

1 **Monitoring of seasonal variability and movement of suspended**
2 **sediment concentration along Thiruvananthapuram coast, South**
3 **India using Landsat OLI sensor**

4 Bismay Ranjan Tripathy¹, Kaliraj Seenipandi¹, Haroon Sajjad², Pawan Kumar Joshi³, Bhagwan Singh
5 Chaudhary⁴ and Pavan Kumar^{2,*}

6 ¹National Centre for Earth Science Studies, Ministry of Earth Sciences, Govt. of India, Thiruvananthapuram - 695011, India

7 ²Department of Geography Jamia Millia Islamia, New Delhi, India

8 ³School of Environmental Science, Jawaharlal Nehru University, New Delhi, India

9 ⁴Department of Geophysics, Kurukshetra University, Kurukshetra, Haryana, India

10
11 *Correspondence to: Pavan Kumar (pavan.jamia@gmail.com)

12 **Abstract.**

13 Studies on suspended sediment concentration at seasonal scale play a vital role for understanding coastal hydrodynamic
14 processes in an area. Assessment of spatio-temporal changes in suspended sediments along the near offshore has more
15 complexity using conventional method; this issues nowadays can successfully be solved using multi-temporal remotely
16 sensed images with the help of advanced image processing techniques. The present study is an attempt to demonstrate the
17 model algorithm used to extract suspended sediment concentration using Landsat 8 OLI (Operational Land Imager) sensor
18 image. The study has been executed along the near-offshore area of Thiruvananthapuram coast, South India for extraction of
19 suspended sediment and its seasonal variability during pre and post monsoon. The OLI images were pre-processed for
20 obtaining the actual reflectance using FLAASH module of ENVI v5.5 software. The generic model developed here in is
21 designed to compute the spectral reflectance variability between coastal water and suspended sediments and to differentiate
22 the spatial accumulation of suspended sediments concentration from the coastal water at pixel scale. Maximum (0.8 % in
23 near infrared) and minimum (0.6% in blue) spectral reflectance indicates the occurrence of suspended sediments in the
24 coastal water. The model-derived results revealed that the suspended sediment gradually decreased with the increase of depth
25 and distance from the shoreline. Higher sediment concentration was accumulated along lower depth in coastal water due to
26 action of wave and current that circulated sediments seasonally. The higher concentration of suspended sediment load was

27 estimated as 0.92 mg/l within the shallow depth (< 10m) of the coastal water and 0.30 mg/l at the depth of 30 m. Seasonal
28 variability of suspended sediments was observed towards north - south direction during the pre-monsoon; where it
29 significantly moves reversely during post-monsoon. The spatial variability of suspended sediments was indirectly
30 proportional to depth and distance from the shoreline; and directly proportional to wave and littoral current along the
31 offshore. The study proves that the developed model with computational algorithm can be used as an effective tool for
32 estimation of suspended sediment using multi-temporal OLI image; the output may be helpful for coastal zone management
33 and conservation planning and development.

34 **1 Introduction**

35 Suspended loads are generally the portion of sediments, which contain fine sand, silt and clay etc and are carried to the ocean
36 by the action of the fluid. These particles settle in such a way that they certainly do not touché the bed, which is maintained
37 by means of turbulence of flowing water. Therefore, it is necessary to measure and monitor the suspended sediments in the
38 ocean transported by various agents for flood hazard management, water resource planning, climate and ecology studies
39 (Whitelock, *et al.*, 1981; Sinha *et al.*, 2004). Extracting information as suspended sediment concentration (SSC) in coastal
40 waters is very important for assessment and monitoring of coastal settings and their effects on their ecology. A large number
41 of noteworthy researches have been conducted on the spatiotemporal deviation in suspended sediments concentration (SSC)
42 in a system all over the world (Kaliraj and Chandrasekar, 2012). However, monitoring and measurement of such suspended
43 sediments is extremely difficult due to dynamic unit distance and factors acting on it. Consequently, since the last few
44 decades, attention has been paid to the potential of satellite data to measure and monitor the movement of SSC in ocean
45 (Nechad, *et al.* 2010; Ontowirjo, *et al.*, 2013; Rawat *et al.*, 2011; Curran *et al.*, 1988). Remote sensing offers larger aerial
46 view for analyzing water quality and provides a more efficient cost effective method for assessing SSC from the ocean.
47 Geospatial technology has been widely used by many hydrologists, as it has the ability to answer complex, spatial and
48 temporal questions. (Marcus and Fonstad, 2010; Panwar *et al.*, 2017).

50 Presently satellite technology is opted over marine surveys to assess the distribution and movement of suspended sediments
51 because the cost of application is lower than that of site marine survey as it replaces the requirement for a large number of
52 monitoring positions with a single satellite (Byers, 1992). It performs as an influential tool for mapping suspended sediments
53 in the ocean, which has been discharged by a various sources like; river, stream, industries and urban residues. Images taken
54 by optical devices boarded on the satellites and field observation data help in regular monitoring of suspended sediment
55 transportation (Gerald, 1980; Kaliraj and Chandrasekar, 2012). However, it is hindered by two vital difficulties. First,
56 remotely sensed data can detect the suspended sediments in the upper few meters of the water layers. Thus it is necessity to
57 convert it into a depth-integrated load before evaluation for numerical models and field measurements. Second, numerous
58 approaches are dependent on the observed relationship between water-leaving reflectance and SSC analyzed through remote
59 sensing tools. Experimental corrections provide site-specific calculations of water quality parameters with practical accuracy
60 by using field derived reflectance data. Spectral examination of satellite imagery is based on the calculation of reflected
61 electromagnetic solar radiation, which is used to evaluate turbidity and SSC. Depending on reflection and absorption of
62 different wavelengths, unique signature and curves are produced (Islam, *et al.*, 2001; Kaliraj, *et al.*, 2013a; Kaliraj, *et al.*,
63 2013b).

