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Abstract. Any use of observational data for data assimilation requires adequate information of their representativeness in

space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in-situ

observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the

autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose,

we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation

scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal

lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well

described by a Gaussian function in space and time. We derive decorrelation scales of 150 ~ 200 km in space and 100 ~ 300

days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in-

situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale

should be applied for cost function calculation in a data assimilation system.
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1 Introduction

Any use of observational data requires assumptions, or better knowledge, about the representativeness of each measurement

in space  and time.  This  holds  even more  for  in-situ  observations from data sparse regions,  such as  the  Arctic  Ocean.

Interpolation  guided  by  the  statistical  properties  of  observed  quantities  can  provide  Arctic-wide  fields,  while  data

assimilation using comprehensive  dynamical  models  and  assimilation methods can,  in  addition,  provide  fields  that  are

consistent with the modeled physics. Also sampling strategies have to take the knowledge of the representativeness of point

measurement into account. The temporal and spatial scales, for which a single measurement is representative, depend on

local dynamics, external forcing and the influence of lateral water-mass influxes. Here we make an attempt to estimate those

length and time scales in the Arctic Ocean based on observational data from the period 1980 – 2015. This will be achieved

by estimating the autocorrelation function and decorrelation scales of temperature and salinity. 

Autocorrelation  functions  and  associated  decorrelation  scales  are  useful  measures  to  characterize  physical  phenomena

occurring in the ocean [Stammer, 1997; Eden 2007]. These functions describe spatial and temporal ranges over which ocean

properties  coherently vary,  and the  scales  provide  a  measure  of  the spatial  and  temporal  extent  of  the  variations.  The

functional  form of  the  autocorrelation  depends  on  the  physical  properties,  the  considered  scales  (e.g.,  synoptic  versus

mesoscale)  and  the  area.  Many  studies  have  estimated  autocorrelation  functions  through  analysis  of  in-situ  ocean

measurements [e.g., Meyers et al., 1991; Chu et al., 2002; Delcroix et al., 2005] and satellite observations [e.g., Kuragano

and Kamachi, 2000; Hosoda and Kawamura, 2004;  Tzorti et al., 2016]. Generally the estimated autocorrelation functions

have exponential or Gaussian form [Molinari and Festa, 2000]. The decorrelation scales are usually given by the e-folding

scale of the corresponding autocorrelation functions (see McLean [2010] for a summary of different definitions).

Estimated decorrelation scales have been applied to a variety of ocean studies. In the context of dynamical studies, the

decorrelation scale is used as a measure of the scale of prevailing phenomena, and used to relate dynamical processes with

the observed signals [e.g.,  Stammer, 1997;  Ito et al., 2004;  Kim and Kosro, 2013]. In optimal interpolation and objective

mapping, the decorrelation scale gives a measure of influential radius of a point measurement; the autocorrelation function,

together  with the  associated  decorrelation scale,  provides  the weight  of  a  point  measurement  on mean field  estimates

[Meyers et al., 1991;  Chu et al., 1997; Davis, 1998; Wong et al., 2003; Böhme and Send, 2005]. For observation network

design, decorrelation scales are one guide to estimate optimal sampling intervals in space and time [S printall and Meyers,

1991; White, 1995; Delcroix et al., 2005].

One of the prevalent and growing applications of decorrelation scales is data assimilation. Data assimilation synthesizes

observed data and modeled physics  based on statistical  theories.  This is  an effective approach to  fill  the gap between

observation and modeling studies [Wunsch, 2006; Blayo et al., 2015]. Generally data assimilation minimizes a model - data
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misfit with an assessment of errors; the autocorrelation function and the decorrelation scale are necessary for these error

assessments [Carton et al., 2000;  Forget and Wunsch, 2007].  For a model - data misfit calculation, the difference of the

spatial  (and  temporal)  scales  represented  by  a  model  and  by  the  observations  should  be  taken  into  account.  Physical

properties simulated in General Circulation Models (GCMs) represent mean values over each grid cell for a certain temporal

period,  whereas  those from in-situ  measurements  represent  values  at  a  localized point  in space and in  time. The error

resulting from the difference of the scales represented by these two approaches is referred to as representation error (see van

Leeuwen [2015] for a summary). The autocorrelation function and the decorrelation scales provide a direct measure of the

representation error. In ocean data assimilation, an assessment of the representation error is particularly important, since it is

generally an order of magnitude larger than the measurement (instrument) error [Ingleby and Huddleston, 2007]. 

A necessity of decorrelation scale in ocean data assimilation also comes from the sparseness of ocean measurements. An

autocorrelation function is necessary to constrain locations distant from a measurement. Li et al. [2003] pointed out that an

assimilation of sparsely distributed data into an eddy permitting model, without taking its influential radius into account,

causes serious problems around the locations where the data are assimilated. Artificial eddies appear around the location of

the data, since the density at the data location differs from densities at their surrounding grid points in the model. They also

pointed out that the assimilated information disappears on the time scale determined by the model's local advection and

diffusion. Note that this situation cannot be solved by applying advanced data assimilation techniques (e.g., 4DVar, EnKF),

since the artificial eddies are dynamically consistent with the modeled physics. Autocorrelation function and decorrelation

scale provide necessary information to solve such problems by imposing a spatial and temporal radius of influence of each

measurement [Forget and Wunsch, 2007; Zuo et al., 2011].

Practically,  autocorrelation  functions  are  used  to  define  an  'observation  operator'  in  data  assimilation  systems.  The

observation  operator  maps  modeled  variables  onto  observational  points.  If  the  operator  is  properly  defined,  a  point

measurement will constrain the model, not only at the location where measurements exist, but also in areas distant from the

measurement. An implementation of such an observation operator makes it possible to fully exploit the potential of sparsely

distributed measurements, and can solve problems such as reported by Li et al. [2003]. This is of particular importance as the

ocean models used for assimilation become eddy-permitting. An additional importance of autocorrelation function is to

constrain the scale of temporally varying fluctuations. Unlike the static interpolation approaches, data assimilation provides a

4-dimensional  analysis  field.  In  order  to  appropriately  assimilate  observed  temporal  fluctuations,  the temporal  scale  of

fluctuations should be implemented in the observation operator.

In the mid-latitude and equatorial regions, there are a number of decorrelation scale estimates [e.g., White and Meyers, 1982;

Chu et  al.,  1997, 2002; Deser et  al.,  2003;  Martins et  al.,  2015],  and these have been applied for  a variety of studies
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including data assimilation (see the papers mentioned above). On the other hand, while a few studies have examined scales

of temperature and salinity variability in the Arctic Ocean [e.g., Timmermans and Winsor, 2013; Marcinko et al., 2015], there

has been no assessment of basin-wide decorrelation scales of  T/S field to date. One reason is that sea ice cover greatly

inhibits sea surface observation by remote sensing. Another reason is the sparse coverage of in-situ ocean measurements due

to the inaccessibility and the absence of an Argo float network (that has provided essential data for mid-latitude and Southern

Ocean studies [e.g., McLean, 2010; Reeve et al., 2016]). In the last decade, however, the number of observational activities

has been increasing significantly,  with the growing concern about the sea ice retreat  and its  potential impact on global

climate (see e.g.,  Ortiz  et  al. [2011] and  references  therein).  In  addition to  the  increasing  number of  research  cruises,

autonomous observation platforms (e.g., Ice Tethered Profilers (ITPs) [Krishfield et al.,  2008a;  Toole et al., 2011]) now

provide data throughout a full seasonal cycle in the Arctic. The data acquired from these research activities enable us for the

first time to estimate basin-wide decorrelation scales for T and S profiles in the Arctic Ocean.

The objective for the following study is to estimate the autocorrelation functions and decorrelation scales of temperature and

salinity  in  the Arctic  Ocean  at  different  depths.   Few modelling studies  have  focused  on applications of  ocean  in-situ

measurements in the Arctic, due to the absence of comprehensive historical archives and representation error estimates. Only

the climatology (PHC3.0:  Steele et al. [2001]) has been widely applied for model validation [e.g.,  Ilıcak et al., 2016]. In

recent years, however, assimilations of in-situ measurements in the Arctic Ocean have started [Panteleev et al., 2004, 2007;

Nguyen et al., 2011;  Zuo et al., 2011;  Sakov et al., 2012]. To promote and enhance the ongoing ocean data assimilations,

archiving historical  measurements and estimating decorrelation scales are indispensable. To achieve the objective of the

present  study,  1)  we  compile  historical  observations  of  temperature  and  salinity  in  the  Arctic  Ocean,  2)  construct  a

background mean field necessary for the decorrelation scale estimate, 3) examine the functional form of autocorrelation in

temporal- and spatial-lag space, and finally 4) provide an autocorrelation function, decorrelation scales and representation

error covariance, which are directly applicable to error assessment in ocean data assimilation. Note that the estimation of the

autocorrelation quantifies basin-scale variability. Smaller scale variability (e.g., mesoscale eddies on the deformation scale

[Zhao et  al.,  2014])  remains  unresolved  and  is  an  intrinsic  part  of  the  autocorrelation function.  The study area  is  the

Amerasian Basin. As will be described in section 3, the second step mentioned above requires a different approach for other

regions of the Arctic Ocean. The vertical depth range of the analysis is limited to be between 0 m to 400 m depth due to data

availability. 

