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Abstract. A key challenge in numerical ocean modeling is the parameterisation of the turbulent mixing of heat and salt. Current

models mostly use a rotated diffusion tensor based on mixing directions parallel and perpendicular to the local neutral vector.

However, there is no density variable that is exactly neutral everywhere because of the coupling between thermobaricity and

density-compensated temperature and salinity anomalies. Hence, when using neutral rotated diffusion, the effective diapycnal

diffusivity experienced by any possible density variable is necessarily partly controlled by isoneutral diffusion. Here, this5

effect is quantified by evaluating the effective diapycnal diffusion coefficient for five widely used density variables: Jackett

and McDougall (1997) γn, Lorenz reference state density ρref of Saenz et al. (2015), and three potential density variables

σ0, σ2 and σ4. Computations are based on the World Ocean Circulation Experiment climatology, assuming either a uniform

value for the isoneutral mixing coefficient or spatially varying values inferred from an inverse calculation. Isopycnal mixing

contributions to the effective diapycnal mixing yield values consistently larger than 10−3 m2/s in the deep ocean for all density10

variables, with γn suffering the least from the isoneutral control of effective diapycnal mixing, and σ0 the most. These high

values are due to spatially localised large values of non-neutrality, mostly in the deep Southern Ocean. Removing only 5%

of these high values on each density surface reduces the effective diapycnal diffusivities to less than 10−4 m2/s. This work

highlights the conceptual and practical difficulties of relating the diapycnal mixing diffusivities inferred from global budgets

or inverse methods relying on Walin-like water mass analyses to locally defined dianeutral diffusivities. Doing so requires15

being able to tease out the relative contribution of isoneutral mixing from the effective diapycnal mixing, and makes it difficult

to study diapycnal mixing completely independently of isopycnal mixing. Because Lorenz reference density is not exactly

neutral, isoneutral mixing contamination also pertains to the determination of spurious diapycnal mixing based on monitoring

the evolution of Lorenz reference state, which has been overlooked so far.

1 Introduction20

Simulations of climate change by means of coupled ocean-atmosphere numerical models are sensitive to parameterisations of

oceanic sub-grid scale mixing of heat and salt. Indeed, sub-grid scale mixing processes directly control ocean heat uptake, the

strength of the Atlantic meridional overturning circulation, and the poleward heat transport e.g., Kuhlbrodt and Gregory (2012).

Because tracers are stirred and mixed preferentially along isopycnal surfaces, it has become commonly accepted following
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Redi (1982) to mix potential temperature (alternatively Conservative Temperature) and salinity by means of a rotated diffusion

tensor, namely:

K=Ki(I−ddT )+Kddd
T . (1)

In (1), d denotes a unit vector normal to the isopycnal surface considered (the diapycnal direction),Ki andKd are the isopycnal

and diapycnal mixing coefficients respectively, I denotes the identity matrix, and the subscript T denotes transposition. Ro-5

tated diffusion decomposes the diffusive part of the turbulent fluxes of heat and salt Fθ = 〈v′θ′〉diffusive =−[Ki∇iθ+Kd∇dθ]
and FS = 〈v′S′〉diffusive =−[Ki∇iS+Kd∇dS] into orthogonal isopycnal and diapycnal components. These are ∇iC =

∇C−d(dT∇C) =∇C−(∇C ·d)d and∇dC = d(dT∇C) = (∇C ·d)d respectively, for C = (S,θ) and for some Reynolds

averaging operator 〈·〉. Here, θ is the potential temperature and S the salinity of standard seawater 1. This approach implies

that Ki and Kd are linked to Fθ and FS as follows:10

Ki =−
Fθ · ∇iθ
|∇iθ|2

=−FS · ∇iS
|∇iS|2

, Kd =−
Fθ · ∇dθ
|∇dθ|2

=−FS · ∇dS
|∇dS|2

. (2)

As is well known, there is an infinite number of possible ways to define a density variable in a salty ocean with a realistic

nonlinear equation of state. For instance, potential density σ = ρ(S,θ,pr) defined relative to one particular reference pressure

pr is always different from potential density defined relative to a different reference pressure. A priori, each possible density

variable can serve as the basis for a rotated diffusion tensor. However, the relations (2) show that Ki and Kd must then15

depend on the choice of the density variable. For lack of theoretical understanding on how to define isopycnal surfaces from

first principles in the ocean, the diapycnal direction d in (1) is currently specified in terms of the so-called neutral vector

N= g(α∇θ−β∇S) as d=N/|N|, e.g., McDougall et al. (2014), where α and β are the thermal expansion and haline

contraction respectively, g being the acceleration of gravity. As shown by McDougall (1987a)’s work, the neutral directions

(i.e. perpendicular to the neutral vector N) hold special importance in the ocean as the directions along which two fluid parcels20

can swap position without experiencing buoyancy forces.

The adoption of rotated diffusion tensors (1) is relatively recent, however. Historically, early numerical ocean models had

used a diffusion tensor based on mixing heat and salt with different mixing diffusivities in the horizontal and vertical directions.

