range of observed depths to model output from the nearest grid box. 

2.4.3. NAO 

The North Atlantic Oscillation (NAO) is a climatic phenomenon in the North Atlantic Ocean of fluctuations in the difference 15 

of atmospheric pressure at sea level between the Icelandic low and the Azores high. These fluctuations control the strength 

and direction of westerly winds and storm tracks across Europe (Hurrell 1995). 

We use the NOAA National Weather Service Climate Prediction Center NAO data 

(http://www.cpc.noaa.gov/products/precip/CWlink/pna/nao.shtml), for monthly mean NAO index. We only use winter (DJF) 

for the years 1992/1993 – 2010/2011 to be consistent with the available GloSea5 ocean and sea-ice reanalysis NAO index 20 

time-series.  

2.4.4. Storm track latitude index 

When analysing the relationships of the shelf SSS we find correlation patterns which suggest storm track latitude may be 

important. We therefore analysed the mean sea level pressure data to produce a Storm track latitude index, following a 

method adapted from Lowe et al. (2009). The 3-hourly ERA Interim mean sea level pressure data from all modelled latitudes 25 

at 2°30’E were filtered with a Blackman band pass filter. The temporal variance of this filtered mean sea-level pressure was 

calculated for each month for each grid box at 2°30’E, and the latitude with the greatest variance was recorded as the storm 

track latitude. We consider the winter (DJF) mean storm track.  
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2.5. Analysis techniques 

We use regional mean time series of model output (surface, bed and surface minus bed, temperature and salinity, SST, NBT, 

DFT, SSS, NBS, DFS respectively) from the reanalysis, adapted from the region mask from Wakelin et al. (2012) (Figure 

1a). We calculated monthly, seasonal and annual means from these time series, as well as directly from the model. In 

addition to model output, we extract regional mean time series for the ERAI surface forcings, the GloSea5 ocean lateral 5 

boundary conditions (using the masks in Figure 1b-d), and the E-HYPE river forcings. 

2.5.1. Identifying relationships between the NWS response and the drivers. 

We compare time-series of the shelf response to time-series of the drivers to identify important relationships. We note that a 

statistically significant correlation does not imply a causal relationship, and so we interpret the spatial patterns of the 

correlation coefficients to help interpret the underlying mechanisms behind the correlations. We consider it beyond the scope 10 

of this study to undertake sensitivity studies to explore any mechanisms in detail.  

We use the region mask of Wakelin et al. (2012) (Figure 1a), to create regional mean time series of the results from the 

NWS Reanalysis, including its atmospheric (downward radiative fluxes, surface air temperature and relative humidity, total 

precipitation, mean sea level pressure, winds) and riverine forcings. We average the oceanic T and S forcings around the 

boundary into 21 regions based on horizontal and vertical gradients to T and S (typically dividing the north, west and south-15 

western boundaries into surface, mid-depth and deep layers (according to the typical modelled summer and winter mixed 

layer depths), and then divide the boundaries horizontally according to features within the data. A deep layer of salty, 

relatively warm water in the south-western and the southern part of the western boundary is identified as Mediterranean 

Intermediate Water and is treated separately. Most correlations have been found with the surface (0 - 30 m) regions, and so 

this study focuses on these regions. These regions are shown in Figure 1b-d. We also use annual and monthly mean time-20 

series of the NAO and Storm Track latitude. 

Model and observed time-series are compared to one another with Pearson's correlations, and their significance is noted at 

the 95% level. Typically, we compare the annual mean time-series, but we also compare at the seasonal time-scale. We also 

investigate lag-correlations between the shelf response, and possible drivers and climate indices. For example, the time series 

of DJF NAO will be correlated with the DJF SST across the shelf (at 0-months lag). The DJF will then be compared to the 25 

JFM SST (January-March; 1-month lag), FMA (February-April; 2-month lag) etc. (e.g. Figure 5). 

For consistency we have used the same region mask (e.g. Wakelin et al. 2012) for the river forcings as for the shelf seas 

variables and surface atmospheric forcings. However, this mask was not designed for rivers and so several regions must be 

treated with care, or excluded. For example, the northern North Sea region combines the river flow from small sections of 

the Scottish and Danish coasts which does not make sense – other regions to be excluded are the central North Sea, Shetland 30 

shelf region, and the North Atlantic regions. Other regions combine river flow from different coasts, but in a more sensible 

manner – for example the English Channel and Irish Sea regions combine river input from two coasts, but due to the smaller 

enclosed nature of these regions, this is sensible in terms of local salinity. In the modelling system, the rivers do not have a 
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specified temperature, and so assume the local temperature when they reach the sea. Therefore, rivers predominantly affect 

salinity, with only secondary temperature effects (associated with changes in density driven circulation and stability). As 

increased river flow reduces the local salinity, most correlations are expected to be negative. 

