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Abstract. A Relocatable Ocean Prediction System (ROPS) was employed to an observational data set which was collected in
June 2014 in the waters to the west of Sardinia (Western Mediterranean) in the mainframe of the REP14-MED experiment.
The observational data, comprising more than 6000 temperature and salinity profiles from a fleet of underwater gliders and
shipborne probes, were assimilated in the Regional Ocean Modeling System (ROMS) which is the heart of ROPS, and verified
against independent observations from ScanFish tows by means of the forecast skill score as defined by Murphy (1993). A
simplified objective analysis (OA) method was utilised for assimilation, taking account of only those profiles which were
located within a predetermined time window W. As a result of a sensitivity study, the highest skill score was obtained for a
correlation length scale C'= 12.5 km, W = 24 hours, and r = 1, where 7 is the ratio between the error of the observations and
the background error, both for temperature and salinity. Additional ROPS runs showed that (i) the skill score of assimilation
runs was mostly higher than the score of a control run without assimilation, (i) the skill score increased with increasing forecast
range, and (iii) the skill score for temperature was higher than the score for salinity in the majority of cases. Further on, it is
demonstrated that the vast number of observations can be managed by the applied OA method without data reduction, enabling

timely operational forecasts even on a commercially available Personal Computer or a laptop.

1 Introduction

A Relocatable Ocean Prediction System (ROPS) is presented which enables rapid nowcasts and forecasts of ocean environmen-
tal parameters in limited regions. In this study, ROPS was implemented for the waters west of Sardinia (Western Mediterranean
Sea) within the framework of the REP14-MED experiment (Onken et al. (2014, 2017a)).

The major components of ocean operational systems are observations and ocean circulation models coupled with data
assimilation systems, to combine the observations with dynamics and issue nowcasts and forecasts which are delivered to the
customers. While systems on global scale are utilised to provide estimates on large-scale circulation patterns and associated
features, regional operational systems are focusing more on societally relevant oceanographic information for e.g. search and
rescue operations, pollutant dispersal, fishery management (Edwards et al., 2015), and military applications. Meanwhile, quite
a number of real-time ocean operational systems are available, spanning the scales of ocean horizontal circulation patterns

from global to coastal (Dombrowsky (2011), Zhu (2011)).
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ROPS was developed for military use in the context of Rapid Environmental Assessment but it can easily be adapted to any
non-military demands. For maritime forces, there is a special need for relocatable operational systems which can be moved
in any (potential) conflict area in the World Ocean on short notice. As in the majority of cases conflict areas are regionally
limited, the domains of the operational systems must be tailored to the corresponding regions which means that their horizontal
extent should be on the order of 100 km. Consequently, the domains share always a wet (open) boundary with the open ocean.
Relocatable operational systems based on the Harvard Ocean Prediction System (HOPS, Robinson (1999)) may be considered
as the pioneering work in this subject. They became available since the late 90s of the previous century, and have been applied
in various regional studies up to present (De Dominics, 2014). Another line of research based on the Naval Coastal Ocean
Model (NCOM, Martin (2000)) can be traced back to the first decade of the present century (Rowley and Mask, 2014), and
recently, Trotta et al. (2016) presented and compared the performance of a relocatable prediction system, using structured and

unstructured grids. The common properties and minimum requirements of any such system are as follows:

A tool for setup of the model domain, including the specification of the numerical grid, the bathymetry, and the coastline,

Interfaces for definition of initial conditions, lateral and surface boundary conditions,

A numerical model,

An interface for the provision of observational data,

A data assimilation module,

Software for post-processing of the model output.

An additional demand for relocatable operational systems is to provide accurate nowcasts and forecasts of the ocean environ-
ment in a timely manner, i.e. in near-real time. However, the requirements of accuracy and timeliness are inconsistent with one
another: accuracy claims for the application of up-to-date assimilation schemes which presently are ensemble or variational
methods. As the implementation of these schemes is rather complex and they are computationally expensive (Zaron, 2011),
timely delivery can only be realised on powerful computers which are frequently not available. As a compromise, sequential
data assimilation based on objective analysis (OA, Bretherton et al. (1976), Thomson and Emery (2014)) is used in ROPS. OA
is on the one hand not as accurate as the Ensemble Kalman Filter (Evensen, 2006) or 4D-Var (Moore et al. (2011a, b)), but the
computational costs are much less and the implementation is straightforward.

Meanwhile, ROPS has been implemented for various regions in the World Ocean, and it is running automatically without
any major interruptions since early 2015. The concept (Fig. 1)for all realisations is identical: every day, ROPS is initialised
from a restart file of the previous day’s run, and it provides a 3-days forecasts relative to present. For each run, data sets for
the definition of initial and boundary conditions plus observational data for assimilation are downloaded from the internet, in
which the initial conditions are only required for re-initialisation of ROPS in case it died the day before.

For this article, ROPS is slightly modified because it is running in hindcast mode for a period of time in June 2014. All data
for model initialisation, boundary conditions, and a huge set of observational data for assimilation are available on the local

computer system and a download from the internet is not required. The objectives are to demonstrate that
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— Good forecasts can be obtained from a prediction system using OA for assimilation (for the definition of “goodness”,
see Murphy (1993)).

— A vast number of observational data can be managed by OA without data reduction by averaging, sub-sampling, or
creating “super observations” (Lorenc, 1981; Moore et al., 2011b; Oke et al., 2015).

— ROPS is able to provide timely operational forecasts even on a commercially available Personal Computer or a laptop.

The area of the ROPS model domain (Fig. 2) is characterised by a 20-50 km wide continental shelf. The shelf ends at
water depths between 150 and 200 m, followed by the continental slope which features several canyons. The deep-sea area
belongs to the northern Algerian Basin (also referred to as Sardo-Balearic Basin) and exhibits water depths of up to 2800 m.
According to Millot (1999), the mean surface circulation is mainly related to the inflow of “new* Modified Atlantic Water
(MAW) from the Strait of Gibraltar by means of anticyclonic eddies originating from the Algerian Current. Another branch
of “old*“ MAW, which mixed with the underlying water masses on its large-scale cyclonic circulation through the Tyrrhenian,
Ligurian, and Balearic Seas, comes probably from the west via the Balearic Current (Garcia et al., 1996). Just below the MAW,
Winter Intermediate Water (WIW) follows the path of the MAW along its whole cyclonic path. Levantine Intermediate Water
(LIW) originates from the Eastern Mediterranean and the direct path to the ROPS domain is via the Sardinia Channel and then
northward around the southern tip of Sardinia. Below the LIW, Western Mediterranean Deep Water (WMDW) and Bottom
Water (BW) are found.