Following Veronis (1975), it has been generally assumed that such an approach causes spurious upwelling in western boundary

currents owing to the unphysical diapycnal mixing component due to the large horizontal mixing across sloping isopycnal25

surfaces, the so-called "Veronis effect". The diffusive flux of any mathematically well-defined material density variable γ(S,θ),

for such a mixing tensor is given by:

Fγ =−KH [∇γ− (∇γ ·k)k]−KV (∇γ ·k)k, (3)

where KH and KV are the horizontal and vertical mixing coefficients respectively, and k the unit normal vector pointing

upwards. Therefore, the diapycnal flux of Fγ through an isopycnal surface γ(S,θ) = constant is given by:30

Fγ ·
∇γ
|∇γ|

=−
[
KH sin2 (∇γ,k)+KV cos2 (∇γ,k)

]
|∇γ|=−

[
(KH −KV )sin

2 (∇γ,k)+KV

]
|∇γ|, (4)

1We assume fixed composition, thus allowing one to treat practical (conductivity) salinity and Absolute Salinity as equivalent, since the two are then linked

to each other by a fixed conversion factor)
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where (∇γ,k) is the angle between the local gradient of γ and the vertical direction. This expression shows that the actual

diapycnal mixing experienced by the density-like variable γ(S,θ) can be written as the sum KV +KV eronis
V , with:

KV eronis
V = (KH −KV )sin

2 (∇γ,k)≈KH sin2 (∇γ,k), (5)

when KH >>KV as often assumed in ocean models. To the extent that it is legitimate to regard KV as related to measured

values of diapycnal/vertical mixing, it is generally assumed that KV eronis
V induces spurious diapycnal mixing whenever it5

exceeds KV , which in general occurs whenever isopycnal slopes exceed some threshold depending on the relative ratio of Kd

versus Ki. Rotated diffusion tensors, e.g., Redi (1982); McDougall and Church (1986), were introduced as a more natural and

physical way to account for the 7 orders of magnitude difference between isopycnal and diapycnal mixing, and hence as a way

to avoid the occurrence of the Veronis effect.

For tracer fields acted upon by rotated diffusion, the diffusive flux of any given material density variable γ(S,θ) is Fγ =10

γθFθ + γSFS , hence:

Fγ =−Ki [∇γ− (∇γ ·d)d]−Kd(∇γ ·d)d, (6)

where d=N/|N| is the normalized neutral vector, Ki and Kd the isoneutral and dianeutral turbulent mixing coefficient i.e.

respectively perpendicular and parallel to the neutral vector. A conceptual difficulty with neutral rotated diffusion tensors,

however, is that it is not possible to construct for the ocean a mathematically well defined materially conserved variable γ(S,θ)15

allowing to write N= C0∇γ, with C0 some integrating factor. In the spatial domain, this can be attributed mathematically

to the non-zero helicity of N (see McDougall and Jackett (1988)). More instructive and illuminating, however, is to prove

the result directly in thermohaline space. To that end, let us assume that such a variable γ exists, and show that it leads to

a contradiction. To proceed, let us express in-situ density ρ= ρ(S,θ,p) = ρ̂(γ,θ,p) as a function of γ, θ and p for instance

following Tailleux (2016b). The expression for the neutral vector becomes:20

N=−g
ρ

(
∂ρ̂

∂γ
∇γ+ ∂ρ̂

∂θ
∇θ
)

(7)

where:

∂ρ̂

∂θ
=

1

J

∂(γ,ρ)

∂(S,θ)
(8)

where J = ∂(γ,θ)/∂(S,θ) = ∂γ/∂S is the Jacobian of the transformation going from (S,θ) to (γ,θ) space. For γ to be exactly

neutral would require ∂ρ̂/∂θ = 0 everywhere, but Eq. (8) shows that this is impossible. Indeed, for ∂(γ,ρ)/∂(S,θ) to be zero25

would require ρ to be a function of γ(S,θ) alone, but this cannot be true, because ρ also depends on pressure. This implies

that the "effective diffusive mixing" experienced by a material density variable γ(S,θ), that is, the local diffusive flux of Fγ

through an iso-γ surface γ = constant (or its surface-integrated value) must at least be partly controlled by isoneutral mixing,

in a way that depends on the degree of non-neutrality of the density variable considered. Mathematically, the problem arises

because the local concept of neutral mixing cannot be extended globally.30
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This idea is not entirely new, as it is closely connected to the concept of fictitious mixing discussed by McDougall and

Jackett (2005) or Klocker et al. (2009) for instance. Physically, however, the concepts of effective diffusive mixing considered

in the present paper and that of fictitious mixing have different purposes and implications As alluded to above, the effective

diffusivity of any particular density variable γ(S,θ) is simply the diffusivity Kγ
d ’seen’ by such a variable when acted upon

by a neutral rotated diffusion tensor. As clarified below, it is easily shown that Kγ
d =Ki sin

