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Abstract – We applied an Ensemble Optimal Interpolation (EnOI) data assimilation 14 

method in the BCC_CSM1.1 to investigate the impact of ocean data assimilations on 15 

seasonal forecasts in an idealized twin-experiment framework. Pseudo-observations 16 

of sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), 17 

temperature and salinity (T/S) profiles were first generated in a free model run. Then, 18 

a series of sensitivity tests initialized with predefined bias were conducted for a 19 

one-year period; this involved a free run (CTR) and seven assimilation runs. These 20 

tests allowed us to check the analysis field accuracy against the “truth”. As expected, 21 

data assimilation improved all investigated quantities; the joint assimilation of all 22 

variables gave more improved results than assimilating them separately. One-year 23 

predictions initialized from the seven runs and CTR were then conducted and 24 

compared. The forecasts initialized from joint assimilation of surface data produced 25 

comparable SST root mean square errors to that from assimilation of T/S profiles, but 26 

the assimilation of T/S profiles is crucial to reduce subsurface deficiencies. The ocean 27 

surface currents in the tropics were better predicted when initial conditions produced 28 

by assimilating T/S profiles, while surface data assimilation became more important 29 

at higher latitudes, particularly near the western boundary currents. The predictions of 30 

ocean heat content and mixed layer depth are significantly improved initialized from 31 

the joint assimilation of all the variables. Finally, a central Pacific El Niño was well 32 

predicted from the joint assimilation of surface data, indicating the importance of joint 33 

assimilation of SST, SSH, and SSS for ENSO predictions. 34 
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1. Introduction 35 

Oceans play a key role in the predictability of the climate system due to their 36 

tremendous thermal inertia compared to atmosphere or land (Counillon et al. 2014). 37 

Accuracy of the ocean initialization during modeling can significantly impact 38 

seasonal to decadal climate predictions (Alves et al. 2011; Zheng and Zhu 2015). A 39 

common strategy to obtain the optimal initialization is to assimilate available ocean 40 

observations into ocean models, which aim to produce the best estimates of ocean 41 

states. 42 

There have been many advances in data assimilation techniques ranging from the 43 

relatively simple optimum interpolation (OI) and three-dimensional variational 44 

methods (3DVAR) to more sophisticated four-dimensional variational methods 45 

(4DVAR) and the Ensemble Kalman Filter (EnKF) approach. The OI and 3DVAR 46 

based schemes are computationally cheap to perform and have been widely used in 47 

operational ocean forecasting systems. However, both OI and 3DVAR use the 48 

time-invariant background error covariance, which tends to produce inaccurate 49 

analyses in areas with highly nonlinear flows. This problem can be partly solved by 50 

using the flow-dependent error covariance adopted in EnKF and 4DVAR. 51 

Although EnKF and 4DVAR have been used in many studies, practical problems 52 

still exist for realistic ocean applications, especially for operational global ocean data 53 

assimilation systems. One disadvantage is that EnKF and 4DVAR are 54 

computationally expensive to perform. For example, the computational costs of EnKF 55 
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increase linearly with the ensemble number N. A value of N >20 is unaffordable for 56 

operational forecasting given our current limited computer resources, while EnKF 57 

usually requires more than 20 ensemble members (e.g., Miyazawa et al. 2012; Xu et 58 

al. 2013; Xu and Oey 2014). 59 

We adopt a computationally inexpensive Ensemble Optimal Interpolation (EnOI) 60 

approach in this study. EnOI runs only a single model member every time and has no 61 

risk of ensemble collapse (Pan et al. 2014). Its analysis formula is identical to that of 62 

the Local Ensemble Transform Kalman Filter (LETKF, refer to Miyazawa et al. 2012 63 

for details), except that its background error covariance is advanced from a prescribed 64 