The rest of the paper is organized as follows: section 2 describes the compilation of historical data and quality control

procedures applied prior to the analysis. Section 3 describes the background temperature and salinity field construction and

trend analyses.  Section 4 describes examination of  2-dimensional autocorrelation functions in spatial-  and temporal-lag

space, and provides decorrelation scale and error covariance estimates. Section 5 gives conclusions.
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2 Data

2.1 Compilation of historical data

Since there is no comprehensive in-situ ocean data archive for the Arctic, we compile historical temperature and salinity

measurements with the objective not only to use the data for the present decorrelation scale estimate, but also to prepare an

archive for future applications in model validation and data assimilation. Since the existing archived data from the Arctic

Ocean are widely dispersed in various datasets with different formats, we compile these data into one archive with a standard

format focusing on the Arctic and northern North Atlantic Ocean (Table 1). The original data (Table 1) were acquired from

various observational platforms (e.g., research vessels, moorings, ITPs and Argo floats) by conductivity temperature depth

(CTD) sensors and expendable CTDs (XCTDs).  The archiving effort of this study originates from the data compilation

described  by  Rabe  et  al., [2011,  2014]  and  Somavilla  et  al., [2013],  and  is  ongoing,  thanks  to  support  from  many

oceanographers. The archived data will be available on line (https://www.pangaea.de) after a profile-based thorough quality

check (except those data which require additional consent from data providers). This public archive is described in Behrendt

et al., [2017].

The archived information for each measurement profile are, cruise name, station number, data type, time stamp, geographical

location,  bottom depth  (if  available),  measurement  depth  (pressure  is  converted  to  depth  by  the  method described  by

Saunders [1981]), temperature,  salinity,  data quality information provided in the original dataset (if  available),  and data

source information. The spatial coverage of the archived data ranges from 45ºN to the pole on the Atlantic Ocean side and

from 64ºN (Bering Strait) to the pole on the Pacific Ocean side. The temporal coverage is from 1980 to 2015. Fig. 1 shows

an example of the spatial distribution of the archived data (0-20m depth range, north of 64ºN) for the entire period. The

archived data cover the entire Arctic and northern North Atlantic oceans, while the biggest data gaps are on the East Siberian

Shelf and north of the Canadian Archipelago. A basic quality check is applied to the archived data before the duplication

checks  and  statistical  screening,  described  in  the  following  subsections.  The  basic  quality  check  is  composed  of  1)

bathymetric test using the merged IBCAO/ETOPO5 [Jakobsson et al., 2012] with a tolerance of 20 m, 2) a valid range test

for temperature (-2.2 ˚C < T < 30.0˚C) and salinity (0 psu < S < 40.0 psu), and 3) a vertical stability test. The bathymetric test

is applied to remove data with inconsistent geographic locations (i.e., either on land, or indicating profile information at

depths deeper than the sea floor at their location). This test excluded a number of erroneous profiles with position errors. The

vertical stability test is applied to remove spike data points found in CTD and XCTD profiles. If the stability test program

finds vertical density inversions, the data points are removed from the profile. If a data point violates one of the criteria, it is

removed from the archive.
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2.2 Duplication check

Since data obtained from various sources are prone to duplication issues, it is necessary to identify and remove duplicated

data from the archive. A number of past studies,  which compiled large oceanographic datasets, have suggested various

automated procedures to deal with duplicate profiles [e.g., Ingleby and Huddleston, 2007; Gronell and Wijfefels, 2008; Good

et al., 2013]. In this study, we apply a simple duplication check algorithm suitable for the present application. Since we are

concerned  only  with  basin-scale  variability  in  this  analysis,  we  count  profiles  that  have  small  spatial  and  temporal

separations as duplicates. The threshold applied for time difference between profiles is 1 day (date coincidence) and that

applied for geographical location difference is 0.05 degree in longitude and 0.01 degree in latitude, respectively; to account

for the effect of convergence of meridians toward the pole, a threshold of 2 km separation is also applied. If duplication is

found (i.e., both temporal and spatial separation conditions above are met), the profiles are flagged. The profile with the

highest reliability according to the data provider's own quality control is retained. For example, if we directly obtain data

from PIs who have already applied their own quality control procedure, we give the data higher priority than that from other

data archives (e.g., World Ocean Database 2013). The final duplication checked archive is used as input for the statistical

screening described below.

2.3 Statistical screening

Since the archive contains a number of data that have not been quality controlled, we apply an additional quality control

procedure (QC) before our analyses. Note that although we describe the QC procedure as it is applied to the entire raw data

set in this section, we will use only data from 0 - 400 m depth (after the QC) in the present scale analysis as mentioned  in

the introduction. The QC is composed of 2 steps: the first step is a grid-based screening; the  second step is an area-based

screening. Both steps are based on statistics of the data samples in discretized depth ranges. We divide the vertical profiles of

temperature (T) and salinity (S) measurements into 50 depth bins (from 20 m interval near the sea surface to 200 m interval

in the deep ocean,  Fig.  2a).  If  there are more than two measurements  for  a  certain depth range from one profile,  the

measurement values (T and S) are averaged. The statistics are calculated and applied in each depth range separately.

First  we  apply  a  grid-based  screening.  The  grid-based  screening  takes  the  difference  in  statistics  (mean  and  standard

deviation) in different locations into account. We define 111 km × 111 km (corresponding to 1° × 1° at the Equator) grid cells

over the entire archive domain. The mean (μ) and standard deviation (σ) of T and S on each grid cell and in each depth range

are calculated from the data within the surrounding 555 km × 555 km (5° × 5°) area.  T and S values outside the 5-times

standard deviation (μ±5σ) on each grid cell are removed from the archive (the procedure is repeated twice). 
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Second we apply an area-based screening for the data deeper than 750 m depth. In this step we apply more rigorous statistics

calculated from the entire basin and shelf area. This step is necessary to remove problematic data in data sparse areas and in

data sparse depth ranges, since the grid-based screening cannot provide good statistics in these areas due to the small sample

size (no ITP data below 750 m). We classify the archived data into 6 sub-domains based on the characteristics of dynamical

regimes [Nurser and Bacon, 2014]: 1) Amerasian Basin, 2) Amerasian shelf and shelf slope, 3) Siberian shelf and shelf

slope, 4) Eurasian Basin, 5) Barents and Kara Sea including their shelf slopes and 6) Nordic Seas (Fig. 2b). Mean and

standard deviation are calculated in individual sub-domains. Then data outside the 5 times standard deviation ( μ±5σ) are

removed (repeated twice). In this paper, we focus only on the results for the Amerasian Basin; regions 2 – 5 are considered in

a separate analysis.

The  result  of  the  statistical  screening  in  the  Amerasian  Basin  is  shown in  Fig.  3.  The  combined  statistical  screening

successfully removes spurious data in deep depth ranges, while retaining the relatively larger variability in shallow depth

ranges. After the combined statistical screening, the vertically discretized data are used for the analyses in the following

section.

 

3 Construction of the background mean field

In this  section we describe  the construction of  a  background mean field of  T and  S,  which represents  the  basin-wide

climatology in the Amerasian Basin. The background mean fields will be used to calculate anomaly fields necessary for the

decorrelation scale estimates. For the construction of the background mean field, we first examine the functional form and

spatial scale of the mean field variation (sec. 3.1). Second we apply the derived functional form and scale for the background

mean field construction (sec. 3.2). The temporal linear trends of  T and  S are also examined to account for the effect of a

long-term temporal change of the mean field (sec. 3.3).

3.1 Spatial scale of variation

To derive the scale for the background field construction, we examine the spatial scale of variation in each depth range (The

vertical layers defined in Fig. 2b are used throughout this study, to provide decorrelation scales directly applicable to data

assimilation systems using z-coordinate systems). In this estimation we assume isotropy and homogeneity of the spatial scale

of variation in a basin.  These assumptions are valid if 1) planetary- and 2) topographic-β effects do not dominate in a basin,

and 3) no dominant oceanic structure extends toward one specific direction. The first and second conditions are satisfied in
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the high-latitude Amerasian Basin (small planetary-β effect) away from marginal shelf slopes, where a large topographic-β

effect is expected. The third condition is also satisfied in the deep Amerasian Basin, although not necessarily in other sectors

of the Arctic Ocean and Nordic Seas.  For example, in the Eurasian Basin there is a prominent extension of the frontal

structure along the shelf slope associated with the warm Atlantic water inflow [Anderson et al., 1994; Rudels et al., 2013].