64

65 Remotely sensed data can only provide information in one-two dimensional forms because, it cannot give evidence on the
66 vertical circulation of sediments in water as we get the reflection data from only two-meter surface water (Tassan, 1998).
67 Two/three-dimensional information using remote sensing data is of less value as the data is not vertically averaged. Oceanic
68 survey, on the other hand, can be modelled for three dimensions as it is the average data of vertically through the water
69 column to horizontally across the surface of the water. Thus, a comprehensive series of sample acquisition throughout the
70 water column is essential for assessing the vertical sediment distribution (Katlane, *et al.*, 2013; Warricket *et al.*, 2004).
71 Wavelength between **0.5 and 0.8 micrometer** is used for remote sensing for detecting suspended sediments, which includes
72 the visible, green, red and near infra-red light. Colour and turbidity in the water, affect the energy level (visible, very near
73 ultraviolet and infra-red wavelengths) which is sensed by a camera or scanner. Energy flux decreases with increase in colour
74 (due to absorption of solar energy) and the flux increases with an increase in turbidity (due to reflection of solar energy). As

75 solar energy is reflected but that sensed data cannot be used directly as it contains atmospheric errors, which need to be
76 corrected before its further use (Wang and Lu 2010; Qu, 2014; Yanjiao et al., 2007; Zhang et al., 2003).

77

78 Various scholars have used simple sediment rating curve and support vector regression statistical method to estimate SSC
79 (Kisi 2012, Gao 2008). These methods were limited to a single river or water body and did not take into consideration the
80 effect of particle size distribution and water temperature. Thus, more efficient methods are required to analyze SSC
81 variability. The suspended sediments are generally derived from the discharge of river, shore erosion and weathering of
82 rocky shore that can control the creation of coastal headlands and provide source material to the physical, chemical and
83 biological inputs in the offshore (Whitelock et al., 1981, Kronvang et al., 1997).

84

85 The study attempts to monitor the suspended sediments, using Landsat 8 (OLI) at Thiruvananthapuram district coast; we first
86 corrected atmospheric errors in the data and then converted it into marine reflectance. The specific objectives of the study
87 were to monitor seasonal variation in suspended sediment concentration and to assess movement of suspended sediments
88 during pre and post-monsoon. Suspended fine grain sediments are deposited offshore in deeper water where the bottom is
89 stirred only. The lower part of coast was observed with heavy deposition during the pre-monsoon as the swashing of
90 suspended particles by less energy waves along with the dominant wave direction in this session. Whereas, in the post
91 monsoon the accumulation of the sediments found to be at middle part of the study area as due to the wave and current action
92 at that particularly season.

93

94 **2 Study area**

95 The coastal zone of the Thiruvananthapuram District of Kerala in India covers a stretch of about 72 km extending seaward
96 for 10 km from the coast bound. The geographical extent of the area is between 8°17' N and 8°54' N latitudes and 76°41' E
97 and 77°17' E longitudes (Fig. 1). The coastal stretch is highly dynamic due to the hydrodynamic forces such as waves,
98 currents and tides, etc. It has also undergone changes in near shore bathymetry and landforms. Natural and anthropogenic
99 activities have caused morphological instability in the landform along the coast. Commercial activities, tourist's sites, dense

100 population and thick settlement are characteristic features of major locations of the coastal stretch. Along the coast, human
101 settlements and properties are threatened due to severe coastal erosion. The study area enjoys a sub-tropical climate. It
102 receives average annual rainfall varying between 826 mm and 1456 mm. It experiences mean annual temperature ranging
103 between 23.78 °C and 33.95° C (Meteorological Center, IMD, Thiruvananthapuram (<https://www.imdtvm.gov.in>)).

104
105 <Insert Fig. 1 Location map of study area>

106 **3 Material and methodology**

107 **3.1 Data used**

108 We used OLI data for determining pre-monsoon (March 2017) and post-monsoon (September 2017) suspended sediments.
109 Operation Land Imager gives the multispectral data for visible as well as infrared range. It covers the entire earth in 16 days.
110 The OLI uses the push broom sensor with 115-mile cross-track field of view.

111
112 Digital Bathymetry Model (DBM) was utilized for extracting the bathymetry. Shuttle radar topography mission is a research
113 effort that obtained digital elevation model for generating high-resolution digital topography database for the earth. For
114 extracting the bathymetry, we have used a global relief model which composite model of Digital Bathymetry Model (DBM).
115 SRTM30_PLUS (http://topex.ucsd.edu/WWW_html/srtm30_plus.html) consists of both topography and bathymetry model
116 that provides 30 arc seconds (900 m) resolution data for land as well as for Ocean, which is derived from depth sounding
117 (SONAR) and satellite altimetry. Finally, the wind direction is derived from the portal ERA (European Reanalysis) Interim,
118 provided by ECMWF (European Centre for Medium-Range Weather Forecasts), which is an independent intergovernmental
119 organisation, based on a four-dimensional IFS (Cy31r2) system.

120 **3.2 Conversion of DN to TOA reflectance**

121 Atmospheric correction was done to determine the water-leaving reflectance (ratio of upwelling radiance just above the
122 water surface and the solar down welling irradiance) by eliminating the contribution of surface glint and atmospheric

123 scattering from the estimated total reflectance. The total atmospheric reflectance was estimated as the sum of the molecular
124 reflectance (Rayleigh's reflectance), specular reflection of the sun and the reflectance of aerosol, foam and whitecaps. All
125 these parameters were determined from the metadata and field measurement, using empirical relationship (Gordon and
126 Wang, 1994). Solar radiation is totally absorbed by water in NIR band. Thus, water-leaving radiance can be eliminated to
127 estimate aerosol directly. Hence, medium to relatively high suspended particulate matter (SPM) concentration can better be
128 mapped by using near-infrared and red bands.

129

130 These raw data can be converted to ToA Reflectance from DN (eq. i), using rescaling factors and parameters found in the
131 metadata file (MTL.txt) provided with the data.

132
$$\rho'_t = (M_p)(Q_{cal}) + (A_r) \quad (\text{i})$$

133

134 Where;

135 ρ'_t = TOA planetary reflectance (without solar angle correction)

136 M_p = Band-specific multiplicative rescaling factor

137 A_r =Band-specific additive rescaling factor

138 Q_{cal} = Quantized and calibrated standard product pixel values (DN)

139

140 Next, we have corrected the ρ'_t using eq. ii for the solar angle;

$$\rho_t = \frac{\rho'_t}{\cos(\theta_{SZ})}$$

141 $= \frac{\rho'_t}{\sin(\theta_{SE})} \quad (\text{ii})$

142

143 Where;

144 ρ_t = TOA planetary reflectance

145 θ_{SE} = Local sun elevation angle

146 θ_{SZ} = Local solar zenith angle

147 $\theta_{SZ} = 90^\circ - \theta_{SE}$.