3. Results 

3.1. Question 1: How well does the GloSea5 global seasonal prediction system represent the NWS? 5 

Both GloSea5 and the CO5 NWS reanalysis assimilate similar SST observations, and so their simulated patterns of SST are 

relatively similar, and in agreement with observations. When looking at the near-bed temperatures (NBT) and the difference 

between the surface and bed temperatures (DFT), there are important differences between GloSea5 and the NWS Reanalysis. 

DFT is an important diagnostic of stratification – when DFT > 0.5 °C the water column is considered stratified, and the DFT 

= 0.5 °C isotherm is indicative of the location of the modelled tidal mixing fronts.  10 

A time-series showing the seasonal cycle of areal extent of the stratification (from a 20-year mean) for both GloSea5 and the 

CO5 NWS reanalysis is presented in Figure 2a. The CO5 NWS reanalysis has been shown to have a generally good 

representation of the seasonal stratification where independent observations are available (O'Dea et al. 2012). While both the 

CO5 NWS reanalysis and GloSea5 show that the NWS is fully mixed in the winter (effectively no grid boxes are stratified), 

in GloSea5 more grid boxes are stratified in the summer than in the NWS Reanalysis: from April to September, the stratified 15 

area of the shelf is ~20% more in GloSea5 compared to NWS Reanalysis. Figure 2b shows a map of the stratified regions for 

May (an exemplar stratified month). This shows that much of the southern North Sea, English Channel and Irish Sea that is 

modelled as being mixed in May in the NWS Reanalysis, is stratified in GloSea5. This highlights an important weakness in 

using the GloSea5 system to provide direct information on the NWS.  

Further evidence is shown under Question 2 below that using GloSea5 NWS fields directly would be problematic. We 20 

therefore conclude that this approach (Approach A) is not viable, and some form of downscaling of the GloSea5 fields would 

be needed to generate reliable NWS forecasts. 

3.2. Question 2: How well does the CO5 NWS reanalysis represent inter-annual variability on the NWS? 

While the ability of the CO5 NWS reanalysis to simulate the mean state of the NWS is thoroughly evaluated (O'Dea et al. 

2012; Wakelin et al. 2014), its ability to simulate inter-annual variability has received less attention. Evaluation requires long 25 

observed time-series, preferably of variables that are not assimilated into the reanalysis. Here we focus on two locations, the 

Harwich to Hook of Holland route in the Southern North Sea and the WCO (see Methods). 

First, we compare the observed time-series of surface salinity in the southern North Sea to that from GloSea5 and the CO5 

NWS reanalysis (Figure 3). The time-series exhibits multi-year oscillations and these are well simulated by the NWS 

Reanalysis (r = 0.89, p = 0.00), despite the fact that it does not assimilate salinity observations. There is a fresh bias in the 30 

model (-0.20) and a slightly greater variation (standard deviation ratio of 1.11). GloSea5 does not capture a realistic multi 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-1
Manuscript under review for journal Ocean Sci.
Discussion started: 22 January 2018
c© Author(s) 2018. CC BY 4.0 License.



10 

 

annual variability (r = 0.2, p = 0.00 with standard deviation ratio of 1.81) and modelled salinity also shows a large fresh bias 

that increases due to a substantial salinity drift over the duration of the time-series – further evidence that direct reading from 

NWS fields from GloSea5 would be problematic. As there are differences in the river forcings between GloSea5 and the 

CO5 NWS reanalysis we would expect differences in the modelled salinity. The CO5 NWS reanalysis uses E-HYPE river 

forcing (Donnelly et al. 2013) which are specified daily whereas GloSea5 uses a river climatology (Dai and Trenberth 2002; 5 

Bourdalle-Badie and Treguier 2006), and so exhibits no inter-annual variability. 

Secondly, we compare the observed WCO temperature and salinity profiles to the nearest daily mean CO5 NWS reanalysis 

grid box (Figure 4). The WCO observations are not assimilated into the NWS Reanalysis, but the SST from complementary 

satellite products is. Unsurprisingly, the CO5 NWS reanalysis SST is in close agreement with the WCO observations, for 

both the seasonal cycle, and the year to year variations at the surface and at depth (30 m). The inter-annual variability is well 10 

captured in SST for all seasons (r > 0.99, p = 0.000), and for most seasons at 30 m (typically r > 0.9, but September – 

November r = 0.59). There is little seasonal cycle, trend or inter-annual variability in the WCO salinity (e.g. compare the 

inter-annual variability in Figure 3 and Figure 4). Given the lack of salinity seasonality, we compare all the WCO-reanalysis 

data pairs, which has a significant correlation of r = 0.49 at the surface and r = 0.65 at 30 m (p = 0.000 for both cases).  