The location of the front is not necessarily trapped over the shelf slope, but can be detached from the slope [ Jones, 2001].

Further, in the Nordic Seas there are meridionally-extending dominant current systems, i.e., the East Greenland current,

Norwegian Atlantic Current and West Spitsbergen Current [Hopkins, 1991]. These features require a scale examination that

takes a spatial anisotropy into account; a different approach for scale estimation will be applied to the Eurasian Basin in a

forthcoming paper. For our purposes here, the Amerasian Basin is defined by the area where total water depth is deeper than

1000 m. This definition excludes the area affected by coastal currents and topographically-trapped flows (associated with the

submarine Northwind Ridge, for example). 

To estimate the spatial scale of variation we introduce a structure function [Davis et al., 2008; Todd et al., 2013] with the

assumption of spatial and temporal isotropy of variation,

φ x, t=⟨ [Ω( x0+x , t0+t )−Ω(x0, t 0)]
2
⟩ ,                                                    (1)

where x and t are the spatial and temporal separation from location x0 and time t0, Ω is the observed property (in this case,

either T or S), and ⟨⋅⟩  is the averaging operator over space and time. The structure function, φx, t, gives the mean square

difference between two measurements  as  a  function of  spatial  and temporal  separations.  It  was initially  introduced by

Kolmogorov [1941] to provide a statistical description of a field without specifying the mean and variance of the field. This

is an appropriate approach for the present purpose, since we do not have a priori information regarding the statistics of the

background field. We calculate the structure function from all available data in the Amerasian Basin (all depth bins shallower

than 400 m),

φ x, t=N−1∑
i=1

N

ΔΩi ( x ,t )
2

,                                                                       (2)

where N is the number of available data pairs, the spatial and temporal separation of which are x and t, and ΔΩi  (x, t) is the

difference of observed values of the i-th pair. We introduce a function f, which measures the normalized root-mean-square

difference (RMSD) of any two measurements,
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f (x , t)=1−(
φ x ,t
φ bg )

1
2

,                                                                             (3)

where φbg is defined by all the possible combinations of available data in the basin in a certain depth range, 

φ bg=
2

M (M−1)
∑
i=1

M −1

∑
j=i+1

M

(Ωi−Ωj )
2

,                                                     (4)

and  M is the number of all available data.  φbg is a measure of the size of basin-wide and long-term variations, i.e.,  we

introduce it as the 'background' mean squared difference used to normalize φx, t.

The function f in Eq. (3) is a unit-less measure of RMSD between two measurements as a function of spatial and temporal

separation. If φx, t ~ φbg, i.e., the mean difference between two measurements with (x, t) separation is comparable to those of

'large'  distance measurement  pairs,  then  f  ~ 0. This indicates  that  no coherent structure exists between data with (x,  t)

separation.  If  φx,  t <<  φbg,  i.e.,  the  mean  difference  between  measurements  with  (x,  t)  separation  is  sufficiently  small

compared to that between sufficiently distant data pairs, then f → 1. This indicates a strong coherence exists between the

data with (x, t) separation (ultimately f = 1, if the spatial and temporal separation are exactly zero).  Note that the function f is

not an autocorrelation function, although it has similar properties (e.g., decays from 1 to 0 for spatial and temporal separation

from  zero  to  infinity).  The  function  f measures  the  scale  of  the  coherent  structure  of  the  mean  field,  whereas  an

autocorrelation function measures the scale of coherent variation of anomalies. A structure function φ can be directly related

to an autocorrelation function, if we can define  φ  by the anomaly from the mean field [e.g.,  Gandin 1965;  Molinari and

Festa,  2000]. Since we have no a priori  statistical  information regarding the mean field,  we cannot relate the structure

function φ with the autocorrelation in our case. The correspondence to the geostatistical approach is given in Appendix A. 

In order to examine the functional form of f, we construct data pairs from all possible combinations of data in each depth

range, classify the pairs into 50  × 36 bins (50 bins for spatial separation with 10 km interval and 36 bins for temporal

separation with 10-day interval), and calculate f in respective bins. For the binning we suppose that the spatial and temporal

scales of variation are much larger than the scale used for the binning, the validity of which is recursively confirmed by the

scales estimated. Examples of the functional form of f for T and S in spatial- and temporal-separation space are shown in Fig.

4. Small separation gives large f, while f ~ 0 when the separation is sufficiently large. Note that f decays with an increase in

temporal  separation in shallow depth ranges with a time scale of approximately 90 -  120 days (Fig.  4a,  b),  while  f is

relatively insensitive to temporal  separations at  depths  deeper than 80 m (Fig.  4c,  d),  which is a  manifestation of  the

seasonality. This seasonality is taken into account to estimate the background mean field in sec. 3.2. Note that we limit our
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analysis here to consider only the upper water column, from 0 m to 400 m depth as uncertainties in the uncalibrated (“level-

2”) ITP salinity data are comparable to the temporal and spatial variability of salinity in the Amerasian Basin below 500 m

(see Appendix B).

To closely examine the functional form of f, we calculate the temporal (0-90 days) average of f in respective depth ranges. A

survey  of  the 2-dimensional  functional  form over  all  depth ranges  (shallower  than  400 m) revealed  that  90-days  is  a

reasonable choice to account for seasonal variation (not shown). Fig. 5 shows the 90-day averaged functional form of f in

different depth ranges (thin-dotted lines) and the average for all depth ranges (0-400 m; thick-dotted black line). Although

the scale of variation varies with depth, the functional form of which can be reasonably approximated by a Gaussian function

(thick-solid blue line). Note that  f does not come close to 1, even if the spatial separation nears 0 km, because the present

examination excludes self combination of data (i.e.,  ΔΩ(0, 0) = 0), deals with 0 - 90 day average, and does not resolve

mesoscale fluctuations smaller than 10 km scale (the spatial separation of the bin). 

The e-folding scales of the fitted Gaussian function for T and S are summarized in Fig. 6.  The T profile (dashed black line)

exhibits a large spatial scale of variation (~ 200 km) near the sea surface, indicating the effect of the large-scale thermal

forcing at the sea surface. The T profile deeper than 100 m depth is nearly constant (120 ~ 150 km). The salinity profile

(solid blue line), on the other hand, exhibits nearly constant scale (130 ~ 150 km) from the sea surface to 400 m depth,

indicating small contributions from large-scale surface salinity fluxes at the sea surface.  We apply the e-folding scale of each

depth level and the Gaussian function to estimate the background mean field.

3.2 Background mean field

To take the seasonal variation into account, we divide the observed data into 4 seasons (January - March, April - Jun, July -

September, and October - December), and construct the background mean T and S fields in each season. This is supported by

the fact that the temporal  e-folding scale is approximately 90 days in shallow layers (Fig. 4a, b) and even longer in the

deeper layers. The background field is derived by applying a spatial Gaussian filter with an  e-folding scale given by the

spatial scale of variation in each depth range (Fig. 6). The background field for Ωi is given by 

Ω̄i=∑
n=1

N

W ' nΩn ,                                                                                      (5)
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where N is the number of measurements, whose distance from the i-th measurement (Ωi) is less than 3 times the e-folding

scale (i.e., ||  xi - xn || < 3L, see below), W'n is the normalized weighting function for the n-th data point, and Ωn is the n-th

measurement surrounding the i-th measurement. The normalized weighting function W'n is given by 

W 'n=(∑
n=1

N

W n)
−1

W n ,                                                                             (6)

where Wn is the Gaussian weighting function:

W n=exp[−(‖xi−xn‖
L(z) )

2

] ,                                                                      (7)

where xi and xn are the geographical location of Ωi and Ωn, respectively, and L(z) is the e-folding scale of the Gaussian filter

as a function of depth (Fig. 6). An example of the derived background field for T and S in summer is shown in Fig. 7. The

field captures a warm and fresh water mass distribution in the Canada Basin and its smooth transition toward cold and saline

water  in  the  northeastern  Amerasian  Basin.  For  the  anomaly  field calculation,  we require  the  background field at  the

locations where observational data exist. Therefore we do not apply any spatial and/or temporal interpolations even in data-

sparse seasons (winter and spring).

3.3 Temporal trend

For the present anomaly derivation, we also take the temporal trend from 1980 to 2015 into account. The trend is estimated

in each 111 km × 111 km grid cell (1 degree × 1 degree at equator scale), in each depth range, and in each season (Mann-

Kendall rank statistics [Kendall, 1938] with a significance level of 5%). The size of the grid cells is chosen to be consistent

with the spatial scale of variation (sec. 3.2). Fig. 8 shows representative  T and  S trends in the 60 - 80 m depth range in

summer and the corresponding average time series for those grid cells for which the trend is statistically significant. A

warming (~0.5 deg/decade) and freshening (~0.5 psu/decade) trend in the Canada Basin is evident in this depth range. The

freshening trend extends from the sea surface to 400 m depth without significant change in spatial pattern, whereas the T

trend changes sign and spatial pattern with depth. A positive trend in T is observed in the depth range from 0 m to 160 m

over the whole analysed time period (i.e., through the Pacific-water/upper halocline layers, represented by red line in Fig.