2 (d,N)+Kd cos
2 (d,N) =Kd+5

(Ki−Kd)sin
2 (d,N), where (d,N) is the angle made between d=∇γ/|∇γ| and N. In contrast, the concept of fictitious

mixing represents the extra diapycnal mixing Kfictitious
d = (Ki−Kd)sin

2 (d,N) through the local neutral tangent plane that

would result from using a γ-based rotated diffusion diffusion tensor using the same mixing coefficientsKd andKi. McDougall

and Jackett (2005) or Klocker et al. (2009) use the term ‘fictitious’ because they assume that observations of diapycnal mixing

inferred from tracer release experiments or microstructure measurements relate to dianeutral dispersion rather than dispersion10

through some other unspecified density surfaces. Assuming that direct observations of mixing relate to the dianeutral diffusivity

Kd, the above considerations suggest that this is a priori not the case of the diapycnal diffusivity inferred from global budgets

or inverse methods rooted in Walin (1982) type of water mass analysis. Indeed, such approaches usually rely on the use of

a well defined thermodynamic material density variable such as σ2 for instance, and must therefore a priori relate to the

effective diapycnal diffusivity experienced by such a variable. Similarly, modern approaches to estimating spurious diapycnal15

mixing (Griffies et al., 2000; Ilıcak et al., 2012) rely on monitoring the evolution of Lorenz reference state entering the theory of

available potential energy (Winters et al., 1995; Saenz et al., 2015) and are therefore related to the effective diapycnal diffusivity

experienced by Lorenz reference density, not to the dianeutral diffusivity. As shown by Tailleux (2016a), Lorenz reference

density can be written as ρref = ρ(S,θ,pr(S,θ)), where pr(S,θ) is the pressure that a parcel would have in its reference

position. It therefore represents a generalised form of potential density, which as it turns out is more neutral than any standard20

form of potential density. As a result, inferring information about the dianeutral diffusivities from global budgets or inverse

methods requires being able to disentangle the part of the effective diffusivity that is controlled by isoneutral mixing. The idea

that the effective diffusivity might be contaminated to some degree by isoneutral mixing was hypothesised by Lee et al. (2002),

but they assumed the effect to be second order and made no attempt at quantifying it. The present results suggest the effect

might in fact be more important than usually assumed and therefore warranting more attention that it has usually received.25

Another motivation for the present study stems from a recent isopycnal justification for the well-known one-dimensional

advection/diffusion model for ocean heat uptake in which the diapycnal diffusivity diffusing heat downward is the effective

diapycnal diffusivity discussed in the present paper, see https://arxiv.org/abs/1708.02085.

The main goal of the present paper is to assess the above mentioned effect in details, which we believe is done here for the

first time. For the sake of clarity, the directions parallel and perpendicular to the local neutral tangent planes are referred to as30

’dianeutral’ and ’isoneutral’ respectively, the terms ’diapycnal’ and ’isopycnal’ being used when isopycnal surfaces are defined

in terms of a material density variable γ(S,θ) = constant. To that end, we seek to quantify the degree of contamination of

estimates of diapycnal mixing by isoneutral mixing for a number of density variable of the form γ(S,θ), illustrated for the

following five density variables: Jackett and McDougall (1997) γn, three potential density variables σ0, σ2, σ4 and the Lorenz

reference state density ρref . Note that although ω surfaces Klocker et al. (2009) are more neutral than γn, they are likely to35
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be less material (a material density variable is a variable conserved whenever θ and S are both conserved i.e. a function of θ

and S only) because improved neutrality tends to occur at the expense of materiality. Moreover, no density variable associated

with ω-surfaces has been constructed yet, which makes the use of the latter impractical for the present purposes. These density

variables have been chosen because they are widely used in the oceanographic community and thus deserve special attention.

Note, however, that γn is not a function of (θ,S) alone, but also depends on latitude, longitude and pressure, which means5

that it is not fully material; neverteheless, its degree of non-materiality is generally assumed to be small (see McDougall and

Jackett (2005)). Section 2 presents the theoretical framework used for defining effective diffusivities for each variable. Section

3 discusses the results obtained for the above mentioned 5 density variables. Finally, Section 4 summarises and discusses the

results.

2 Method10

2.1 Effective diffusivity

Thermodynamic properties in numerical ocean models are commonly formulated in terms of θ and S, whose evolution equa-

tions can in general be expressed as:

Dresθ

Dt
=∇ · (K∇θ)+ fθ,

DresS

Dt
=∇ · (K∇S)+ fS , (9)

where K=Ki(I−d ·dT )+Kdd ·dT is Redi (1982)’s neutral rotated diffusion tensor (with Ki and Kd being the isoneutral15

and dianeutral turbulent mixing coefficients respectively, d=N/|N| the locally-defined normalised neutral vector), fS , fθ

respectively the forcing terms for salinity and potential temperature and Dres/Dt= ∂/∂t+(v+vgm) · ∇ the advection by

the residual velocity (the sum of the resolved Eulerian velocity plus the meso-scale eddy induced velocity). Note here that Ki

and Kd are implicitly defined in terms of the orthogonal projections of the turbulent heat and salt fluxes on the isoneutral and

dianeutral directions; for an alternative and more recent definition of Ki and Kd aimed at making dianeutral mixing appear to20

be isotropic, see McDougall et al. (2014). The evolution equation of any material density variable γ(S,θ) must be given