Further evaluation of the CO5 NWS reanalysis against other long time-series is planned through the Copernicus NWS 15 

regional Marine Forecasting Centre. These initial results suggest that the reanalysis can provide valuable information on 

inter-annual variability on the NWS, where there is a strong signal.  

We now investigate empirical forecasts based on the response of the CMEMS reanalysis to the observed NAO, and then 

applied to the GloSea5 forecast NAO. 

3.3. Question 3: Can predictable climate indices provide real predictive skill for the NWS? 20 

In the literature, there are many empirical relationships between climate indices and various physical and biological 

responses. The CMEMS reanalysis (through data assimilation) combines observations with models to give the best possible 

state estimate of the NWS, and so provides a powerful tool to develop such relationships. We focus on the winter NAO, as it 

is an important source of year-to-year variability in the NWS, and GloSea5 has predictive skill for the winter NAO. By 

investigating relationships between the CMEMS reanalysis fields and the observed (NOAA) NAO, and then considering 25 

how these relationships change when we use the GloSea5 forecast NAO, we can explore the empirical approach to NWS 

seasonal forecasting.  

First we consider the correlations (and lagged correlations) between the winter (DJF) NAO and the surface forcings we that 

think will be important for the shelf temperatures (Figure 5). We find a positive correlation of the NAO with the DJF surface 

air temperature and humidity (Figure 5a, e), and this persists for one month (to January-March) in most regions (Figure 5b, 30 

f). There is a significant negative correlation between DJF NAO and the incoming solar radiation for shelf regions west of 

the UK (Figure 5m), although this only persists to a significant level in the Irish Shelf (Figure 5n). DJF NAO is strongly 
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positively correlated to the downward component of thermal radiation for most shelf regions west of the UK and for the 

Norwegian Trench (NT), and this persists for 3 months in some regions (English Channel) (Figure 5i-l). 

We now consider the surface forcings we think are likely to be important for shelf salinity (Figure 6). The DJF NAO is 

strongly correlated with the DJF 10 m wind magnitude across the domain, and this persists into the third month (March-

May) for the southern and central North Sea (Figure 6i-l). The correlation between winter (DJF) NAO acts in opposite ways 5 

for winter (DJF) mean sea level and for total precipitation. The DJF mean sea-level pressure (total precipitation) is 

negatively (positively) correlated with DJF NAO in the northern regions and positively (negatively) correlated in the 

southern regions. These correlations persist for a few months in some regions (Figure 6a-d, e-h). River systems can give 

additional predictability by continuing to respond after the forcing, or can reduce predictability by having such long response 

times that they act as a low-pass filter. The river runoff forcings are highly correlated with the DJF NAO in the Norwegian 10 

Trench (Figure 6m-p), and this persists until the following summer (July-September, not shown). The runoff in regions 

influenced by northern British and Irish rivers (e.g. Irish Shelf) is also positively correlated with the NAO and shows 

persistence beyond the winter season. The regions including much of the European coast (Armorican Shelf, English 

Channel, southern North Sea) show little correlation of runoff with the NAO, perhaps reflecting the larger catchments not 

having time to respond to the NAO, and their more southerly location. 15 

Having shown the correlations of the NAO with the important surface forcings, we now look directly at the relationship 

between the observed DJF NAO and the shelf response (Figure 7). We find a significant positive correlation between the 

winter NAO and the winter SST in the most southern and eastern shelf regions (Figure 7a). In most of these regions, the 

significance of these correlation persists for one month (Figure 7b), and in the English Channel and southern North Sea a 

second month (February-April (FMA) SST, Figure 7c). The NBT correlations also show significant correlations with the 20 

NAO and having memory in some regions. The DJF NAO is also significantly correlated with the regional mean DJF SSS in 

the Skagerrak/Kattegat, which persists until FMA (Figure 7e-h).  

The above results suggest that knowledge of the NAO index could provide some skill for important variables, at modest lead 

times of 1-2 months, even if the DJF NAO is only determined from observations (at the end of the December-February 

period). Because the GloSea5 system has skill in predicting the DJF NAO index from the previous November (Scaife et al. 25 

2014), it is possible that the lead time could be increased by using the predicted rather than the observed NAO index. In 

