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Abstract. Tide-gauge (TG) records are affected by Vertical Land Motion (VLM), causing them to observe relative instead of

geocentric sea level. VLM can be estimated from Global Navigation Satellite System (GNSS) time series, but only a few TGs

are equipped with a GNSS receiver. Hence, (multiple) neighouring GNSS stations can be used to estimate VLM at the TG.

This study compares eight approaches to estimate VLM trends at 570 TG stations using GNSS, by taking into account all

GNSS trends with an uncertainty smaller than 1 mm yr−1 within 50 km. The range between the methods is comparable with5

the formal uncertainties of the GNSS trends. Taking the median of the surrounding GNSS trends shows the best agreement

with differenced altimetry - tide gauge (ALT-TG) trends. An attempt is also made to improve VLM trends from ALT-TG time

series. Only using highly correlated along-track altimetry and TG time series, reduces the standard deviation of ALT-TG time

series up to 10%. As a result, there are spatially coherent changes in the trends, but the reduction in the RMS of differences

between ALT-TG and GNSS trends is insignificant. However, setting correlation thresholds also acts like a filter to remove10

problematic TG time series. This results in sets of ALT-TG VLM trends at 344-663 TG locations, depending on the correlation

threshold. Compared to other studies, we decrease the RMS of differences between GNSS and ALT-TG trends (from 1.47

to 1.22 mm yr−1), while we increase the number of locations (from 109 to 155), Depending on the methods the mean of

differences between ALT-TG and GNSS trends varies between 0.1-0.2 mm yr−1. We reduce the mean of differences by taking

into account the effect of elastic deformation due to present-day mass redistribution. At varying ALT-TG correlation thresholds,15

we provide new sets of trends for 759 to 939 different TG stations. If both GNSS and ALT-TG trend estimates are available, we

recommend to use the GNSS trend estimates, because residual ocean signals might correlate over long distances. However, if

large discrepancies (> 3 mm yr−1) between both methods are present, local VLM differences between the TG and the GNSS

station are likely the culprit and therefore is is better to take the ALT-TG trend estimate. Especially GNSS estimates where

only a single GNSS station and no ALT-TG estimate is available, might still require some inspection before they are used in20

sea level studies.

1 Introduction

Tide Gauges (TGs) measure local relative sea level, which means that they are affected by geocentric sea level, but also by

Vertical Land Motion (VLM). Knowing VLM at TGs is essential to convert the observed sea level into a geocentric reference
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frame, in which among others satellite altimeters operate. TGs used in sea level reconstructions also require a correction for

VLM. The mean of VLM at TGs is not equal to that of the basin, and therefore local VLM estimates are required to get an

accurate estimate of ocean volume change. The models for large scale VLM processes, such as Glacial Isostatic Adjustment

(GIA) and the elastic response of the Earth due to present-day mass redistribution, are becoming more accurate. TGs are often

only corrected for the GIA signal, which typically reaches values of 10 mm yr−1 in Canada and Scandinavia (Gutenberg et5

al., 1941). The elastic deformation due to present-day mass redistribution is often ignored. However, elastic deformation is

becoming larger due to the increasing rate of Greenland’s ice mass loss, and to a lesser extent other processes. Trends at TGs

are also affected by a large number of other local signals, including water storage, postseismic deformation and anthropogenic

activities (Hamlington et al., 2016; Wöppelmann and Marcos, 2016). Since the local VLM processes cannot be captured by

models, and the large-scale processes contain large uncertainties, observations of VLM at TGs are essential.10

One method to estimate VLM at TGs uses geodetic Global Positioning System (GPS) receivers at fixed stations or Doppler

Orbitography and Radiopositioning Integrated by Satellite (DORIS) observations. Since many other navigation satellites are

currently providing range estimates as well, we will refer to the GPS stations as Global Navigation Satellite System (GNSS)

stations. Most studies compute GNSS VLM at TG stations from one of the datasets by University of La Rochelle (ULR)

(Wöppelmann et al., 2007; Pfeffer and Allemand, 2016; Wöppelmann et al., 2014; Wöppelmann and Marcos, 2016). Even15

though ULR contains several GNSS solution inland, its main focus is the coastal zone. Currently, 754 GNSS stations are

processed in the ULR6 database. A more extensive database with approximately 14000 GNSS is processed by the Nevada

Geodetic Laboratory (NGL). They use a different processing procedure to estimate trends from time series, which makes

trends less vulnerable to jumps (Blewitt et al., 2016). A statistical comparison between several GNSS solutions was recently

made by Santamaría-Gómez et al. (2017). They concluded that the number of stations in the NGL database was larger, but that20

the differences between neighbouring stations was significantly larger than the Jet Propulsion Laboratory (JPL) and ULR6 trend

estimates. They also discussed systematic errors due to differences in the origin of the reference frames, which were in the order

of 0.2 mm yr−1 globally. Furthermore, they found that the local VLM uncertainty at tide gauge was increased by 4 × 10−3 mm

yr−1 per kilometer distance between the TG and the GNSS station (Santamaría-Gómez et al., 2017). Most studies use the trends

of either co-located GNSS stations or the closest GNSS station or the mean of all GNSS stations within a radius of several25

tens of kilometers (Santamaría-Gómez et al., 2014; Pfeffer and Allemand, 2016). Only Hamlington et al. (2016) involved

a more complex GNSS post-processing procedure using NGL trends, based on a combination of spatial filtering, Delaunay

triangulation and median weighting. One way to quantify the accuracy of GNSS-based VLM trends at TGs is to compute the

spread of individual geocentric sea level estimates or the spread of geocentric sea level between regions (Wöppelmann and

Marcos, 2016). The spread of regional trends reduced from 0.9 mm yr−1 in the ULR1 solution (Wöppelmann et al., 2007) to30

0.5 mm yr−1 in the ULR5 solution (Santamaría-Gómez et al., 2012; Wöppelmann et al., 2014), which is approximately the

expected residual climatic signal. Any further improvements in the GNSS trends require therefore another validation technique.

A second way to observe VLM at TGs, to overcome the limitations of sparsely distributed GNSS network, is differencing

satellite altimetry and TG time series, which we will refer to as ALT-TG time series from here on. Initially, the ALT-TG

time series were used to monitor the stability of satellite altimeters for the Global Mean Sea Level (GMSL) record, which is35
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currently gauranteed up to 0.4 mm yr−1 (Mitchum, 1998, 2000). The first study to infer VLM trends from ALT-TG time series

was Cazenave et al. (1999). Based on the method of Mitchum (1998) they compared ALT-TG to DORIS at six stations. Later,

several studies were conducted on regional and global scale of which an overview is given by Ostanciaux et al. (2012). The

first study to estimate more than 100 VLM trends (Nerem and Mitchum, 2002) obtained error bars for 60 of 114 TGs smaller

than 2 mm yr−1. However, they noted that the TGs should be inspected on a case-by-case basis to determine if the result was5

truly VLM. Ostanciaux et al. (2012) increased the number of ALT-TG VLM trend estimates sixfold to 641, but it included

some outliers with trends above 20 mm yr−1. They also made a comparison between their study and several earlier studies.