Dresγ

Dt
=∇ · (K∇γ)−

(
γθθ∇θTK∇θ+2γSθ∇STK∇θ+ γSS∇STK∇S

)︸ ︷︷ ︸
NL

. (10)

Unless γ(S,θ) is a linear function of S and θ, its evolution equation will in general contain non vanishing nonlinear terms

(denoted NL in Eq. (10)) related to cabelling and thermobaricity, e.g., McDougall (1987b); Klocker and McDougall (2010);

Urakawa et al. (2013). The diffusive flux of γ is:25

F γdiff =−K∇γ =−Ki(∇γ− (∇γ ·d)d)︸ ︷︷ ︸
F i

diff

−Kd(∇γ ·d)d︸ ︷︷ ︸
Fd

diff

(11)

Where F idiff and F ddiff are respectively the diffusive flux of γ in the isoneutral and dianeutral direction. For clarity, figure 1

shows a schematic of the neutral plane, of the γ = const. plane, of the ∇γ and neutral direction and of F idiff and F ddiff .
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Figure 1. Schematic showing the neutral plane and neutral direction d in blue, the γ = const. plane and ∇γ direction in black and the

projection of the diffusive flux of γ in the isoneutral (F i
diff ) and dianeutral (F d

diff ) direction.

We define the effective diffusive flux of γ as the integral of the diffusive flux across the isopycnal surface γ(x, t) = constant,

viz.,

Feff =−
∫

γ=const

K∇γ ·ndS (12)

where n= ∇γ
|∇γ| is the unit local normal vector to the γ surface. Now, it is easily established after some straightforward algebra

that5

K∇γ ·n=[Ki(∇γ− (∇γ ·d)d)+Kd(∇γ ·d)d] · ∇γ|∇γ|
=
[
Ki

(
|∇γ|2− (∇γ ·d)2

)
+Kd(∇γ ·d)2

]
/|∇γ|

=|∇γ|
[
Ki sin

2(∇γ,d)+Kd cos
2(∇γ,d)

]
.

(13)

Eq. (13) establishes that the locally defined effective diapycnal diffusivity experienced by the density variable γ is affected by

both isoneutral and dianeutral mixing, the contribution from isoneutral mixing being akin to a Veronis-like effect, as discussed

in Tailleux (2016b). Because we are primarily interested in the latter effect, we shall discard the effect of dianeutral mixing on

the effective diapycnal diffusivity of γ and hence assume Kd = 0 in the rest of the paper. As a result, the expression for the10

effective diffusive flux of γ becomes:

Feff =−
∫

γ=const

|∇γ|Ki sin
2(∇γ,d)dS. (14)
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Note that the integrand of (14) is mathematically equivalent to what McDougall and Jackett (2005) refer to as “fictitious

diapycnal mixing". However, here the integrand is integrated on γ surfaces and then used to calculate an effective diffusivity

coefficient which is easier to interpret than a collection of local values of the (∇γ,d) angle.

2.2 Reference Profile

In order to construct an effective turbulent diffusivity Keff associated with the effective diffusivity flux Feff , we need to define5

an appropriate mean gradient for the density variable γ. This is done by constructing a reference profile for γ, as explained in

the next paragraph.

Let zr(γ,t) be the reference profile for the particular material density γ(S,θ) (which can always be written as a function of

space x and time t as γ∗(x, t) = γ(S,θ)), constructed to be the implicit solution of the following problem:

∫
V (zr)

dV =

∫
V (γ,t)

dV =

0∫
zr(γ,t)

A(z)dz, (15)10

where A(z) is the depth-dependent area of the ocean at depth z, and V (γ,t) the volume of water for all parcels with density

γ0 such that γmin ≤ γ0 ≤ γ, where γmin is the minimum value of γ encountered in the ocean. The knowledge of the reference

profile allows one to regard the volume V (γ,t) of water masses with density lower than γ either as a function of zr only as

V (zr) so that V (γ,t) = V (zr(γ,t)). Physically, Eq. (15) defines the reference depth zr(γ,t) so that the volume of water with

density lower than γ is equal to the volume of water comprised between the ocean surface and zr; this definition is equivalent15

to that used by Winters and D’Asaro (1996) or Saenz et al. (2015) to construct the Lorenz reference state, but generalised

here to the case of an arbitrary materially conserved density variable γ(S,θ). Once zr(γ,t) is constructed, it can be inverted to

define in turn the reference profile γr(zr, t). Indeed, by definition γr(zr(x, t), t) = γ∗(x, t). As a result, we can always write a

relation such as:

∇γ =
∂γr
∂zr
∇zr (16)20

A major difference with Winters and D’Asaro (1996) or Griffies et al. (2000) is that our definition of reference depth and

density is not restricted to Lorenz reference state, for it can be applied to any arbitrary γ(S,θ). However, the choice of γ(θ,S)

influences the local projection of the iso-dianeutral diffusion on the γ gradient and thus the effective diapycnal coefficient. We

now define the effective diffusivity Keff . Using (16) in (14), we get:

Feff =−
∫

γ=const

|∇γ|Ki sin
2(∇γ,d)dS =

∂γr
∂zr

∫
zr=const

|∇zr|Ki sin
2(∇zr,d)dS =A(zr)Keff

∂γr
∂zr

, (17)25

where we have used |∇γ|=−∂γr∂zr
|∇zr| (because ∂γr

∂zr
< 0) and where Keff is defined by the following relation:

Keff(zr) =

∫
zr=const

Ki|∇zr|sin2(∇zr,d)dS
A(zr)

, (18)
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and is independent of the gradient of γr in the reference space. Keff is not the surface average of the local mixing coefficient

across γ = const. surfaces but rather the mixing coefficient linked to the time variation of γr as can be seen from the following

equation (a proof is shown in the appendix):

∂γr
∂t

=
1

A(zr)

∂

∂zr

(
A(zr)Keff(zr)

∂γr
∂zr

)
+NL+F, (19)

where NL is a term due to the non linearity of γ(S,θ) and F is a term due to the heat and haline fluxes at the ocean surface.5

Note that in Speer (1997) and in Lumpkin and Speer (2007), the effective diffusivity is defined as the integral of the local

diapycnal flux on a γ surface over the integral of the local gradient of γ on the same γ surface i.e.:

Kspeer
eff =

∫
zr=const

K∇γ ·ndS∫
zr=const

∇γ ·ndS
, (20)

this is different from our formulation because of the different mean gradient formulation. The relationship between the Keff

described in this article (a generalization of Winters and D’Asaro (1996)’s formulation) and Kspeer
eff is, from formula (18) and10

(20):

Keff =Kspeer
eff

(∫
zr=const

|∇zr|dS
A(zr)

)
. (21)

We have checked that for all the density variables under consideration here the quantity between brakets in (21) is smaller than

1 so that Keff can be seen as a lower bound of Kspeer
eff . In Lee et al. (2002), the effective diapycnal coefficient formulation

is similar to Speer (1997)’s except that the mean gradient is approximated by an average of the vertical gradient of γ on a γ15

surface which is valid as long as the γ slope is small.

3 Isoneutrally-controlled effective diapycnal diffusivities for σ0, σ2, σ4, γn and ρref

In this section we seek to estimate the effective diffusivity (18) derived in the previous section for five different density vari-

ables: σ0, σ2, σ4, the Jackett and McDougall (1997)’s γn and the Lorenz reference density ρref obtained with Saenz et al.

(2015) method. All the calculations of this section are performed with annual mean potential temperature and salinity data20

from the World Ocean Circulation Experiment (Gouretski and Koltermann, 2004). Since γn is not well defined North of 60◦

N, the latter region was excluded from our analysis for all five density variables. Since eddies mix the fluid horizontally in the

mixed layer rather than perpendicular to the neutral vector, we also restrict our calculation to the ocean below the mixed layer.

The depth of the mixed layer is given by the de Boyer Montégut database (de Boyer Montégut et al., 2004). The reference

density for each of the five variables is shown on figure 2. As expected, the range of values taken by the reference density25

of the three potential density variables increases with the reference pressure. γn has a reference density similar to that of σ0

with a slightly smaller gradient in the reference space. ρref has a gradient much larger smaller than all other density variables.

It crosses σ0 at the surface, σ2 around −2000 meters and σ4 around −4000 meters. This is due to the fact that the volume

above the surface σp(θ,S) = σrp(Z) is by definition the same as the volume above ρ(θ,S,p) = ρref (Z) where p=−Zρ0g is

8
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Figure 2. Reference density for ρref (black) γn (red), σ0 (blue), σ2 (yellow) and σ4 (green) as a function of the reference depth.

the reference pressure linked to the reference depth Z, σrp is the reference density linked to σp.

Figure 3 shows the histogram of the decimal logarithm of the squared sine of the angle between ∇γ and d ( calculated using

formula A1) shown in appendix A): log10[sin(∇γ,d)] and weighted by the volume associated with each point. This plot is

similar to that discussed by McDougall and Jackett (2005) in their discussion of fictitious diapycnal mixing.

