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Abstract. A novel analysis is performed utilizing cross-track kinetic energy (CKE) computed 7 

from along-track sea surface height anomalies. The mid-point of enhanced kinetic energy 8 

averaged over three-year periods from 1993 to 2016 is determined across the Southern Ocean 9 

and examined to detect shifts in frontal positions, based on previous observations that kinetic 10 

energy is high around fonts in the Antarctic Circumpolar Current system due to jet instabilities. It 11 

is demonstrated that although the CKE does not represent the full eddy kinetic energy (computed 12 

from crossovers), the shape of the enhanced regions along groundtracks is the same, and CKE 13 

has a much finer spatial sampling of 6.9 km. Results indicate no significant shift in the front 14 

positions across the Southern Ocean, on average, although there are some localized, large 15 

movements. This is consistent with other studies utilizing sea surface temperature gradients, the 16 

latitude of mean transport, and probability of jet occurrence, but is inconsistent with studies 17 

utilizing the movement of contours of dynamic topography.   18 
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1. INTRODUCTION 28 

There is as much we don’t know about the circulation of the Southern Ocean as we do. 29 

Although the current system is routinely called the Antarctic Circumpolar Current (ACC), it 30 

consists of several fronts with distinct water properties to the north and south of the fronts 31 

(Nowlin and Clifford, 1982; Orsi et al., 1995; Belkin and Gordon, 1996). The most significant of 32 

these fronts, responsible for the majority of the ACC volume transport (e.g., Cunningham et al., 33 

2003), are the Subantarctic Front (SAF) and the Polar Front (PF). However, even this is not a 34 

realistic picture of the circulation in the Southern Ocean, since at any specific time, there can be 35 

from three to ten narrow jets around the fronts that are highly variable in strength and location, 36 

masking the specific frontal boundary (Sokolov and Rintoul, 2007, 2009a, 2009b; Sallee et al., 37 

2008; Thompson et al., 2010; Thompson and Richards, 2011; Langlais et al., 2011; Graham et 38 

al., 2012; Chapman, 2014; Gille, 2014; Kim and Orsi, 2014; Shao et al., 2015; Chapman, 2017a). 39 

Although positions of fronts have been estimated throughout the Southern Ocean, primarily 40 

using gradients of subsurface density measured from hydrographic sections (Orsi et al., 1995), 41 

contours of dynamic topography (Sokolov and Rintoul 2007, 2009a, 2009b; Langlais et al., 42 

2011), or a combination Kim and Orsi (2014), in many places there are no strong currents that 43 

can be measured near the front position (Chapman, 2014; 2017a). 44 

Because of the highly variable nature of jets and the lack of clear observational detection of 45 

fronts in some areas, the literature has become muddled over the difference between a front and a 46 

jet, primarily because the “front” is rarely observed at any specific time due to the high-47 

variability of jets (Thompson et al., 2010; Thompson and Richards, 2011; Chapman 2014; 48 

2017a). However, even in the presence of highly variable jets, methods have been developed to 49 

determine mean fronts positions in a probabilistic sense. Thompson et al. (2010) demonstrated 50 
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one could define fronts in the Southern Ocean by computing probability density functions of 58 

potential vorticity in an eddy-resolving general ocean circulation model. Chapman (2014, 2017a) 59 

later showed this could also be done using localized gradients in dynamic topography (i.e., high 60 

geostrophic velocity) using satellite altimeter observations, but again, only as statistical 61 

probability. This is because these areas of enhanced gradients and velocity are more reflective of 62 

jets, which strengthen and die, appear and disappear, bifurcate and join back together. Because of 63 

this, they can only be detected on average 10-15% of the time. However, Chapman (2014, 64 

2017a) has demonstrated that, at least in a mean sense, fronts defined by mean dynamic 65 

topography contours (commonly known as the “contour method”) do lie within the probability 66 

distribution inferred from “gradient” methods.  67 

An open question is how the fronts and jets that comprise the ACC will respond in a 68 

warming climate. Analysis of climate models (which cannot simulate jets in the Southern Ocean) 69 

suggests that as the atmosphere warms, the winds that drive the fronts and jets of the ACC will 70 

migrate south (e.g., Fyfe and Saenko, 2006; Swart and Fyfe, 2012). It should be noted, however, 71 

that the mean position of the southern hemisphere westerlies in the models lies significantly 72 

equatorward of the true position (e.g., Figure 2 in Fyfe and Saenko, 2006). Thus, it is not entirely 73 

clear whether the model is predicting a true shift in the wind position, or whether the model has 74 

not yet reached equilibrium with winds in the proper location.  75 

Still, based on these model results, researchers have been testing the hypothesis that as winds 76 

in the Southern Ocean shift south, the frontal positions and jets will also migrate south. So far, 77 

the results are mixed. Using the contour method and tracking how the dynamic topography 78 

contours associated with a front position shift in time, Sokolov and Rintoul (2009b) found that 79 

the SAF and PF had both moved south by approximately 60 km over 15 years between 1993 and 80 
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2008. Kim and Orsi (2014) recently updated this analysis and found that while the average 95 

frontal position across the Southern Ocean indicates a strong southward shift, this is due 96 

primarily to substantial shifts only in the Indian Ocean sector. They found no significant shifts 97 

throughout the Pacific or Atlantic Ocean sectors using the contour method.  98 

The primary assumption of these analyses is that if a contour of dynamic topography shifts 99 

south, it is uniquely caused by a front moving south. This is not necessarily true. Gille (2014) 100 

recently demonstrated that all contours in the Southern Ocean have shifted south on average, and 101 

that this follows from the observed rise in sea level – as the sea surface height rises, the contours 102 

will appear to shift south. While this breaks down at the far south and north of the ACC where 103 

dynamic topography gradients are small, these areas are far away from the PF and SAF and so 104 

have not been considered in previous analyses. Gille (2014) used a different measure to 105 

determine the position of the ACC fronts, based on the latitude of the mean surface transport of 106 

the ACC measured by altimetry, which is in essence a mean location of all the jets in the 107 