From analyses of the REP14-MED observational data set, it turned out that the distribution of the water masses and the
circulation patterns resembled the classical picture described above, but there were also significant differences. According to
Knoll et al. (2017), the temperature and salinity of MAW, LIW, and BW had increased compared to the observations during
the last decade. In addition, an anticyclonic WIW eddy with unusual low temperatures and salinities was identified which may
confirm the existence of a direct route of WIW from its formation region to the observational site. By contrast to previous
observations, LIW occupied the whole trial area and the predominant direction of the geostrophic flow was to the north with
the largest transports in the deep water off the 1000-m depth contour; no LIW vein tied closely to the Sardinian coast was
found south of 40° N. The MAW pattern was different: namely, the major northward transport occurred also to the west of the
1000-m contour in a broad 30-50-km wide band but in addition, there was a narrow vein of near-coastal northward currents,
the width of which rarely exceeded 10 km. Southward transport with a zonal extent of 2040 km prevailed between the 2
northward directed regimes. Both the meridional flow bands of MAW and LIW were connected by alternating 10-30-km wide
zonal currents. The observed geostrophic flow pattern suggests a mean transport to the north with superimposed mesoscale
perturbations of 10-40 km in diameter. This defines another demand to ROPS to reproduce the horizontal variability of these
scales, i.e. to resolve the Rossby radius. Concerning the temporal scales, repeated ADCP (Acoustic Doppler Current Profiler)
sections indicate that noticeable changes of the flow field occur within 4 days (see Fig. 14 in Knoll et al. (2017)). However,
this time scale is stipulated by the minimum interval between the repeated ADCP surveys; in reality, shorter scales are likely.
Hence, an additional objective is to resolve at least day-to-day changes.

The modified version of ROPS is described in Section 2. In the subsequent section is provided an overview of the observa-

tional data used in the mainframe of this article. The results of various ROPS runs are displayed in Section 4 and discussed
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in Section 5. The conclusions are found in Section 6. All time specifications refer to the year 2014, and the time coordinate is

UTC (Universal Time Coordinated).

2 ROPS
2.1 ROMS

The employed numerical ocean circulation model is ROMS, the Regional Ocean Modeling System. ROMS is a hydrostatic,
free-surface, primitive equations ocean model, the algorithms of which are described in detail in Shchepetkin and McWilliams
(2003, 2005). In the vertical, the primitive equations are discretised over variable topography using stretched terrain-following
coordinates, so-called s-coordinates (Song and Haidvogel, 1994). In the mainframe of this article, spherical coordinates on a
staggered Arakawa C-grid are applied in the horizontal. For the horizontal advection of momentum, a third-order upstream
bias advection scheme is used. A 4*-order, centered differences scheme is applied for the horizontal and vertical advection of
tracers. The horizontal mixing of momentum and tracers is accomplished by means of a Laplacian formulation, and the vertical
mixing is parameterised by the GLS (Generic Length Scale) scheme (Umlauf and Burchard, 2003) using the k-w setup based
on the turbulent closure scheme of Wilcox (1988). The air-sea interaction boundary layer in ROMS is formulated by means of
the bulk parameterisation of Fairall et al. (1996). The processing of ROMS is accomplished within the grey box depicted in

Fig. 1, including nudging, data assimilation, and the proper integration.
2.2 The domain

While the processing of ROMS is recurring, the setup of the ROPS domain is a one-time task (Fig. 1). The domain is situated
to the west of Sardinia (Fig. 2). The west and east boundaries are at 6°30.5’ E and 8°35.5’ E, while in the south and north the
domain is limited by the 38°36.4’ N and 40°59.6’ N latitude circles, respectively. In east-west direction, the domain is separated
in 120 grid cells, and in south-north direction in 178 cells, which yields an average grid spacing of Az ~ Ay = 1500m in the
zonal and meridional direction, respectively.

Bathymetry data from the General Bathymetric Chart of the Oceans (GEBCO) with a spatial resolution of 1 arc minute were
provided by the British Oceanographic Data Centre (BODC) and mapped on the horizontal grid. Coastline data from NOAA
(National Oceanic and Atmospheric Administration) were overlaid to the bathymetry and required some manual editing of
the land mask. In order to avoid crowding of the s-coordinates in shallow water regions, the bathymetry was clipped at 20m
which is the minimum allowed water depth. For the smoothing of the bathymetry, a second-order Shapiro filter was applied.
After smoothing, the so-called rz0 parameter resulted as 0.31 which is about 50% higher than the maximum value of 0.2
recommended by Haidvogel et al. (2000), but 70 is still less than 0.4 as suggested in the ROMS forum
(https://www.myroms.org/forum).

In the vertical direction, the domain is separated in K = 70 s-layers, the position of which is controlled by 3 parameters

(6s,6p,he) and 2 functions, Vi, V.. Here, Vi, is the transformation equation, V., the vertical stretching function, 6, and
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0y are the surface and bottom control parameters, and . is the critical depth controlling the stretching (for more details, see
https://www.myroms.org/wiki/). For all ROMS runs shown below, V;,. =2, V. = 1,0, =05, 0, =0.4, h. =50 m
were selected, enabling high vertical resolution near the surface. This combination of functions and parameters yielded a grid
dependent parameter rz1 = 22.7 which is a measure for the pressure gradient error over steep topography. Namely, according
to the ROMS discussion forum, rx1 > 14 is considered as “insane” because the Haney (1991) condition is violated, however,
there are various contributions in the forum, reporting that even with rx1 >> 14 there did not arise any problems with the

corresponding ROMS runs.

2.3 Initialisation and nudging

ROMS was initialised from nowcasts of the MERCATOR global ocean circulation model (Drévillon et al., 2008) via CMEMS,
the Copernicus Marine Environment Monitoring Service. The downscaling from MERCATOR (the parent) to ROMS was
accomplished first by linear horizontal interpolation of the prognostic fields on the ROMS grid. As the maximum horizontal
resolution of the parent is 9.25km (1/12°), the nesting ratio (also referred to as grid refinement factor) is around 6.2. In
comparison with other studies applying one-way nested model setups, this ratio is rather large. For instance, Capet et al. (2008)
and Gula et al. (2016) used a ratio ~3 which is in line with the recommendation of McWilliams (2016) “Experience shows ...
that the grid refinement factor should not be much larger than 3”. The choice of the nesting ratio in the present article was driven
by 2 criteria: on the one hand, the grid spacing should not be much larger than 1500 m to properly resolve the Rossby radius
(see below); on the other hand, there were only 2 parent models available at CMEMS — MFS, the Mediterranean Forecasting
System (Dombrowsky et al., 2009; Tonani et al., 2014) and MERCATOR. Namely, the higher-resolution model was MFS (~7
km), but it was shown by Onken (2017) that initialising ROMS from MERCATOR instead of MFS provided a better agreement
between the modelled fields and the observations. Moreover, precursor tests of ROMS using a grid size of 3000 km (nesting
ratio ~3.1) revealed no significant differences compared to the actual version, except for that small mesoscale features were
not at all reproduced. This is in agreement with Pham et al. (2016) who demonstrated that the magnitudes of errors were
comparable, using nesting rations of 3 or 6, respectively.

After downscaling, all fields were interpolated vertically from the horizontal depth levels to the s-coordinates. A special
issue was the alignment of the land masks: if any wet grid cell in ROMS was covered by a dry grid cell of the parent, a smooth
transition of all variables was created by taking the average of the surrounding parent cells. However, as this may lead to a
violation of continuity by non-zero horizontal velocities normal to the land mask, all horizontal velocities next to the ROMS
land mask were set to zero.

Later on, during the coarse of the ROMS integration, there is the option to nudge the 3-dimensional temperature and salinity
fields once a day towards the parent. This guarantees that ROMS will not develop a solution in the interior of the domain which
deviates significantly from the solution provided by the parent. This option is only useful if there are no data for assimilation,
but in all model runs described in this article, nudging is turned off because a rich data set from observations was available (see

below).
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2.4 Lateral boundary conditions

The ROMS code includes various methods for the treatment of open boundaries. After extensive sensitivity studies, it was found
out that the following algorithms served best for the posed problem: for the sea surface elevation, the Chapman condition was
selected (Chapman, 1985), and for all other quantities (i.e. barotropic and baroclinic momentum, turbulent kinetic energy, eddy
diffusivity), the mixed radiation-nudging conditions after Marchesiello et al. (2001) were applied.