The best agreement was found over a small set of 28 tide gauges, where the results of Ostanciaux et al. (2012) differed from

(Ray et al., 2010) by an RMS of 1.2 mm yr−1.

Recently, several studies have compared the GNSS trends to those of ALT-TG globally (Santamaría-Gómez et al., 2014;10

Wöppelmann and Marcos, 2016; Pfeffer and Allemand, 2016). Several other studies did an equivalent comparison with DORIS

and ALT-TG for a limited number of stations (Cazenave et al., 1999; Nerem and Mitchum, 2002; Ray et al., 2010). While the

older studies primarily used along-track data from the Jason (TOPEX/POSEIDON (TP), Jason-1 (J1) and Jason-2 (J2)) series

of satellite altimeters, the latest studies used preprocessed grids and Wöppelmann and Marcos (2016) made a comparison

between several gridded products and one along-track dataset. All recent studies used ULR5 GNSS trends for comparison.15

The best results were obtained with an interpolated altimetry grid provided by AVISO (Pujol et al., 2016), yielding a median

of differences of 0.25 mm yr−1 with an RMS of 1.47 mm yr−1 based on a comparison at 107 locations (Wöppelmann and

Marcos, 2016). It is important to note that the time series for all sites were visually inspected, primarily to remove those

with non-linear behaviour. Additonally, the corresponding correlation between altimetry and TG time series were found to be

highest for AVISO. Pfeffer and Allemand (2016) did not apply visual inspection and obtained a comparable result for 11320

stations (an RMS of 1.7 mm yr−1), while only incorporating GNSS trends from stations within 10 km from the tide gauge.

This study aims to further reduce the discrepancies between GNSS and ALT-TG trends, while increasing the number of trend

pairs. To do this, we will apply several steps to improve the VLM estimates at tide gauges. First of all, the number of reliable

trend estimates are increased by using the GNSS trends from the larger NGL database. Most TGs will neighbour multiple GNSS

stations for which several methods are applied to determine the best procedure. Correlations between altimetry and TG time25

series are exploited to reduce residual ocean variability, which is often present in ALT-TG time series (Vinogradov and Ponte,

2011). The reduction in ocean variability should lead to more reliable ALT-TG VLM trends. Correlation thresholds additionally

function as a filter, to remove time series that are uncorrelated due to differences in ocean signals, possible (undocumented)

jumps in the TG time series, or interannual VLM signals that cannot be separated from the ocean signal (Santamaría-Gómez et

al., 2014). Additionally, we address the problem of contemporary mass redistribution on trends over different time spans using30

a fingerprinting method.
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2 Data and Methods

In this section, we describe the processing procedures for deriving GNSS and ALT-TG VLM trends for comparison at TG loca-

tions. First, we will address the estimation of GNSS trends at the TG locations. The estimation of ALT-TG differenced trends is

discussed in several steps. We briefly discuss the selection of the tide gauges. After that we will discuss the altimetry processing

procedures. We briefly review the Hector software (Bos et al., 2013) for the estimation of trends from differenced ALT-TG time5

series. Eventually, trend corrections for contemporary mass redistribution using fingerprinting methods are described.

2.1 GNSS trends

The trend estimation at tide gauges primarily deals with two problems. First, a trend is estimated from a GNSS time series,

which contains an autocorrelated noise signal, and often undocumented jumps. We use pre-computed trends, of which the

procedure is briefly reviewed in Sect. 2.1.1. Second, many GNSS stations are not directly co-located to the TG station. Regular10

leveling campaigns, to monitor the relative VLM between the TG and the GNSS stations, after often absent. Therefore, the

assumption is made that both locations are affected by the same VLM signal. When multiple GNSS receivers are present in the

vicinity of the tide gauge, a method is required to estimate a single VLM trend from multiple GNSS stations. This is discussed

in Sect. 2.1.2.

2.1.1 GNSS trend estimation15

To obtain VLM trends at TGs, often the products of the Université de La Rochelle (ULR) are used. ULR versions 5 and 6 make

use of the Create and Analyze Time Series (CATS) software (Williams, 2008), which is able to estimate trends and errors from

time series, taking into account temporally correlated noise. It has the advantage that it computes a more realistic trend uncer-

tainty. The software is also able to estimate and detect discontinuities that occur due to earthquakes and equipment changes.

Even though a large proportion of the trend estimates have formal accuracies better than 1 mm/yr, undetected discontinuities20

might bias the estimated trends (Gazeaux et al., 2013).

In this study the results of NGL (Blewitt et al., 2016) are used. Blewitt et al. (2016) proposed the Median Interannual

Difference Adjusted for Skewness (MIDAS) approach, which is based on the Theil-Sen estimator. The procedure estimates

trends from couples of daily data points separated by 365 days. It then removes all estimates outside two standard deviations,

which are computed by scaling the Median of Absolute Devations (MAD) by 1.4826 (Wilcox, 2005), with respect to the25

median of the trend couples. Afterwards, a new median is computed, which serves as the trend estimate. Blewitt et al. (2016)

demonstrated that MIDAS has a smaller equivalent step detection size than methods which included step detection, such as

those computed by CATS and used by ULR5. Besides the advantage of detecting smaller jumps, approximately 14000 GNSS

time series are processed, which is almost 20 times more than ULR6. Unlike Wöppelmann and Marcos (2016), no manual

screening is applied to the time series or trends.30
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2.1.2 Trend estimation at tide gauges

Despite several recommendations to co-locate GNSS receivers with TGs, currently only a few have a record that ensures a

trend uncertainty of 1 mm yr−1 or better. Therefore we take all stations into account that are within 50 km from a TG, provided

that the standard deviation on the trend is lower than 1 mm yr−1 as estimated from the MIDAS algorithm. The threshold on

the standard deviation ensures that most records containing large non-linear effects, due to for example earthquakes and water5

storage changes, are removed from the analysis. Other studies used ranges from 10 km (Pfeffer and Allemand, 2016) up to 100

km (Hamlington et al., 2016). At 100 km the error due relative VLM trends increases substantially, on average with more than

0.5 mm yr−1 (Santamaría-Gómez et al., 2017) for the NGL estimates, while taking a range of 10 km reduces the number of

trends substantially. Therefore the range is set to 50 km, but comparable results are found for 30 and 70 km yielding a different

number of trends (not shown).10

Most studies simply average all neighbouring TG trends or take the trend from the closest station. However, many other

and possibly better, techniques are possible. We compare trends from several approaches in Sect. 3.1 and with the ALT-TG

trends in Sect. 3.3. In total eight different approaches are considered. The first two involve all of the trends at neighbouring