8c), while after the year 2002 a decreasing trend in T is observed in the central Canada Basin  in the 200 - 400 m depth range

(lower halocline/Atlantic-water layer, represented by blue line  in Fig. 8c). A positive trend is observed along the southern

perimeter of the Canada Basin in 250 - 400 m depth range (Atlantic-water layer, represented by black line in Fig. 8c and d)..
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The warming and freshening trend in the Pacific-water layer has already been reported by many studies [e.g., Proshutinsky

et al., 2009; Jackson et al., 2010; Giles et al., 2012; Timmermans et al., 2014]. The cooling trend in the central Canada basin

and the warming trend along its southern perimeter is a consequence of deepening of the warm Atlantic Water in the central

basin and concurrent  upwelling of  warm Atlantic  Water  at  the boundaries,  a  manifestation of  an intensification of  the

anticyclonic Beaufort Gyre in recent years [e.g.,  McLaughlin et al., 2009;  Karcher et al., 2012;  Zhong and Zhao, 2014].

Although similar trends can be found in other seasons (from winter to spring), they are not statistically significant.

The temporal trend in each location is used to define a time-varying background field. Since the temporal distribution of the

archived data is not spatially uniform, the representative time (i.e., the time that the temporal mean value represents) of the

background field Ω̄i  varies with space. The representative time is used as a tie point (offset) to connect the mean and

trend. Taking the effect of the representative time into account, the time-varying background field for Ωi is defined by

~
Ωi=a(x) [ t−t rep(x)]+Ω̄i ,                                                                     (8)

where a(x) is the temporal trend at location x,  t is the time, trep(x) is the representative time of the background mean field

Ω̄i  at location x. We calculate the representative time in each 111 km × 111 km area by the average of measurement

times of all the data contained in the corresponding area, and apply it to define the time-varying background field (see

supplementary material). For the area where no trend can be deduced, we apply a constant background field, 
~
Ωi=Ω̄ i .

4 Decorrelation scale

4.1 Autocorrelation function

Decorrelation scales used in oceanographic studies are generally defined by an e-folding scale of an autocorrelation function,

which has a Gaussian or exponential functional form [Molinari and Festa, 2000]. Practically, the autocorrelation functions

are obtained from a series of autocorrelations estimated by differently-lagged points [e.g., White and Meyers, 1982; Meyers

et al., 1991]. An autocorrelation for Δl lag is given by 

ρl , l+Δ l=
cov (Ωl ,Ωl+Δ l )

√var (Ωl)⋅var (Ωl+Δ l)
,                                                            (9)
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where cov(Ωl, Ωl+Δl) is an autocovariance between two data series Ωl and Ωl+Δl, the temporal and/or spatial lag between which

are Δl, and var(Ωl) and var(Ωl+Δl) are the variances of Ωl and Ωl+Δl, respectively. We assume isotropy and homogeneity of the

autocorrelation  in  the  Amerasian  Basin,  supported  by  the  fact  of  weak  planetary-β effect  in  polar  regions  and  the

homogeneity of the Rossby radius in the Amerasian Basin [Nurser and Bacon, 2014; Zao et al., 2014]. These assumptions

enable us to calculate the autocorrelation from data series, which are composed of data pairs having the same temporal and

spatial lag Δl, but coming from different locations in the basin and from different times [e.g.,  Sprintall and Meyers, 1991;

Chu et al., 1997, 2002], i.e., 

ρΔ l=

∑
n=1

N

Ω 'n Ω̂ 'n

√∑
n=1

N

(Ω ' n )
2
⋅∑

n=1

N

(Ω̂ ' n)
2

,                                                           (10)

where N is the number of data pairs, the spatial and temporal lag between which are Δl, Ω'n is the anomaly value of the n-th

data, Ω̂ 'n  is the anomaly value of the paired data which locates Δl-lagged point from Ω'n.

The anomaly data set Ω' is defined by subtracting the time-varying background field 
~
Ω  from the observed data Ω . Each

anomaly data of the set is paired with the other anomalies to construct a set of anomaly data pairs, which consists of all

possible combinations of two anomaly data. The data pairs are classified into discretized bins, according to the spatial and

temporal lag of the paired data (50 spatial bins with a 10-km interval and 73 temporal bins with a 5-day interval, i.e., the

examination window is 500 km-lag × 365 days-lag). The spatial and temporal sizes of the bin are designed to capture the

functional  form  of  the  autocorrelation  relevant  for  basin  scale  data  assimilation  (i.e.,  the  functional  form  of  the

autocorrelation describing mesoscale fluctuations are not examined in this analysis). Each bin has a sufficient number of data

pairs to calculate an autocorrelation (N > O(103), see Fig. 9a). Fig. 9, panels b and c, show examples of the autocorrelation

functions for T and S in the 40 - 60 m depth range. There is a clear decrease of autocorrelation with increasing spatial and

temporal lag, although with some variability about this relationship. 

Temporal  and spatial  averages of  the autocorrelation are calculated to  identify its  functional  form by fitting a suitable

empirical function. Fig. 10a and b show the temporal average of the spatial autocorrelation functions of T and S for different

depth ranges. To account for the effect of differences of temporal autocorrelation scales in different depth ranges, we define

the temporal average by 0 - 30 days lag in shallow levels (0 - 140 m depth range), and by 0 - 60 days lag in deeper levels

(below 140 m). The functions generally show their highest values at zero spatial lag, with decreasing values as the spatial lag
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increases. Some functions exhibit a second peak around a spatial lag of 200 - 300 km. We examine the relation between the

second peaks and associated background mean field of T and S in different depth ranges, and find that the peaks derive from

the circular T and/or S structure of the Beaufort Gyre (see Appendix C). Since the Beaufort Gyre is characterized by bowl-

shaped isosurfaces of T and S associated with surface downward Ekman pumping, coherent variation of the isosurfaces gives

rise to the second peak. To eliminate the effect of the second peak for our scale estimate, we use the autocorrelation functions

just for a spatial lag of 0 - 150 km to compute a fitting function. We tested exponential and Gaussian functions for the fitting,

and found that the Gaussian function is generally suitable to represent the observationally-derived spatial autocorrelations

(Fig. 10c, d). 

The  temporal  autocorrelation  is  also  examined  by  taking  spatial-lag  averages  (0  -  20  km)  of  the  2-dimensional

autocorrelations of T and S. Fig. 11a, b show the averaged temporal autocorrelation functions in various depth ranges. The

functions show their highest values at zero temporal lag and a reduction towards large temporal lags, whereas the functions

from many depth ranges clearly exhibit an annual cycle. Since the seasonal variability of the background field is already

taken into account (sec.  3.2),  the annual  cycle found in the temporal  autocorrelations indicates  the effect  of  persistent

atmospheric forcing, the time scale of which is longer than 1 year (e.g., Arctic Oscillation [Thompson and Wallace,1998],

North Atlantic Oscillation [Hurrell, 1995; Wallace, 2000]), and/or spin-up/down process of gyre-scale circulation, the time

scale of which is estimated as 3 - 4 years [Yoshizawa et al., 2015]. To remove the effect of the annual cycle found in Fig 11a,

b,  we  use  the  autocorrelation  functions  from  0  -  200  days  temporal  lag  to  find  a  fitting  function  for  the  temporal

autocorrelation. We again tested exponential and Gaussian forms for the fitting, and found that the Gaussian functions are

suitable to represent the form of the temporal autocorrelation functions (Fig. 11c, d). 

4.2 Decorrelation scale

The spatial and temporal decorrelation scales of  T and  S are derived from the  e-folding scales of the fitted spatial- and

temporal-autocorrelation functions in the respective depth ranges. The spatial autocorrelation function is represented by the

Gaussian form,

ρs= As⋅exp [−( x
d s

)
2

]
,                                                                          (11)

where As is the autocorrelation at zero-spatial lag,  x is a spatial lag, and ds is the spatial decorrelation scale. The temporal

autocorrelation function has the same formula, but exchanging  As for At,  x for  t, and  ds for  dt, where  At,  t, and  dt are the

autocorrelation at zero-temporal lag, temporal lag, and temporal decorrelation scale, respectively. The autocorrelation at zero
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temporal and spatial lag (As and  At) represents the effect of unresolved fluctuations, which have a scale smaller than the

resolution of the present analysis at 10 km resolution in space and 5 days resolution in time (1 - As represents the magnitude

of unresolved fluctuations relative to the basin-scale fluctuations).  The effect  of mesoscale eddies with the scale of the

deformation radius (order 10 km horizontally) are described by this parameter. 