The lateral time-dependent boundary conditions were provided as well by MERCATOR by means of one-way nesting.
However, the information was not instantaneously superimposed to the ROMS solution but an additional nudging was applied
to all prognostic variables which allowed these fields to adjust slowly to the parent values at the boundaries within an e-folding

time scale of 2 days.
2.5 Surface boundary conditions

At the sea surface, boundary conditions for the air-sea exchange of fresh water, momentum, and heat were evaluated from
the output of the COSMO-ME weather prediction model which was made available by the Italian Weather Service CNMCA
(Centro Nazionale di Meteorologia e Climatologia Aeronautica). COSMO-ME covers the entire Mediterranean Sea with a
horizontal resolution of 7 km and provides 72-hour forecasts of the wind field at 10-m height, air temperature and relative

humidity at 2 m, air pressure at sea level, cloudiness, short wave radiation, and precipitation. The temporal resolution is 1 hour.
2.6 Data assimilation

In the ROPS runs presented below, temperature and salinity data from shipborne CTD (Conductivity-Temperature-Depth)

probes and gliders were assimilated. During the integration of ROMS, OA is controlled by six parameters:

— W: this is the width of the time window (in hours) that determines which data are selected for assimilation. W is centred
around the instant ¢,ss;,,, When the assimilation takes place, e.g. if £455im,=00:00 (midnight) and W =24 hours, data
between noon of the previous day and noon of the successive day are selected.

— (' the correlation length scale (in km). C' is a 2-element vector enabling a non-isotropic Gaussian correlation for the
meridional and zonal directions, respectively.

— 0T ps, 0Sops: the observational errors of temperature and salinity.

— 6Ty, 0.5p: the background errors of temperature and salinity.

Provided that all temperature and salinity data are stored as vertical profiles in daily directories, the data assimilation engine is

invoked each day at midnight and proceeds as follows:

— The daily directories are searched for CTD profiles which fit in the desired time window W.
— The vertical levels are defined where the OA is performed; these levels are given by the depth of the s-coordinates at the
maximum depth of the domain (Fig. 3).

— The vertical profiles are interpolated vertically on the OA vertical levels.
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As the correlation length scale C' is given in metric units, the ROMS spherical horizontal coordinates and the coordinates

of the observations are converted to the metric Gauss-Kriiger system.

For each OA vertical level, the model prediction at the positions of the observations serves as background field for any

tracer variable W (here: temperature 7" and salinity S ), and is subtracted from the observed data.

OA maps the anomalies at each level on the ROMS horizontal grid and computes the normalised mapping error ey at
the same time.

The background field is added to the analysed gridded fields.

The resulting tracer fields are melded with the actual ROMS fields, using ey for weighting. As 0 <= ey <=1, the

melding for any tracer is accomplished by the algorithm
\I]corr :e\P\IJROMS"_(]-_G\I/)\I!obs; (1)

where W poass is the original tracer field predicted by ROMS, U, are the gridded observations, and W, is the final
corrected field resulting from the melding. Hence, if ey is big (e.g. ey = 1 in the extreme case), no correction is applied
and the ROMS solution remains unchanged. On the other extreme (e = O if the observations are 100-% trustworthy),

the ROMS solution is rejected and substituted by the observations.
2.7 Integration and output

All ROPS runs presented below were initialised on 1 June at 00:00 and integrated forward for 24 days until 25 June 00:00.
From a precursor run, it was verified that the spin-up period was about 7 days. Hence, as the majority of observations is as-
similated after 8 June, a statistical equilibrium is almost achieved at that time. To satisfy the horizontal and the vertical CFL
criterion, a baroclinic time step of 108 s (800 steps per day) was chosen, and the number of barotropic time steps between each
2 -1

baroclinic time step was 40. Harmonic mixing along isopycnals with an eddy diffusivity coefficient of 5 m was used for

1

the horizontal diffusion of 7" and S, and a viscosity coefficient of 10 m?2 s~ was selected for the diffusion of momentum. In

the vertical direction, a diffusivity coefficient of 2 x 107® m? s~! was used and the eddy viscosity coefficient was 10~ ®m?s!,
All diffusion coefficients were optimised in Onken (2017). Further on, a quadratic law using a coefficient of 0.003 was ap-
plied for the bottom friction, and the pressure gradient term was computed using the standard density Jacobian algorithm of
Shchepetkin and Williams (2001, unpublished; see http://www.atmos.ucla.edu/~alex/ROMS/pgflA.ps). The

3-dimensional volume of all prognostic fields was written to an output file in 6-hour intervals.

3 Observational data
Observational data were selected from the REP14-MED experiment which took place 6-25 June; for a complete overview of
all observations, see Onken et al. (2017a). In detail, these were

— 312 CTD casts taken by lowered CTD und underway CTD probes, thereof 113 on Leg 1 (6-11 June), 173 on Leg 2
(12-20 June), and 26 at the start of Leg 3 on 23 June (for the casts on Legs 1 and 2 see Fig. 4). The positions of the
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casts taken during Leg 1 were arranged nominally on a 10 kmx 10 km grid except for 2 additional casts at 40°15’N (Fig.
4a). During Leg 2, the sampling pattern of Leg 1 was partly repeated, but extra casts were taken at the boundaries of the
observational grid. Further CTD profiles close to the Sardinian coast between about 39°15’N and 39°30’N came from
an acoustic experiment (Fig. 4b). The scheduled vertical extent of all casts was 1000 dbar or bottom depth (whatever
was shallower) but 10 casts especially at the western boundary of the observational domain reached greater depth to
characterise the deep water masses.

— 5731 CTD profiles collected by 11 gliders (Fig. 5). All gliders were deployed on 8 and 9 June, respectively, and operated
until their recovery on 23 June, except for the most northern one which died on 10 June. The nominal glider tracks were
arranged halfway between the zonal CTD sections (Fig. 4), thus doubling the meridional resolution of the observations.
The scheduled depth of the gliders was limited by their pressure rating: 6 gliders were rated at 1000 dbar, 1 at 650 dbar,
and 4 at 200 dbar.

— CTD data from ScanFish (EIVA, Skanderborg, Denmark) tows 21 June 12:03-23 June 23:38 (Fig. 6). The scheduled

maximum depth of the ScanFish was around 190 m.

The temperature and salinity data from the lowered probes and from the gliders were assimilated in ROMS while the ScanFish
data served for the verification of the forecasts. In Fig. 7 are shown the number of CTD profiles which were available for

assimilation.