100 static ensemble members instead of a flow-dependent ensemble. In general, EnOI 65 

has many attractive characteristics such as multivariate assimilation and 66 

inhomogeneous and anisotropic covariance. In addition, the static ensembles for EnOI 67 

can be time-dependent (e.g., Oke et al. 2005, 2013; Fu et al. 2008) or seasonally 68 

varying. Consequently, EnOI has been used in many operational ocean forecast 69 

systems such as BODAS (Bluelink Ocean Data Assimilation System) at the Bureau of 70 

Meteorology in Australia (Oke et al. 2013). 71 

A new generation of climate forecast system at the Beijing Climate Center is 72 

under development (Beijing Climate Center Climate System Model, BCC_CSM1.1) 73 

(e.g., Wu et al. 2010; Wu et al. 2014). BCC_CSM1.1 is a fully coupled climate 74 

system consisting of atmosphere, land, ocean, and sea ice components. The primary 75 

objective in regard to developing BCC_CSM1.1 is to generate a high-quality 76 
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reanalysis dataset and improve predictions from sub-seasonal, seasonal, and up to 77 

decadal time scales. The development of a data assimilation system is crucial for this 78 

objective. One purpose of this study is to introduce the new ocean data assimilation 79 

system that is going to be adopted in the BCC_CSM1.1. 80 

The other purpose of this study is to investigate the impact of data assimilation 81 

of various available observations on seasonal forecasts. For this purpose, the 82 

individual and combined contributions of sea surface satellite data to forecasting, such 83 

as sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), 84 

and temperature and salinity (T/S) profiles were evaluated. Model generated SST, 85 

SSH, and SSS were taken as pseudo-observations of satellites, and T/S profiles close 86 

to locations of Argo floats were chosen to represent pseudo-observations of Argo. The 87 

satellite sea surface data and Argo float data are major observational data sources 88 

nowadays, with global coverage and widespread availability in most of the ocean 89 

observing network. The satellite SST observations have been widely used in ocean 90 

assimilation applications since SST is a key geophysical variable in air–sea exchanges 91 

of heat (e.g., Tang et al. 2004). The SSS plays an important role in surface mixed 92 

layer dynamics, water mass formation, and global ocean circulation (Vernieres et al., 93 

2014). The satellite observations of SSS have been available since the first satellite 94 

was launched by the European Space Agency (ESA) to monitor SSS (Boutin et al. 95 

2016). Global SSH data from TOPEX/Poseidon altimeters have been available since 96 

October 1992. The dynamic topography depicts the surface geostrophic flow field. 97 
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Furthermore, large-scale variability of SSH has close connections with climate signals. 98 

For example, assimilation of SSH contributes to better understanding of the tropical 99 

Pacific variability (Carton et al. 2008) and El Niño forecasting (Ji et al. 2000). One 100 

major concern in assimilating SSH is how to project the surface information 101 

downward to subsurface quantities (Fu et al. 2011). At present, SSH data are 102 

assimilated into ocean models either by developing a statistical relationship between 103 

SSH and subsurface temperature/salinity (Behringer et al. 1998; Yan et al. 2004) or 104 

by the inherent multivariate relation derived from the ensembles by using some 105 

ensemble-based data assimilation methods (Oke et al. 2008; Zheng et al. 2015). T/S 106 

profiles improve the representation of seawater density, which dictates water mass. In 107 

addition, T profiles have a direct influence on ocean heat content. 108 

EnOI is implemented in a global ocean model (about 110 km in the horizontal) 109 

based on MOM4.0, which is the ocean model used in BCC_CSM1.1. An idealized 110 

twin experiment was carried out to test the assimilation and prediction system in a 111 

situation where the “truth” was known. The “observed” SST, SSH, SSS, and T/S were 112 

derived from free mode simulations and considered as the “truth.” This paper is 113 

organized as follows. Section 2 presents a brief introduction of the EnOI data 114 

assimilation system and experimental setup. The assimilation and forecast results of 115 

all experiments are presented in Section 3. The discussion and summary are given in 116 

Section 4. 117 

 118 
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2. The EnOI assimilation system and twin-experiment setup 119 