GNSS stations by computing their mean [1] and median [2]. Method [1] is among others applied by (Frederikse et al., 2016)

for regional sea level reconstructions. One of the most frequently applied approach uses the trend at the closest station [3]. It15

is used in two recent studies by Santamaría-Gómez et al. (2012) and Pfeffer and Allemand (2016). We also investigate inverse

distance weighting [4] in which the trend dhTG

dt is estimated as:

dhTG
dt

=

∑
1
di
dhi

dt∑
1
di

, (1)

where di and dhi

dt respresent the distance to the tide gauge station and the trend at GNSS station i. We also use the GNSS trends

based on the longest time series [5] and smallest error [6] from stations within the 50 km radius. The seventh approach involves20

weighting with the variances σ2
i of the trends [7], such that:

dhTG
dt

=

∑
1
σ2
i

dhi

dt∑
1
σ2
i

. (2)

And the last method [8] takes into account spatial dependency and trend uncertainty by combining methods [4] and [7], i.e. by

weighting with the variance and with the distance, so that:

dhTG
dt

=

∑
1

σ2
i di

dhi

dt∑
1

σ2
i di

(3)25

Method [8] is a variant to the technique used in the altimeter calibration study of Watson et al. (2015). Note that the uncertainties

range mostly between 0.7-1 mm yr−1 and therefore method [8] is more sensitive to the distance from the TG than to the variance

of the GNSS trends. The distance weights used in methods [4] and [8] quickly decrease with distance, effectively reducing the

number of GNSS trends involved in the estimate. In several studies the method to estimate VLM trends at tide gauges from

GNSS is not documented.30
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2.2 Tide gauge time series

Monthly TG data are obtained from the PSMSL database (Holgate et al., 2013). All time series flagged after 1993 are removed.

Any observations that are outside of 1 meter from the mean are considered outliers and removed from the data. This number is

similar to our altimetry sea level threshold and based on the criterion used by NOAA for their global mean sea level estimates

(Masters et al., 2012). To be consistent with the altimetry observations, we apply a Dynamic Atmosphere Correction (DAC)5

consisting of a low-frequency inverse barometer correction and short-term wind and pressure effects Carrère and Lyard (2003).

Initially, we consider all TGs with at least 10 years of valid data.

2.3 Differenced ALT-TG time series

Wöppelmann and Marcos (2016) obtained the smallest standard deviation in the differenced time series by averaging grid cells

within 1 degree from the TG using the AVISO interpolated product. The results obtained by taking the most correlated grid10

point from AVISO within 4 degrees around the TG increased the standard deviation. Wöppelmann and Marcos (2016) obtained

lower correlations by averaging Goddard Space Flight Center (GSFC) along-track altimetry measurements within a radius of

1 degree from the TG. Note that the AVISO grid is constructed using correlation radii of 50-300 km (Ducet et al., 2000) and

it includes measurements from all altimetry satellites, not only the Jason series. The AVISO grid therefore effectively averages

over a much larger radius around the TG and it includes data from more satellites. The larger uncorrelated noise using GSFC15

compared to AVISO, as shown by the combination of the increased RMS and the spectral index (Wöppelmann and Marcos,

2016), is therefore likely an effect of the limited number of GSFC altimetry measurements. However, using the large effective

radius of AVISO, data far away from the TG are included, which might not correlate with the sea level signal at the TG. This

can result in a remaining ocean signal in ALT-TG time series, which contaminates the VLM trend estimates.

Table 1. List of geophysical corrections and orbits applied in this study.

Satellite T/P Jason-1&2

Orbits CCI GDR-E

Ionosphere Smoothed dual-frequency

Wet troposphere Radiometer

Dry troposphere ECMWF

Ocean tide GOT4.10

Loading tide GOT4.10

Solid Earth tide Cartwright

Sea state bias CLS

Mean sea surface DTU15

Dynamic atmosphere MOG2D
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To overcome the limitations of gridded products, we work with along-track data and exploit the correlations between sea

level at the satellite measurement location and at the TG on interannual and decadal scales by using a low-pass filter. We start

by creating sea level time series every 6.2 km along-track using the measurements from TP, J1 and J2 from the RADS database

(Scharroo et al., 2012) between 1993-2015. In order to get a consistent set of altimetry observations, the same geophysical

correction are used for all satellites, as are given in Table 1. All time series within 250 km from the TG are taken into account.5

This radius is larger than the open ocean correlation distances used by Ducet et al. (2000) and Roemmich and Gilson (2009),

except for the equatorial region where the correlation scales become much larger. At distances larger than 250 km, one will still

find some highly correlated signals, but the trends caused by large scale processes like GIA and present-day mass redistribution

will differ from that at the TGs. It also ensures that at least one ground track of the altimeters is within the range of the tide

gauge at the equator. Reducing the 250 km radius leads to a decreased number of trends.10

Additionally, intermission biases between TP-J1 and J1-J2 are removed. Ablain et al. (2015) revealed a large dependence

of the intermission biases on the latitude. For the J1-J2 differences, a single polynomial is estimated through the differences

between the sea level observations of both instrument, such that the correction ∆hsla,ib(λ) becomes:

∆hsla,ib(λ) = c0 + c1 ·λ+ c2 ·λ2 + c3 ·λ3 + c4 ·λ4, (4)

with λ the latitude of the altimetry observations. For the TP-J1 differences, separate polynomials are estimated for four latitude15

regions and the ascending/descending tracks (Ablain et al., 2015). The values for the parameters cn are given in Table 6. More

details on the computation procedure are found in Appendix A.

The Jason satellite series samples sea level every ten days, hence we average monthly 3-4 measurements in order to make

a first set of time series that is compatible with the monthly TG observations. As for the case of the TG monthly solutions,

observations more than 1 m from the mean sea surface are removed and the time series should have at least 10 years of valid20

observations. Additionally, a second set of time series at each satellite measurement location is created, by applying a yearly

moving-average filter. This second set of altimetry time series is correlated with a yearly low-pass filtered version of the TG

series, in order to test whether their signals match on interannual and longer time scales. The yearly moving-average filter

allows to suppress the noise present in individual altimetry measurements. The full pole tide from RADS (which contains a

solid Earth, loading and ocean tide as in Desai et al. (2015)) is subtracted from both time series before correlation, whereas for25

the TG time series we restore the solid Earth pole tide as computed in Desai et al. (2015). The loading tide is at its maximum

only a few millimeters, which has no significant effect on the interannual correlation, and is therefore not restored. We also

remove residual annual and semi-annual cycles and a linear trend before correlation, because the yearly moving-average filter

has side-lobes causing these seasonal signals to be partly retained. Other longer filters are considered to reduce the side lobes,

but they would introduce larger transient zones. An iterative procedure removes sea surface heights outside of 3 RMS up to30

a maximum of 10 % of the observations. The outlier removal is primarily implemented to remove any spurious data present

in the RADS database. It is unlikely that more than 10 % of the observations contain processing problems or outliers due to

extreme events. If more observations would be discarded, high correlations might not represent corresponding ocean signal
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anymore. The result is a set of correlations that indicate which altimetry sea level time series resemble the TG time series on

interannual time scales and longer.