4 Results

In the following are presented the results of 4 series of ROPS experiments. In Series A is explored the performance of the
ROPS forecasts in dependency of the correlation length scale, in Series B the sensitivity to the background errors, and in Series

C the impact of the size of the assimilation window. Finally, the dependency on the forecast range is assessed in Series D.
4.1 The verification method

The verification of the forecast accuracy is conducted by means of root-mean-square error (RMSE) analyses which act as a
metrics for the difference between the observations and the forecasts of any tracer variable W. If there are [NV observations and

N corresponding forecasts, then the squared error of the i-th observation is
(AD)? = [Wops(wi,yi 2. ti) — Vre(Ti,yi, 2i,t:)) 2

where x,y, z are the horizontal (eastward and northward) and vertical coordinates, respectively, ¢ is time, and the subscripts

OBS and FC refer to the observations and the forecasts, respectively. The RMSE, AW, of all observations is then

N
1 2

AU =, | — U —Urno, 3
N ;( OBSi FCi) 3
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The forecast quality is determined by the skill score I" which is evaluated by means of the improvement of the forecast against
a reference field (Murphy, 1988),
AV (FC,0BS)
AY(REF,0BS)
where AU(FC,0BS) is the RMSE between the forecast and the observations at the forecast time ¢ = tp¢, and AV(REF,0OBS)

Ty =1

“)

is the RMSE between a reference field and the observations. Here, the values of T, S, and the potential density ¢ at the po-
sitions of the observations and at the instant ¢ = ¢;y; when the forecast was initialised, are serving as reference (persistence
assumption). Hence, a perfect forecast would yield I'y = 1 because the forecast agrees exactly with the observations and
AY(FC,0BS) =0. A successful or good forecast would mean A¥(FC,0BS) < AV(REF,0BS) and 0 <T'y <1 be-
cause the forecast is closer to the observations than the reference (“forecast beats persistence”). By contrast, I'g < 0 would be
a criterion for an unsuccessful of bad forecasts because AV(FC,0BS) > AV(REF,0BS). In the following, I'y is applied

both to single s-layers and to the mean

_ 1 5 [1 AW, (FC,0BS) )

Ty=— _
Y s —s1+1 AV,,..(REF,0BS)

s1
which is the average over all s-layers from s-layer no. s; to s-layer no. so. The subscript wgt indicates weighting by the layer
thickness in order to take account of the different masses of each layer.

In all ROPS runs presented below, the data from the ScanFish survey were utilised for verification. As the survey was
completed within about 60 hours, it was considered to be synoptic and centred at t =ty gr =22 June 18:00. AW and 'y were
evaluated at the same instant, hence ¢y gr = tpc and the time dependency in (2) was removed. The synopticity assumption
was somwhat risky because the expected scales of the temporal variability were less than 4 days (see Introduction). However,
assuming non-synoptic conditions would have required to interpolate the ROMS tracer output in 3-dimensional space and time
on each observation, or vice versa to interpolate each observation on the ROMS grid — any of these actions would have been
too expensive. Moreover, none of them was mandatory because the results shown below are consistent and conclusive. In order
to make the ScanFish observations suitable for a comparison with the ROMS model output, the trajectories were hacked in
629 upward and downward profiles, and a mean time and a mean position were assigned to each profile. All temperature and
salinity profiles were mapped with OA on constant depth levels on the ROMS horizontal grid, using a correlation scale C' = 1.8
km. Thus, as the along-track distance between the individual profiles was 500-700 m, 3 to 4 observations were contributing
significantly to the mapping at each horizontal grid point. Finally, the analysed fields were interpolated from the horizontal OA
levels on the ROMS vertical grid.

The observational errors for temperature and salinity, 07,5 and §.S,ps, respectively, were determined from the standard
deviation of the respective fields on each OA level. A special problem arose for the determination of the background errors:
usually, one would compute these errors from the standard deviation of the background field, but in this special case the
background was the mean of the observations (a single number), and the standard deviation would be zero. Therefore, they
were defined as 67, = 5-6T s and 6.5, = 5-6.S,55 which pushed the analysed fields as close as possible to the observations. Fig.
8 illustrates the result of this procedure using the example of the ScanFish section A09 (cf. Fig. 6). The analysed fields in Fig.
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8d, e, f resemble almost perfectly the observations shown in Fig. 8a, b, c. Later on, for the evaluation of the forecast accuracy
and the skill score, AW in Egs. (3) and (4) was multiplied by (1 — ey ). As ey = 0 at the exact position of the observation and

0 < ey < 1 elsewhere, AW became significantly different from zero only in the immediate vicinity of the observation.
4.2 Series A: the impact of the correlation length scale

The natural correlation scale is the internal Rossby radius which in the western Mediterranean Sea lies between 3 and 13 km
for the second and the first mode, respectively, depending on the season (Grilli and Pinardi (1998), Robinson et al. (2001)).
For OA, however, one must not uncritically select any number within this range for C' because this could have unpleasant
side effects: if C' would be significantly less than the mean horizontal distance between the observations, then OA would
create unrealistic eddy-like features centred at the sites of the observations. On the other extreme, realistic mesoscale and sub-
mesoscale structures would be blurred if C' were significantly greater than the Rossby radius. While the horizontal distribution
of the shipborne CTD casts was isotropic (mean distance 10 km), the glider CTD data were strongly anisotropic: the mean
meridional distance between the glider tracks was also about 10 km, but the zonal resolution was O(100 m) in shallow water
and O(1000 m) in deeper water. In this series, 8§ ROPS runs with different assumptions for the correlation length scale C' were
conducted. C was selected isotropic because a preliminary processing of data from shipborne ADCPs had revealed that the
major part of the model domain was characterised by an eddy field with alternating currents; only along the west coast of
Sardinia, predominantly meridional currents were prevailing in a ~10-km wide stripe. The selected values for C' were 2.5, 5.0,
7.5,10.0, 12.5, 15.0, 17.5, and 20 km, respectively.

In the A-Series, all CTD and glider data which were collected until ¢; ;=18 June 00:00 were assimilated. The size of the
assimilation window was W = 24 hours. The observational errors were set to fixed values 67, = 1.3° C and S, = 0.2
in all OA layers; these were the maximum values of the respective standard deviations found in the upper thermocline. In
precursor tests, 6,5 was set to the standard deviation of W at the respective OA level (as was done for the OA of the ScanFish
observations, see above), but here this strategy failed because in the deeper layers the standard deviation was approaching
zero due to the horizontal homogeneity of the water body, and the OA package generated unrealistic solutions which caused
ROMS to blow up shortly after the instant when data were assimilated. For similar reasons, ¥; was not derived from the
standard deviation of the background field because the isotherms and isohalines in the deep ocean were almost horizontal
which originated from the MERCATOR solution. Therefore, W), = 6W s or g = IV, /U, = 1 was selected as a first
guess. This was a rather conservative approach but it enabled the OA to find the optimum solution about halfway between the
observations and the background fields. After the last assimilation on 18 June, ROMS was integrated forward in a free mode,
i.e. it was no more constrained by observations. Finally, the model results were verified against the ScanFish observations at
trc=22 June 18:00. For an overview of the parameter settings and results, see Table 1.

In Fig. 9 are shown the vertical distributions of AT, AS, and Ao for ROPS runs A1-A3, and A5S-A8 (Run A4 is missing;
it died on 14 June shortly after midnight, apparently because ROMS could not cope with the density field created by the
assimilation). These quantities are evaluated in the ROMS vertical layers and plotted vs. the layer number, starting with layer

1 at the seabed. The graphs are empty for layers 1-9 and 69-70 next to the sea surface because the corresponding depth
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ranges were never reached by the ScanFish. In order to have an objective measure which correlation scale provided the best
forecast, AW was averaged over all layers. The resulting layer thickness-weighted mean values AT, AS, and A¢ are written
in the rightmost column of the legend of the graph and in Table 1 as well. Generally, AV is decreasing from the surface to

greater depth, however, rather low values are found in the-near-surfacetayers—Thelatter-layer 68 which covers the vertical

range between about 7 m at the maximum depth of the domain (cf. Fig. 3) and 0.6 m in the shallowest regions. This layer

is characteristic for the mixed-layer, the properties of which are controlled by the larger scale uniform weather patterns. The
maxima below in layer 49 are caused by the higher spatial variability in the thermocline as this layer ranges from about 10
to 220-m depth. AT lies between 2.74 x 1072°C in A7 and 3.11 x 1073°C in A2 but the variance among all runs is rather
small. For AS, the minimum of 6.20 x 10~* is found in A3 and the maximum of 8.80 x 10~ in Al. Ao is minimum in A8
(5.59 x 10~* kg m—?) and the maximum of 8.68 x 10~* kg m~3 is attained in Al. Hence, for Ag, there is a clear tendency
that an increase of the OA correlation length scale appears to improve the accuracy of the forecast. Similar tendencies may be
seen for AT and AS.