2.1 EnOI 120 

EnOI is a simplified form of EnKF, which uses a stationary historical ensemble 121 

of model states to represent the background covariance matrix instead of 122 

time-dependent ensembles for EnKF. Consequently, it is more computationally 123 

efficient than EnKF, but is still multivariate and three-dimensional. In this study, we 124 

derive EnOI based on LETKF, an advanced version of EnKF (Miyoshi et al. 2010). 125 

Here, the calculation equations of EnOI are given below (Oke et al. 2013). 126 

φ𝑎 = φ𝑓 + 𝜌𝐴′𝑤𝑎 (1) 127 

where φ𝑎 is an m-dimensional vector representing the model analysis, φ𝑓 is an 128 

m-dimensional vector representing the model forecast, and 𝜌 is a scaling factor used 129 

to represent the instantaneous forecast error variance, which is usually less than the 130 

historical error variance over a long time period. 𝜌 is in the range between 0 and 1, 131 

and it was set to 0.5 here by tuning the assimilation results. A is the historical 132 

ensemble composed of model states, and A′ is the centered historical ensemble (i.e., 133 

  =   �̅�).  = ∑
  

 
 
 , and 𝑁 represents the number of the historical ensembles. 𝐴 134 

(A′, 𝐴) is an m × N matrix. 𝑤𝑎 is an N-dimensional vector calculated from the 135 

observational data, model forecast, and historical ensemble model simulations; it can 136 

be computed as follows: 137 

𝑤𝑎 = A′(𝜌𝐻A′A′𝑇𝐻𝑇 + (𝑁   1)𝑅) 1(𝑑   𝐻φ𝑓) (2) 138 
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where d represents the measurements, H is the measurement operator that interpolates 139 

the model space into the observational space, and R is the measurement error 140 

covariance. 141 

Localized use of observation data is important in the method. The primary 142 

benefit of localization is to increase the rank of the forecast covariance, thus resulting 143 

in analysis fields that fit well with the observations (Oke et al. 2007). Localization is 144 

implemented explicitly in consideration of observational data from a region 145 

surrounding the target model grids. We define two localized scale parameters 146 

following Miyoshi et al. (2010) and Miyazawa et al. (2012): 147 

𝐷𝑖𝑠𝑡𝑧𝑒𝑟𝑜 = 𝜎𝑜𝑏𝑠 ∗ √1    ∗ 2  , 𝐷𝑖𝑠𝑡𝑧𝑒𝑟𝑜𝑣 = 𝜎𝑜𝑏𝑠𝑣 ∗ √1    ∗ 2 (3) 148 

where 𝜎𝑜𝑏𝑠 (the number of surrounding grids) and 𝜎𝑜𝑏𝑠𝑣 (meters) are the horizontal 149 

and vertical localization scales, respectively. The localization scale is chosen to 150 

correspond to the distance at which the Gaussian function drops to 𝑒-0.5 (Miyoshi et 151 

al. 2010). Observational data far from the target grid with horizontal distances larger 152 

than 𝐷𝑖𝑠𝑡𝑧𝑒𝑟𝑜 or vertical distances larger than 𝐷𝑖𝑠𝑡𝑧𝑒𝑟𝑜𝑣 are not used. A factor, 153 

exp( .5 ∗ ((
    

       
)

2 

+ (
    

        
)

2

)), is multiplied to enhance observational errors of 154 

data far from the target grid (Miyazawa et al. 2012). The resulting localization scales 155 

are approximately 110 km and 2000 m in the horizontal and vertical, respectively. 156 

2.2 The global ocean model 157 

We have implemented the EnOI algorithm in MOM4, which was originally 158 

developed at the Geophysical Fluid Dynamics Laboratory (Griffies et al. 2003). The 159 
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model covers the global ocean with a horizontal resolution of 1° and at 50 vertical 160 

levels. In the meridional direction, the resolution increases to 1/3° within 10° of the 161 

equator, and it smoothly reduces down to 1° poleward of 30°. To avoid a singularity 162 

at the North Pole, tripolar grids are adopted (Griffies et al. 2005). The physical 163 

parameterization schemes used in the simulation include the K-profile 164 

parameterization vertical mixing scheme, the isopycnal tracer mixing and diffusion, 165 

and the Laplace horizontal friction scheme, etc., the same as described in Griffies et al. 166 