Southern Ocean. She found no significant shift on average, but considerable interannual 108 

variability, especially regionally. 109 

Another factor other than sea level rise can cause the dynamic topography contour to shift 110 

south -- if the magnitude and width of the jet has changed. This is demonstrated in Figure 1, 111 

where we show the mean dynamic topography from two jet scenarios: 1) where the peak of two 112 

Gaussian shaped jets have shifted south, and 2) where the peak has not shifted, but the magnitude 113 

has decreased, the width has broadened, and the shape has become slightly skewed. Although the 114 

resulting topography profiles are not identical, they are similar, and both suggest a southward 115 

movement of dynamic topography contours. 116 
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Researchers using other methods also find little or no southern migration of the fronts or jets 169 

in the Southern Ocean as a whole. Graham et al. (2012) used a high-resolution model to show 170 

that the Polar Front and Subantarctic Front are constrained by bathymetry, even in increasing and 171 

shifting winds. Shao et al. (2015) utilized the skewness of sea level anomalies to identify front 172 

positions, and found no southward motion, but did find changes in the east Pacific correlated 173 

with the Southern Annual Mode. Chapman (2017a), using positions of fronts determined from 174 

the probability of jet locations, also found no significant southward movement, but high 175 

interannual variability. Finally, Freeman and Lovenduski (2016a) used weekly estimates of the 176 

Polar Front position determined from satellite sea surface temperature (SST) gradients to show 177 

no significant southward shift between 2002 and 2014 on average, except in the Indian Ocean. 178 

They also found a statistically significant northward shift of the PF in part of the south Pacific. 179 

Thus, recent studies all agree that the Subantarctic Front and Polar Front have not shifted 180 

south, even though there is evidence the winds have shifted south in the austral summer months 181 

(Swart and Fyfe, 2012). It should be noted that when averaged over the full calendar year, 182 

however, there has been no significant shift in the wind position (Swart and Fyfe, 2012).  183 

In this paper, we develop a new method to study variability in the position of the fronts in the 184 

Southern Ocean, based on tracking the location of envelopes of kinetic energy measured by 185 

satellite altimetry. It is known from modeling studies that the front positions are associated with 186 

increased kinetic energy, due to instabilities in the jets and interactions with bathymetry 187 

(Thompson et al., 2010; Thompson and Richards, 2011). After demonstrating that kinetic energy 188 

computed from along-track satellite altimetry forms relatively wide envelopes of enhanced 189 

energy that occur within the probability range of jets and fronts (e.g., Chapman, 2017a), we track 190 

the positions of these envelopes from 1993 until 2016 to quantify if the envelopes have shifted 191 
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south by a statistically significant amount. This is based on the assumption that if the front and 207 

jets around the front have shifted south, then the envelope of high kinetic energy should also 208 

move by a comparable amount. Since the kinetic energy calculation is based on estimating 209 

gradients of sea level anomalies, this approach is similar to other gradient methods for detecting 210 

fronts or jets (e.g., Chapman, 2014; 2017a; Gille, 2014; Freeman and Lovenduski, 2016a). It 211 

differs from these approaches, however, in that instead of determining individual gradients and 212 

tracking these over time, it looks for regions of high gradients (i.e., high energy) surround by 213 

regions of low gradient (i.e., low energy). This allows us to detect envelopes for every time-214 

period considered, instead of only a fraction of the time, allowing for better tracking of the 215 

change over time.   216 

Section 2 will describe the data and methods used, while section 3 will present results, 217 

including evaluation of the method for detecting mean positions of fronts and for tracking their 218 

change over time. Section 4 will discuss the results in the context of previous studies and 219 

evaluate the usefulness of the method. 220 

2. DATA AND METHODS 221 

We utilize geostrophic surface current anomalies computed from the 24-year record of 1-Hz 222 

sea surface height (SSH) data along the TOPEX/Poseidon (T/P) groundtrack in the Southern 223 

Ocean (Figure 2). The altimetry data used are from four separate altimeter missions: 224 

TOPEX/Poseidon (January 1993 – January 2002), Jason-1 (February 2002 – July 2008), Jason-2 225 

(August 2008 – August 2016), and Jason-3 (August 2016 – December 2016). Because the 226 

official TOPEX/Poseidon (T/P) geophysical data records (GDRs) have not been updated since 227 

the late 1990s, we utilize the corrected data products from the Integrated Multi-Mission Ocean 228 

Altimeter Data for Climate Research provided by Beckley et al. (2010) at the NASA PO.DAAC 229 

Don  Chambers� 10/11/2017 1:21 PM
Deleted: s230 
Don  Chambers� 10/11/2017 1:21 PM
Deleted: also depends on231 