148 **3.3 Molecular/ Rayleigh's reflectance correction**

149 Most Reflectance from air molecules and aerosols must be accurately modeled and removed from the observed signal. At-
150 sensor total reflectance (eq.iii) can be expressed as the following formula.

151

152
$$\rho_{TOA} = \frac{L_1 B_{-Radiance}}{ExtraTerrestrialSunRadiation} \quad (iii)$$

153

154 After the Rayleigh correction, ground surface + aerosol albedo r_{as} can be determined as:

155
$$\rho_{0.5} = [\rho_{TOA} - \rho_R/T_R]/[1 + S_R(\rho_{TOA} - \rho_R/T_R)] \quad (iv)$$

156

157

158 Where;

159 ρ_r = Rayleigh reflectance

160 Extra Terrestrial Sun Radiation = $(\pi)(E_S)(\cos(\theta_S))(d_{sol})\exp [(-m)(\tau_{net})]$

161

$$m = \frac{1}{\cos(\theta_s)} + \frac{1}{\cos(\theta_v)}$$

162 θ_s and θ_v are the angle of solar zenith and sensor zenith respectively

163 d_{sol} is the eccentricity correction factor of the earth' s orbit

164 T_R = Rayleigh atmospheric transmittance

165

$$T_{total} = (T_{yu})(T_{yd}) \exp [(-m)(\tau_{o_2})] \exp [(-m)(\tau_{water vapour})]$$

166 T_{yu} =Rayleigh transmittance for sensor

$$T_{yu} = \frac{2/3 + \cos(\theta_v) + (2/3 - \cos(\theta_v)) \exp [-(\tau_{Raylight})/(\cos (\theta_v)]}{4/3 + \tau_{Raylight}}$$

167 T_{yd} = Rayleigh transmittance for sun

$$T_{yd} = \frac{2/3 + \cos(\theta_s) + (2/3 - \cos(\theta_s)) \exp [-(\tau_{Raylight})/(\cos (\theta_s)]}{4/3 + \tau_{Raylight}}$$

168

Where;

169 $\tau_{Raylight}$ = Rayleigh optical depth

170 τ_{o_2} = Oxygen optical depth

171 τ = Optical depth

172 S_R = Rayleigh spherical albedo

173

$$\begin{aligned} RayPolynomi = & -0.58 + \tau_{Raylight} - 0.25(\tau_{Raylight})^2 \\ & + 0.055(\tau_{Raylight})^3 - 0.0098(\tau_{Raylight})^4 \\ & + 0.0011(\tau_{Raylight})^5 \end{aligned}$$

174

175 Rayleigh reflectance (ρ_r) is calculated below;

$$\begin{aligned} \rho_r &= (\mu_s, \mu_v, \phi_v - \phi_s) \\ &= \rho_{R1}(\mu_s, \mu_v, \phi_v - \phi_s) \\ &+ (1 - \exp [-(\tau)/(\mu_v)]) \end{aligned}$$

176 $* (1 - \exp [-(\tau)/(\mu_v)] \Delta(\tau) \quad (v)$

177

178 Where;

179 μ_s = cos of sun zenith

180 μ_v = cos of sensor zenith

181 ϕ_v = sun azimuth
 182 ϕ_s = sensor azimuth
 183 ρ_{R1} = the single-scattering contribution
 184 τ = Atmospheric optical depth
 185
 186 Sensor spectral response based pre-computed radiative transfer simulations, solar and sensor viewing geometry and ancillary
 187 information were used to estimate most of the components of the above equations. Rayleigh correction was executed by
 188 subtracting the Rayleigh reflectance value from the top of atmosphere reflectance as:
 189
 190
$$\rho_c = \rho_R - \rho_{TOA} \text{ (vi)}$$

191 **3.4 Marine Reflectance Calculation**

192 Aerosol reflectance (ε) over water pixel was derived from the ratio of reflectance in the couple of bands. “ ε ”; the proportion
 193 of multiple-scattering aerosol reflectance was constant over the part. The value of ε was considered as 1 for getting standard
 194 processing in VR and NIR bands (Vanhellemont *et al.*, 2014). A linear relation was established between marine reflectance
 195 and constant aerosol type (ε). Aerosol can be determined through slope of the regression line (Neukermans, *et al.*, 2009) and
 196 the median ratio of Rayleigh corrected reflectance in bands 4 and 5 (ρ_c^4, ρ_c^5). Alpha, “ α ”, the ratio of oceanic reflectance
 197 was determined by using the average resemblance spectrum for the band central wavelengths:
 198

199
$$\alpha = \frac{\rho_w^{(4)}}{\rho_w^{(5)}} = \frac{\bar{\rho}_{wn780}^{(655nm)}}{\bar{\rho}_{wn780}^{(865nm)}} = \frac{4.734}{0.544} = 8.702 \quad \text{(vii)}$$

200
 201 Gamma, “ γ ” is the fraction of diffused atmospheric transmittances in the two bands, which is calculated using the following
 202 equation (eq. viii).
 203

204
$$\gamma = (t_0^{(4)})(t_v^{(4)})/(t_0^{(5)})(t_v^{(5)}) \quad \text{(viii)}$$

205 Then, the oceanic reflectance is calculated using $\rho_w^{(3)}$ and $\rho_w^{(4)}$ as noted eq. ix

206

207

$$\rho_w^{(3)} = \frac{\alpha}{t_0^{(4)} t_v^{(4)}} \left[\frac{\rho_c^{(3)} - \rho_c^{(4)}}{\alpha \gamma - \varepsilon} \right] \quad (\text{ix})$$

208 **3.5 Spectral analysis of the suspended sediments**

209 The reflectance spectrum of an object is a graph of the radiation reflected to the incident wavelength and serves as a unique
210 signature for the particular object. The water curve is characterized by a high absorption at near-infrared wavelength and
211 beyond, whereas maximum reflectance at blue. The spectral curve for SSC is plotted for suspended particles in the ocean at
212 a certain wavelength, after getting marine reflectance and correcting the aerosol from the data.