Figure 8 we examine correlations for the same predicted NWS variables as in Figure 7, but this time using the DJF NAO 

index predicted from the ensemble mean of the GloSea5 forecast run the preceding November. Unsurprisingly the 

correlations are generally lower than for the observed NAO index, and many are not statistically significant at the 95 % 

level. However, the correlations are largely of the same sign and pattern as for the observed NAO index, and remain 30 

significant. This suggests that a prototype seasonal forecast based on the GloSea5 NAO may be possible. For SST and NBT, 

there are regions with exhibit persisted significant correlations (e.g. English Channel) which is promising. The correlation 

patterns for SSS are however, quite different to those from the observed NAO. There is a general negative correlation across 

the shelf that gets stronger with an increasing lag. The persistence in the NAO-SSS correlation reflects the longer term nature 
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of salinity anomalies. The difference in the SSS correlation patterns between the observed and GloSea5 NAO perhaps act as 

an error estimate to this approach, suggesting caution and further assessment is needed before relying on an empirical 

seasonal forecast for SSS. Overall, the results with the GloSea5 NAO suggest that real relationships exist between the 

forecast NAO and the observed NWS fields, and that further improvements in the seasonal NAO forecast would deliver 

higher levels of forecast skill and/or regional detail. 5 

The correlations between the NAO and the shelf response describe how strong a linear relationship exists between the two. 

Where there is significant skill (a significant correlation) this linear relationship can be used to predict shelf response from 

the NAO. Here we show an example for one of the stronger NAO/shelf response correlations: English Channel SST. We 

have forecast the temperature based on both the observed NAO and GloSea5 forecast, and plotted this against the modelled 

temperature in Figure 9 (both have been normalised) with zero lag and the following 4 monthly lagged seasons (forecasting 10 

JFM, FMA etc. based on the DJF NAO). We also include the time series of the observed and GloSea5 DJF NAO for 

comparison. This figure shows how an NAO based seasonal forecast based on the relationships discussed in this paper would 

look.  

While our example has focused on a region and variable with a relatively high correlation, the English Channel winter SST 

may have a direct application. For example, European Sea Bass (Dicentrarchus labrax) spawn between the southern North 15 

Sea and the Celtic Sea, in February-April within the 9 °C isotherm – this region expands in warmer years (Beraud et al. 

2017). Sea bass is a high value fish that is exploited by commercial fisheries (ICES 2012) and is an important species for 

recreational anglers. The English Channel SST forecast for JFM (Figure 9) would be directly applicable to Sea Bass 

spawning. Furthermore, as the GloSea5 based forecasts also have skill, these forecast may be made in November (when the 

GloSea5 DJF NAO forecasts are made), and so provide January – February forecasts as early as November, such results 20 

could be used to inform precautionary management when needed.  

Developing a range of empirical forecasts is a possible way of producing NWS seasonal-forecasts, especially if based on 

predictable climatic indices such as the NAO. Investigating the relationships between the climatic drivers and the shelf 

response within NWS climate control simulation (i.e. using a multi-century global climate model run with fixed climate 

forcings, to drive a multi-century NWS simulation (Tinker et al. in preparation)) may allow much subtler relationships to be 25 

established than is possible with the relatively short modern observed period. However, there will always be limits to what is 

possible with empirical forecasts. 

3.4. Question 4: What are the prospects for improving NWS seasonal forecasts? 

With the maturity of seasonal forecasting systems, and shelf seas dynamic downscaling systems, it will not be long before 

seasonal forecast systems for the NWS, based on dynamical downscaling is technically possible. We can start to explore 30 

whether such a system could have skill using the CMEMS reanalysis. For a dynamically downscaled seasonal forecast to 

work, the NWS variability should be strongly related to aspects of the boundary conditions. If there is only a weak 

relationship between the boundary and the interior of the shelf, any year-to-year variability modelled by GloSea5 will not 
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manifest in the NWS. The NWS is considered to be quasi-isolated from the North Atlantic (Wakelin et al. 2009), however, it 

is a broad continental shelf sea and so interaction with the atmosphere is important. We now investigate the relationships 

between the state of the NWS in the CMEMS reanalysis and the boundary conditions that forced it, to see how much of the 

NWS variability is driven by the large-scale drivers, and how much is internally generated.  

To do this, we consider the inter-annual correlations between the CO5 NWS reanalysis surface and open ocean boundary 5 

forcings and the NWS temperature and salinity in the regions defined in Figure 1 (see Figure 10). Our interpretation of the 

correlations must be informed by physical insight, recognising that correlation does not imply causation. We examine 

processes influencing temperature and salinity separately, since temperature is likely to be strongly influenced by surface 

heat exchange, whereas advective processes may play a stronger role for salinity due to a lack of direct feedback from 

surface salinity onto the atmosphere.  10 

NWS surface temperatures are significantly correlated with temperatures at the open ocean boundaries of most of the domain 