Don Chambers� 9/22/2017 2:23 PM
Deleted: Thus, it is reasonable to assume that 232 
if the front position has shifted that the region 233 
of high EKE should also shift by a comparable 234 
amount. 235 

Don Chambers� 9/22/2017 2:25 PM
Deleted:  236 

Don  Chambers� 10/11/2017 1:24 PM
Formatted: Normal, No widow/orphan
control, Tabs: 2", Left +  6.5", Right

Don Chambers� 9/22/2017 2:25 PM
Deleted: will 237 
Don Chambers� 9/22/2017 2:25 PM
Deleted: 3238 

Don  Chambers� 10/11/2017 1:24 PM
Deleted: (January 1993 through December 239 
2016) from the TOPEX/Poseidon, Jason-1, and 240 
Jason-2, and Jason-3 241 

Don  Chambers� 10/11/2017 1:24 PM
Deleted: each 242 
Don  Chambers� 10/11/2017 1:24 PM
Deleted: 243 



 

 7 

site (https://podaac.jpl.nasa.gov/Integrated_Multi-Mission_Ocean_AltimeterData). Jason-1 data 244 

are from the GDR-C version and were downloaded from the NASA PO.DAAC site in June 2010. 245 

Jason-2 are from the GDR-D version and were downloaded from NOAA NODC 246 

(ftp://ftp.nodc.noaa.gov/pub/data.nodc/jason2) between August 2012 and June 2016. Jason-3 are 247 

also from the GDR-D version and were downloaded from NOAA NODC 248 

(ftp://ftp.nodc.noaa.gov/pub/data.nodc/jason3) on August 7 and 8, 2017.  249 

We utilize the 1-Hz along-track SSH data from the four altimeters and compute sea level 250 

anomalies by interpolating the DTU10 mean sea surface model (Andersen and Knudsen, 2009; 251 

http://www.space.dtu.dk/english/Research/Scientific_data_and_models/downloaddata) to the 252 

SSH location using bilinear interpolation. The DTU10 mean sea surface model is based on SSH 253 

from multiple altimeters averaged over 17 years in a rigorous and consistent manner (Andersen 254 

and Knudsen, 2009). T/P, Jason-1, and Jason-2 data were all included.  All recommended 255 

geophysical and surface corrections (e.g., water vapor, ionosphere, sea state bias, ocean tides, 256 

inverted barometer, etc) have been applied, to correct for biases introduced by atmospheric 257 

signal refraction and sea state effects (e.g., Chelton et al., 2001). 258 

We utilize this record rather than the gridded products based on mapping SSH from multiple 259 

altimeters (e.g., Ducet et al., 2000; Pujol et al., 2016), because the along-track data have a finer 260 

resolution in space (6.9 km along the groundtrack) and we recently demonstrated that the 261 

mapped altimetry data underestimated eddy kinetic energy (EKE) throughout the Southern 262 

Ocean compared to using along-track data by as much as 60-70% (Hogg et al., 2015).  While the 263 

along-track sea level anomalies are filtered to reduce noise and thus may attenuate some signal, 264 

the filtering used (described later in this section), is less than that used for the mapped data, 265 

which uses observations from as long as 20 days and 200 km away to influence the mapped 266 
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value. By filtering only alongtrack data, the time differences are small (a few minutes at most), 270 

and the spatial influence is less than 100 km. Tests with unfiltered data accounting for estimated 271 

random noise in the sea level anomaly data suggests attenuation of kinetic energy is minimal 272 

with this approach and, more importantly, that the shape of the kinetic energy envelope does not 273 

significantly change.  274 

One can only compute EKE from alongtrack data at crossover points, where the ascending 275 

and descending groundtracks cross (Figure 2). Knowing the groundtrack angle with the north 276 

meridian (θ) one can compute the zonal (dη/dy) and meridional gradients (dη/dx) of SSHA 277 

directly from the gradients of SSHA for the ascending pass (dη/drasc) and descending pass 278 

(dη/drdes) using simple geometry (Parke et al., 1987)  279 

 , (1) 280 

noting that this formulation assumes the gradients represent the derivative of the northern SSHA 281 

relative to the southern SSHA (for both the ascending and descending passes). Once this is 282 

computed, the velocities can be computed directly from the zonal and meridional gradients: 283 

 , (2) 284 

where g is the acceleration due to gravity, and f is the Coriolis parameter 285 

This formulation assumes that the velocity field has not changed significantly between the 286 

times the two passes fly over the crossover point. At high latitudes, the majority of crossovers (> 287 

78%) have a time separation of less than 3 days. At 40°, the average propagation speed of an 288 

eddy is about 3 cm s-1 [Chelton et al., 2007], meaning the eddy would have only been displaced 289 
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by 8 km at most over this period. At higher latitudes, this is even less. Considering the diameter 303 

of eddies at these latitudes are of order 100 km [Chelton et al., 2007], the movement is not large 304 

enough to cause a significant change in velocity at the point. The primary problem with 305 

velocities computed from crossovers is the smaller number compared to using gridded data, or 306 

the time-varying, anomalous geostrophic current normal to the groundtrack (uT). This can be 307 

computed directly from the derivative of the SSH anomaly (η) along the ground-track distance 308 

(dr) from 309 

 uT = −
g
f
dη
dr .