213 **3.6 Extraction of suspended sediments and its validation**

214 After getting the error free reflectance data, we have proceeded for mapping the movement of suspended sediments during
215 pre-monsoon and post-monsoon seasons. Increment in red reflectance in the turbid water indicates the presence of sediments.
216 We determined suspended solid matter using the single band (**Red band**) algorithm (eq.x) used by Nechad *et al.*, 2010.

217

$$SPM = (A) \left(\frac{\rho_w}{1} \right) - \frac{\rho_w}{c} \quad \text{--- (x)}$$

218 Where;

219 $A = 327.84 \text{ g/m}^3$

220 $C = 0.1708$.

221

222 So in this way we have mapped the solid particles suspended near the shore (within 10 km) and get the idea about
223 transportation of suspended particle along the coast during pre and post monsoon seasons.

224

225 Single band algorithm, which is suitable for the study area, was used as a predictor for assessing the suspended sediments
226 along the coast. The model was validated with samples collected within 5 km along the coast. Root mean square error
227 (RMSE) was calculated (eq. xi) for examining the variation between the field based predicted (\hat{y}) data and satellite based
228 observed (y) data values. The study used the concurrent satellite as well as ground data for better calibration.

229

$$RMSE = \sqrt{\frac{\hat{y} - y}{n}} \quad \text{--- (xi)}$$

230 **4 Results**

231 The sources of suspended sediments are generally from the discharge of river, shore erosion and weathering of rocky shore.
232 These sources control the creation of coastal headlands and provide source material to the physical, chemical and biological
233 inputs in the offshore. The coastal region accumulated with suspended sediments changes the coastal morphology. The
234 sediments near the shore are transported instead of being stable at a place due to various hydrodynamic action influences of
235 the ocean such as mean significant wave height (Fig. 2). Significant wave height can be calculated as the average height of
236 the one-third of the measured waves (eq. xii), which are N in numbers, having the largest wave height:

237

$$H_{1/3} = \frac{1}{\frac{1}{3}N} \sum_{m=1}^{\frac{1}{3}N} H_m \quad \text{--- (xii)}$$

238

239 The individual wave heights (H_m) is classified with highest wave having $m=1$ and the lowest wave having $m=N$. One-third of
240 the measured waves is used as it corresponds best with visual observations of experienced mariners. It is evident from the
241 figure that the mean significant wave height is high for the southern part of the study area, which decreases towards the
242 north. High wave energy can mingle more sediments in that region compared to less energy influential area, as it does not let
243 the sediments transport to other places.

244

246 **4.1 Spectral signature of water and SSC having different magnitudes**

247 The reflectance curve is plotted between the wavelength and the detected suspended sediments' reflectance from the large
 248 area of 900 sq. meters (30 meter resolution). The reflectance variation of the surface water indicates the presence of
 249 suspended sediments along the off-shore (Fig.3). We can perceive that the regions having high suspended sediments have
 250 high reflectance in the NIR wavelength and the regions having comparatively less suspended sediments have high
 251 reflectance in the red wavelength. The area having no suspended sediments shows high reflectance in the blue wavelength
 252 and total absorption in the NIR wavelength. Hence reflectance curve helped to determine the concentration of suspended
 253 sediments in the water.

254

255 <Insert Fig. 3 Spectral reflectance of SSC in different wavelength of OLI image>

256 **4.2 Monitoring of Suspended Sediments**

257 The northern part of study area experienced heavy deposition during the post-monsoon as the suspended particles swashed
 258 by fewer energy waves along with the dominant wave direction in this session (Fig.4). Whereas, in the pre-monsoon, the
 259 circulation of the sediments found to be at lower part of the study area due to the dominate wave and current action along the
 260 shore (Fig.5). Basically, a sediment particle will be suspended when the vertical velocity of the fluid motion becomes greater
 261 than the settling velocity of the particle. So, in the case of wave field, the vertical motion must result from the combined
 262 effects of turbulence and wave orbital motion. Here another phenomenon also acts on the sediments, i.e. gravity of the
 263 sediments suspended in the ocean, as the heavy sediments get deposited near shore, whereas the lighter sediments float. The
 264 wave direction in the post-monsoon and pre-monsoon is shown in Fig.4 and Fig.5. It is found that SSC decreased rapidly
 265 with the increase in distance (0-10kilometers) from the shoreline as well as bathymetry level of 5-10 meters. Also, the effect
 266 of the wave shoaling in the deeper water is significantly less, which caused sparely distribution sediment concentration. The
 267 SSC, beyond 5000 meters from the shoreline and below 10-20 meters depth, are rarely observed as they cannot be measured

268 at that depth, which is one of the limitations of the optical data. The movement of SSC indicates that the SSC have a positive
269 correlation with wave direction and littoral current. We assigned weight to the layer based on the deposition along the shore.
270 Most of the southern part of the study area was found to the high concentration of suspended matter during pre and post
271 monsoon seasons, which was derived from the single band model with very less RMS error, i.e. 0.19 unit. The middle part
272 was found to have cyclic concentration as it experienced seasonal erosion of the shore and deposition sediments near the
273 beach. The north most part of the study area was found have less concentration of the suspended sediments during pre and
274 post monsoon seasons.