The vertical distributions of the skill scores I'y and the corresponding layer weighted means are displayed in Fig. 10. Positive
scores indicating a successful forecast of temperature were obtained in all runs (except for A4 which died), and the maximum
of 'y = 27.0% was attained in A5. For salinity, only the A3 and A5 forecasts beat persistence but with a rather low score of
only 4.3 and 0.2%, respectively. I', was positive for runs Al and A3-A8, and the highest score of 26.4% was achieved in A5
for C'=12.5 km. This is remarkably in line with Grilli and Pinardi (1998) who found the first mode Rossby radius between
about 11 and 13 km in the waters to the west of Sardinia.

Compared to the RMSE analysis above, the mean skill scores do not exhibit any correlation scale-dependent trend. Instead,
there are maxima of I'z in A5, I'g in A3, and ', in A5, and the scores decrease both for smaller and larger correlation scales.
This potentially contradictory behaviour needs an explanation: AWV is a measure for the accuracy of the forecast which is
evaluated from the forecast and the observations on 22 June 18:00 at the locations of the observations, cf. eq. (3). The decrease
of AV with increasing C' means that the forecasts using larger correlation scales for the generation of the initial conditions
att =ty are closer to the observations than those forecasts using smaller scales, irrespective of the initial conditions them-
selves. Presumably, the larger correlation scales create already initial conditions which are rather close to the observations.
This is illustrated by Fig. 11: there are shown Ac(REF,0BS) for Al and A8, where the potential density fields at t =ty
served as reference. Evidently, everywhere above layer 30, Ao in A8 (C' = 20 km) is much closer to the observations than Ao
in Al using C' = 2.5 km. By contrast, 'y is a measure of the improvement of the forecast with respect to the reference, and
it simply states that the highest forecast quality is obtained if the horizontal wavenumber spectrum of the initial conditions is
peaked at the Rossby radius. Therefore, the AS forecast using C' = 12.5 km was considered as the best of the A-Series because
of the high skill score for potential density and served as control run in the following B-Series. In addition, in all ROPS runs

discussed below, AU was not any longer utilised as a criterion for the forecast skill score.
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4.3 Series B: the impact of background errors

In Series B, the dependency of 'y on d¥;, was investigated while 6V ;s was kept constant. Eight different configurations B1-
B8 were tested using rg = 60U, /U 55 € {.1,.5,1,2,3,4,5,6}. As rg was continuously increasing with increasing sequence
number, the weighting of the background field decreased at the same time and the objectively analysed temperature and salinity
were forced closer to the observations. Note that B3 was the control run identical with AS.

As can been from Fig. 12, the mean forecast skill for temperature was positive for all runs and the maximum of I'r = 28.2%
was attained in B2 using a ratio 7y = 0.5. Thus, a background error being half the observational error produced the best
forecast. For ry = 0.1, ['7 dropped suddenly to 5.8 % in B1 but increasing ry from 0.5 to 6.0 in B8 caused a rather smooth
decrease from the maximum in B2 to 14.2 % in B8. For salinity, I's was mostly negative or close to zero, and the best skill
score of 1.4 % was obtained in B8 for ry = 6.0. Despite the negative score for salinity, I', was always positive except for
Run B6; the highest score of 26.4 % was recorded in B3 using g = 1. Therefore, B3 served as control run in the subsequent

C-Series.
4.4 Series C: the impact of the assimilation window

In all previous runs, the data assimilation engine was invoked each day at 00:00 hours. As the size of the assimilation window
was W = 24 hours, observational data between noon of the previous day and noon of the actual day were assimilated. This
setting for W was the minimum because smaller values would lead to non-consideration of data. In this subsection, the impact
of larger windows W on the skill score is investigated in 5 ROPS runs C1-C5, applying W € {24, 30, 36,42,48} hours where
Cl1 is the control run identical with B3. However, C4 and C5 using a windows size of 42 and 48 hours, respectively, blew
up on 15 June. Obviously, very large windows were not suitable because the actual ROMS forecast was blended with too old
observational data and with data which lay too far in the future. This is in line with the Introduction where it was stated that the
expected time scales of the temporal variability were less than 4 days. One may argue that a few more CTD profiles must not
have lead to a model crash, but one has to consider that the gliders provided up to more than 400 profiles every day (see Fig.
7), and an extension of W by just six hours would mean that about 100 additional profiles which were too much decorrelated
in time with the actual forecast, would contribute to the assimilation fields. The skill scores of the remaining runs C1-C3 are
displayed in Table 1: the best score for I', was again reached in the control Run C1 but also in C2 and C3, the scores were
higher than 20 %. Worth mentioning are the positive but rather small scores for I's in C2 and C3. Anyway, because of the

maximum scores for I'; and T',, C1 was selected as control run in the following Series D.
4.5 Series D: the impact of the forecast range

In this series, 12 ROPS runs D1-D12 with different forecast ranges were conducted and verified as before. In all runs, the
parameter settings of C1 were utilised but the initialisation time 77, i.e. the time when the last data assimilation took place,
was varied between 11 and 22 June. In D1, CTD data were assimilated until 11 June 00:00. Thereafter, ROMS was integrated

forward in a free mode, i.e. it was no more constrained by observations. The forecast range 7 was the time span between the
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instant when the last assimilation took place and the verification time trc = 22 June 18:00, thus 11.75 days. In D2, the last
data were assimilated on 12 June, in D3 on 13 June and so on. Hence, in runs D2-D12, ¢;; was advanced by 24 hours in
each case until 7 = 22 June 00:00 in D12, and correspondingly the forecast range shrunk progressively in 1-day steps from
7=11.75 days in D1 to 7 =0.75 days in D12.

The skill scores of all runs in dependency of ¢;; and 7 are summarised in Table 2, and in Fig. 13 are shown the graphs
of I'r, I's, and T',. For D1 (¢;5; = 11 June, 7 =11.75 days), I, attained the absolute maximum of 31.9 % within this series
(Fig. 13c¢). Skill scores around 30 % were also reached in D2 and D3. In D4-D12 towards smaller forecast ranges, the score
exhibited an overall decreasing trend but it remained positive except for D11 where I', = —22.4 %. The characteristics of the
T'r curve resembles closely that of T',. In terms of qualitive arguments, these are the high scores in D1-D3, and the decrease
afterwards. Quantitatively, these are the scores around or even above 30 % in D1-D3, the moderate values around and below 10
% in D5 and D6, the scores above 25 % at the relative maximum in D8, the minima in D11, and the recovery to positive values
in D12. The T's curve is correlated with the graphs of T, and I'7, concerning the overall decreasing trend and the locations of
the relative minima and maxima. However, the skill scores for salinity are always lower than those for density and temperature
in D1-D9 and D12, frequently even being negative. The highest values above 10 % are attained in D1 and D2 — a rather modest
score compared to the ~30 % scores of T" and o at the same time.