ρref , σ2 and σ4 give similar angles with most of their values slightly larger than 10−5. γn gives the smallest angles among5

the variables under consideration here with most of its values smaller than 10−5 while σ0 gives the largest with a large number

of points with values larger than 10−4. All together, these observations could suggest that the effective diffusivity of γn should

be the smallest overall, that the effective diffusivity of ρref should be of the same order as that for σ2 and σ4, and that the effec-

tive diffusivity for σ0 should be the largest of all. It is however hard to predict the values of the effective diffusivity coefficient

for each density variable from figure 3 only since the small number of point with very large angle values (hardly visible on10

figure 3) could dominate the large number of points with small angles and since the spatial variability of the isoneutral mixing

coefficient could correlates with the spatial variability of the angle. We thus calculate the effective diffusivity coefficient using
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Figure 3. histogram of the decimal logarithm of the squared sine between the gradient of γ and the neutral vector d weighted by the volume

of each point. log10 (sin(∇γ,d)) for ρref (black), γn (red), σ0 (blue), σ2 (yellow) and σ4 (green)

these angles values for each density variable.

Figure 4 shows the decimal logarithm of the effective diffusivity Keff for the five variables as a function of the reference

depth under two possible choices of Ki:

5

The first case (A, figure 4) assumes a constant isoneutral coefficient:Ki = 1000 m2/s. Under this assumption,Keff for every

density variables increases on average with the reference depth from values between 10−12 and 10−8 m2/s close to surface

reference depth to values between 10−6 and 0 m2/s at the deepest reference depths. This increase can be attributed to the fact

that the largest discrepancy between the neutral vector and the gradients of the 5 density variables is generally located in the

ACC (Antarctic Circumpolar Current) (as will be shown later) where the highest densities, and thus deepest reference depths,10
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Figure 4. log10 of the effective diapycnal diffusivity coefficient Keff as a function of the reference depth (meters) (and as defined by

equation (18)) for ρref (black), γn (red), σ0 (blue), σ2 (yellow) and σ4 (green). Panels A,B and C correspond to a Keff calculated with

different isoneutral diffusivity coefficient. A: Kiso = 1000 m2/s, B: variable isoneutral diffusivity coefficient given by Forget et al. (2015).

C: same as B but without 5% of the largest angles. Bottom right, D: log10Keff calculated from a variable dianeutral diffusivity coefficient

given by the inverse calculation of Forget et al. (2015).

outcrop.

Keff for γn and σ0 are similar between 0 and 800 m depth with values ranging from 10−8 m2/s at the surface to 10−6 m2/s at

-800 meters. σ2, σ4 and ρref give values up to 100 larger on the same depth range. Between 800 and 4000 m depth, γn gives

the smallest Keff which is slowly increasing from 10−6 to 10−5 m2/s as the depth decreases. On the same depths, ρref , σ0, σ2

and σ4 gives values at least 10 times larger (up to 1000 times larger for σ0 below -2000 m). Below 4000 m depth, all density5

variables have a Keff larger than 10−4 m2/s (note that 10−4 m2/s is the widely cited Munk (1966) and Munk and Wunsch

(1998)’s canonical estimate of diapycnal mixing inferred from the global heat and mechanical energy budgets.) At the deepest

levels, under -5000 meters, σ0 and ρref have a smallerKeff than γn suggesting that their local gradients are very nearly aligned
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with the neutral vector at these deep reference depths.

The second case (B, figure 4) assumes a spatially variable isoneutral coefficient given by the inverse calculation of Forget et al.

(2015), which gives a three dimensional distribution of Ki at about 1◦ resolution for the global ocean. This database contains

values ranging from 9000 m2/s (in the Atlantic deep water formation zone at the surface, in western boundary currents and

ACC) to values close to 0 (in the deep pelagic ocean). The estimated Keff for this choice are very close to those obtained under5

the previous assumption of constant diffusivity for all variables, showing the small sensitivity of our results to spatial variations

of isoneutral diffusion , which is further discussed below.

To investigate the importance of the localised large departure from neutrality in the construction of Keff , we removed 5% of

the largest non-neutral values of the angle for each reference surface (figure 4, case C). Without 5% of the largest values, Keff

is much smaller than the previous one for every density variables with values everywhere smaller than 10−4 m2/s. As before,10

the effective diffusivity increases rapidly close to the surface and then more slowly below -1000 meters (except at a few depth

for σ2, σ4 and at deep reference depth for ρref and σ0) with the reference depth for all density variables. γn gives the smallest

values for almost all reference depths, with values from 10−10 m2/s close to the surface of the reference space to 10−6 m2/s

at the deepest levels. σ2 gives the second smallest values for reference depths smaller than -1500 meters but is overtaken by

σ0 and ρref at larger depths. ρref ,σ0, σ2 and σ4 all give effective diffusivities of the order or larger than 10−5 m2/s at some15

depth below -2000 meters.

This calculation shows that the isoneutral contribution to effective diapycnal mixing is very localised spatially with 5% of each

surface accounting for most of the effective diffusivity for all the density variables under consideration here. However, even

without this top 5%,Keff remains close or above 10−5 m2/s for all variables except γn. Coming back to the similarity between

panels A and B, the location of the top 5% values are correlated with local Ki values (from Forget et al. (2015) database)20

around 1000 m2/s which therefore explain the lack of sensitivity of our results on the choice of Ki between A and B.