The monthly low-pass filtered altimetry time series are kept, if the corresponding correlation from yearly low-pass filtered

time series are above a certain threshold. We combine the remaining monthly altimetry time series, to get one averaged altimetry

time series per TG. Alternatively, we also use the correlations as weights, to get one correlation-weighted altimetry time series5

per tide gauge. In this case the monthly low-pass filtered time series are weighted by their corresponding correlation, then

added together and accordingly normalized, so that the weights sum up to one. The resulting time series are subtracted from

the TG time series if there are at least ten altimetry time series with a correlation above the threshold. The resulting differenced

ALT-TG time series with less than 15 years of valid observations are further discarded. This last requirement is due to the fact

that remaining ocean signals can still affect the estimated trends significantly. An example of the reduction of variability due10

to correlation thresholds and weighting is shown in Fig. 1. The white noise in the unfiltered time series is reduced in the red

curve, however the opposite might happen if the number of altimetry time series decreases. Most important is to note that there

is a strong reduction in the variance of temporally correlated residuals, represented here by the low-pass filtered time series.

Correlated residual signal can strongly affect the estimated trend, especially in areas with large variability due to interannual

event like ENSO. Note that for the differentiation of the time series only the solid Earth part of the pole tide is added to the15

TGs, but this time as is done in the IERS2010 conventions (Petit and Luzum, 2010), such that the trends are consistent with

those of the GNSS data. The main difference is that the altimetry pole tide correction of Desai et al. (2015) is computed

with respect to linearly drifting mean pole, while in the IERS conventions the mean pole location is modelled as a third order

polynomial. If the pole tide is not taken into account consistently, it can introduce biases of 0.1 mm yr−1 (Santamaría-Gómez

et al., 2017). Since the change rate of the mean pole is non-linear, this will introduce trend biases if the time spans between20

GNSS and altimetry do not match. The drift of the mean pole is caused by redistribution of mass in the Earth system. This is

corrected for using the mass-redistribution fingerprints discussed in Sect. 2.5, which are computed using a model that includes

elastic responses and rotation changes. The drifting mean pole is primarily captured by the C21 and S21 spherical harmonic

coefficients (Wahr et al., 2015).

2.4 Differenced ALT-TG trends25

The ALT-TG time series have a monthly resolution, so they contain less observations, and they exhibit substantial interannual

variability. These time series are therefore less suitable to be processed with the MIDAS algorithm used to compute GNSS

trends. For the computation of the ALT-TG trends and the corresponding standard deviation, we fit a power-law in combination

with a white noise model by using the Hector software (Bos et al., 2013). The spectrum of the white noise is flat, while the

spectrum of power-law noise, P (f), decays with frequency and is given by (Bos et al., 2013):30

P (f) =
1

f2s

σ2

(2sin(πf/fs))2d
, (5)

where fs is the sampling frequency, σ the power-law noise scaling factor and d links to the spectral index κ in Wöppelmann

and Marcos (2016) by κ= −2d. The value of d affects the effective number of autoregressive parameters (Bos et al., 2013).
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Figure 1. Time series of ALT-TG differenced VLM at Winter Harbour. After averaging or weighting with the correlation a moving-average

filter is applied to visualize the remaining interannual variability. In blue: without a threshold on the correlation and without correlation

weighting. In red: with a threshold of 0.7 for the correlation and with correlation weighting. In the background the time series without the

moving-average filter applied.

This is required to capture the temporal correlation in the ALT-TG time series as shown by Fig. 2 in which the low-pass filtered

time series give an idea of the memory in the system. In order to handle several weakly non-stationary ALT-TG time series we

use the function ’PowerlawApprox’, which uses a Toeplitz approximation for power-law noise (Bos et al., 2013).

−4 −2 0 2 4

Figure 2. VLM (mm/yr) at TGs using the median of the neighbouring trends.

2.5 Contemporary mass redistribution

The trends estimated from GNSS time series are computed over different time spans than the ALT-TG trends and will be5

affected by non-linear VLM induced by elastic deformation due to present-day ice melt and changes in land hydrology stor-

age (Riva et al., 2017). To quantify those non-linear VLM signals, the response to mass redistribution is computed using a
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fingerprinting method at yearly resolution. We take into account the loads of Greenland, Antarctica and glacier mass loss, the

effects of dam retention and hydrological loads. A detailed description of the input loads is given in (Frederikse et al., 2016).

To estimate the fingerprints of VLM, the sea level equation is solved, including the rotational feedback (Farrell and Clark,

1976; Milne and Mitrovica, 1998). Since not all load information for 2015 and 2016 is available yet, we will limit the time

series of ALT-TG up to 2015. Some GNSS trends are estimated from time series that span beyond 2015. Therefore we linearly5

extrapolate the fingerprint data, if necessary, to 2015 and 2016 based on the difference between years 2013 and 2014.

0 1 2 3 4 5

Figure 3. Range (mm/yr) of VLM estimates at TGs using eight different approaches. The size of the symbols indicates the number of GNSS

trends available (with a maximum of ten).

3 Results

This section first addresses the trends obtained from GNSS stations. The averaging methods are discussed and the NGL trends

are compared to those of ULR5. Then the results of the correlation-weighted ALT-TG trends are discussed. These are compared

to those from Wöppelmann and Marcos (2016). After that, the GNSS and ALT-TG trends are compared and optimal settings10

are discussed. For the comparison we take into account that both trends are not computed from time series covering the same

period by correcting for non-linear VLM trends estimated from fingerprints.

3.1 Direct GNSS trends

For 570 TGs at least one GNSS station is found within a 50 km radius with an uncertainty on the trend that is below 1 mm

yr−1. The VLM for these TGs is shown in Fig. 2 using the median of the surrounding GNSS stations in case there are multiple15

trends available. The signature of GIA dominates the signal on large scales, and is primarily visible in Scandinavia and Canada.
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Table 2. Statistics of trend differences between NGL and ULR5 at 70 stations for the eight approaches.

RMS Mean Median

Approach Keyword mm yr−1 mm yr−1 mm yr−1

1 mean 1.11 0.07 0.05

2 median 1.05 0.12 0.03

3 closest 1.36 0.02 0.02

4 dist. weight. 1.21 0.00 0.03

5 longest 1.29 0.32 0.20

6 smallest error 1.15 0.24 0.17

7 error weight. 1.11 0.08 0.02

8 dist./error weight. 1.23 0.01 0.05

Table 3. Number of TGs at which trends are estimated from differenced ALT-TG time series. The ’-1.0’ indicates no correlation threshold is

set.