In order to assess the impact of the data assimilation as a whole, another ROPS run was conducted referred to as DO. This
run was identical to all other runs of the D-Series but no data were assimilated at any time. For DO, the skill scores were
computed in the same way as for D1-D12 for each initialisation time day between 11 and 22 June, and in addition for *“virtual”
initialisations on 1-10 June. The corresponding curves (the thin lines) are overlain to the graphs of I'y in Fig. 13a, b, c.
The skill scores of DO are positive for the majority of the initilisation times ;. Negative values for I'z are only obtained
for t7nr € {1,2,3} June, for T's and t7n7 € {15,17,18,19,21} June, and for T', and t7x; € {19,21} June. Thus, although no
data were assimilated in DO, the forecasts beat persistence in most cases for forecast ranges of at least 3 weeks. Other particular
feature of the DO forecasts are the maximum skill score for 7y = 8 June and the decreasing trend thereafter. Except for D6
(t;n7 = 16 June) and 20 June <= ;7 <= 22 June, the skill scores ', of DO are always lower than the corresponding scores
of D1-D12; hence, the assimilation of observational data has definitely improved the forecast quality for potential density.
About the same proposition is valid for T'r but not for T'g: here, except for tyny € {17,18,19} June, the skill score of DO is
always higher than in D7-D9. This strange behaviour — and as well some other possibly weird findings in this subsection —

need explanations which will be given in the Discussion below.

5 Discussion

A-The first objective of this article was to demonstrate that ROPS produces good forecasts. Murphy (1993) defines 3 types
of “goodness”: consistency, quality, and value. Concerning the latter, it is rather difficult to rate the value for the “end users”
because REP14-MED was planned solely for scientific purposes — see the objectives defined in Onken et al. (2017a). Amongst
others, a special aim was the comparison of different methods for data assimilation. This article is the third one within a
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series of 5 whereof Oddo et al. (2016) and Onken (2017) are published. Two articles using the same observational data are in
preparation, applying the Ensemble Kalman Filter and 4D-Var assimilation methods. Hence, the value of the ROPS forecasts
may be judged at the time when all papers are published. The consistency of the ROPS forecasts was assessed by comparison
with the observations described by Knoll et al. (2017). using the output of ROPS run C1 on 20 June. In detail, the large-scale
horizontal distributions of 7" and S at 50 and 400-m depth (these are the depths of the MAW and LIW cores, respectively)
resembled the observed patterns, but the contours were shifted against each other by several miles. This was plausible because
the observed fields were averaged over the observational period 818 June while the forecast was a snapshot. The same applied
for the predicted currents which were checked against the observed geostrophic transports. It was also verified that the data
assimilation did not create any unrealistic water masses in those regions where nearby observations were available. In order
to assess the impact of the rather large nesting ratio, the vertical velocity along the lateral boundaries was frequently checked
for strange patterns, but no abnormal behaviour was detected at any time. This was not surprising, because to minimise false
advection effects, the distance between the open boundaries and the observations was 30 miles in the west and 45 miles in the

south and the north, respectively (cf. Figs. 4, 5).
With respect to the forecast quality, a major result found above was that the mean skill scores I'r, I's, and T, decreased

concurrently with a decreasing forecast range 7. As this feature was observed both for the assimilation runs D1-D12 and for the
free run DO, it can be excluded that it was somehow caused by the assimilation of observational data. Therefore, the components
of the equation which determines the skill score were investigated. In particular, a closer look was taken at AV, ., (F'C,0BS)
and AU, (REF,OBS) in eq. (5). However, as these expressions represent the weighted RMSE of each individual s-layer, it
is not possible to relate them to the mean skill score I'y. Therefore, only for the purpose of the discussion, the mean skill score
was re-defined as

F_ _ A\I/wgt(Fc’vOBS)
Y AU,.(REF,0BS)

(6)

Here, '}, is the mean skill score computed from the mean layer RMSEs while T'y as defined in eq. (5) is the mean score
computed from the individual layer RMSEs. In Fig. 14 are shown Ao, (FC,0BS), Aot (REF,0BS), and T% for D1-
D12 and for DO, in dependency of the forecast range 7 (bottom axis) and simultaneously of the initialisation time 7 (top
axis). First of all, % and T', in D1-D12 (compare Figs. 14b, 13c) are almost identical which legitimates the re-definition
in eq. (6). By contrast, the shape of the corresponding graphs for the no-assimilation run DO differ from each other: the T'*
curve is smoother than the one of ', but the increasing trend for 1 June < ¢;; < 8 June and the decreasing trend thereafter
are reproduced which is important for this discussion. According to Fig. 14a, Tawgt(F C,0BS) (thin red line) is constant
for all initialisation times ¢7p . This is trivial because the RMSE between the forecasted fields and the observations on 22
June never change, regardless of the virtual initialisation time. This facilitates the discussion because the skill score depends
now solely on Tawgt(l NI1,0BS) (thin blue line). The shape of the graph of the latter is identical with the shape of the ﬁ;
curve which means that for all initialisation times ¢yy7 > 8 June, the ROMS initial fields are progressively approaching the
verification fields with increasing ¢y ;. Apparently, some unknown process or the combination of different processes is driving

the model already towards the future observations without data assimilation. Potential candidates could be the downscaling of
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the MERCATOR fields on 1 June (see above, Section 2.3) enabling a more realistic circulation pattern, the MERCATOR
forcing at the lateral boundaries, or the daily updated COSMO-ME forecasts which would not be available in real operational
conditions. The opposite is the case for ¢ < 8 June: here, the ROMS initial fields deviate progressively from the verification
fields with increasing ¢ . Probably, ROMS needs a certain spin-up time to equilibrate all fields which would be about 8 days
in the present situation.

For the assimilation runs D1-D12, Tawgt (FC,0BS) (Fig. 14a, bold red line with dots) is decreasing continuously with in-
creasing t7 . Hence, the later ROMS switches to the free mode without data assimilation, the closer is the forecast to the obser-
vations. This is not trivial because each assimilation cycle could create “assimilation shocks” and mess up the model dynamics
(Evensen, 2003; Counillon et al., 2016). Probably, this happened in D1-D5 where Ewgt (FC,0BS) is at about the same level
as the corresponing quantity in DO, but in D6-D12 (16 June <= t; x5 <= 22 June), Ac,4:(FC,OBS) is below the horizontal
line which indicates that the predicted density pattern is closer to the observations than in the no-assimilation run. This does
not necessarily mean that the skill score is higher, because I'% depends on the ratio A, (FC,OBS) /A0 5 (REF,0BS)
according to eq. (6). As shown by the the bold blue line with dots, the denominator is mostly greater than the numerator (except
for D11), and also its overall slope is larger. Consequently, the ratio is mostly < 1 leading to a positive skill score. Moreover,
in D1-D4 and D7-DS, the ratio is small and correspondingly, the skill score is large. By contrast in D5, D6, D9, D10, and
D12, the ratio is close to 1 and the skill score is approaching zero. This effect controls also the overall negative trend of the
skill score because the numerator and the denominator are approaching each other with decreasing forecast range 7. In other
words, if the forecast range is small, then the reference fields are already very close to the verification fields, and no significant
improvement can be achieved by further forward integration of the numerical model.