 (3) 310 

This cross-track current is a projection of both the zonal (u) and meridional (v) components of 311 

the full anomalous velocity field. However, neither u nor v can be determined unambiguously 312 

from uT.. Here, we merely examine the variability of uT without making any assumptions 313 

concerning how it may be related to the full velocity, or u and v. 314 

Because derivatives of SSHA (Equations 1 and 3) have to be computed numerically (here, 315 

center-differences are used) and η contains significant noise at the 1 Hz sampling-rate of the 316 

altimeters, we optimally interpolate η along-track using a model of the covariance of the signal 317 

and error. We used the method of Wunsch (2006, Chapter 3) and a covariance function modeled 318 

as a Gaussian with a roll-off of 98 km and random noise of 2 cm, which was determined from the 319 

autocovariance of all TOPEX/Poseidon, Jason-1, and Jason-2 SSHA data from 1993-2015 320 

between 40°S and 65°S.  321 

Once uT(t) was computed at each 1-sec bin along the groundtracks in Figure 2 for each 10-322 

day repeat cycle, the cross-track kinetic energy (CKE) was computed as CKE(x,t) = 0.5 uT(x,t)2, 323 
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where x here is used to denote a generic 1-sec bin along the ground track.  We also computed the 338 

full EKE at the more limited crossover points as EKE(x,t)  = 0.5(u(x,t)2 + v(x,t)2).  339 

 The CKE values were averaged over the entire 24-year record and examined for each 340 

groundtrack segment (both ascending and descending) to judge where CKE was exceptionally 341 

high (Figure 3). We also computed CKE using the raw values of η with no optimal interpolation 342 

and compared to that computed with optimal interpolation. The locations of high CKE were the 343 

same, although values were significantly higher with the unsmoothed data. The quiescent regions 344 

of the ocean also showed considerably more noise, making it more difficult to determine 345 

boundaries of elevated CKE. For this reason, the values determined from the optimally 346 

interpolated data were used. 347 

Several criteria were utilized to quantify where the high CKE values were considered to be 348 

associated with fronts. First, we constrained the southern boundary to be 5° south of the Orsi et 349 

al. (1995) values of the PF and the northern boundary to be 5° north of the SAF. Secondly, we 350 

used a lower-limit for CKE of 200 cm2 s-2 for detection and tested that the width of the envelope 351 

of high CKE above the lower-limit was at least 100 km. The requirement that the envelope be 352 

greater than 100 km was done to reduce the impact of eddies in an otherwise quiescent region, 353 

since the diameter of eddies in the Southern Ocean is about 100 km. The CKE lower-limit was 354 

determined via iteration with different limits. For each case, the average center of the CKE 355 

envelope averaged over 24-years (based on the mean of the first and last points to exceed the 356 

lower-limit) was computed and compared visually to the Orsi et al. (1995) front positions.  200 357 

cm2 s-2 was selected because there were a significant amount of CKE envelope centers clustered 358 

around the Orsi et al. (1995) fronts and the envelopes were found for every 10-day repeat cycle. 359 

Using a higher limit resulted in fewer detections, especially when smaller time-averages were 360 
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used. Using a lower limit, we could find more potential front positions based on CKE, but many 368 

were far from the front positions estimated by Orsi et al (1995).  369 

An example of a detected high CKE envelope is shown in Figure 3, based on the average of 370 

CKE between 1993 and 2015 computed from T/P-Jason satellite pass 207 in the south Indian 371 

Ocean. This pass starts at 64.3°S near the prime meridian and extends to 41.2°S and 41°E 372 

longitude. There is clearly a wide envelope of enhanced CKE greater than 200 cm2 s-2 between 373 

55°S and 47°S.  374 

The mean CKE profile pictured in Figure 3 has multiple local maxima, most likely associated 375 

with variability of the narrow jets that surround the front. As shown by Chapman (2017a), these 376 

jets (evidenced in higher gradients of SSHA) do not occur around a front 100% of the time. At 377 

most, they occur about 30% of the time, and more often less than 15% of the time. Figure 4 378 

shows the behavior of CKE along this pass for different 3-year periods. Note that the number of 379 

clearly defined maxima ranges from a low of 4 for the 2014-2016 average to 9 in 1993-1995. 380 

While other studies have estimated positions of these maxima in SSHA gradients on daily 381 

intervals (e.g., Chapman, 2017a), one does not obtain a consistent number of maxima each time, 382 

making the determination of shifts difficult. Moreover, note that although there are two general 383 

peaks in CKE in the long-term mean profile, the minimum between them is still higher than 200 384 

cm2 s-2. A minimum is also not well defined in several of the shorter averaging periods (for 385 

example, 2008-2010).  386 

Thus, instead of attempting to track all the maxima of CKE individually – analogous to 387 

tracking steepest gradients, as in Thompson et al. (2010), Graham et al. (2012), or Chapman 388 

(2017a) – we track an estimate of the center of the envelope of enhanced CKE, as it exists in all 389 

averaging periods. The assumption we make in doing this is that the localized maxima are 390 
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associated with variable jets, but the position of the envelope of high CKE is related to the front.  420 