Threshold Number of TGs

-1.0 663

0.0 660

0.1 658

0.2 655

0.3 638

0.4 602

0.5 549

0.6 470

0.7 344

In Alaska there might be a significant contribution of present-day ice mass loss. If GIA is removed the VLM signals typically

range between -3 and 3 mm yr−1 (Wöppelmann and Marcos, 2016), with a few exceptions.

Even though the large-scale GIA process appears to be captured properly, regional VLM has a large effect on the GNSS

trends. In Fig. 3 the differences between the lowest and highest VLM estimate from the eight methods discussed in Sect. 2.1.2

are shown. The extreme values primarily resulted from the ’mean’, ’median’ and ’inverse distance’ methods (not shown). The5

figure shows that the range is generally higher, where more GNSS trends are available. In particular the seismically active

zones like the US West Coast show a larger range. The range of solutions, when considering all TGs with at least two GNSS

trends, has a mean of 0.92 mm yr−1 with 25 and 75 percentiles of 0.38 and 1.20 mm yr−1. In case at least three available

GNSS trends are considered, the mean of the differences rises to 1.09 mm yr−1 and the 25 and 75 percentiles to 0.56 and

1.34 mm yr−1. Since we only considered GNSS trends with a maximum standard deviation of 1 mm yr−1, this implies that10

a significant contribution of kilometer-scale VLM variations is present along the West Coast of the US, where the difference
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between methods is often larger than 1 mm yr−1. Note that the range of individual GNSS trends is on average even larger than

the range between methods. Santamaría-Gómez et al. (2017) estimated the global numbers for the impact of spatial variations

in VLM at 30 km and 100 km separation to be 0.2 mm yr−1 and 0.5 mm yr−1. At coasts of Europe and North America, where

most tide gauges are located, these numbers are substantially larger, i.e. even the range between methods is on average larger

than 1 mm yr−1. The differences between methods is often comparable in size as the VLM signal, especially after the GIA is5

removed.

Wöppelmann and Marcos (2016) show that a comparison between their ALT-TG trends and their GNSS trends yields an

RMS of 1.47 mm yr−1. They use visual inspection to remove tide gauges where clear non-linear effects or discontinuities were

present. In Table 2 a comparison is made between the eight different approaches and the GNSS trends of Wöppelmann and

Marcos (2016) that were used in the aforementioned comparison with ALT-TG trends at 70 locations. The values show that10

a substantial fraction of the RMS between GNSS and ALT-TG trends can already be explained by different GNSS averaging

and processing methods. Using the closest station (approach 3) an RMS of 1.36 mm yr−1, which is comparable in magnitude

to the RMS between GNSS and ALT-TG trends found by Wöppelmann and Marcos (2016). Note that we remove all NGL

GNSS trends with an uncertainty larger than 1 mm yr−1 and therefore co-located stations are sometimes removed. The closest

GNSS station in our selection is therefore not always the same as the one used by Wöppelmann and Marcos (2016). The15

best comparison is found with the median (approach 2), even though the RMS of differences is still above 1 mm yr−1. Since

the closest station method depends on a single station, there is larger chance some outliers are present, which substantially

increases the RMS of differences. For the closest station method three trend differences larger than 3 mm yr−1 are found,

whereas only one is found for the median method.

3.2 Differenced ALT-TG trends20

Using correlation thresholds, we try to minimize the residual ocean signal in ALT-TG time series Additionally, it will filter

problematic stations, where no correlation between TG and altimetry observations is found. A higher threshold reduces there-

fore the number of ALT-TG trends. Table 3 shows the reduction of the differenced VLM trends, when the correlation threshold

increases. After a correlation threshold of 0.4, the number of observations drops substantially. At a threshold of 0.7, the number

of TGs for which a trend is computed, is only half of that without a threshold. The remaining trends are generally more reliable,25

because of two reasons: VLM time series that exhibit relatively large residual ocean signals are removed; and secondly, TG

time series that contain large jumps due to unidentified reasons (e.g. earthquakes or equipment changes) are removed.

In order to show that the method decreases the oceanic signal, we compare the standard deviation reduction by using corre-

lation thresholds and weighting (Fig. 4). The plot in the top panel shows the comparison between the standard deviation of the

differenced time series using no correlation threshold and the time series using a threshold of 0.7 together with a correlation30

weighting. The mean reduction in standard deviation is 3.9 mm, whereas the mean standard deviation is 37 mm. The change

in standard deviations at several locations are coherent, which is expected because the sea level fluctuations along continen-

tal slopes are coherent (Hughes and Meridith, 2006). Substantial reductions in standard deviation are apparent at both North

American coasts, in Japan and in Northern Europe. Vinogradov and Ponte (2011) had already observed large discrepancies in
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A: No correlation threshold vs weighted correlation threshold 0.7

−15 −10 −5 0 5 10 15

B: Unweighted correlation threshold 0.0 vs weighted correlation threshold 0.0

−15 −10 −5 0 5 10 15

Figure 4. Change in standard deviation (mm) of the differenced time series using correlation thresholds and weighting. Note that a correlation

threshold of 0.0 indicates positive correlations only.

interannual ocean signals between TGs and altimetry in North America and in Japan. It suggests that our technique is capable

to reduce these ocean signals. This is confirmed by the change in the median of the spectral indices, κ, as discussed in Sect.

2.4. The median of the spectral indices changes from -0.63 to -0.57, which indicates that the autocorrelation in the residuals

decreased. The Winter Harbour (Canada) VLM time series (Fig. 1) shows a typical example in which especially the correlated
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Figure 5. Time series of ALT-TG differenced VLM at the Llandudno (UK) TG. A moving-average filter is applied to visualize the interannual

variability. In blue: with a threshold of 0.0 for the correlation, but without correlation weighting. In red: with a threshold of 0.0 for the

correlation and with correlation weighting. In the background the time series without a moving-average filter applied.

noise is reduced. However, there are several locations where the standard deviation increases substantially. Most of them are

sporadic, but in a few locations, like in the UK and France there is coherent increase.

Similar patterns of standard deviation decrease, albeit reduced in magnitude, are observed for the not-weighted against

weighted VLM time series with a correlation threshold of 0.0 (bottom of Fig. 4), i.e. when only positively correlated altimetry

time series are taken into account. Instead of 344 VLM trends, as for the comparison discussed above, 660 trends are compared.5

The mean reduction of the standard deviation is 1.4 mm, whereas the mean standard deviation is 38 mm. Remarkable is the

strong reduction of the standard deviation at the southeast side of Australia. In the UK and France an increase in standard

deviation is present again. In most cases an increase in white noise, likely due to the decreased effective number of altimetry

measurements, is responsible for the higher standard deviation, as demonstrated in Fig. 5 for a VLM time series at Llandudno,

UK. In most cases of an increasing standard deviation, the correlated ocean signals are still reduced or remain approximately10

equal.