In all runs shown above, except for D10 and D11 (see Tables 1 and 2), ' was greater than I'g, frequently even much

greater. It can be excluded that this was due to an error in the OA or in the melding procedure (eq. (1)), as the same subroutines

were used for T and S. M

i i i —Additional evidence was found from DO: Figs. 13a, b clearly show
that T'g was always less than T'r, at least for 14 June <= t;n; <= 22 June. As the OA or eq. (1) were never applied in
DO, neither could be the cause for this weird behaviour. Likewise, errors during the processing of the data for assimilation
can be precluded. Another possible source of error could be the computation of the forecast skills. However, the coding of
eqs. (2)—(5) was checked several times and no error was detected. Hence, it is concluded that some physical process is not
properly parameterised in ROMS which induces the different skill scores of 7" and S. The only process which came to the
mind of the author is double diffusion which effectuates higher vertical diffusivities for salinity than for temperature (Schmitt,
1981). As shown by Zhang et al. (1998), the consideration of double-diffusive mixing in a general circulation model can have a
significant impact on the horizontal transport of heat and salt, even is a conservative approach is applied to the parameterisation.
The stratification in the Mediterranean Sea is especially favourable for double diffusion because of the high-salinity core of

Levantine Intermediate Water below the main thermocline (Millot, 1999). Onken and Brambilla (2003) have shown that in the

Algerian Basin and below about 300 m depth, the vertical diffusivity of salt may be up to twice as high as the diffusivity of
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heat. This leads to an enhanced diffusion of buoyancy and similarly may affect the entire circulation pattern and the different
skill scores for temperature and salinity.

During the last 2 decades, the forecast skill of operational models was verified against observations in an increasing number
of articles, the majority of which aimed at global models. In an early paper, Smedstad et al. (2003) showed that the skill score
of the NLOM (Naval Research Laboratory Layered Ocean Model) forecast model decreased with increasing forecast range.
However, the skill score was not evaluated against persistence but against climatology, both for the global domain and for a
subdomain in the Gulf Stream region. In the latter, the skill score decreased at a faster rate than in the global domain which
indicated the reduced predictability in the more energetic regions. Ten years later in the mainframe of GODAE (Global Ocean
Data Assimilation Experiment, Bell et al. (2009)), Lellouche et al. (2013) computed the skill score of the sea level anomaly
forecast for different setups of the MERCATOR global model against persistence. They demonstrated that for most regions
the skill score was positive, except for the North Atlantic, the Mediterranean Sea, and Antarctica. Also in the mainframe of
GODAE, Ryan et al. (2015) verified six different forecasting systems against climatology and persistence. Their main results
were that the climatology skill score of all systems was positive for all tested parameters, while the persistence skill score (PSS)
was partly close to zero or even negative for short forecast ranges, both for temperature and salinity. Afterwards, however, the
PSS increased with longer forecast ranges of up to 5 days. Moreover, the PSS of salinity was mostly lower than the PSS of
temperature. Forecast skill assessments of regional models were conducted by various authors. Tonani et al. (2009) evaluated
the forecast skill score of the Mediterranean Forecasting System (MFS, Pinardi (2003), horizontal resolution ~ 7 km) by
means of comparisons with observational data from moorings, ARGO floats, and XBT (expendable bathythermograph) casts
at 3 different vertical levels. It was demonstrated that the skill scores of temperature and salinity increased with increasing
forecast range, reaching a maximum of about 45% for temperature around the 6" day of the forecast. This is about 30% higher
than the maximum skill score I'7 determined above (see Section 4.5) which was 34% for ¢;x; = 13 June, corresponding to
a forecast range of about 10 days. For the very short forecast range of 2 days, the skill scores were negative, and right at the
surface and in the upper thermocline, the skill score for salinity was mostly lower than for temperature. A generally lower skill
score for salinity, which is in agreement with the results of this article, was found as well by Chiggiato and Oddo (2008) for 2
higher-resolution operational models of the Adriatic Sea. Tonani et al. (2009) evaluated also the components of the skill score.
They demonstrated that AU(FC,0BS) and AV(REF,OBS) both for ¥ =T and ¥ = S were approaching each other with
increasing forecast range; this is comparable to the findings from Fig. 14. On the whole, the sometimes surprising results of
this article are in line with other publications.

It was demonstrated that good forecasts can be obtained from a prediction system using OA for assimilation. The ROPS runs
of the D-Series have shown that the assimilation of CTD data leads to an increase of the skill score for temperature and density,
except for those runs with a rather short forecast range of less than 3 days, e.g. D10-D12. Here, the forecast quality of the
no-assimilation run DO is superior. Most likely, it is the massive amount of assimilation data which disequilibrates the terms
in the governing equations of ROMS, and a few days are required to restore the equilibrium. However, this does not imply
that the accuracy of the forecast is becoming worse at the same time. This is impressively demonstrated in Fig. 14a which

shows that the RMSE between the forecast and the verification (i.e. the bold red curve with dots) is monotonically decreasing
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with a decreasing forecast range. Furthermore, it was shown that a vast number of observational data can be managed by
OA without data reduction. In the mainframe of this article, 6034 CTD profiles were available for assimilation 7-23 June;
hence, 377 profiles were assimilated every day at midnight on average. It would be worth to explore whether this potential
oversampling leads to an improvement or even a deterioration of the forecast quality, compared to ROPS runs where less data
would be assimilated. Though, this would first require the development of a meaningful methology for data reduction. Different

approaches for the reduction of observational data could be utilised to address quite a number of interesting questions, such as

— Are deep CTD casts needed to improve the forecast skill scores? Several deep casts extending to more than 2500 m depth

were taken at the western boundary of the observational domain to assess the hydrography of the deep water masses.

— What is the impact of “deep” gliders on the skill score? During REP14-MED, 4 gliders had a pressure rating of 200 dbar,
1 was rated to 650 dbar, and 6 gliders took samples down to 1000 dbar. The impact of the deep gliders could easily be

assessed if their profiles were clipped at 200 m.

— What is the cost/benefit ratio of adding more gliders? Eleven gliders were operating on 10 zonal tracks (see Fig. 5). As
the most northern one died early, there were still 9 tracks G02-G10 occupied continuously for more than 2 weeks. In
the first run of a cost/benefit analysis, only the data of the glider on the central track GO6 would be assimilated, in the
second run data from tracks G02 and G10 would be added, the third run would assimilate data from tracks G02, G04,
G06, GO8, and G10, and in the final run, data from all tracks would be used. Thus, the meridional resolution would be

doubled during consecutive runs, and the skill score versus the resolution could be assessed.

However, to find answers to these questions is beyond the scope of this article and might be addressed in a follow-up paper.
Finally, it was demonstrated that ROPS is able to provide timely forecasts on a commercially available Personal Computer.
All ROPS runs were conducted on a DELL Precision Tower 7910 using 4 processors. The CPU time of D12 which performed
the maximum of 16 assimilation cycles was 4.8 hours while it was only 2.7 hours for DO without any assimilation. Hence, as
ROPS was integrated over 24 days, the CPU time for solving the primitive equations was just 6.8 minutes per day. In case that
on average 377 CTD profiles were assimilated, the CPU time nearly triplicated to 18 minutes. This rather modest increase was
effectuated by the pre-selection of observational data in daily directories which considered only those data for assimilation
which fitted in the time window W. The triplicating of CPU time is still a reasonable figure compared to operational models

employing 4D-VAR where the CPU time may increase by at least one order of magnitude.