(2005). 167 

The model is driven by wind stress and heat fluxes estimated from 6-hourly 168 

atmospheric variables obtained from the National Centers for Environmental 169 

Prediction National Center for Atmospheric Research Reanalysis I dataset 170 

(NCEP/NCAR, http://www.esrl.noaa.gov/psd/). The climatological river runoff 171 

(http://www.cgd.ucar.edu/cas/catalog/) is specified at the model coastlines. The 172 

surface temperature and salinity are relaxed to World Ocean Atlas (WOA09) monthly 173 

climatology (http://coastwatch.pfeg.noaa.gov/erddap/griddap/nodcWoa09mon1t.html), 174 

with restoring time scales of 90 and 120 days, respectively. Tidal forcing is not 175 

included. Sea ice is simulated with the Sea Ice Simulator (SIS) (Griffies et al. 2011). 176 

In this study, the model was first spun up from 1948 to 2000, and a statistically 177 

quasi-equilibrium ocean field was established. This run was then continued from 178 

January 1, 1990 through 2009. One hundred ensemble members for estimates of the 179 
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background error covariance were sampled from the free-run simulation at time 180 

intervals of 25 days from January 1, 1995 to December 31, 2009. 181 

2.3 Twin-experiment setup 182 

An experiment (denoted as TRU), which was allowed to freely run from January 183 

1, 2005 to December 31, 2006, was designed to produce pseudo-observations and 184 

make comparisons with the assimilative analysis and model predictions. Another free 185 

model run (denoted as CTR), which was the same as TRU but initialized on a start 186 

date of June 1, 1990, was used to create large biases for initial conditions. 187 

The sea surface pseudo-observations including SST, SSH, and SSS were selected 188 

every three points in the model grids meridionally and zonally. The pseudo T/S 189 

profiles were selected at model grids that were as close to the locations of Argo floats 190 

on June 1, 2005 as possible (Fig. 1). This time was chosen because it was the median 191 

time of the assimilation period (January 1, 2005–December 31, 2005). Considering 192 

the slow drifts of most Argo floats, the locations of pseudo T/S profiles did not 193 

change with time because of the relatively low model resolution of about 1° × 1°. The 194 

vertical levels are set as the same as the model levels. The altimeter SSH errors 195 

generally vary from 1 cm to 4 cm (Chambers et al. 2003), and thus, the pseudo SSH 196 

error was specified as 3 cm. The SST error was set to be 0.3°C according to Guan and 197 

Kawamura (2004). The SSS error was set to be 0.1 PSU in consideration of the rapid 198 

development in inversion algorithms for satellite salinity (Peng et al. 2016). Similarly, 199 
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for T/S profiles, the temperature and salinity errors were prescribed to be the same as 200 

the SST error and the SSS error, respectively. 201 

Assimilation experiments, E01–E07 initialized as CTR, assimilated 202 

pseudo-observations from January 1, 2005 to December 31, 2005 (Table 1). E01 203 

assimilated SST only, E02 assimilated SSH only, E03 assimilated both SST and SSH, 204 

E04 assimilated SSS, E05 assimilated all the SST, SSH, and SSS data, E06 205 

assimilated T and S, and E07 assimilated all the variables. Then, we conducted seven 206 

12-month test forecasts starting from January 1, 2006 corresponding to the seven 207 

analyses. By comparing the model states from CTR, E01–E07 against the known 208 

“true” states, we were able to investigate the performance of the assimilation system 209 

and forecast skills. 210 

 211 

3. Results 212 

3.1 Assimilation performance measures 213 

To evaluate the performance of data assimilation experiments, we examined the 214 

domain-averaged root-mean-square error (RMSE) of SST, SSH, SSS, temperature, 215 

and salinity in the upper ocean (0–500 m) and the deep ocean (500–1500 m) with 216 

respect to the TRU experiment from months 1 to 12 (Fig. 2). All assimilative 217 

experiments generally showed improvements over CTR, but the improvements varied 218 

among different experiments. The SST RMSEs of E02 and E04 were comparable with 219 

that of CTR, while the other assimilation experiments approximately reduced the 220 
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RMSEs by half (Fig. 2a). These results indicate that assimilation of SSH and SSS 221 

alone do not contribute to the SST analysis in the system. The SSS RMSEs of E04, 222 