Panel D showsKeff calculated using a dianeutral mixing coefficient given by Forget et al. (2015) inverse calculation assuming

no isoneutral mixing. The formula for this calculation is obtained by replacing the sine by a cosine and Ki by Kd in formula

(18) following formula (13), i.e. :

Keff(zr) =

∫
zr=const

Kd|∇zr|cos2(∇zr,d)dS
A(zr)

. (22)25

Keff values are smaller or close to 10−5 m2/s at all reference depths for all density variables. For reference depth deeper than

1000 meters, these values are much smaller than the effective diffusivity estimated from the isoneutral mixing coefficient as

shown on panel A or B. Without the 5% of the largest values on each density surface, Keff estimated from variable Ki (panel

C) is smaller than the one estimated from variable Kd for all density variables above 1000 meters. The exception is γn which

gives Keff estimated from Ki approximately 10 times smaller than Keff from Kd at all reference depths below 1000 m. Note30

that the values obtained from the dianeutral coefficient are much less sensitive to the choice of density variable than the values

obtained from the isoneutral mixing coefficient. This is because of the 7 order of magnitude difference between Kd and Ki

which makes the Keff estimated from the isoneutral coefficient much more sensitive to the angle between the neutral vector

and the local gradient of the density variable under consideration.
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Figure 5. Decimal logarithm of the sine between the neutral vector and the gradient of ρref (top), γn (middle) and σ0 (bottom) as a function

of latitude and depth at 330 of longitude (in the Atlantic).

Figure 5 shows a meridional section of the decimal logarithm of the sine in the Atlantic for ρref , γn and σ0. The regions

where the angle between the neutral vector and the gradient of the density variable is large are found mostly in the ACC at all

depth for ρref and γn and everywhere at depth for σ0, suggesting that, in this region, all the density variables studied above
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introduce significant biases in the estimation of diapycnal mixing.

4 Conclusions

In this paper, we have presented a new framework for assessing the contribution of isoneutral diffusion to the effective diapycnal

mixing coefficient Keff for five different density variables, chosen for their widespread use in the oceanographic community,5

namely γn,ρref , σ0, σ2, σ4. Our results reveal that, due to the projection of the isoneutral mixing on the diapycnal direction,

the actual diapycnal mixing experienced by each density variable can reach values as high as 10−4 m2/s and up to 0.1 m2/s

for reference depths deeper than 2000 meters. These values are generally 10 to 100 times larger below -1000m and up to 1000

times larger below -4000 meters than the ones estimated from a variable dianeutral coefficient which are always around or

below 10−5 m2/s.10

As expected, γn, constructed to be as neutral as practically feasible, is the least affected by isoneutral diffusion of all density

variables considered. Nevertheless, it still appears to experience values larger than 10−4 m2/s for reference depths below -4000

meters i.e. 10 to 100 times larger than the corresponding values obtained assuming a variable dianeutral . Note that an added

difficulty pertaining to the use of γn, stems from its non-material character. As a result, the validity of defining an effective

diapycnal diffusivity for γn using the present approach depends on such non-material effects to be small, or at least much15

smaller than the contribution from isopycnal diffusion discussed here, which is difficult to evaluate.

Our results thus suggest that the potential contamination due to isoneutral mixing should always be assessed for any inference of

diapycnal mixing based on the use of any density variable γ(S,θ) in Walin-like water mass analysis for instance. In agreement

with previous studies such as McDougall and Jackett (2005), the regions of large discrepancy between the neutral vector and

the gradient of each surface are very localised in space. However, while representing a very small amount of volume of the20

ocean, these discrepancies are important in setting the effective diffusivity values. Indeed, without 5% of the largest angle

values between the neutral vector and the local γ gradient, none of the variables gives a coefficient larger than 10−4 m2/s.

Moreover, the estimated values are everywhere comparable or smaller than the coefficient estimated from dianeutral mixing

only. The concentration of discrepancies is even stronger for γn since the effective diffusivity coefficient after the removal of

the 5% of the largest values decreases below 10−6 m2/s. Overall, the Keff profiles for each density variables become similar25

without the 5% suggesting that the choice of the density variable is less important when the Southern ocean (which is where

most of the largest discrepancies between neutral and local γ gradient are located) is not taken into account.