275

276 <Insert Figure 4 Suspended sediments in the pre monsoon >

277

278 <Insert Figure 5 Suspended sediments in the post-monsoon >

279 **5 Discussion and Conclusion**

280 The paper explored the concentration and movement of suspended particles along the Thiruvananthapuram coast. The
281 findings revealed that the sediment concentration decreased rapidly with the increase in distance to the beach and depth to
282 the seabed. As the bathymetry increased, low amount of sediments available moved towards the shore to cause low
283 concentrations in the surface water. Wave, frequent phenomena, at comparatively large distance in deeper water, caused
284 sparsely distribution of sediments. **Thus, the sediments were concentrated at a lower depth in high bathymetry ($\geq 10m$) and**
285 **distance more than 2 km from the shoreline. The study found higher suspended sediments concentration near the coast**
286 **particularly at surf zone and having less bathymetry up to 50-100 m, and it disappears with increase in bathymetry because**
287 **the phenomenon of wave breaking and littoral current do not let the suspended sediments move far beyond the coast.**

288

289 The study provides interesting visions for monitoring the suspended sediments at near shore after radiometric and geometric
290 corrections. Another prospect of this study is the analysis of factors affecting the particles to be suspended in the near shore
291 as well as offshore. OLI (30m) is having spectral range **0.45 to 0.88 nm** for visible as well as NIR, demonstrated the best

292 details for spectral response analysis. This analysis revealed that the high reflection in near IR expressed the high
293 concentration of SSC and, in contrast, the high reflection in the visible range showed lower concentration of suspended
294 sediments. Suspended sediments moved north-south during post monsoon and reversed their direction during post monsoon
295 season under the influence of monsoon winds. Mapping the spatial distribution of suspended materials using remotely sensed
296 data would help in the management of coastal environment. Further study in this direction can aid the determination of the
297 point and non- point source of water bodies, which discharge in the ocean. Hence, remote sensing data can potentially be
298 utilized as a tool for monitoring the sediments in the ocean.

299

300 **Acknowledgement:**

301 The authors declare that there is no conflict of interests regarding the publication of this paper. KS and BRT were formulated
302 the research work and processed data; KS, PK, and BRT were implemented technique and KS, PK and BSC, PKJ were
303 discussed, validated and designed the article.

304 **References**

- 305 1. Byers, Alton C.: Soil loss and sediment transport during the storms and landslides of May 1988 in Ruhengeri prefecture,
306 Rwanda, *Natural Hazards*, 5(3),279-292, 1992.
- 307 2. Curran, P.J., and Novo, E.M.M.: The relationship between suspended sediment concentration and remotely sensed
308 spectral radiance: a review, *Journal of Coastal Research*, 4(3),351–368, 1988.
- 309 3. European Centre for Medium-Range Weather Forecasts, ERA Interim (www.ecmwf.int)
- 310 4. Gao, P.: Understanding watershed suspended sediment transport. *Progress in Physical Geography*, 32 (3), 243–263,
311 2008.
- 312 5. Gerald k. Moore: Satellite remote sensing of water turbidity / Sonde de télémétrie par satellite de la turbidité de l'eau,
313 *Hydrological Sciences Bulletin*, 25(4), 407-421, 1980.
- 314 6. Gordon, H., Wang, M.: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS:
315 a preliminary algorithm, *Appl. Opt.*, 33, 443-452, 1994.
- 316 7. Islam, M.R., Yamaguchi, Y., and Ogawa, K.: Suspended sediment in the Ganges and Brahmaputra River in Bangladesh:
317 observation from TM and AVHRR data, *Hydrological Processes*, 15(3), 493–509, 2001.
- 318 8. Kaliraj, S., Chandrasekar, N., Magesh, N.S.: Evaluation of coastal erosion and accretion processes along the southwest
319 coast of Kanyakumari, Tamil Nadu using geospatial techniques, *Arab J Geosci.*, doi: 10.1007/s12517-013- 1216-7,
320 2013b.

321 9. Kaliraj, S., Chandrasekar, N., Magesh, N.S.: Impacts of wave energy and littoral currents on shoreline erosion/ accretion
322 along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology, Environ Earth Sci.,doi:
323 10.1007/s12665-013-2845-6, 2013a.

324 10. Kaliraj, S., Chandrasekar, N.: Spectral recognition techniques and MLC of IRS P6 LISS III image for coastal landforms
325 extraction along South West Coast of Tamilnadu, India, Bonfring, Int J Adv Image Process, 2(3), 01–07, 2012.

326 11. Katlane, R., Nechad, B., Ruddick, K., Zargouni, F.: Optical remote sensing of turbidity and total suspended matter in the
327 Gulf of Gabes, Arab J Geosci, 6, 1527–1535, 2013.

328 12. Kisi, O.: Modeling discharge-suspended sediment relationship using least square support vector machine. Journal of
329 Hydrology, 456-457, 110–120, 2012

330 13. Kronvang, B., Laubel, A., Grant, R.: Suspended Sediment and Particulate Phosphorus Transport and Delivery Pathways
331 in an Arable Catchment, Gelbaek Stream, Denmark, Hydrological Processes, 11(6), 627-642, 1997.

332 14. Marcus, W.A., and Fonstad, M.A.: Remote sensing of rivers: the emergence of a subdiscipline in the river sciences,
333 Earth Surface Processes and Landforms, 35(15), 1867–1872, 2010.

334 15. Meteorological Center, IMD, Thiruvananthapuram (<https://www.imdtvm.gov.in>)

335 16. Nechad, B., Ruddick, K., Park, Y.: Calibration and validation of a generic multi-sensor algorithm for mapping of total
336 suspended matter in turbid waters, Remote Sensing of Environment, 114, 854–866, 2010.

337 17. Neukermans, G., Ruddick, K., Bernard, E., Ramon, D., Nechad, B., Deschamps, P.Y.: Mapping total suspended matter
338 from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea, Opt. Express 17, 14029–14052,
339 2009.

340 18. Ontowirjo, Budianto, Paris, Rapha, Mano, Akira: Modeling of coastal erosion and sediment deposition during the 2004
341 Indian Ocean tsunami in Lhok Nga, Sumatra, Indonesia, Natural Hazards, 65(3), 1967-1979, 2013.

342 19. Panwar, S., Agarwal, V., Chakrapani, G. J.: Morphometric and sediment source characterization of the Alaknanda river
343 basin, headwaters of river Ganga, India, Natural Hazards, 1-23, 2017.

344 20. Qu, L.: Remote sensing suspended sediment concentration in the Yellow River, Ph.D. dissertation paper 383, University
345 of Connecticut, website accessed December 2014 at <http://digitalcommons.uconn.edu/dissertations/383/>, 2014.

346 21. Rawat, Pradeep K., Tiwari, P. C., Pant, C. C., Sharama, A. K., Pant, P. D.: Modelling of stream run-off and sediment
347 output for erosion hazard assessment in Lesser Himalaya: need for sustainable land use plan using remote sensing and
348 GIS: a case study, Natural Hazards, 59 (3), 1277-1297, 2011.