There are many different ways to compute a “center” of the envelope, ranging from the 421 

average of the two end points, to a centroid calculation, to computing the point where the integral 422 

of CKE over distance is balanced on both sides, which we call the “half-power point.” We have 423 

selected the latter to use, as it defines a “center” closer to the peak of CKE in the envelope. This 424 

is advantageous when the CKE curve is slightly skewed, with less magnitude on one side and 425 

more on the other. Assuming that the variability (and hence CKE) would be highest near the 426 

front (i.e., what is assumed in studies using the gradient method), finding a center of the 427 

envelope that is biased toward peak CKE is a reasonable approach. 428 

The half-power point (xmid) is computed so that 429 

 CKE(x)dx
xsouth

xmid

∫ =
1
2

CKE(x)dx
xsouth

xnorth

∫ , (4) 430 

where xsouth and xnorth are computed by first finding the maximum of CKE in the envelope above 431 

200 cm2 s-2, then finding the first value to the north just below 25% of that peak along with the 432 

similar value to the south (shown in Figure 3). Values other than 25% of the peak were tested. 433 

Using value greater than this, up to 50%, resulted in no significant difference in the half-power 434 

point. Using values smaller resulted in some boundaries not being defined. Thus, 25% of peak 435 

CKE was considered reasonable.  If multiple regions of enhanced CKE were found along the 436 

same track, this process was carried out for each of them. This was done for all the 24-year mean 437 

CKE profiles to establish the mean locations of the fronts between 1993 and 2016. 438 

A similar procedure was done for CKE averaged over discrete 3-year intervals, starting in 439 

January 1993 and ending in December 2016. A 3-year average was used to reduce the influence 440 
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of individual eddies on determining the envelope, and to reduce interannual variations in the 472 

front position, which have been observed in other studies at some locations (e.g., Kim and Orsi, 473 

2014; Shao et al., 2015). In particular, Kim and Orsi (2014) and Shao et al. (2015) found 474 

significant correlation with the Southern Annular Mode, which has a quasi-biennial oscillation 475 

(Hibbert et al., 2010). By averaging over three years, we found 8 distinct, statistically 476 

uncorrelated samples of CKE for each groundtrack from which to deduce shifts in the half-power 477 

point.  478 

3. RESULTS AND ANALYSIS 479 

The first thing tested was how well CKE represented the full EKE. If CKE does not have the 480 

same general shape as EKE, then using it as a proxy for EKE to determine high energy envelopes 481 

is not valid. After finding satellite passes with high CKE as discussed in Section 2, EKE was 482 

computed along the same pass, using the crossover method (Equations 1 and 2).  483 

Although CKE is lower than EKE along all groundtracks (see Figure 5 for examples), the 484 

pattern of KE rise then fall is virtually identical. CKE, however, has the benefit of higher and 485 

more regular sampling. Thus, we conclude CKE is a reasonable proxy for locating front positions 486 

even though it may not be useful for quantifying the full energy of the anomalous currents. 487 

Four general types of enhanced CKE were found (Figures 4 and 5). In most regions, the 488 

envelope in CKE is more or less symmetrical (52% of cases). Only a few profiles have two 489 

distinct regions of enhanced CKE that were identified, with a clearly defined minimum below 490 

200 cm2 s-2 between them in all time periods (3% of cases). 20% of the passes have multiple 491 

peaks that vary in time but have no consistent minimum between the peaks (i e., Figure 4), while 492 

25% have a skewed envelope (Figure 5), with a long rise in CKE followed by a sharp drop-off. 493 

In all cases, though, the shape of the CKE envelope closely follows that of EKE, although the 494 

Don Chambers� 9/26/2017 10:54 AM
Deleted: This provided495 
Don Chambers� 9/26/2017 2:11 PM
Deleted: 496 
Don Chambers� 9/26/2017 11:07 AM
Formatted: Font:Times, Font color: Auto

Don Chambers� 9/26/2017 11:09 AM
Formatted: Normal, Space After:  0 pt,
Tabs:Not at  3.25" +  6.5"

Don Chambers� 9/26/2017 11:09 AM
Deleted: , where EKE = 0.5(u2 + v2). One 497 
can calculate both components of the velocity 498 
at crossover points, where the ascending and 499 
descending groundtracks cross, under the 500 
assumption that the velocity field has not 501 
changed significantly between the times of the 502 
groundtracks (Parke et al., 1987). At high 503 
latitudes of the Southern Ocean, the time 504 
separation between ascending and descending 505 
passes is less than 3 days for 78% of the 506 
crossovers, so this is a reasonable assumption.507 ... [5]

Don Chambers� 9/25/2017 11:07 AM
Moved up [1]: One can calculate both 535 
components of the velocity at crossover points, 536 
where the ascending and descending 537 ... [6]

Unknown
Formatted: Lowered by  15 pt

Unknown
Formatted: Lowered by  15 pt

Don Chambers� 9/26/2017 11:14 AM
Deleted: 4 521 
Don Chambers� 9/26/2017 11:15 AM
Deleted: Three 522 
Don Chambers� 9/26/2017 11:15 AM
Deleted: 4523 
Don Chambers� 9/26/2017 11:15 AM
Deleted: “bump”524 
Don Chambers� 9/26/2017 11:17 AM
Formatted: Superscript

Don Chambers� 9/26/2017 11:17 AM
Formatted: Superscript

Don Chambers� 9/26/2017 11:19 AM
Deleted: In several, however, the bump is 534 ... [7]

Don  Chambers� 10/12/2017 9:26 AM
Deleted: a long rise 527 
Don Chambers� 9/26/2017 11:19 AM
Deleted: then 528 
Don Chambers� 9/26/2017 11:19 AM
Deleted: Finally, there were also a few cases 533 ... [8]