E05, and E07 were reduced by about 80% compared to CTR (Fig. 2b). The RMSEs of 223 

E03 and E06 were reduced by about 30%. E01 and E02 only slightly improved SSS 224 

estimates. So experiments with SSS assimilation improve the SSS the most, while 225 

assimilating T/S profiles alone (E06) or SSH and SST (E03) can only improve SSS to 226 

a limited extent. For SSH, E02, E03, E05, and E07, the RMSE of SSH was reduced 227 

by about 82%, thus indicating the importance of the SSH assimilation (Fig. 2c). The 228 

T/S profile assimilation (E06) reduced the SSH RMSE by about half. SST (E01) and 229 

SSS (E04) only improved the SSH by about 20%. For the analysis of temperature and 230 

salinity at depth, all experiments showed improvements (Fig. 2d-g). E07 had the 231 

smallest RMSEs among all experiments. The RMSEs obtained when assimilating SST 232 

alone (E01) were larger than those obtained when assimilating T/S profiles (E06). 233 

Similarly, the RMSEs obtained when assimilating SSS alone (E04) were larger than 234 

those obtained when assimilating T/S profiles (E06). These results demonstrate the 235 

importance of the assimilation of T/S profiles in the global data assimilation system. 236 

3.2 Predictions 237 

The impacts of data assimilation on seasonal forecasts were investigated by 238 

conducting a 12-month forecast initialized from restart files produced by CTR, E01–239 

E07. The forcing was identical for all cases. 240 

The time series of spatial RMSEs for temperature and salinity among all forecast 241 
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experiments and TRU are shown in Fig. 3. All RMSEs from the forecasts initialized 242 

from the assimilated runs were smaller than that from CTR. The E07 forecast, 243 

initialized from joint assimilation of SST, SSS, SSH, and T/S profiles, had the 244 

smallest RMSEs for temperature and salinity compared to the others. Figure 3 also 245 

shows the “persistence” curves (black lines) based on TRU, i.e., the temperature, 246 

salinity, and SSH from TRU (January 1, 2005–December 31, 2005) were assumed as 247 

“repeat” for the subsequent 12 months. The model forecasts from E03, E05, and E07 248 

beat the persistence in the upper ocean (Fig. 3a–d,f), while the other experiments 249 

showed some deficiencies, such as E01 for the SSS forecast (Fig. 3b) and E04 for the 250 

SSH forecast (Fig. 3c), etc. In contrast, in deep water (500–1500 m), the persistence 251 

beat the model forecasts because of the large bias from the initialization starting on 252 

June 1
st
 in the CTR run and all assimilation runs (Fig. 3e&g). These results 253 

demonstrate that the deep ocean bias cannot be completely corrected after one-year 254 

assimilations, though improvements are possible. 255 

In addition to the aforementioned temporal variability, the spatial variability of 256 

ocean predictions was evaluated in different experiments as well. The SST and 257 

surface currents were compared at first. Ocean heat content (OHC) and mixed layer 258 

depth (MLD) were used to examine the subsurface predictions. Besides, the values of 259 

the Niño 3.4 index were compared too, because it is an important climate signal in the 260 

tropical Pacific. 261 

SST 262 
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Figure 4 shows the spatial distribution of the RMSE for SST from CTR and the 263 

differences with respect to E01–E07 over the prediction period (months 13–24). 264 

Reductions of the RMSE were generally found in all experiments in regions where the 265 