However, when no part of the ocean is removed (as it is the case in Walin (1982) type calculation for instance), the effective

diffusivities found in this article are very sensitive to the density variable under consideration. This is at odd with the results of

Megann (2018) and could suggest that their effective diffusivities are mainly driven by spurious numerical mixing.30

Our results show that the evaluation of effective diapycnal mixing using a sorting algorithm of density (e.g. Griffies et al. (2000);

Ilıcak et al. (2012)), which amounts to diagnosing the diapycnal flux through ρref , is likely to be significantly contaminated

by isoneutral diffusion owing to the large departures from neutrality of ρref in the polar regions if a nonlinear equation of state
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is used. Note that this is a distinct effect from the density sinks and sources due to the non-linear equation of state influencing

the time variation of the reference density (see equation (19)) which are also a source of contamination of the diapycnal flux

from the isoneutral diffusion when using sorting algorithm. It follows that diagnosing the spurious diapycnal mixing resulting

from numerical advection schemes for a nonlinear equation of state remains an outstanding challenge, and that progress on this

topic must take into account the theoretical considerations developed here.5

This work advocates for the construction of a density function γ(θ,S) that would minimizes the isoneutral influence on the

effective diapycnal diffusivity coefficient. So far, the best material density variable is a function of Lorenz reference density,

as shown by Tailleux (2016a), but as discussed by Tailleux (2016b), it appears theoretically possible to construct an even more

neutral one. Whether Klocker et al. (2009) can be used for global inversions is unclear, because its improved neutrality might

be achieved at the expenses of materiality, which remains to be quantified.10

In theories of the Atlantic Meridional Overturning Circulation (AMOC) (e.g. Vallis (2000); Wolfe and Cessi (2010); Nikurashin

and Vallis (2011, 2012)) the diapycnal diffusion coefficient is generally assumed to be given by the dianeutral coefficient and to

be of the order of 10−5 m2/s. However, our results suggest that even when isopycnals are given by a density variable close to

the neutral vector (e.g. with γn), the effective diapycnal coefficient can be much larger than the dianeutral coefficient because

of the isoneutral diffusion. The issue of the amount of diapycnal mixing is an important one, as illustrated for instance by15

Nikurashin and Vallis (2012) who showed that low and large diapycnal coefficient give two different regimes of the AMOC

and thus possibly two different evolution under climate change. Obviously this effect appears only when the equation of state

for density is a non-linear function of both temperature and salinity we thus argue that future work should consider such

non-linear equation of state for density.

Appendix A: Numerical calculation of sin(∇γ,d)20

To calculate the numerical value of sin(∇γ,d) we use the cross product between ∇γ and d:

|sin(∇γ,d)|= |∇γ×d|
|∇γ|

(A1)

where × is the cross product. This method can be used with all the variables studied here since it only requires the knowledge

of γ(S,θ). In practice, d is specified as the normalised neutral vector d=N/|N|.

Appendix B: equation (19)25

The evolution equation for γ is:

dγ

dt
=
∂γ

∂θ

dθ

dt
+
∂γ

∂S

dS

dt
=
∂γ

∂θ
∇(K∇θ)+ ∂γ

∂S
∇(K∇S)+ ∂γ

∂θ
fθ +

∂γ

∂S
fS (B1)

=∇(K∇γ)−K∇θ · ∇
(
∂γ

∂θ

)
−K∇S · ∇

(
∂γ

∂S

)
+ fγ (B2)
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where fθ, fS are the surface heat and haline fluxes and where fγ = ∂γ
∂θ fθ +

∂γ
∂S fS . Then let zr(X,t) be the reference level of

γ defined by equation (15) so that γ can now be written: γ(S,θ) = γr(zr, t). Then integrating (B2) on a volume V (zr) defined

by water parcels of reference level larger than or equal to zr gives:∫
V (zr)

∂γ

∂t
dV + γr(zr, t)

∫
zr=const

u ·ndS =

∫
zr=const

K∇γ ·ndS−
∫

V (zr)

K∇θ · ∇(∂γ
∂θ

)+K∇S · ∇( ∂γ
∂S

)dV +

∫
V (zr)

fγdV (B3)

where zr = const refers to the constant zr surface. n= ∇γ
|∇γ| =−

∇zr
|∇zr| is the local normal to the surface γ = const, the minus5

sign arises because the integration is done toward deeper values of zr. The second term on the left hand side is zero because of

the non-divergence of the velocity and the first term can be written as:∫
V (zr)

∂γ

∂t
dV =

∂

∂t

∫
V (zr)

γrdV
′− γr

∂V (zr)

∂t︸ ︷︷ ︸
=0

(B4)

The second term on the right hand side is zero because the total volume at constant zr is independent of time (see formula

(15)). Using (B4) and the zr derivative of (B3) we get:10

∂γr
∂t

=
1

A(zr)

∂

∂zr

(
A(zr)Keff(zr)

∂γr
∂zr

)
+NL+ forcing (B5)

where we have used formula (15) and the fact that the volume integral of a zr only function can be expressed as an integral

over the reference depth:

∂

∂zr

 ∂

∂t

∫
V (zr)

γrdV
′

=
∂

∂t

 ∂

∂zr

0∫
zr

A(z′r)γr(z
′
r, t)dz

′
r

=−A(zr)
∂γr
∂t

(B6)

and with:15

NL =
1

A(zr)

∂

∂zr

 ∫
V (zr)

(
K∇θ · ∇(∂γ

∂θ
)+K∇S · ∇( ∂γ

∂S
)

)
dV

 (B7)

and

forcing =− 1

A(zr)

∂

∂zr

 ∫
V (zr)

fγdV

 (B8)

and finally Keff given by formula (18).
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