349 22. Sinha, P. C., Guliani, Pragya, Jena, G. K., Rao, A. D., Dube, S. K., Chatterjee, A. K., Murty, Tad : A Breadth Averaged
350 Numerical Model for Suspended Sediment Transport in Hooghly Estuary, East Coast of India, Natural Hazards, 32(2),
351 239-255, 2004.

352 23. Tassan, S.: A procedure to determine the particulate content of shallow water from Thematic Mapper data, Int J Rem
353 Sens., 19, 557–562, 1998.

354 24. Vanhellemont, Q., Neukermans, G., Ruddick, K.: Synergy between polar-orbiting and geostationary sensors: Remote
355 sensing of the ocean at high spatial and high temporal resolution, *Remote Sens. Environment*, 146, 49–62, 2014.

356 25. Wang, J.J., and Lu, X.X.: Estimation of suspended sediment concentrations using Terra MODIS: an example from the
357 Lower Yangtze River, China, *Science of the Total Environment* 408, (5), 1131–1138, 2010.

358 26. Wang, J.J., Lu, X.X., Liew, S.C., Zhou, Y.: Retrieval of suspended sediment concentrations in large turbid rivers using
359 Landsat ETM plus : an example from the Yangtze River, China, *Earth Surface Processes and Landforms*, 34, 1082-
360 1092, 2009.

361 27. Warrick, J.A., Merters, L.A.K., Siegel, D.A., Mackenzie, C.: Estimating suspended sediment concentrations in turbid
362 coastal waters of the Santa Barbara Channel with SeaWiFS, *Int J Rem Sens.*, 25, 1995–2002, 2004.

363 28. Whitelock, C.H., Witte, W.G., Taly, T.A., Morris, W.D., Usry, J.W., Poole, L.R.: Research for reliable quantification of
364 water sediment concentrations from multispectral scanner remote sensing data. US National Aeronautics and Space
365 Administration, Langley Research Center, Hampton, VA, NASA-TM-82372, 243-255, 1981.

366 29. Yanjiao, W., Feng, Y., Peiqun, Z., Wenjie, D.: Experimental research on quantitative inversion models of suspended
367 sediment concentration using remote sensing technology, *Chinese GeographSci.*,17 (3), 243–249, 2007.

368 30. Zhang, Y., Pulliainen, J., Koponen, S., Hallikainen, M.: Water quality retrievals from combined Landsat TM data and
369 ERS-2 SAR data in the Gulf of Finland, *IEEE Trans Geosci Remote Sens.*, 41, 622-629, 2003.