Fig. 12 summarizes the vertical profiles of the spatial and temporal decorrelation scales (ds and  dt) of  T and  S with the

associated parameters for zero-lag autocorrelations (As and  At). The zero-lag autocorrelations (Fig. 12a, c) show smaller

values (0.6 - 0.7) in the upper 100 m depth range, indicating active mesoscale processes (e.g., eddy activity observed in the

Pacific-water layer [e.g., Zhao et al., 2014]). The zero-lag autocorrelations for spatial (Fig. 12a) and temporal lags (Fig. 12 c)

exhibit similar profiles, confirming the appropriateness of the spatial and temporal averages used for the functional form

examinations. The vertical profiles of the decorrelation scale (Fig. 12 b, d) indicate an influence of the sea surface boundary

condition at shallow levels. The spatial decorrelation scale near the sea surface (~ 200 km) is larger than it is in deeper layers

(~ 150 km), as a consequence of the direct influence of the atmosphere and sea ice, the spatial scale of which is larger than

the scale of intrinsic ocean processes. The temporal decorrelation scale near the surface (100 ~ 150 days), on the other hand,

is shorter than that of the deeper layers (200 ~ 300 days), possibly due to the effect of short-timescale variation of the

atmospheric field and associated sea ice motion. It is interesting to note that the scales of the mean field and of the variance

are very similar (e.g., cmp. Fig. 6 and Fig. 12b). We currently have no explanation for this feature but assume that it is  a

peculiarity based on the dynamics of the analyzed basin. In forthcoming papers we plan to analyze the scales in the Eurasian

basin and over the Arctic shelf slope and will revisit this question.

Note that the T and S profiles exhibit similar vertical profiles in the depth range shallower than 250 m, while discrepancies

stand out in levels deeper than 250 m (Fig. 12b, d). This may be due to small calibration errors associated with our use of

ITP level-2 (i.e.,  not  the fully  calibrated level-3)  data  [see Krishfield et  al.,  2008b,  Johnson et  al.,  2007].  In  order  to

incorporate as  many data  as  possible,  we have included all  available ITP level-2 data,  where  level-3 data are  not  yet

available.  This  strategy  is  beneficial  for  scale  estimation  of  temperature  (ITP level-2  temperature  data  have  the  same

accuracy as level-3 data, within ±0.001 °C) in the entire depth range and salinity shallower than 250 m depth. On the other

hand, since salinity variability decreases with depth (Fig. 3b), the uncalibrated ITP level-2 salinity data may yield non-

negligible spurious variation at levels deeper than 250 m, which may deteriorate the accuracy of the scale estimates for

salinity in this depth range. 

4.3 Error covariance

The autocorrelation function derived in sec. 4.1 can be related to an error covariance by Eq. (9). Since the variance in Eq. (9)

used to normalize the covariance does not depend on spatial and/or temporal separation in principle (see the assumption in
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sec.  4.1), it  can be represented by a variance calculated from all  the data in the Amerasian Basin. Therefore,  the error

covariance associated with the representation error is given by a function of spatial and temporal separation, x and t, 

cov (x ,t )=ρ(x , t)⋅varbg ,                                                          (12)

where ρ(x, t) is the autocorrelation function, and varbg is the background mean variance defined by 

var bg=
1
M

∑
i=1

M

(~Ωi−Ωi )
2

.                                                         (13)

The vertical profiles of varbg for T and S are shown in Fig. 13. The background mean variance clearly reflects the vertical

stratification in the Amerasian Basin [e.g., McLaughlin et al., 2004, Shimada et al., 2005], with highest variance in the depth

ranges of vertical extrema in the profile. The temperature profile exhibits two minima (in the mixed layer and around 130 m

depth) and two maxima (approximately in 70 m and 250 m), Figure 3 (left). These shallow extrema are associated with the

seasonally, spatially and interannually varying Near Surface Temperature Maximum (see e.g., McPhee et al., 1998), and

Pacific Summer Water layers (see e.g., Timmermans et al., 2014). The deep minimum correspond to the Pacific Winter Water

layer plus variations in the deeper Atlantic Water (see e.g., Shimada et al., [2005] Fig. 2). The vertical profile of salinity

variance also exhibits good correspondence with salinity stratification and its variation (Fig. 3, right), with smallest variance

(approximately 120 m depth) corresponding to weakest salinity stratification and largest (around 180 m) corresponding to

the stratification boundary between the upper and lower halocline. The derived covariance is also necessary to complete the

model - observation misfit calculation, as summarized in the following section..

5 Conclusion

We examined spatial and temporal scales of  T and  S anomalies from the mean fields in the Amerasian Basin. To provide

scales  describing the anomalies,  we examined the autocorrelation of  T and  S measurements and calculated spatial  and

temporal  decorrelation scales.  Historical  T and  S measurements in the Arctic  and northern North Atlantic  oceans were

compiled for this study and for future applications to Arctic ocean data assimilations. The resulting quality controlled archive

was used to construct a background mean field, from which anomaly fields were derived. By assuming spatial and temporal

homogeneity of the autocorrelation function in the basin interior, we calculated autocorrelations as a function of spatial and

temporal lags. The examination revealed that the autocorrelation function can be well described by a Gaussian function in

space and time. The spatial and temporal decorrelation scales were estimated to be 150 ~ 200 km in space and 100 ~ 300
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days in time (e-folding scales of the autocorrelation function). The spatial decorrelation scale is relatively large near the sea

surface, while the temporal scale is relatively small near the surface.  Mesoscale fluctuations, with scales smaller than 10 km

and shorter than 5 days, are represented by the zero-lag autocorrelation. The zero-lag autocorrelation should be re-examined

in future work to describe the autocorrelation smaller than the Rossby radius by fully exploiting ITP data.

The estimated function and the scales,  together with the associated error covariance, are directly applicable to model -

observation misfit calculation in data assimilation systems, which intend to assimilate a spatially and temporally varying

field. A cost function measuring the model - observation misfit is given by 

J=
1
2
[d−H (m)]

T R−1
[d−H (m )] ,                                                (14)

where d is the data vector, m is the model vector, H is the observation operator, R is the observation error covariance matrix.

The current study gives the descriptive form of  H and  R. An observation operator,  H, which takes spatial and temporal

representativeness of each measurement into account, is given as follows;

H i(m)=

∑
j=1

M

m jρ(x ij , t ij)

∑
j=1

M

ρ(x ij , t ij)

,                                                             (15)

where i refers to the i-th in-situ measurement, j refers to the modeled variable at the j-th model grid point, ρ is the 

autocorrelation between (x, t)-distant locations, xij and tij are the spatial and temporal separation between the i-th 

measurement and the j-th model grid point. The operator Hi(m) maps the model field m to the i-th measurement location (in 

space and time), in accordance with the influence of the measurement. We can describe the autocorrelation function ρ by the 

results shown in sec. 4.1 and 4.2 in the following formula,

ρ(x , t )=A⋅exp [−( x
d s

)
2

−( t
d t

)
2

]
,                                                        (16)

where A is the autocorrelation between zero-lag locations (x < 10 km and t < 5 days) representing the contributions from

unresolved-scale fluctuations (Fig. 12a), ds and dt are the spatial and temporal decorrelation scales (Fig. 12b, d), respectively.
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This formula provides  the representation error  of a  point  measurement  at  (x,  t)-distant  locations.  Note that  the current

formula enables us to quantify errors of modeled T and S not only at the location where the measurements exist, but also at

the locations distant from the measurements. The present study also provides error covariance matrix R associated with the

representation error. The representation error covariance between the i-th and the i'-th measurement is 

cov (i ,i ' )=ρ(x ii' ,t ii' )⋅var bg ,                                                              (17)

where  ρ(xii', tii') is the autocorrelation between i-th and i'-th measurement, the spatial and temporal separation between which

are given by xii' and tii', and varbg is the background error variance given as a function of depth (Fig. 13). As summarized here,

the current study provides a full descriptive formula to exploit ocean in-situ measurements in the Amerasian Basin for a

model - observation misfit calculation.

The  present  scale  estimates  pose  a  requirement  from  a  basin-scale  data  assimilation  on  a  sampling  strategy.  Static

interpolation approaches (e.g., optimal interpolation [Gandin, 1965; Reynolds and Smith, 1994], objective mapping [Wong et

al., 2003;  Böhme and Send, 2005;  Böhme et al., 2008], and Data-Interpolating Variational Analysis [Troupin et al., 2010,

2012; Korablev, 2014] ) exploit statistical information of data to derive a mean analysis field. Data assimilation approaches,

in addition, exploit modeled physics and provide temporally and spatially varying 4-dimensional analysis fields. The former

approaches  need  a  scale  representing  the  mean  field,  while  the  latter,  in  addition,  needs  spatial  and  temporal  scales

representing the anomaly field to fully exploit the information embedded in in-situ data. For Arctic Ocean studies, statistical

interpolation has been using decorrelation scales of 300 ~ 500 km (Steele et al., [2001],  Proshutinsky et al., [2009], Rabe et

al. [2011, 2014]), while the present study suggests the necessity of a smaller measurement interval (150 ~ 200 km in space

and 100 ~ 300 days in time) to describe the anomaly field by a basin-scale data assimilation.