(the northern boundary west of 10° W being the exception;  example shown in Figure 10a, b); however, this is likely to be 

due to common surface forcings acting on the open ocean and shelf seas temperatures. Shelf SST is strongly correlated with 

surface air temperature as expected with the use of CORE bulk formulae. This is very homogenous across the shelf, so that 

the annual mean surface air temperature over the central North Sea is significantly correlated with the SST in all shelf 15 

regions (Figure 10g). This is also true of the humidity (Q2, Figure 10h) and the downward component of the thermal 

radiation (STRD, Figure 10i). The incoming solar radiation (SSRD) has smaller spatial scales, consistent with the synoptic 

spatial scale of the atmosphere (Figure 10m-o): in the annual mean, there is a positive correlation between incoming solar 

radiation in an example region (Northern North Sea) and the SST in the same region (Figure 10m), however the correlations 

reduce with distance from the region. There is also a strong seasonal cycle in the incoming solar radiation correlations 20 

(Figure 10n, o) with strong positive correlation when comparing summer incoming solar radiation and SST (clear sunny 

summer days imply strong solar heating) and (insignificant) negative correlation in the winter (clear sunny winter days are 

associated with strong long-wave night time cooling). The use of the CORE bulk formulae forcings preclude the 

investigation of the net radiative fluxes, as the outgoing radiation is calculated by the ocean model rather than being 

prescribed. Overall, variability in SST appears to be linked to large-scale drivers (which may be predictable), with some 25 

contribution from less-predictable synoptic scale variability at the regional scale. 

The salinity on the NWS is primarily a balance between salty water entering the shelf from the North Atlantic, and its 

modification due to water exchanges with the atmosphere (e.g. precipitation) and dilution from rivers (and exchange with the 

Baltic, which is not considered in this study).  This leads to some intuitive relationships: the saltier the Atlantic is, the saltier 

the NWS; the greater the river flow and rainfall into the NWS, the fresher the NWS is. This can be considered the direct 30 

mechanism that controls salinity. An important secondary mechanism is the rate at which the NWS water is exchanged with 

the Atlantic, which we consider later.  

The salinity in the regions of the CO5 NWS reanalysis domain off the shelf is strongly correlated with the salinity of the 

boundaries. For example the salinity in the north-western oceanic part of the domain is strongly correlated with the salinity 
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boundary forcings along the northern edge of the domain (e.g. Northern Boundary - Surface_Central is correlated with SSS 

in Figure 10d), and this penetrates onto the shelf in the Shetland shelf region. The salinity of the large south-western oceanic 

region is positively (though not significantly) correlated with the surface salinity of the southern boundary (Southern 

Boundary - Surface_East), but there is a suggestion that the influence of boundary forcing is advected onto the shelf through 

the Armorican Shelf, Celtic Sea, English Channel and into the southern and central North Sea due to significant correlations 5 

(Figure 10c). Note exemplar ocean boundary conditions in Figure 10a-d are not necessarily the strongest correlations 

between the shelf and the ocean boundary conditions, but provide a nice pair of opposing regions to highlight the north/south 

temperature/salinity differences in correlations. The lack of significance in the correlations between the SW oceanic region 

and the southern boundary salinity may reflect this large region blurring out a smaller correlated area (i.e. the tightly defined 

European slope current flowing northwards from the boundary towards the NWS).  10 

Runoff from large rivers tends to be (negatively) correlated with salinity across the shelf (e.g. the European rivers that flow 

into the southern North Seas region; Figure 10e), while runoff into regions that only include smaller (e.g. UK and Irish) 

rivers tends to have only local effects (such as the rivers flowing in to the Irish Sea; Figure 10f). 

The salinity across the shelf is significantly negatively correlated with total precipitation in the south of the domain (Figure 

10p), but not with precipitation in the north of the domain (Figure 10j), which is insignificantly positively correlated. 15 

Conversely, strong wind magnitudes (UV10) in the north of the domain are correlated with salinity across the domain 

(Figure 10l), but wind magnitude in the south of the domain is not (Figure 10r). Mean Sea Level Pressure (MSLP) in the 

south of the domain is positively correlated with salinity across the shelf (Figure 10q), but northern mean sea-level pressure 

is not (Figure 10k). These patterns suggest that the NWS salinity is responding to a large-scale driver (rather than simply 

local rainfall/river flow) such as varying exchange with the Atlantic. The meteorological relationship between these surface 20 

forcings (low mean sea-level pressure, high wind and rain) suggests stormy conditions, and the North/South correlation 

patterns of mean sea-level pressure, wind magnitude and total precipitation suggest storm track latitude may be important. 

When we compare these variables against the winter storm track latitude (Figure 11), we find that a more northern storm 

track location does correlate negatively (positively) with mean sea-level pressure (wind magnitude and total precipitation) in 

the north of the domain, and the opposite in the south. We find that these correlations tend to reduce strength through the 25 

seasons being highest in winter (DJF) and reducing through to the spring (MAM). This suggests that the index of storm track 

latitude is important for these variables. 

We find that shelf salinity is (insignificantly) positively correlated with a more northerly storm track, particularly in the Irish 

and Shetland Shelf, and the northern and central North Sea, and there is a suggestion of a lag in the correlation as you move 

towards the North Sea. One possible mechanism that could explain these correlations is the rate of exchange of water with 30 

the Atlantic. 