6 Conclusions

The Relocatable Ocean Prediction System (ROPS) was employed in hindcast mode to a huge data set which was collected in
in June 2014. Using objective analysis (OA), the observational data were assimilated, and the ROPS forecasts were verified
against independent data.

The OA is controlled by 4 parameters which are C': the correlation length scale, 7y : the ratio of background and observational

errors for temperature and salinity, respectively, and WW: the width of the time window where data are assimilated. Sensitivity
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tests to variations of these parameters were conducted by means of various ROPS runs encompassing the period 1-24 June.
Observational data were assimilated 7—18 June, and the forecasts were varified against the verification data set on 22 June. The
highest skill scores were obtained for C' = 12.5 km, ry = 1, and W = 24 hours.

Additional runs revealed a decreasing tendency of the skill score with decreasing forecast range, where the forecast range
was the time span between the verification time and the instant when the last assimilation took place. The same tendency
was exhibited by a control run without assimilation which excludes the OA from being responsible for this behaviour. A
thorough analysis of the terms in the equation, which determines the skill score, revealed that persistence is approached steadily
for continuously decreasing forecast ranges, and the late assimilation of observational data cannot any longer effectuate a
significant improvement of the forecast skill. For extremely small forecast ranges, the skill score even became negative, because
the assimilation disequilibrated the balance of forces in the dynamical model.

In all ROPS runs, including the run without assimilation, the skill score for temperature was mostly higher than the corre-
sponding score for salinity. This is in agreement with other research papers, and it is speculated that this mismatch is due to
double-diffusive processes which were not adequately parameterised.

ROPS is able to provide timely forecasts even on commercially available Personal Computers.
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Table 1. Parameter settings and results of ROPS runs in Series A,B, C. Bold numbers indicate those parameters which are varied within the
respective series. The best run of each series is marked by an asterisk and serves as the control run for the successive series. Runs which blew

up are marked by the { symbol.

Run C re w AT AS Ac Tr Ts T,
[km] [hours] [1073°C] [107%] [107%] [%] [%] [%]
Series A
Al 25 1.0 24 3.04 8.80 8.68 24 -100 25
A2 50 1.0 24 3.11 7.45 7.94 30 -189  -1.0
A3 75 1.0 24 2.99 6.20 808 156 43 205
A4t 100 1.0 24 - - - - - -
A5* 125 1.0 24 2.96 6.43 698 270 02 264
A6 150 1.0 24 3.04 7.06 6.18 128 -129 221
A7 175 10 24 2.74 6.63 6.01 118 9.1 149
A8 200 1.0 24 2.83 7.21 5.59 45 -177 229
Series B
Bl 125 0.1 24 - - - 58 15 54
B2 125 05 24 - - - 282 -1.1 119
B3* 125 1.0 24 - - - 270 02 264
B4 125 20 24 - - - 186 -53 14.0
B5 125 3.0 24 - - - 222 20 130
B6 125 4.0 24 - - - 141 253 -112
B7t 125 5.0 24 - - - - - -
B8 125 6.0 24 - - - 142 14 1938
Series C
Cl* 125 1.0 24 - - - 270 02 264
c2 125 1.0 30 - - - 177 20 217
C3 125 1.0 36 - - - 147 15 223

c4t 125 10 42 - - _ _ _ _
cst 125 10 48 - - _ _ _ _
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Table 2. Parameter settings and results of ROPS runs in Series D. Bold numbers indicate those parameters which are varied within this series.

Run tINT T Tr Ts T, T, (DO0)

[days] [%] [%] [%] [%]
D1 11 June 11.75 28.1 12.0 319 25.4
D2 12 June 10.75 32.9 11.1 29.7 24.8
D3 13 June 9.75 34.0 6.1 31.7 24.7
D4 14 June 8.75 23.5 0.7 24.4 15.5
D5 15 June 7.75 4.0 -5.0 11.3 10.2
D6 16 June 6.75 9.8 -164 12.6 12.9
D7 17 June 5.75 7.9 -4.2 18.2 1.0
D8 18 June 475 259 -43 255 1.3
D9 19 June 3.75 7.5 -39 10.0 -3.0
D10 20 June 2.75 -6.7 -6.1 4.1 4.8
D11 21 June 1.75 -175 -135 -224 -1.9
D12 22 June 0.75 5.8 -1.9 0.8 3.1
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Figure 1. The ROPS concept: web resources are depicted by clouds, blue parallelograms represent data sets on the local host, processes
are indicated by green rectangles. The processing of ROMS is accomplished within the grey box. 7" and S denote temperature and salinity,

respectively.
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Figure 4. Positions of lowered CTD (circles) and underway CTD (triangles) casts collected during (a) Leg 1 (6-11 June) and (b) Leg 2

(12-20 June) of the REP14-MED experiment. The first casts were taken on 7 June. The colour code for the water depth is the same as in Fig.

2.
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Figure 9. The vertical distributions of (a) AT, (b) AS, and (c) Ao, for ROPS runs A1-A8. The first column in the legend boxes refers
to the number of the ROPS run, the second column is the selected correlation scale C' [km], and in the third column is written the layer
thickness-weighted mean AW where ¥ stands for either tracer T', S, or o. For better readability, AT was multiplied by 103, and AS, Ao

by 10%. The bold graphs indicate the runs where AU were minimal.
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Figure 10. The vertical distributions of (a) I'r, (b) I's, and (c) I',, for ROPS runs A1-A8. The first column in the legend boxes refers
to the number of the ROPS run, the second column is the selected correlation scale C' [km], and in the third column is written the layer

thickness-weighted mean T'y where W stands for either tracer T', S, or o. The bold graphs indicate the runs where AU were maximal.
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Figure 11. The vertical distributions of Acg(REF,OBS) for ROPS runs Al and A8 at ¢t = ¢{;xr=18 June 00:00. The first column in the
legend boxes refers to the number of the ROPS run, the second column is the selected correlation scale C' [km], and in the third column is

written the layer thickness-weighted mean Ao. For better readability, A was multiplied by 10%.
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Figure 12. The vertical distributions of (a) I'r, (b) I's, and (c) I',, for ROPS runs B1-B8. The first column in the legend boxes refers to

the number of the ROPS run, the second column is the selected ratio 6 /dW 55 (for U € T',.5), and in the third column is written the layer

thickness-weighted mean T'y where W stands for either tracer T', S, or o. The bold graphs indicate the runs where AU were maximal.
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Figure 13. The skill scores (a) I'r, (b) I's, and (c) I, vs. the forecast range 7 for ROPS runs DO and D1-D12.The June dates on the top
abscissae indicate the start of each day at 00:00; the dates are identical with the assimilation time £7 7. Note that the time axis at the top is

offset by 6 hours with respect to the time axis at the bottom in order to synchronise ¢y and 7.
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Figure 14. (2) Ac gt (FC,0BS), Acwg:(REF,0BS) and (b) T, (cf. eq. (6)) vs. the forecast range 7 for ROPS runs DO and D1-D12.
The June dates on the top abscissae indicate the start of each day at 00:00; the dates are identical with the assimilation time ¢7 ;. Note that

the time axis at the top is offset by 6 hours with respect to the time axis at the bottom in order to synchronise ¢;n and 7.
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