Further studies are necessary to interpret the decorrelation scale of S and T in the context of ocean dynamics and relate it to

the hydrographic features in the Amerasian Basin. The scale of ocean variability is governed by external forcings and by

various physical processes in the ocean. The local dynamic response to local external forcing (i.e., vertical normal mode in

response to basin-scale wind stress curl [Pedlosky, 1987; Olbers et al., 2012]) is one very likely mechanism to explain the

shape of the vertical profile of the scale. Near the sea surface the decorrelation scales should be examined in relation to the

scale  of  atmosphere  and  sea  ice  variability  [Walsh,  1978;  Walsh  and  Chapman,  1990],  and  the  dynamical  processes

governing the mixed layer [Peralta-Ferriz and Woodgate, 2015]. The effect of remote forcing is another important issue to

be examined. Advection of anomalous water masses introduce scales governed by mechanisms outside of the basin and/or

shelf-basin interaction, such as the inflow of anomalous Pacific Water into the deep basin [Steele et al., 2004;  Itoh et al.,

2012], its modification processes on the shelf [Pickart et al., 2005,  Woodgate et al., 2005], the advection of anomalous
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Atlantic  Water  [McLaughlin et  al.,  2009;  Karcher et  al.,  2012],  or  variations of  freshwater  supply due  to  river  runoff

[Lammers et al., 2001]. In this study we employed level surfaces, as we focus on the applicability of the decorrelation scales

for model validation and data assimilation (many models use the so called z-coordinate system). For future studies which

aim at a dynamical interpretation of the decorrelation scales, an analysis in isopycnal coordinates would be a logical next

step. Autocorrelation and decorrelation scale estimates for other parts of the Arctic Ocean (i.e., the Eurasian Basin, and over

the shelf slopes) will be presented in forthcoming papers. 
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Appendix A: Correspondence to the geostatistical approach

Since data analysis softwares based on geostatistical approaches (e.g., iSATiS, SURFER) are used in oceanographic studies

in  recent  years,  it  is  useful  to  providing  a  summary  of  the  relation  between  the  current  approach  and  geostatistical

approaches. The spatial scale of variation estimated in section 3.1 is a different notation of the variogram concept used in

geostatistics. In the present formula, we normalize the variance by the sill of the variogram, and a root-squared value is

considered. This is because a variogram deals with a variance (i.e., spatial scale of the  squared difference between two

measurements), while we intend to quantify the spatial scale of difference between two measurements. We also defined the

function  by  the  value  subtracted  from 1,  in  order  to  obtain  a  function  decaying  to  zero  at  infinity.  This  is  done  for

mathematical convenience in order to obtain a Gaussian-like function. This is preferable for the framework of the best linear

unbiased estimator (BLUE), which is constituting the basis of data assimilation theories. Since the spatial scale of variation

originates from the same concept as variograms, it can be related to the terminology used in geostatistical approaches. The

function f (i.e., normalized root-mean-square-difference) at zero separation (Fig. 5) is 

f ∣x=0 = 1−√ 2N g
φ bg

,                                                             (A1)

where Ng is a nugget of semi-variogram plot. The estimated scale (the spatial scale of variation) describes the square-root of

the scale described by a variogram, although it  is  not  easy to  find an exact  correspondence,  since empirical  functions

describing the two functions may differ. If we directly translate the function  f into a semi-variance used to plot a semi-

variogram, our formulation corresponds to an empirical semi-variance with the following form,

γ̂(x )=
φ bg

2
[ A e−( x /L(z ))

2

−1 ]
2

,                                                  (A2)

where A is the function f value at zero separation, which is related to the nugget in Eq. (A1). Since we modeled the function f

by a Gaussian formula, we cannot define the 'range' in the corresponding semi-variogram (the range goes to infinity in a

Gaussian formula). After obtaining a background mean field by using the spatial scale of variation, we do not have to rely on

geostatistical approaches any longer, since we can directly calculate the autocorrelation by variance and auto-covariance (Eq.

9).
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Appendix B: Error estimates of ITP level-2 data

Woods Hole Oceanographic Institution provides ITP temperature and salinity data at different levels of processing; here we

use both level-3 (final processed data) and uncalibrated level-2 data when level-3 data are not available [see Krishfield et al.,

2008b]. Profile-by-profile conductivity calibration (not applied to the level-2 data) accounts for conductivity sensor drift.

The calibration method applied to level-3 data is to adjust the potential conductivity of each profile to the value derived from

bottle-calibrated CTD stations on the deep 0.4 °C potential temperature surface [Krishfield et al., 2008b].

 

As a measure of the uncertainty of the uncalibrated ITP level-2 data, we calculate deviations of the ITP level-2 data from the

background mean field (sec 3.2). We assume that the standard deviations of the background field derived from all data

represent natural variability of T and S in each depth level. If the standard deviation from ITP level-2 data is larger than the

natural variability, we can conclude that the ITP level-2 data has an error (bias) expressed by the excess of the standard

deviation. Fig. B1 depicts vertical profiles of the standard deviations of T and S calculated from all data, from ITP level-2

data only, and from all data except ITP level-2 data. The T profiles exhibit smaller standard deviation of ITP level-2 data than

the natural variability throughout the entire water column. On the other hand, the S profile shows that the standard deviation

of ITP level-2 data is larger than the natural variability below 250 m depth, and it is almost double as large below 500 m

depth. Since the spatial scale estimated in sec. 3.1 and the decorrelation scale estimated in sec. 4.2 would be deteriorated by

erroneous sensor drifts, we limit our analyses from the sea surface to 400 m depth.

Appendix C: Examination of the second peak in spatial autocorrelation functions 

To understand the source of the second peaks found around 200 - 300 km lag in the spatial autocorrelation functions, we

examine their relation to the background mean fields. The second peaks in the autocorrelation functions are always found

where the corresponding  T and/or  S fields exhibit the classic circular structure associated with the anticyclonic Beaufort

Gyre. Fig. C1 shows examples of the background mean fields and corresponding autocorrelation functions for various depth

ranges. The upper two panels (a and c) exhibit a clear circular spatial pattern in the Canada Basin, while the lower two panels

(e  and  g)  do  not.  The  corresponding  spatial  autocorrelation  functions  show  clear  second  peaks  around  240  km  lag

corresponding to the presence of the circular pattern (panels b and d), while they show no such peak where the circular

pattern is not present (panels f and h).

The coincidence between the second peak and the circular structure of the Beaufort Gyre indicates that the peak captures a

coherent variation of isothermal (isohaline) depth. We employ level depth surfaces for the present analysis; bowl-shaped

isosurfaces of  T and  S in the Canada Basin exhibit a circular structure on level surfaces. Due to this structure, the same

isothermal (isohaline) surface appears on a level surface as it encircles the center of the Beaufort gyre (Fig. C1a, c). The
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second peak captures a relatively high autocorrelation between the measurements, both of which belong to nearly the same

isothermal (isohaline) surface but separated by a certain distance in accordance with the circular pattern. A consideration of

mechanisms governing the decorrelation scale further supports this interpretation. The basin-scale dynamical response of the

ocean  to  external  forcing  is  manifest  as  vertical  displacements  of  isopycnal  surfaces  (with  given  T and  S properties),

resulting in coherent variations of these depth surfaces. For follow on studies to the present one, it is desirable to calculate

autocorrelation  functions  and  decorrelation  scales  in  a  way  that  takes  such  coherent  large-scale  dynamic  features  into

account. This could be achieved by analysing anomalies of the isohaline/isothermal's depth from their mean state. In the case

of the Beaufort Gyre we expect the autocorrelation functions for the variation of the isohaline/isothermal depth to have larger

spatial scales than those for T and S estimated on level surfaces. As an approximate measure of the decorrelation scales for

isohaline/isothermal depth anomalies, we fit a Gaussian-function using the value at the zero lag correlation and the second

peak obtained from the level surface analysis (Fig. C2), resulting in roughly 200 - 400 km. The largest scales we find in the

200 - 350 m depth range for the isothermal depths and in the 150 - 400 m depth range for the isohaline depths, correspond to

the depths of strong vertical gradients of T and S. For a sound analysis, a variation of iso-surface should be quantified by a

variation of isosurface depth. In such an analysis, for example, salinity is no longer a variable to be examined, but depth of

constant salinity surface, i.e., Z(x, y, t)|S=constant, is the variable to be examined.
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Figure captions

Figure 1: The topographic features of the Arctic Ocean (upper panel) and spatial distribution of archived temperature and

salinity data  for the 1980 - 2015 period (lower panel); a red dot is shown if there is at least one measurement in the 0 -

20 m depth range.