370

371

372

373

374

375

376

377

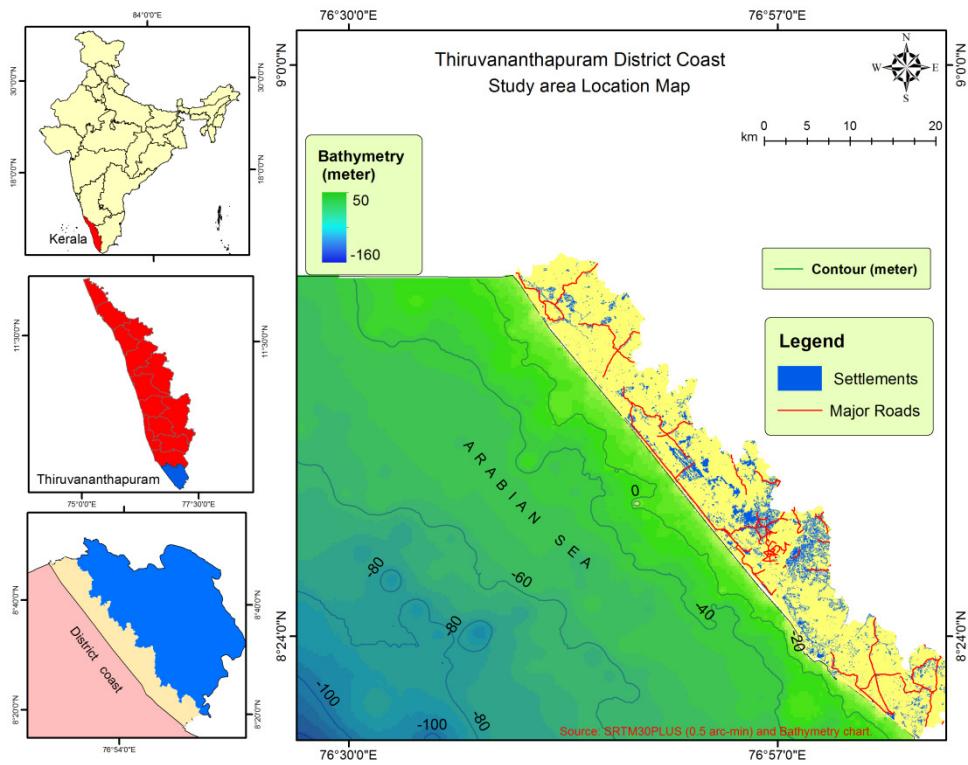
378

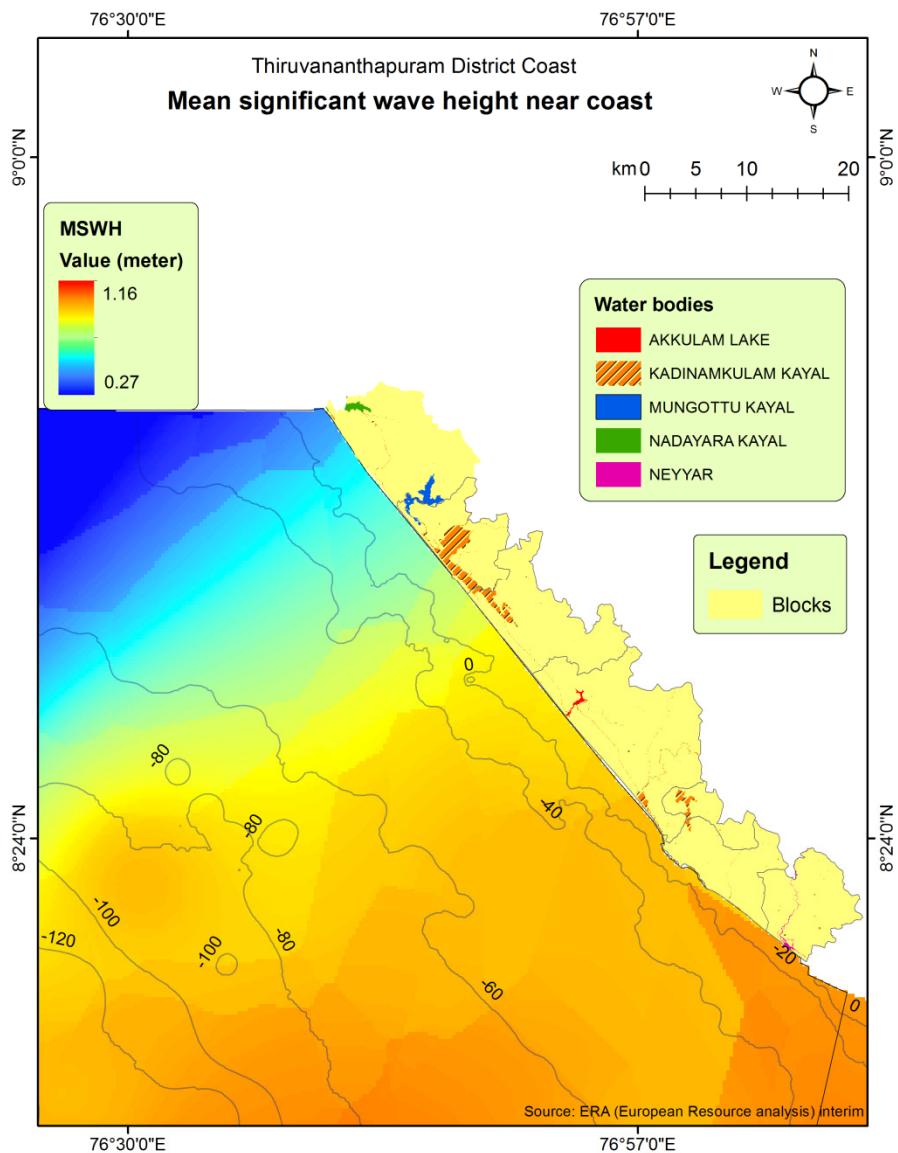
379

380

381

382


383


384

385

386

387

List of Figures**Figure1: Location map of study area.**

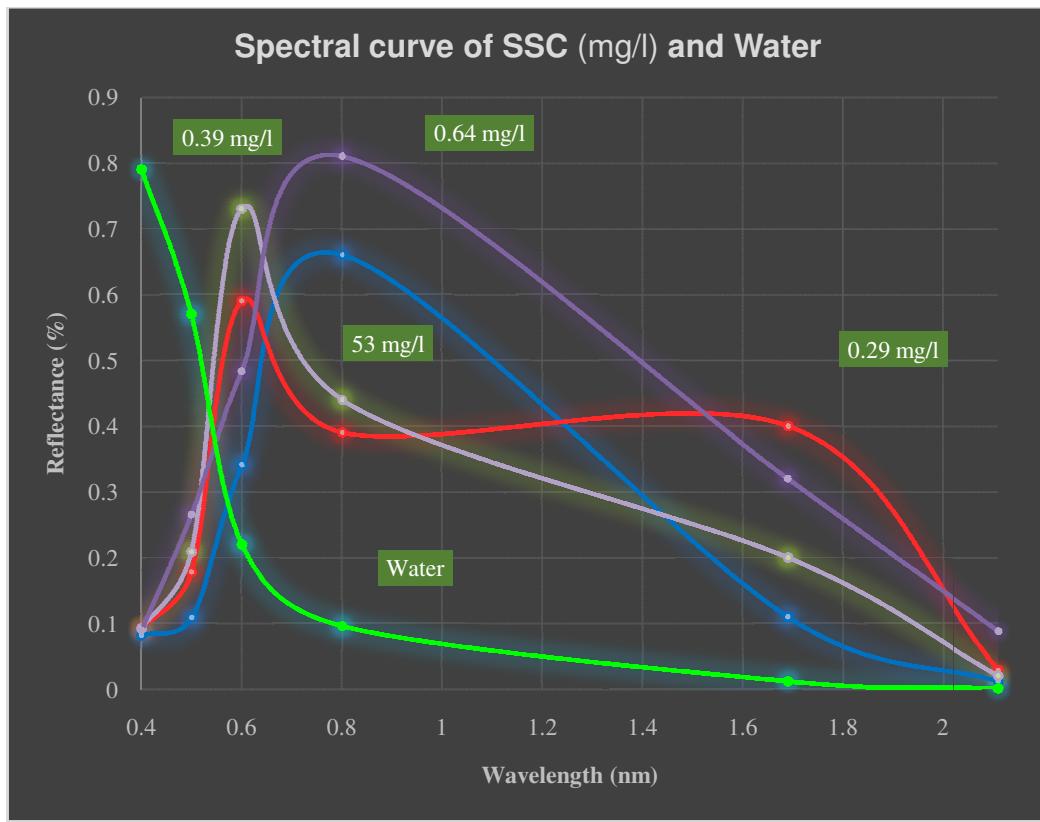
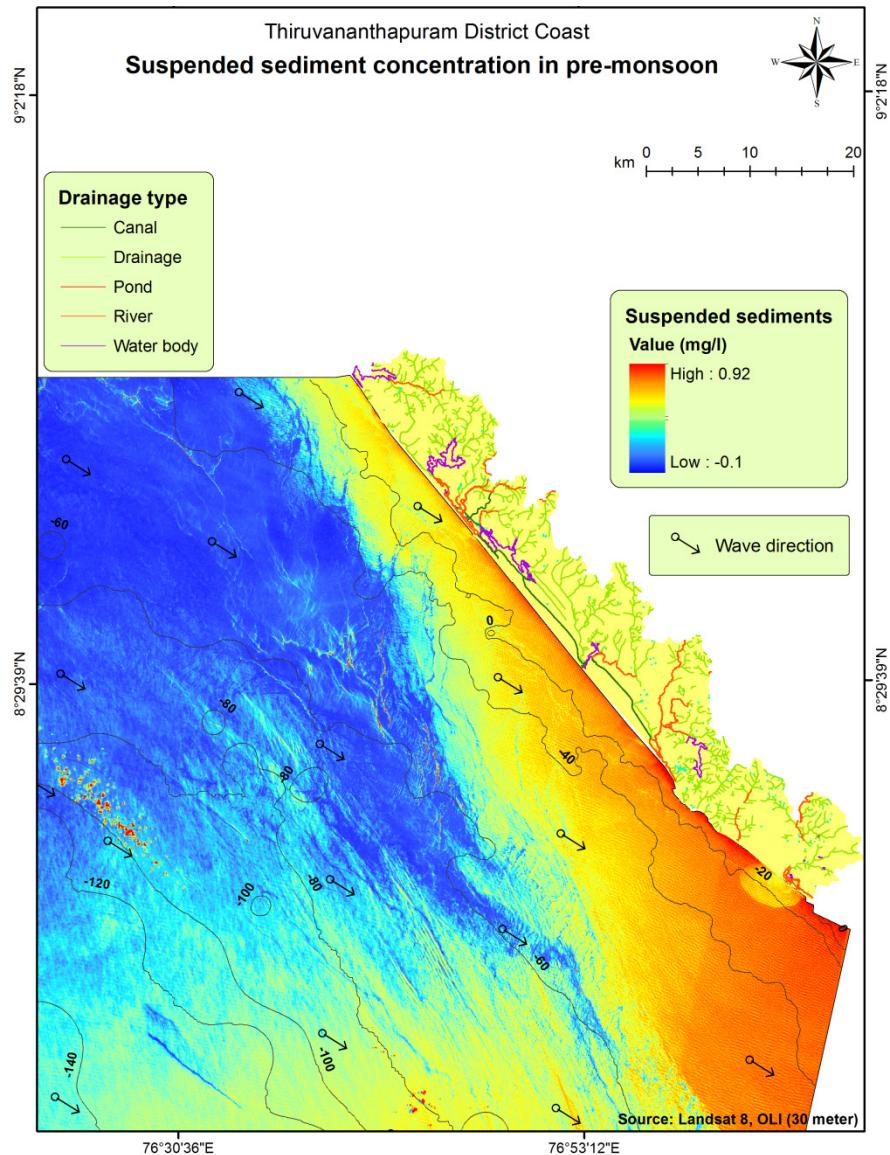