Don Chambers� 9/26/2017 11:20 AM
Deleted: followed 532 



 

 14 

amplitude was attenuated, by anywhere from 25-50%. Having closer samples of CKE, however, 538 

allows for a better computation of the half-power point and possible shifts. 539 

Figure 6 shows the locations of the half-power points determined from the mean CKE 540 

profiles, along with estimate of the front position based on different methods: density gradients 541 

from historical hydrographic sections (Orsi et al., 1995), dynamic topography contours (Kim and 542 

Orsi, 2014), and the gradient of sea surface temperature (Freeman and Lovenduski, 2016a). 543 

There are two estimates of the SAF and SACCF, and three of the PF. One of the PF estimates 544 

(from Freeman and Lovenduski, 2016a) includes the standard deviation of the daily estimates.  545 

It is important to note the large differences in estimates for the same front, which indicates 546 

how uncertain these calculations are. For instance, in the Indian Ocean at 50°E, Freeman and 547 

Lovenduski (2016a) find the PF at the same location that Orsi et al. (1995) found the SAF, while 548 

Kim and Orsi (2014) find it significantly farther south. The SAF determination using the contour 549 

method (Kim and Orsi, 2014) is substantially farther north than the one determined from 550 

hydrographic data (Orsi et al., 1995) at most longitudes. 551 

Many estimates from the half-power points of enhanced CKE occur between the same front 552 

estimated by different methods, indicating they are at least within the uncertainty bounds of 553 

frontal detection by other methods. Other values are at locations either north or south of the other 554 

front estimates by as much as 3°, but it should be noted that the standard deviation of the PF 555 

estimated by Freeman and Lovenduski (2016a,b) averages 2-3°, indicating these positions 556 

estimated from CKE are well within the level of expected frontal variability. 557 

Probably a better method for determining frontal position is to examine the probability of jets 558 

occurring (Chapman, 2017a) (Figure 7).  The CKE-defined mean front positions lie within the 559 

probability envelopes, giving more confidence that the CKE measure is providing a comparable 560 
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measure of frontal position in many areas. The only location where CKE-defined fronts don’t 565 

agree well with the probability field from Chapman (2017a) is just west of the dateline, where 566 

two points lie between levels of high jet (and hence front) probability.  567 

Still, the good comparison is reassuring that the method developed in Section 2 is 568 

successfully detecting regions of high energy related to jets around fronts. Since the movement 569 

of jet positions has been used to estimate movement of the fronts (e.g., Chapman, 2017a), a 570 

comparable calculation with positions of high CKE seems reasonable.  571 

To quantify movement of the envelope of enhanced CKE, a linear trend is fit to the 8 572 

estimations of the half-power point from 1993-2016 for each location shown in Figures 5 and 6. 573 

Analysis of the residuals about the trend indicated they were random (lag-1 autocorrelation < 0.1 574 

for all cases), so standard error was computed by scaling the formal error from the covariance 575 

matrix determined in ordinary least squares by the standard deviation of the residuals. This was 576 

also scaled up to account for the degrees of freedom lost by estimating the trend by sqrt(n/nEDOF), 577 

where n = 8, and nEDOF = 6. Finally, the 90% confidence interval was computed by scaling by 578 

1.94 for 6 effective degrees of freedom assuming a normal t-distribution of the residuals. 579 

The results indicate considerable regional variability in the change of the half-power point 580 

over 24 years, with large uncertainty bars (Figure 8). This is due to the substantial temporal 581 

variability in the positions, which can be seen in Figure 4, where the leading edge of the CKE 582 

envelope varies by over 1 degree of latitude (over 100 km) between 1993-1995 and 2011-2012.  583 

To better see significant changes outside the uncertainty (90% confidence) interval, one can 584 

compute the signal to noise ratio (SNR = trend/uncertainty). Examining this (Figure 9), one can 585 

see there are some regions where the half-power point has moved southward by a significant 586 

distance over the last 24 years (13.6% of points), but there are also points where it has moved 587 
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north (9.6%). For the majority of points (76.8%), there is no statistically significant change, 618 

meaning no movement of the front is as likely as either a southward or northward shift due to the 619 

high variability in 3-year positions.  620 

 621 

4. DISCUSSION AND CONCLUSIONS 622 

The results from the analysis of the positions of enhanced kinetic energy suggest no overall 623 

shift in the frontal positions across the Southern Ocean, but some large, localized movements. 624 

The region indicative of some southward shift between 90°E and 170°E is in approximately the 625 

same area where Kim and Orsi (2014) and Freeman and Lovenduski (2016a) also reported large 626 

shifts, between 1992 to 2011 and 2002 and 2014, respectively. However Freeman and 627 

Lovenduski only examined the Polar front, and Kim and Orsi (2014) only found large shifts in 628 

the PF and the southern ACC front. They found shifts of order 50-100 km in the SAF where the 629 

points in this study cluster, which is considerably smaller than the individual shifts we find 630 

between 90°E and 170°E along the SAF. However, the overall average over the region between 631 

90°E and 170°E (-29 km per decade, or -66.7 km in 23 years), is consistent with what Kim and 632 