Figure 2: (a) division of vertical levels for the statistical screening and decorrelation scale examination. The archived TS data

are classified into 50 levels according to their measurement depth. Data from an identical CTD profile are averaged over

each depth range and regarded as one measurement.  (b) Area mask for  the area-based statistical  screening and the

decorrelation scale examination.

29

885

890

895

900

905

910

915



Figure 3: Temperature (left) and salinity (right) distributions versus depth (m) in the Amerasian Basin (see Figure 2b for area

definition) after a combined statistical screening. The blue dots denote data distribution after the screening, while the red

(green) dots denote data removed by grid-based (area-based) statistical screening. The red line denotes the mean (µ) at

each depth level after the screening, and the solid and dotted black lines indicate  μ±5σ and  μ±10σ, respectively. The

mean and standard deviations are calculated by the data from the entire Amerasian Basin. Note that analyses in sec. 3

and 4 use data from 0 - 400 m depth range.

Figure 4: Function f (normalized root mean square difference) of temperature (left column) and salinity (right column) in 40

- 60 m (the first row) and in 200 - 225 m (the second row) depth ranges as a function of spatial (km) and temporal (days)

separations of measurement pairs. The color scale is common to the panels.

Figure 5: 0 - 90 days temporal average of the function f (normalized RMSD) of (a) temperature and (b) salinity as a function

of spatial separation. The thin-dashed lines denote functional form of RMSD in different depth levels, while the thick-

solid black line in each panel denotes average of 0 - 400 m depth range. The thick-solid blue line is the fitted Gaussian

function, f(x) = a * exp[-(x/b)
2
], the fitting parameters of which are shown in each panel.

Figure 6: Vertical profile of spatial scale of variation (e-folding scale of the normalized RMSD function, f) derived from the

fitted Gaussian function for each depth level (see also Fig. 5). The scale in each depth range is calculated from data from

all seasons. 

Figure 7: Background mean field of (a) temperature and (b) salinity (40 - 60 m depth range) in summer (July - September)

obtained by Gaussian filtering with the e-folding scales shown in Fig. 6. A vertical filter (average of 3 adjacent layers) is

applied to the e-folding scales before the application in order to obtain a smooth transition of the filtering scale in the

vertical  direction. The background field is calculated only at the locations where data exist in the Amerasian Basin

(bottom depth > 1000 m).

Figure 8: A summary of linear temporal trend in the Amerasian Basin: the spatial pattern of (a) temperature and (b) salinity

trend in 60 - 80 m depth range, and the time series of averaged (c) temperature and (d) salinity over the grid cells where

trend is detected in the Amerasian Basin. The trend is calculated in each 111 km  × 111 km grid cell for the period

covered by data, and the Mann-Kendall rank statistic (Kendal, 1938) is applied to test the significance. In panels (a) and

(b), only the grid cells, the trend of which are statistically significant (significance level 5%) are shown in color. Time

series of averaged temperature/salinity over the corresponding area are shown in (c) and (d) by the thick-solid lines.

Black thick solid lines in panels (c) and (d) exhibit averages over the grid cells, where positive (negative) trends of T (S)
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are detected along the southern perimeter of the Canada Basin in the 350-375m depth range (spatial  pattern is not

shown). The dashed lines in (c) (d) depict the range of 1 standard deviation.

Figure 9: (a) Number of data pairs used to calculate autocorrelation in each bin (log-scale) and 2-dimensional autocorrelation

function for (b) temperature and (c) salinity in 40 - 60m depth range. The color bar for (b) is common to (c). The white

area in panels (b) and (c) indicates negative autocorrelations. 

Figure 10: Spatial autocorrelation function of temperature (left column) and salinity (right column). The upper panels show

the temporal averages of the 2-dimensional autocorrelation functions (the average of 0 - 30 days-lag  for 0 - 140 m depth

range, 0 - 60 days-lag for 140 - 400 m depth range) in various depth levels. The lower panels are Gaussian functions, the

intercepts and e-folding scales of which are calculated from the function fitting in 0 - 150 km spatial-lag range.

Figure 11: Temporal autocorrelation function of temperature (left column) and salinity (right column).  The upper panels

show the spatial averages of the 2-dimensional autocorrelation functions (the spatial average of 0 - 20 km lag) in various

depth levels. The lower panels are Gaussian functions, the intercepts and e-folding scales of which are calculated from

the function fitting in  0 -  200 days temporal-lag range.  A 90 days temporal  filter  is  applied to the autocorrelation

functions in (a) and (b) to eliminate noise.

Figure 12: Vertical profiles of zero-lag autocorrelation (left column) and e-folding scale (right column) of the fitting spatial

(the first row) and temporal (the second row) autocorrelation function. A 3-layer vertical filter is applied to eliminate

noise.

Figure 13: Vertical profile of the background mean variance, varbg, for temperature (left) and salinity (right).

Figure B1: Vertical profiles of standard deviation of (a) temperature and (b) salinity in the Amerasian Basin. The black, blue 

and red lines indicate the standard deviation calculated from all data, ITP level-2 data, and data except ITP level-2 data, 

respectively. The standard deviation at each location is calculated by the deviation from the background mean field, and 

then an averaged standard deviation in the entire basin is calculated.

Figure C1:  Left column: examples of the background mean fields with a circular structure associated with the Beaufort Gyre

(upper 2 panels) and without the circular structure (lower 2 panels). Right column: spatial autocorrelation functions

corresponding to their  right  panels.  The first,  third and fourth row show temperature,  while the second row shows

salinity.
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Figure C2:  Vertical profile of the spatial decorrelation scales estimated from the second peak of the spatial autocorrelation

function (see Fig. 10a, b). The scale is obtained from a Gaussian function fitting with 2 points: zero-lag autocorrelation

value from Fig. 12a and the second peak. The second peak is defined by the highest autocorrelation value, the spatial lag

of which is larger than 150 km. A 3-layer vertical filter is applied to eliminate noise.
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Table 1. List of observational data

Element of data compilation (alphabetical order)  Data source (URL or contact address)

ARAON 2011-2013 http://eng.kopri.re.kr/home_e/

ARGO 2006 − 2008 POPS http://www.coriolis.eu.org/Data-Services-Products/View-Download

ARK 1993 − 2012 RV Polarstern listed in Rabe et al. (2013) http://www.pangaea.de/

ASCOS 2008 RV Oden http://www.ascos.se

Beaufort Gyre Project 2003 − 2014 various ships http://www.whoi.edu/beaufortgyre/

Beringia III 2005 RV Oden http://bolin.su.se/data/Beringia2005-Stats-Oden

CCGS LSSL 1997 - 2010 Koji Shimada (koji@kaiyodai.ac.jp)

CCGS SWL 1999-2001, 2003, 2005-2007 Koji Shimada (koji@kaiyodai.ac.jp)

CHINARE 1999 − 2010 RV Xuelong http://www.nsfcodc.cn/polar/

CLIVAR and Carbon Hydrographic data Office (CBL02, Oden91, PK-ARK-XII, SBI03) http://cchdo.ucsd.edu/arctic

DAMOCLES 2006 − 2008 POPS http://www.ipev.fr/damocles/

Greenland Sea Project (1987-1993) http://ocean.ices.dk/Project/GSP/

ICES datasets (CTD and bottle data, 1980-2015) http://ices.dk/marine-data/dataset-collections/Pages/default.aspx

ITP level-3 data (1-19, 21-23, 25-28, 30, 32, 33, 35, 36, 41, 42) http://www.whoi.edu/itp

ITP level-2 data (24, 29, 31, 34, 37-40, 43-94)  update Dec. 03, 2015 http://www.whoi.edu/itp

JAMSTEC 1999 − 2010, 2012 RV Mirai http://www.godac.jamstec.go.jp/darwin/datatree/e

JAMSTEC Compact Arctic Drifter 5, 6 http://psc.apl.washington.edu/northpole/Data.html

Larsen 93 cruise Koji Shimada (koji@kaiyodai.ac.jp)

LOMROG 2007 2007 RV Oden NODC OAS accession 0093533 http://www.nodc.noaa.gov/cgi-bin/OAS/prd/accession/0093533

N/A 2001 RV Oden NODC OAS accession 0002194 http://www.nodc.noaa.gov/cgi-bin/OAS/prd/accession/0002194 

NABOS/CABOS data (2002 − 2009, 2013 and 2015) http://nabos.iarc.uaf.edu/

NPEO 2000 − 2014 airborne and ice-based ftp://psc.apl.washington.edu/NPEO Data Archive/NPEO Aerial CTDs/

PAICEX 2007 − 2009ice-based Sergey Pisarev (pisarev@ocean.ru)