Exchange of water between the NWS and the Atlantic tends to dominate the mean salinity of the North Sea (Sündermann 

and Pohlmann 2011). One of the main pathways of water into the North Sea is via the Fair Isle Current (Sheehan et al. 

2017), fed by the European Slope Current. Both the Fair Isle Current and the European Slope Current have been shown to 
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correlate with the NAO (Winther and Johannessen 2006; Marsh et al. 2017; Sheehan et al. 2017). This positive correlation 

means more (relatively) high salinity is advected onto the NWS under NAO positive condition, which would tend to increase 

the NWS salinity. We do not explicitly look at the European Slope Current in this study, but understanding its predictability 

could provide an important mechanism for NWS salinity predictability. 

Because the strength of the inflow of North Atlantic water onto the shelf (the indirect mechanism affecting the year-to-year 5 

shelf salinity) and the direct mechanism (dilution from rivers and precipitation) are both correlated to NAO, but in an 

opposing manner, it is possible more information (than is contained within the simple NAO index) is needed to predict NWS 

salinity variability. Such a balance of opposing mechanisms may explain the relatively low NAO SSS correlations (Figure 7 

i-l) despite the main drivers of salinity being correlated to NAO. This provides an example where dynamic downscaling may 

improve the predictability over an empirical NAO-based forecast.  10 

The spatial patterns in the relationships in Figure 10 show that (some of) the variability on the NWS is strongly coupled to 

the large-scale boundary conditions – this is consistent with the established view that the NWS is a boundary driven system 

(with the caveat that we are using a non-eddy permitting model for the NWS). Hence the overall concept of (empirical or 

dynamic) down-scaling based on large-scale boundary drivers that may be predictable by a global seasonal forecast system is 

plausible. This suggests that the key area for scientific effort is to evaluate and improve the predictability of the NWS 15 

boundary drivers as produced by GloSea5, rather than needing a heavy investment in ensembles of the regional model. 

Overall, we conclude that much of the year-to-year NWS variability is relatively tightly linked to the variability in the 

boundary conditions, which is a prerequisite for dynamic downscaling. We note that in some cases, there may be a balance 

of opposing mechanisms that may require more information that is encapsulated in the simple NAO Index - this may provide 

a pathway for additional predictability from dynamic downscaling when compared to empirical downscaling. Furthermore, 20 

much of the temperature and salinity variability on the NWS is linked to large scale climate variations (including river 

outflow which integrates rainfall over a large area) rather than to more local effects (such as the direct effect of rainfall on 

the synoptic scale). This increases the prospect of useful seasonal predictions since global seasonal forecast systems are 

beginning to show significant skill in predicting large scale climate indices. 

4. Conclusions and Prospects 25 

Our preliminary investigation shows that despite the useful skill that GloSea5 has in predicting certain large scale climate 

indices, its output cannot be used directly for shelf seas seasonal forecasts because of limited resolution, missing shelf sea 

processes and simplified treatment of river runoff. However, we have shown evidence that many aspects of inter-annual 

variability on the NWS are driven by large scale variations in elements of the atmospheric, oceanic and riverine forcings that 

are closely linked to the winter NAO index, for which there is considerable predictive skill at a lead time of several months. 30 

Indeed Figure 7 shows that a simple empirical downscaling approach driven by the forecast NAO index can provide 

significant skill in some variables/regions at a lead time of several months. 
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Further improvements to the reliability of the NAO forecast that are in principle achievable (e.g. Eade et al. 2014) would be 

expected to lead to further improvements in the forecasts for NWS regions.  

Based on our results we can make a preliminary assessment of the three possible forecasting methods identified in the 

introduction: 

A. Read off the NWS marine variables directly from the underlying climate model. This is not feasible with current 5 

generation seasonal forecast systems. Over the coming 5-10 years it is expected that such systems will move to 

higher ocean resolution, and may incorporate tidal processes and improved coupling with river hydrology (e.g. Holt 

et al. 2016). Hence this approach may become feasible in time, although the resolution of global climate models 

will remain coarse compared with what is achievable through regional models. 

B. Empirical downscaling. Our results show that a significant level of skill can be achieved for a limited set of 10 

variables at a few months’ lead time. The very limited availability of long observed time-series on the NWS means 

that the empirical climate response functions will often need to be developed using reanalyses. While our evaluation 

of the CO5 NWS reanalysis has shown encouraging evidence of its ability to capture inter-annual variability, 

regional seas reanalyses remain in a relatively early stage of development and evaluation.   