Figure 2: Mean significant wave height along the coast.

402

403

404

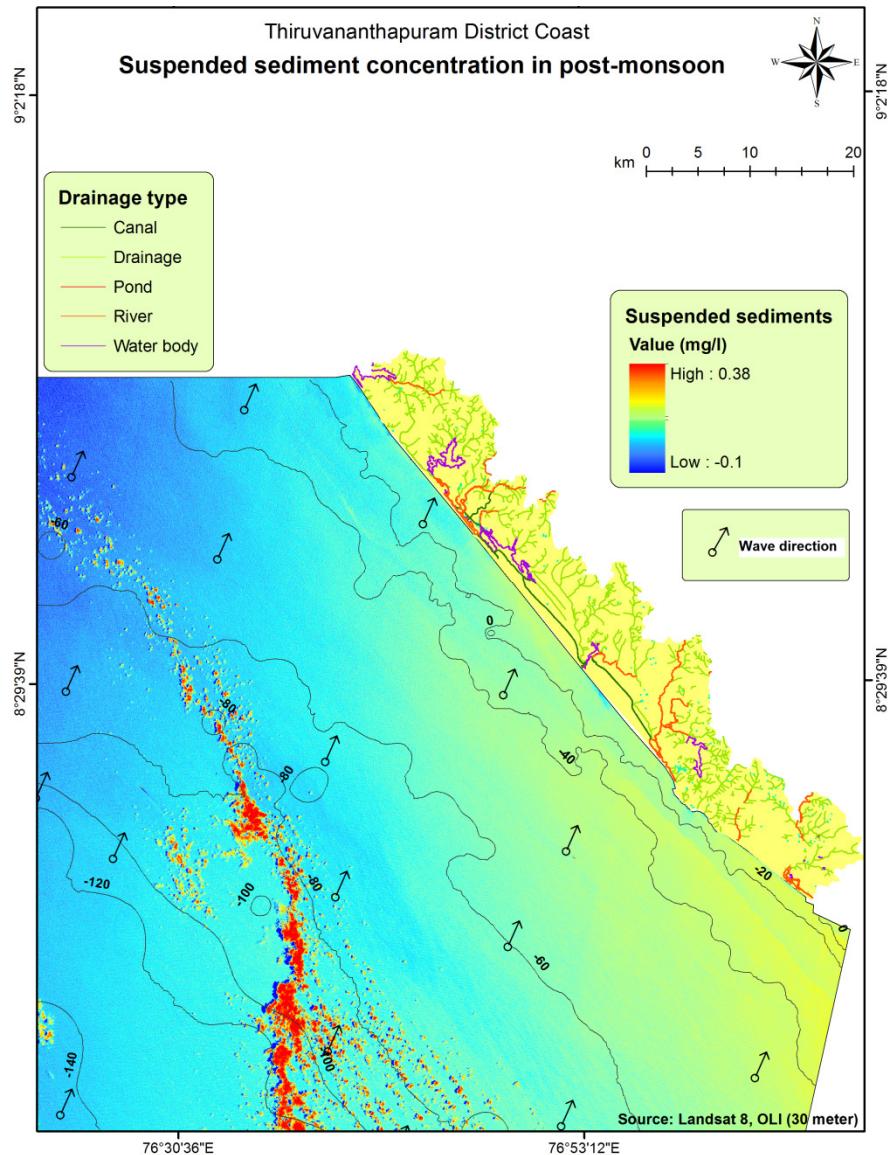

Figure 3: Spectral reflectance curve.

405

406

407

408



409

410

411

Figure 4: Suspended sediments in the pre monsoon.

Figure 5: Suspended sediments in the post-monsoon.

412

413

414

415

416