PANGAEA (POMAR, Yakov Simmitsky, LANCE cruises) http://www.pangaea.de/

PS86 & PS87 XCTD http://www.pangaea.de/

SCICEX 1993 US submarines and ice-based http://data.eol.ucar.edu/codiac/dss/id=106.arcss072/

SCICEX 1996-1999, US submarines and ice-based SAIC project Sergey Pisarev (pisarev@ocean.ru)

SCICEX 1997 and 1998, US submarines and ice-based http://data.eol.ucar.edu/codiac/dss/id=106.arcss064/

SCICEX 2000 US submarine ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02187/XCTD/2000/edffiles/

SCICEX 2001 US submarine http://www.nodc.noaa.gov/archive/arc0021/0000568/1.1/data/0-

data/Scranton-01/Probe Data/English EDFs/

SCICEX 2003 US submarine ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02187/XCTD/2003/edffiles/

SCICEX 2014 US submarine ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02187/XCTD/2014/uss-new-

mexico/

Switchyard 2003 − 2012 ice-based http://data.eol.ucar.edu/codiac/dss/id=106.ARCSS129

System Laptev Sea Project, 2007 - 2011 Markus Janout (Markus.Janout@awi.de),  Jens Hölemann 

(Jens.Hoelemann@awi.de)

UNCLOS 2011 CCGS LSSL Takashi Kikuchi (takashik@jamstec.go.jp)

WOD13 (APB, CTD, DRB, GLD, MRB, OSD, PFL, SUR, UOR; 1980-2013) https://www.nodc.noaa.gov/OC5/WOD13/
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Figure 1:The topographic features of the Arctic Ocean (upper panel) and spatial distribution of 
archived temperature and salinity data  for the 1980 - 2015 period (lower panel); a red dot is shown if 
there is at least one measurement in the 0 - 20 m depth range.
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(b)  Area mask for statistical screening

1. Amerasian Basin (depth > 1000m)

2. Amerasian shelf & shelf slope
   (0 < depth < 1000m)

3. Siberian shelf & shelf slope
    (0 < depth < 1000m)

4. Eurasian Basin (depth > 1000m)

5. Barents, Kara Sea and shelf slope
    (0 < depth < 1000m)

6. Nordic Seas (depth > 1000m)

(a)

Figure 2: (a) division of vertical levels for the statistical screening and decorrelation scale 
examination. The archived TS data are classified into 50 levels according to their measurement 
depth. Data from an identical CTD profile are averaged over each depth range and regarded as 
one measurement. (b) Area mask for the area-based statistical screening and the decorrelation 
scale examination.
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Figure 3: Temperature (left) and salinity (right) distributions versus depth (m) in the Amerasian 
Basin (see Figure 2b for area definition) after a combined statistical screening. The blue dots 
denote data distribution after the screening, while the red (green) dots denote data removed by 
grid-based (area-based) statistical screening. The red line denotes the mean (µ) at each depth 
level after the screening, and the solid and dotted black lines indicate μ±5σ and μ±10σ, 
respectively. The mean and standard deviations are calculated by the data from the entire 
Amerasian Basin. Note that analyses in sec. 3 and 4 use data from 0 – 400 m depth range.
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Figure 4: Function f (normalized root mean square difference) of temperature (left column) and 
salinity (right column) in 40 - 60 m (the first row) and in 200 - 225 m (the second row) depth ranges 
as a function of spatial (km) and temporal (days) separations of measurement pairs. The color scale 
is common to the panels.
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Figure 5: 0 - 90 days temporal average of the function f (normalized RMSD) of (a) temperature and 
(b) salinity as a function of spatial separation. The thin-dashed lines denote functional form of RMSD 
in different depth levels, while the thick-solid black line in each panel denotes average of 0 - 400 m 
depth range. The thick-solid blue line is the fitted Gaussian function, f(x) = a * exp[-(x/b)2], the fitting 
parameters of which are shown in each panel.

   (a)  Temperature                                                     (b)  Salinity
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Figure 6: Vertical profile of spatial scale of variation (e-folding scale of the normalized 
RMSD function, f) derived from the fitted Gaussian function for each depth level (see also 
Fig. 5). The scale in each depth range is calculated from data from all seasons. 
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     Background temperature field
(Amerasian Basin, summer,  40-60m)

(a)

            Background salinity field
 (Amerasian Basin, summer,  40-60m)

(b)

[psu]

[°C]

Figure 7: Background mean field of (a) temperature and (b) salinity (40 - 60 m depth range) in 
summer (July - September) obtained by Gaussian filtering with the e-folding scales shown in Fig. 6. 
A vertical filter (average of 3 adjacent layers) is applied to the e-folding scales before the application 
in order to obtain a smooth transition of the filtering scale in the vertical direction. The background 
field is calculated only at the locations where data exist in the Amerasian Basin (bottom depth > 
1000 m).
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Figure 8: A summary of linear temporal trend in the Amerasian Basin: the spatial 
pattern of (a) temperature and (b) salinity trend in 60 - 80 m depth range, and the 
time series of averaged (c) temperature and (d) salinity over the grid cells where 
trend is detected in the Amerasian Basin. The trend is calculated in each 111 km × 
111 km grid cell for the period covered by data, and the Mann-Kendall rank statistic 
(Kendal, 1938) is applied to test the significance. In panels (a) and (b), only the grid 
cells, the trend of which are statistically significant (significance level 5%) are shown 
in color. Time series of averaged temperature/salinity over the corresponding area are 
shown in (c) and (d) by the thick-solid lines. Black thick solid lines in panels (c) and (d) 
exhibit averages over the grid cells, where positive (negative) trends of T (S) are 
detected along the southern perimeter of the Canada Basin in the 350-375m depth 
range (spatial pattern is not shown). The dashed lines in (c) (d) depict the range of 1 
standard deviation.

(b) Salinity trend (1980-2015) significance level = 5%
                       60-80 m depth, summer season

(a) Temperature trend (1980-2015) significance level = 5%
                       60-80 m depth, summer season

(c) (d)
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Figure 9: (a) Number of data pairs used to calculate autocorrelation in each bin (log-scale) and 2-
dimensional autocorrelation function for (b) temperature and (c) salinity in 40 - 60m depth range. The 
color bar for (b) is common to (c). The white area in panels (b) and (c) indicates negative 
autocorrelations. 

(a)

(b)

(c)

log
10

N

Autocorrelation, temperature

Autocorrelation, salinity
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Figure 10: Spatial autocorrelation function of temperature (left column) and salinity (right column). 
The upper panels show the temporal averages of the 2-dimensional autocorrelation functions (the 
average of 0 - 30 days-lag  for 0 - 140 m depth range, 0 - 60 days-lag for 140 - 400 m depth range) in 
various depth levels. The lower panels are Gaussian functions, the intercepts and e-folding scales of 
which are calculated from the function fitting in 0 - 150 km spatial-lag range.

(c)

(a) (b)

(d)
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(c)

(a) (b)

(d)

Figure 11: Temporal autocorrelation function of temperature (left column) and salinity (right column). 
The upper panels show the spatial averages of the 2-dimensional autocorrelation functions (the 
spatial average of 0 - 20 km lag) in various depth levels. The lower panels are Gaussian functions, 
the intercepts and e-folding scales of which are calculated from the function fitting in 0 - 200 days 
temporal-lag range. A 90 days temporal filter is applied to the autocorrelation functions in (a) and (b) 
to eliminate noise.

44



(a) (b)

(c) (d)

Figure 12: Vertical profiles of zero-lag autocorrelation (left column) and e-folding scale (right column) 
of the fitting spatial (the first row) and temporal (the second row) autocorrelation function. A 3-layer 
vertical filter is applied to eliminate noise.
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Figure 13: Vertical profiles of the background mean variance, var
bg

, for temperature (left) and salinity 

(right).
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Figure B1: Vertical profiles of standard deviation of (a) temperature and (b) salinity in the Amerasian 
Basin. The black, blue and red lines indicate the standard deviation calculated from all data, ITP 
level-2 data, and data except ITP level-2 data, respectively. The standard deviation at each location is 
calculated by the deviation from the background mean field, and then an averaged standard deviation 
in the entire basin is calculated.
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Figure C1:  Left column: examples of the background mean fields with a circular structure associated 
with the Beaufort Gyre (upper 2 panels) and without the circular structure (lower 2 panels). Right 
column: spatial autocorrelation functions corresponding to their right panels. The first, third and fourth 
row show temperature, while the second row shows salinity.
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Figure C2:  Vertical profile of the spatial decorrelation scales estimated from the second peak of the 
spatial autocorrelation function (see Fig. 10a, b). The scale is obtained from a Gaussian function 
fitting with 2 points: zero-lag autocorrelation value from Fig. 12a and the second peak. The second 
peak is defined by the highest autocorrelation value, the spatial lag of which is larger than 150 km. A 
3-layer vertical filter is applied to eliminate noise.
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