Orsi (2014) found. 633 

Kim and Orsi (2014) and Freeman and Lovenduski (2016a) also found slight northward 634 

shifts in the front positions in the southeast Pacific, between 200°E-270°E. We also find some 635 

locations in this region with a significant northward shift in the SAF. Kim and Orsi (2014) found 636 

the shift of the SAF was about 30-40 km between 1992 and 2011. Our results suggest larger 637 

shifts in some areas; averaged over the area, our results are 46 km per decade to the north, or 106 638 
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km from 1993-2015, which is consistent with the average over the region computed by Freeman 649 

and Lovenduski (2016a) from sea surface temperature data, but for the Polar Front.  650 

Kim and Orsi (2014) suggest that the shift of the fronts in the Indian Ocean were not directly 651 

related to shifts in winds, but instead were caused by an expansion of the Indian subtropical gyre. 652 

They linked the shift in the southeastern Pacific to wind changes related to mainly the Southern 653 

Annular Mode in that region (Kim and Orsi, 2014). 654 

Overall, this study supports the recent studies by Kim and Orsi (2014), Gille (2014), Freeman 655 

and Lovenduski (2016a), and Chapman (2017a). All find that, while the frontal positions of the 656 

ACC are highly variable in time, there is no statistically significant shift in the fronts to the south 657 

on average. This study utilized a novel technique to reach this conclusion, which adds to the 658 

robustness of evidence that there has not been a shift in the frontal positions.  Thus, while the 659 

fronts may eventually shift south in a warming climate, there is no strong evidence that it is 660 

happening at the moment. 661 

Other studies have shown significant positive trends in the Southern Ocean that have been 662 

connected to the warming climate. These include changes in the ocean heat content in the upper 663 

ocean between the 1930s-1950s and 1990s (e.g., Böning et al., 2008; Gille, 2008), increases in 664 

the heat content of deep water between the 1990s and 2005 (e.g., Purkey and Johnson, 2010), 665 

and increases in eddy kinetic energy in the Indian and Pacific Oceans since 1993 (Hogg et al., 666 

2015). Observational evidence of shifts in the winds, however, indicates that while there may be 667 

a slight southward shift in winds during the southern hemisphere summer, the overall yearly 668 

average shift is not significant (Swart and Fyfe, 2012). Thus, the growing consensus that fronts 669 

have not shifted to the south, on average, is consistent with observations of no significant shift in 670 

the yearly averaged winds.    671 

Don Chambers� 10/3/2017 12:04 PM
Deleted: Freeman et al.672 

Don  Chambers� 10/10/2017 4:28 PM
Deleted:   673 
Don  Chambers� 10/10/2017 4:19 PM
Deleted: and 674 
Don Chambers� 10/3/2017 12:04 PM
Deleted: Freeman et al.675 
Don  Chambers� 10/10/2017 4:19 PM
Deleted: that676 
Don  Chambers� 10/10/2017 3:44 PM
Deleted:  and that 677 
Don  Chambers� 10/10/2017 3:50 PM
Moved (insertion) [3]

Don  Chambers� 10/10/2017 3:50 PM
Deleted: 678 

Don  Chambers� 10/10/2017 3:50 PM
Moved up [3]: This study utilized a novel 679 
technique to reach this conclusion, which adds 680 
to the robustness of evidence that there has not 681 
been a shift in the frontal positions.  Thus, 682 
while the fronts may eventually shift south in a 683 
warming climate, there is no strong evidence 684 
that it is happening at the moment.685 



 

 18 

The only evidence supporting a hypothesis that ACC fronts have shifted southward since the 686 

1990s comes from mapping the location of contours of constant dynamic topography over time 687 

(e.g., Sokolov and Rintoul, 2009b; Kim and Orsi, 2014). As Gille (2014) argued and as we have 688 

demonstrated based on a simple thought experiment (Figure 1), there are other equally plausible 689 

explanations for the apparent southern shift of the contours. Considering that four different 690 

techniques – location of mean transport (Gille, 2014), maximum SST gradients (Freeman and 691 

Lovenduski, 2016a), probability of jet positions (Chapman, 2017a), and the location of enhanced 692 

kinetic energy (this study) – all agree that the fronts have not moved significantly on average, 693 

one has to conclude that the method of using dynamic topography contours to detect changes in 694 

front position is too sensitive to sea level rise be useful for determining shifts in frontal positions, 695 

although it may prove useful for determining the mean position as Chapman (2017a) has argued.  696 