Fig. 6 shows the VLM trends estimated from the ALT-TG time series using no correlation threshold and a threshold of

0.7. A comparison of Fig. 2 and Fig. 6 reveals that especially the Indian Ocean and the southern Pacific Ocean are sampled

better using ALT-TG instead of GNSS trends. If the correlation threshold is set to 0.7, the number of trend estimates decreases,

which has particularly an impact on the number of trend estimates at TGs in South America and Africa. Hence, for regional15

reconstructions, a careful choice should be made for the correlation threshold.

Compared with the GNSS trends, the neighbouring ALTG-TG trends show more variation, which is especially true for the

UK and Japan. It is difficult to say whether this is a true VLM signal, but it is important to note that many GNSS stations

are placed on bedrock, which exhibits more stable trends than the coastal locations of tide gauges. Secondly, the GNSS trends

with an uncertainty larger than 1 mm yr−1 are removed, which reduces the variability. Of the 663 ALT-TG trends, 293 (44 %)20

have a trend uncertainty smaller than 1 mm yr−1. Therefore larger spatial trend variability can also be induced by remaining

ocean signals in the VLM time series. In the Fig. 6B, showing the 0.7 threshold trends, the number of trends is reduced due

to the correlation threshold. It removes most tide gauges in the highly variable regions mentioned before and the neighbouring

14



A: No correlation threshold

−4 −2 0 2 4

B: Correlation threshold 0.7

−4 −2 0 2 4

C: Differences between A and B

−1.0 −0.5 0.0 0.5 1.0

Figure 6. ALT-TG trends (mm yr−1) estimated using no threshold (A), with a correlation threshold and correlation weighting (B) and the

difference between them (C).
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Figure 7. RMS (mm/yr) of differences between GNSS and ALT-TG VLM trends. The ’W’ indicates weighting by correlation. The ’-1.0’

indicates no correlation threshold is set. The numbers of the y-axis refer to the approaches used to combine the GNSS trends as described in

Sect. 2.1.2.

differences are therefore less erratic. 284 out of 344 trends (83 %) have a trend uncertainty smaller than 1 mm yr−1 using the

0.7 correlation threshold.

The results of applying correlation weighting and thresholding are shown Fig. 6C. Two spots of coherent changes in the

trends can be clearly identified: in Norway the trends increased by approximately 1 mm yr−1, while in the East Coast of the

United States the opposite happens. These spots exhibit longshore coherent sea level signals that are not found in the open ocean5

(Calafat et al., 2013; Andres et al., 2013). Note that both locations also exhibit a strong reduction in standard devation (Fig. 4).

Coherent changes are also present around Denmark. Other regions, where substantial reductions in the standard deviation are

found, do not experience coherent changes in trends.

3.3 GNSS vs ALT-TG trends

In this section the VLM trends from GNSS using the eight approaches as described in Sect. 2.1.2 are compared with the differ-10

enced ALT-TG VLM trends using various correlation thresholds. Based on the intercomparison we determine the best solution

for the GNSS approach and the correlation thresholds for altimetry. Additionally, a comparison is made with Wöppelmann and

Marcos (2016). We also investigate the effect of present-day mass redistribution on the difference in trends due to varying time

spans of the GNSS and the ALT-TG methods.

Fig. 7 shows the RMS of trends differences between various GNSS combination methods and correlation thresholds for15

ALT-TG. The RMS of trend differences is computed at 155 TG stations for which all solutions are available. The colors exhibit

small differences horizontally and large differences vertically, indicating that the GNSS method is more important in reducing

the RMS. The difference between the method with the lowest RMS of differences, which is obtained by taking the median of

the GNSS trends (2), and the method with the highest RMS, which uses the closest GNSS station (3), is approximately 0.12
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Table 4. Statistics of the differences between the median of the GNSS trends (approach 2) and the ALT-TG trends for various correlation

thresholds. The ’W’ indicates that the altimetry time series are weighted by the correlation. The row ’W&M’ shows the comparison with

Wöppelmann and Marcos (2016) trends. The column ’NoT’ indicates the number TGs for which trend estimates are computed. On the left

side of the table all stations are taken into account, on the right side only stations are taken into account for which a solution exist for all

correlations thresholds (and including those from W&M).

All Same

Correlation RMS Mean Median NoT RMS Mean Median NoT

mm yr−1 mm yr−1 mm yr−1 mm yr−1 mm yr−1 mm yr−1

-1.0 2.141 -0.241 -0.107 294 1.234 -0.167 -0.099 137

0.0 2.108 -0.248 -0.101 294 1.226 -0.175 -0.068 137

0.0W 2.103 -0.250 -0.036 294 1.219 -0.172 -0.056 137

0.1 2.113 -0.258 -0.096 293 1.219 -0.174 -0.074 137

0.1W 2.108 -0.260 -0.043 292 1.218 -0.170 -0.045 137

0.2 2.082 -0.233 -0.073 292 1.217 -0.163 -0.074 137

0.2W 2.080 -0.234 -0.015 292 1.216 -0.168 -0.042 137

0.3 1.986 -0.152 0.047 283 1.221 -0.157 -0.066 137

0.3W 1.991 -0.157 0.056 283 1.217 -0.165 -0.044 137

0.4 1.695 -0.106 0.065 264 1.223 -0.152 -0.050 137

0.4W 1.696 -0.112 0.071 264 1.218 -0.158 -0.041 137

0.5 1.554 -0.086 0.044 239 1.220 -0.153 -0.058 137

0.5W 1.552 -0.087 0.056 239 1.217 -0.155 -0.067 137

0.6 1.417 -0.093 -0.065 204 1.209 -0.155 -0.087 137

0.6W 1.416 -0.093 -0.083 204 1.208 -0.156 -0.094 137

0.7 1.220 -0.142 -0.123 155 1.206 -0.140 -0.060 137

0.7W 1.220 -0.144 -0.124 155 1.206 -0.142 -0.074 137

W&M 1.658 -0.177 -0.050 211 1.328 -0.101 0.020 137

mm yr−1. Hamlington et al. (2016) computed VLM trends at TG locations by using a complex filtering procedure that also

implicitly takes into account the median of the GNSS trends. Next to taking the median of the GNSS trends, taking the mean

(1) within the 50 km radius and using variance weighting (7) also yield substantially lower RMS differences than the other five

methods. However, the median method performs slightly better. Besides, the median method is less sensitive to large values

caused by GNSS trends with larger uncertainties (for which the mean method is sensitive) and also less to outliers caused by5

large local VLM differences (for which the variance weighting method is sensitive).