C. Dynamical downscaling. Our analysis of boundary drivers of NWS variability shows that in some cases there is not 15 

a high correlation of the key drivers with the winter NAO index. There could be more information in potentially 

predictable drivers than is contained in the simple NAO index. For example, we have shown evidence that the shelf 

salinity is affected by two opposing mechanisms associated with NAO, with the dominance of each mechanism 

being controlled by a different factor. This suggests that two different years with the same NAO index may have 

anomalously high or low salinity (driven by the NAO) on the NWS depending on something not captured by the 20 

NAO Index – in such a case there is potential for improved predictability from dynamical downscaling. The 

strongly boundary forced nature of the NWS circulation suggests that the downscaling step may be fairly tightly 

constrained by the boundary conditions. This would imply that uncertainties due to, for example, the initial 

conditions of the NWS may be small, allowing the available computing time to be concentrated in getting the most 

reliable possible predictions of the boundary conditions from the global seasonal forecast system, rather than 25 

requiring large ensembles of the shelf model. Demonstrating a dynamically downscaled forecast is beyond the 

scope of the current paper but is planned for a future study.  

Even the limited level of predictive skill we have shown here for some regions of the NWS may be useful for certain 

applications, e.g. SST forecasts for February-April may give early indications of increased risk of harmful algal blooms, and 

predictions of near bottom temperature and its impacts on the gas supply network may inform more resilient energy planning. 30 

Further developments will be needed to deliver a seasonal prediction system for the NWS with sufficient skill and reliability 

to inform user planning decisions over a wide range of applications. Specific research priorities are: 

 Assess user value for cases where we already have demonstrated some skill, and establish what skill/reliability 

would be needed to provide actionable forecast information in various sectors 
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 In-depth assessment of regional reanalyses as a tool to develop empirical downscaling relationships 

 Assess potential added value of dynamical downscaling, initially through case studies 

 Identify the largest sources of uncertainty in downscaled predictions (e.g. seasonal forecast fields for specific 

drivers, downscaling model), to inform where to focus development effort 

 Assess predictability in seasons other than winter. To date seasonal forecasting systems have shown less skill in the 5 

summer, but this is an active research area (e.g. Hall et al. 2017). It may also be possible to demonstrate some 

degree of memory in the shelf seas themselves, which would add to forecast lead times.  

Many challenges remain before we can derive seasonal forecasts for the NWS that are accurate and reliable for a wide range 

of regions and variables. It is likely that some variables will prove to be inherently unpredictable to any useful degree. But 

the early results presented here show that current seasonal forecast systems can already provide meaningful information with 10 

the potential for applications in marine operations and planning. As our understanding and capability develops, a close 

interaction between climate scientists, marine scientists and end users will be needed to bring the added value of seasonal 

forecast information into decision making in marine policy, planning and operations. 
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10. Figures 

 

Figure 1 a) CO5 NWS reanalysis domain with analysis regions in bold grey, numbered as: 01 Southern North Sea; 02 Central 

North Sea; 03 Northern North Sea; 04 English Channel; 05 Skagerrak/Kattegat; 06 Norwegian Trench; 07 Shetland Shelf; 08 Irish 

Shelf; 09 Irish Sea; 10 Celtic Sea; 11 Armorican Shelf; 12 NE Atlantic (S); 13 NE Atlantic (N). b-d) Region mask used for the 5 

oceanic lateral boundary condition: b) The Northern Boundary is divided at 10° W and 2.5° E, and at 30 m and 500 m (below 500 

m the boundary is not separated by longitude); c) The Western Boundary is separated at 30 m and 500 m, and at 52.5° N and 58° 

N. Mediterranean Intermediate Water is identified between 500 m and 1500 m south of 45° N, and this is separated. d) The 

Southern Boundary is divided at 30 m, 500 m and 1500 m. Above 500 m, the boundary is separated at 12° W.  
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Figure 2 a) 20-year mean seasonal cycle of stratified extent for CO5 NWS reanalysis (black) and GloSea5 (blue). b) 20-year mean 

stratification map (for May, where (SST – NBT) = 0.5 °C). Grey and red denote regions where both models agree that there is a 

mixed and stratified water column respectively. Black and Blue denote regions where the CO5 NWS reanalysis and GloSea5 5 

disagree – black being where NWS considers the water column to be mixed, while GloSea5 considers it to be mixed, and blue being 

the opposite.  
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Figure 3 Time series of observed (ferry samples) southern North Sea salinity (red) compared to CO5 NWS reanalysis (black) and 

GloSea5 (blue) data, with 2 year running mean. 
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Figure 4 Observed WCO E1 observed (black) temperature (surface: SST; and 30 m: T(30m)) and salinity (surface: SSS) compared 

to CO5 NWS reanalysis (blue), showing the mean seasonal cycle and inter-annual timersieres (including both winter and summer 

observations). The nearest CO5 NWS reanalysis gridbox to the WCO site is used, without horizontal or vertical interpolation. 