  697 
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Figure Captions 814 
 815 
Figure 1. a) Mean dynamic topography in the Southern Ocean along a north-south meridian for three 816 
scenarios, and b) the corresponding geostrophic velocity, with positive values indicating eastward flow. 817 
The scenarios are: an initial state (dashed black line), a shift of the two fronts south by 60 km with no 818 
change in magnitude or shape of the currents (red line), and no shift of the mean of the current, but a 819 
change in the magnitude and shape (blue line). 820 
 821 
Figure 2. Positions of the T/P, Jason-1, Jason-2 and Jason-3 groundtracks used for this study (black 822 
lines), and the the approximate locations of the Subantarctic Front (red line) and the Polar Front (blue 823 
line) as estimated by Orsi et al. (1995).  The orange track shows the location of the pass used in analysis 824 
shown in Figures 3 and 4.   825 
 826 
Figure 3. An example profile of mean CKE (1993-2015) along a ground track in the southern Indian 827 
Ocean (shown in orange in Figure 2), demonstrating the location of the half-power point and the locations 828 
of the southern and northern boundaries of the enhanced CKE envelope. See text for details of the 829 
computations. 830 
 831 
Figure 4. Three-year averages of CKE estimated along pass shown in Figure 2 (solid lines) along with 832 
the long-term mean from 1993-2016 (dotted line). 833 
 834 
Figure 5. Examples of the three types of CKE profiles found (black lines), along with the value of the full 835 
EKE computed at crossover points. 836 
 837 
Figure 6. Mean positions of fronts estimated from CKE (orange dots) along with estimates from other 838 
authors: Orsi et al. (1995) computed using hydrographic sections, Kim and Orsi (2014) based on contours 839 
of dynamic topography, and Freeman and Lovenduski (2016a) based on gradients of sea surface 840 
temperature. The Orsi et al. (1995) fronts were downloaded from 841 
https://gcmd.nasa.gov/records/AADC_southern_ocean_fronts.html. The Freeman and Lovenduski fronts 842 
were downloaded from https://doi.pangaea.de/10.1594/PANGAEA.855640 (Freeman and Lovenduski, 843 
2016b). The Kim and Orsi (2014) fronts were provided by Yong Sun Kim upon request. 844 
 845 
Figure 7. Mean positions of fronts estimated from CKE (black dots) along with the percent occurrence of 846 
a jet between 1993 and 2014 computed by Chapman (2017a). Data were downloaded from 847 
http://dx.doi.org/10.5061/dryad.q9k8r (Chapman, 2017b). The percent occurrence of the jet was 848 
computed by calculating the number of times a jet occurred in the daily files, dividing by the total number 849 
of days between January 1993 and December 2014, and multiplying by 100. 850 
 851 
Figure 8. Estimated trend in the half-power point of CKE for each location shown in Figures 6 and 7, as a 852 
function of latitude. Error bars represent the 90% confidence interval. 853 
 854 
Figure 9. SNR (trend/error in Figure 8). Values larger than 1 indicate a statistically significant northern 855 
shift. Values smaller than -1 indicate a statistically significant southern shift. Values between ± 1 indicate 856 
no statistically significant shift. 857 
 858 
  859 
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 897 
 898 
Figure 1. a) Mean dynamic topography in the Southern Ocean along a north-south meridian for 899 
three scenarios, and b) the corresponding geostrophic velocity, with positive values indicating 900 
eastward flow. The scenarios are: an initial state (dashed black line), a shift of the two fronts 901 
south by 60 km with no change in magnitude or shape of the currents (red line), and no shift of 902 
the mean of the current, but a change in the magnitude and shape (blue line). 903 
 904 
 905 
 906 

 907 
 908 
Figure 2. Positions of the T/P, Jason-1, Jason-2 and Jason-3 groundtracks used for this study 909 
(black lines), and the the approximate locations of the Subantarctic Front (red line) and the Polar 910 
Front (blue line) as estimated by Orsi et al. (1995).  The orange track shows the location of the 911 
pass used in analysis shown in Figures 3 and 4.   912 
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 922 
 923 
Figure 3. An example profile of mean CKE (1993-2015) along a ground track in the southern 924 
Indian Ocean (shown in orange in Figure 2), demonstrating the location of the half-power point 925 
and the locations of the southern and northern boundaries of the enhanced CKE envelope. See 926 
text for details of the computations. 927 
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 931 

 932 
Figure 4. Three-year averages of CKE estimated along pass shown in Figure 2 (solid lines) 933 
along with the long-term mean from 1993-2016 (dotted line).  934 
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 937 
 938 
Figure 5. Examples of the three types of CKE profiles found (black lines), along with the value 939 
of the full EKE computed at crossover points. 940 
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 947 
 948 
Figure 6. Mean positions of fronts estimated from CKE (orange dots) along with estimates from 949 
other authors: Orsi et al. (1995) computed using hydrographic sections, Kim and Orsi (2014) 950 
based on contours of dynamic topography, and Freeman and Lovenduski (2016a) based on 951 
gradients of sea surface temperature. The Orsi et al. (1995) fronts were downloaded from 952 
https://gcmd.nasa.gov/records/AADC_southern_ocean_fronts.html. The Freeman and 953 
Lovenduski fronts were downloaded from https://doi.pangaea.de/10.1594/PANGAEA.855640 954 
(Freeman and Lovenduski, 2016b). The Kim and Orsi (2014) fronts were provided by Yong Sun 955 
Kim upon request. 956 
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 966 
 967 
Figure 7. Mean positions of fronts estimated from CKE (black dots) along with the percent 968 
occurrence of a jet between 1993 and 2014 computed by Chapman (2017a). Data were 969 
downloaded from http://dx.doi.org/10.5061/dryad.q9k8r (Chapman, 2017b). The percent 970 
occurrence of the jet was computed by calculating the number of times a jet occurred in the daily 971 
files, dividing by the total number of days between January 1993 and December 2014, and 972 
multiplying by 100. 973 
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 976 
Figure 8. Estimated trend in the half-power point of CKE for each location shown in Figures 6 977 
and 7, as a function of latitude. Error bars represent the 90% confidence interval. 978 
 979 
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 984 
Figure 9. SNR (trend/error in Figure 8). Values larger than 1 indicate a statistically significant 985 
northern shift. Values smaller than -1 indicate a statistically significant southern shift. Values 986 
between ± 1 indicate no statistically significant shift. 987 
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