In Table 4 we analyze the results for different correlation thresholds in more detail by comparing them to the GNSS trends

based on the median method. On the left side of the table the RMS, mean and median are shown for all VLM estimates

available for each correlation threshold. Setting no correlation thresholds yields trend estimates at 294 TGs for comparison,
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Figure 8. Histogram of GNSS and ALT-TG trend differences. In blue the results without any correlation threshold and in red with a correlation

threshold of 0.7 and correlation weighting.

while setting a threshold at 0.7 leaves only 155. While the number of trends decreases, the RMS decreases as well, indicating

that the correlation thresholds can serve as a selection procedure, which filters out outliers. This is confirmed by Fig. 8, in

which we see the decrease of the number of available trends, but also the removal of the outliers. If the threshold is set to 0.7

only three discrepancies in trends of larger than 3 mm yr−1 are found. Note that the reduction in RMS is not only caused by

the removal of problematic ALT-TG time series. Large earthquakes for example might induces jumps or non-linear behaviour5

in both the TG and GNSS time series, so the larger range in Fig. 8 for no correlation threshold may be partly attributed to

problematic GNSS trends. In the last row the Wöppelmann and Marcos (2016) trends are compared with our GNSS trends.

It has a similar RMS with the 0.4-0.5 correlation threshold trends, but it is computed with a substantially smaller number of

trends.

On the right side of the table, we only included TGs for which all solutions are available, which reduces the number from10

155 to 137, because W&M trends are also considered for comparison. The RMS of differences for 155 stations is only slightly

larger as will be shown below in Table 5. Note that the RMS of the residuals using ALT-TG from W&M, is already 0.14 mm

yr−1 lower than those in the study of Wöppelmann and Marcos (2016) and about 0.4 mm yr−1 less than in Pfeffer and Allemand

(2016), who incorporated only 109 and 113 stations, respectively. This is a consequence of the combined use of the median of

the NGL trends and the selection based on correlation. Our altimetry solutions further decrease the RMS by another 0.1 mm15

yr−1 compared to W&M, even when no threshold on the correlation is set. In the study of Wöppelmann and Marcos (2016),

the along-track altimetry ALT-TG trends performed worse than the AVISO results. The reason for this discrepancy could be

the latitudinal intermission bias, or the small radius around the TG used in that study for including altimetry measurements.

Increasing the correlation threshold only slightly reduces the RMS between GNSS and ALT-TG trends and the additional

weighting has a neglectable effect on the RMS. As mentioned before, the threshold increase and correlation weighting generally20

reduced the standard deviation (Fig. 4) of the ALT-TG time series and Fig. 6 showed coherent changes in trend. Additionally,
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Figure 9. Trend differences (mm yr−1) between the GNSS and ALT-TG time spans induced by non-linear VLM due to present-day mass

redistribution.

the NGL and ULR trends showed an RMS of differences and range between the GNSS approaches of more than a millimeter.

We argue that the absence of a clear improvement or a change in RMS due to correlation thresholds is a result of the relatively

large noise in the GNSS trends. The histogram in Fig. 8 shows that for 155 stations, only three discrepancies are larger than

3 mm yr−1. For these TGs (located at Galveston (US), Eureka (US) and the Cocos Islands (Australia)) we find that the

neighbouring GNSS stations are located at the other side of lagoons or on different islands. Therefore the likely cause for the5

largest discrepancies is not the ALT-TG trend, but local VLM differences between the GNSS stations and the TG.

The third column of Table 4 shows that the mean is in all cases negative, i.e. the GNSS trends are larger than those of

ALT-TG. Trends obtained with correlations -1.0, 0.0, 0.1 and 0.2 are barely statistically different from zero based on a 95%

confidence level, while the others are not. The 95 % confidence level is taken as two times the standard deviation of the mean

of the residual trends ( σn√
N

, where N is the number of trends and σn the standard deviation of the residual trends). In the right10

’mean’ column for the 137 stations, the means are statistically insignificantly different from zero at the 95%-confidence level,

wheras at a 90%-confidence level several are not. The medians in both columns are closer to zero and deviate up to 0.2 mm

yr−1 from the mean, which indicates a slightly skewed distribution.

There is a non-linear VLM signal due to present-day mass loss in both GNSS and ALT-TG trends and since they cover

different time spans this causes small systematic differences between trends. Due to the inhomogeneous distribution of the15

TGs and the spatial signal of non-linear VLM, this affects not only the mean, but also the skewness of the distribution. In

Fig. 9 the trend differences between the GNSS and ALT-TG methods are visualized for all 294 stations. Most of the negative

differences in trends are observed in Europe and parts of North-America, while positive differences in trends are observed in

Australia. In Europe there is an uplift due to present-day mass loss, which increases over the last few years. Since the GNSS
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Table 5. Statistics of ALT-TG trend differences with the median GNSS approach for various correlation settings after applying a correction

for non-linear VLM.

NoT: 155 NoT: 137

Correlation RMS Mean Median RMS Mean Median

mm yr−1 mm yr−1 mm yr−1 mm yr−1 mm yr−1 mm yr−1

-1.0 1.231 -0.102 -0.039 1.223 -0.100 0.030

0.0 1.225 -0.109 -0.027 1.215 -0.108 0.031

0.0 1.223 -0.106 0.016 1.209 -0.105 0.048

0.1 1.220 -0.107 -0.014 1.208 -0.107 0.034

0.1 1.222 -0.104 0.003 1.208 -0.104 0.072

0.2 1.220 -0.099 0.016 1.207 -0.096 0.027

0.2 1.221 -0.101 -0.001 1.206 -0.101 0.059

0.3 1.223 -0.091 0.011 1.211 -0.090 0.018

0.3 1.221 -0.098 -0.001 1.207 -0.098 0.036

0.4 1.226 -0.087 0.011 1.214 -0.085 0.021

0.4 1.223 -0.092 0.008 1.209 -0.091 0.037

0.5 1.225 -0.088 0.020 1.212 -0.086 0.042

0.5 1.222 -0.090 0.027 1.208 -0.088 0.045

0.6 1.222 -0.087 -0.007 1.202 -0.088 0.018

0.6 1.222 -0.087 -0.006 1.201 -0.089 0.028

0.7 1.220 -0.071 0.021 1.202 -0.073 0.037

0.7 1.219 -0.074 0.012 1.201 -0.075 0.036

time series are generally shorter, they measure a larger uplift signal. By subtracting the present-day VLM that GNSS observes

from altimetry observations, we obtain negative signals in Europe.