 5 

 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-1
Manuscript under review for journal Ocean Sci.
Discussion started: 22 January 2018
c© Author(s) 2018. CC BY 4.0 License.



30 

 

 

Figure 5 Correlation maps between winter (DJF) NAO and atmospheric surface fields associated with shelf temperature (Surface 

Air Temperature (SAT; a-d), humidity (Q2; e-h), Downwards component of the Thermal Radiation at the surface (STRD; i-l) and 

Downwards component of the Short-wave (Solar) Radiation (SSRD; m-p), upper to lower rows respectively). The left hand panels 

denote zero-lag (a, e, i, m), correlating the winter (DJF) NAO with the winter (DJF) surface forcing. The following columns denote 5 

1, 2 and 3 month lags, correlating the winter (DJF) NAO against the JFM (Jan-Mar; b, f, j, n), FMA (Feb-Apr; c, g, k, o), MAM 

(Mar-May; d, h, l, p) surface forcing respectively. The correlation values are given for the shelf, and for regions where the 

correlation is significant. 
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Figure 6 As Figure 5, but for atmospheric surface fields associated with SSS variability: Mean Sea Level Pressure (MSLP; a-d), 

Total Precipitation (TP; e-h), wind magnitude (UV10; i-l) and river outflow (m-p). 
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Figure 7 As Figure 5, but for the shelf response itself: SST (a-d), NBT (e-h), SSS (i-l) and SAT (surface air temperature; m-p). 
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Figure 8 As with Figure 7, but using the GloSea5 forecast DJF NAO: SST (a-d), NBT (e-h), SSS (i-l) and SAT (surface air 

temperature; m-p). 
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Figure 9 Exemplar regional seasonal forecast of English Channel SST (selected for the strength of the correlations): The seasonal 

forecasts is based on the linear relationship between the reanalysis SST, and the observed NAO (blue, left column: a, c, e, g, i) and 

GloSea5 Forecast NAO (red, second column, b, d, f, h, j). Each forecast (coloured line) is based on the DJF NAO, with each row 

showing the consequtive month (first column: DJF forecast; a, b; second row: JFM forecast; c, d… fith row: AMJ forecast; i, j). 5 

For each panel, the black line represents the NWS reanalysis SST, which is the same for both the obsevered and GloSea5 NAO 

plots for that row. The coloured line represents the DJF NAO based forecast – while the amplitude of this varies with lag, the 

pattern is based on the same DJF NAO, and so the pattern remains the same for each column of a given row. Both modelled and 

forecast line have been normalised (removing the mean and dividing by the standard deviation) – this does not affect the strenght 

or significance of the correlation. The lowest panel (k) shows the time series of the observed (blue) and GloSea5 forecast DJF NAO 10 

(red). 
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Figure 10 Correlation maps between time-series (annual mean unless stated otherwise) of model forcings and shelf response. 

Insignificant correlations are not given. The individual panels relate the shelf response to the forcing: a) SST and oceanic 

temperature at the south of the domain (Southern Boundary - Surface_East); b) SST and oceanic temperature at the north of the 

domain (Northern Boundary - Surface_Central); c) SSS and oceanic salinity at the south of the domain (Southern Boundary - 5 

Surface_East); d) SSS and oceanic salinity at the north of the domain (Northern Boundary - Surface_Central); e) SSS and river 

outflow into the southern North Sea; f) SSS and river outflow into the Irish Sea; g) SST and Surface Air Temperature in the 

central North Sea; h) SST and humidity (Q2) in the central North Sea; i) SST and Surface Thermal Radiation (Downwards) in the 

central North Sea; j) SSS and Total Precipitation in the Shetland Shelf region; k) SSS and Mean Sea Level Pressure in the 

Shetland Shelf region; l) SSS and wind magnitude (UV10) in the Shetland Shelf region; m) SST and Surface Solar Radiation 10 

(Downwards) in the northern North Sea; n) winter (DJF) SST and winter (DJF) Surface Solar Radiation (Downwards) in the 

northern North Sea; o) summer (JJA) SST and summer (JJA) Surface Solar Radiation (Downwards) in the northern North Sea; 

p) SSS and Total Precipitation in the southern North Sea; q) SSS and Mean Sea Level Pressure in the southern North Sea; r) SSS 

and wind magnitude (UV10) in the southern North Sea. The correlation maps given are not necessarily the strongest correlations, 

but have been selected to illustrate the observed patterns consistently.  15 
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Figure 11 Correlations between winter (DJF) storm track latitude, and Annual mean, winter, spring and summer (left to right, 

autumn omitted as correlations weaken with time from winter) mean sea level pressure (MSLP; a-d), wind magnitude (UV10; e-h), 

precipitation (TP; i-l) and surface salinity (SSS; m-p). 
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