We applied a correction for the effect of present-day mass loss to the trends for the 155 stations for which a trend is found

with all methods in Table 5. Similarly, this is done for the 137 stations, so that the results are comparable with Table 4. There

is no significant reduction in RMS. The maximal deviation of the median from zero is 0.06 mm yr−1 for the 155 stations and5

maximally 0.07 mm yr−1 for the 137 stations, which is a reduction with respect to the values listed in Table 4. The mean is

also reduced to approximately -0.1 mm yr−1, which is statistically equal to zero. This result is at the level of the noise in the

determination of the ITRF origin (Santamaría-Gómez et al., 2017) and it is smaller than the 0.4 mm yr−1 to which global mean

sea level trends from altimetry are gauranteed (Mitchum, 2000). Unless it is proven that the altimeters are more stable and the

uncertainties in the ITRF origin are reduced, a mean of trend differences closer to zero cannot be expected.10
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4 Conclusions

We presented new ways to estimate VLM at TGs from GNSS and differenced ALT-TG time series. A comparison is made

between eight different methods to obtain VLM at the TG from NGL GNSS trends. The range of the trends between the

approaches is at the same level as the standard deviations of the GNSS trends, with a mean of 0.92 mm yr−1 and a median of

0.71 mm yr−1. A comparison with the estimates of ULR5 (Wöppelmann and Marcos, 2016) at 70 stations yielded an RMS of5

at least 1.05 mm yr−1. A comparison with ALT-TG showed that using the median of all neighbouring GNSS provided the best

results.

For the ALT-TG trends we used along-track data from the Jason series of altimeters. At every 6 km along-track data were

stacked, to create time series. The time series were low-pass filtered with a moving-average filter of one year and correlated

with low-pass filtered TG time series. An average or weighted monthly time series for altimetry was created taking into account10

only the time series corresponding to correlations above a threshold. The TG time series were subtracted from the average of

monthly low-pass filtered altimetry time series to create a ALT-TG time series. Using the Hector software between 344 and

663 trends were computed from the ALT-TG time series, depending on the correlation threshold set.

The standard deviation of the ALT-TG time series was reduced on average by approximately 10 % when a correlation

threshold of 0.7 was used. Spatially coherent differences in trends between various thresholds are observed at the east coast of15

the US and in Norway. We argue that residual interannual ocean variability in ALT-TG time series can locally induce VLM trend

biases, especially when time series are short. For 155 stations globally distributed, increasing the correlation threshold does not

significantly affect the RMS of differences between GNSS and ALT-TG trends. However, the correlation threshold also works

as a selection procedure. When considering 294 VLM estimates from GNSS and ALT-TG at the same TGs for comparison,

with no threshold the RMS of differences was 2.14 mm yr−1, whereas an RMS of 1.22 mm yr−1 was reached using 15520

stations and a threshold of 0.7. This is a substantial improvement with respect to the 1.47 mm yr−1 RMS of Wöppelmann and

Marcos (2016) at 109 TGs, the best result so far. Note that increasing the threshold considerably reduces the number of time

series in the southern hemisphere and therefore other thresholds might be better depending on the purpose.

The comparison with tide gauges also reveals that the trends from ALT-TG are biased low (similar to Wöppelmann and

Marcos (2016)), even though this is barely significant. Using mass redistribution fingerprints, a correction is applied for trend25

differences caused by non-linear behaviour of present-day mass changes. The RMS of differences is barely affected, but the

mean of differences is changed from about -0.2 to -0.1 mm yr−1, which is now statistically insignificant.

The trends in this publication (median GNSS and ALT-TG for all correlations) are provided in the supplementary material.

The ALT-TG trends are accompanied by errors bars computed using the Hector software. The provided uncertainties for the

GNSS use the MAD from the median of the trends within 50 km scaled by 1.4826 (Wilcox, 2005), similar to the MIDAS30

algorithm. If only a single GNSS station is present, the MIDAS uncertainty is provided. If two GNSS stations are present and

both trends are statistically equal, it takes the square-root of the mean of the GNSS variances to avoid very small error bars.

When no correlation threshold is used 663 ALT-TG and 570 GNSS trends are available at 939 different TGs. By setting the

correlation threshold to 0.7, the number of TGs, for which a trend is estimated, decreases to 759. Depending on the application,
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the value of the threshold can be varied to find an optimum between the reliability and the number of TG for which a trend is

estimated. If both GNSS and ALT-TG trends are available, we recommend to use GNSS trends, because of correlated residual

ocean signals between various ALT-TG time series. However, if a large discrepancy (> 3 mm yr−1) is found between the GNSS

and ALT-TG trends, we recommend to use the ALT-TG trend, because the culprit is likely local VLM differences between the

TG and the GNSS stations. The GNSS - ALT-TG histogram for no correlation threshold reveals large discrepancies between5

the two methods up to 10 mm yr−1. While the problems with ALT-TG trends are mostly resolved by setting a higher threshold,

the GNSS trends might still require some inspection before they are used in sea level studies. A faster practice is to use trend

uncertainties, that carry information about the linearity of the trends, and when the MAD is used as described above, also

information about local VLM variability. However, when only one GNSS station is present the information about local VLM

variations is absent.10

Appendix A: Intermission biases

The latitude-dependent intermission biases are computed from 1/8 degree latitudinally averaged sea surface height differences

between TOPEXPOSEIDON and Jason-1 (TP-J1) and Jason-1 and Jason-2 (J1-J2). For the TP-J1 bias four separate polygons

are estimated for ascending tracks and four for the descending tracks, while for J1-J2 a single polygon is estimated. Depending

on the geophysical corrections and the processing of the altimetry data, not all parameters are statistically different from zero15

based on variances of the residuals. However, to be consistent with the study of Ablain et al. (2015), we maintain the polygons

as such.
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Table 6. Values for the parameters of the latitudinal intermission bias correction. These numbers are added to the sea surface height anomalies

of the respective satellites. TP asc. and TP desc. indicates the function variables that should be added to the ascending and descending tracks

of TOPEX/POSEIDON using Eq. (4), respectively. J2 indicates the function variables to be used for Jason-2.

TP asc. TP desc. Jason-2

Parameter Lat(deg) Value Lat(deg) Value Lat(deg) Value

c0(mm) (-66.2,-1.5) 80.3 (-66.2,-1.5) 77.3 (-66.2,66.2) 98.1

c1(mm deg−1) -2.3·10−1 -1.7·10−1 -9.3·10−2

c2(mm deg−2) -1.1·10−2 1.2·10−3 3.8·10−3

c3(mm deg−3) -3.0·10−4 2.9·10−4 8.4·10−7

c4(mm deg−4) -2.4·10−6 3.8·10−6 -7.6·10−7

c0(mm) (-1.5,0.2) 83.8 (-1.5,1.3) 79.9

c1(mm deg−1) 1.3 2.4

c2(mm deg−2) -1.3 5.2·10−1

c3(mm deg−3) -5.3·10−1

c4(mm deg−4)

c0(mm) (0.2,4) 84.9 (1.3,4) 73.3

c1(mm deg−1) -8.0·10−1 13.7

c2(mm deg−2) -8.6·10−1 -5.1

c3(mm deg−3) 1.5·10−1 4.9·10−1

c4(mm deg−4)

c0(mm) (4,66.2) 72.9 (4,66.2) 75.8

c1(mm deg−1) 8.1·10−1 7.9·10−1

c2(mm deg−2) -2.8·10−2 -3.3·10−2

c3(mm deg−3) 3.4·10−4 6.4·10−4

c4(mm deg−4) -1.1·10−6 3.9·10−6
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