RMSE was relatively high in CTR, such as the tropical eastern Pacific, the subarctic, 266 

and the Southern Ocean. The domain-averaged RMSE from E07, which was about 267 

0.11°C, was the smallest. Interestingly, the experiment initialized from the 268 

assimilation of T/S profiles (E06) produced a comparable RMSE to the one from the 269 

experiment initialized from the joint assimilation of all surface data (E05). The values 270 

of the domain-averaged RMSEs from these two experiments were much smaller than 271 

those of E01, E02, and E04. These results indicate the importance of multivariate 272 

assimilation on initial conditions, and subsequently the forecasting. 273 

Noticeably, in the Southern Ocean south of Africa ([0°E–60°E], [48°S–60°S], 274 

the black box in Fig. 4), the RMSEs for SST were much larger in E01, E02, and E03 275 

than that in CTR. To explore the reasons for the high RMSEs, we examined the time 276 

evolution of vertical profiles of temperature averaged over the high RMSE region. 277 

Figure 5 shows the vertical profiles of temperature and the corresponding RMSEs in 278 

January and September from all experiments. In January, SST estimates in E01, E03, 279 

E05, and E07 were much better than that in CTR (Fig. 5a,c). Conversely, in the 280 

subsurface layer (50–150 m), the values of RMSE in E01 and E03 were about 0.3°C 281 

larger than that in the CTR. In September, a thick mixed layer about 100 m deep 282 

developed after the austral winter (Fig. 5b,d). A pre-existing subsurface bias of 283 
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temperature in E01, E03, and E05 emerged near the surface due to the winter mixing. 284 

Since temperatures in both the surface and subsurface in E02 and E04 were more 285 

biased than those in CTR, the values of RMSE remained relative high. On the other 286 

hand, the temperatures in deep ocean waters (below ~200 m) were improved in all 287 

experiments compared to the CTR. Thus, the high RMSE found in the black box of 288 

Fig. 4 mainly developed as a result of the large temperature bias in the subsurface. 289 

The subsurface bias probably came from inaccurate estimates of the background error 290 

covariance in the multi-fronts Antarctic circumpolar region during the surface data 291 

assimilation. 292 

Ocean surface currents 293 

Large-scale ocean circulation is primarily geostrophic a few degrees away from 294 

the equator. Because of the availability of long-term satellite altimeter data, 295 

geostrophic parts of any model generated currents can be easily evaluated by using 296 

altimetry data. It is hence interesting to assess all forecasting experiments in this 297 

regard. Figure 6 compares the RMSEs of the predicted SSH from all experiments. 298 

Compared to CTR, significant improvements of SSH were found in E02, E03, E05, 299 

E06, and E07. Similar to the SST RMSE reduction, the large reduction primarily 300 

occurred in regions where the RMSE was large in CTR. However, E01 and E04 301 

showed almost no reduction, thus indicating that assimilation of SST or SSS alone 302 

cannot largely improve SSH forecasting. 303 
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The RMSEs of the predicted surface current speed from all experiments are 304 

compared in Fig. 7. The largest reduction of the overall RMSE was observed in E07. 305 

E02, E03, and E05 showed clear improvements near the tropical Pacific and the 306 

western boundary current regions such as the Gulf Stream, the Kuroshio extension, 307 

and so on. Comparisons of E01–E05 revealed that SSH assimilation was the dominant 308 

factor accounting for the forecast improvements. In contrast, major improvements in 309 

E06 were observed in the tropical regions, and these were more prominent than those 310 

in E05. These results indicate that the ocean surface currents in the tropics are better 311 

predicted when initial conditions are produced by assimilating T/S profiles, while 312 

surface data assimilation becomes more important at higher latitudes, particularly near 313 

the western boundary currents. This can be attributed to the dominant effects of SSH 314 

assimilation on geostrophic parts of surface currents away from the equator. 315 

OHC 316 

Ocean heat content is an important variable in climate studies, and it reflects the 317 

internal energy that the ocean has. To assess the standalone and joint effects of 318 

assimilation of surface data and T/S profiles on ocean predictions, we explored the 319 

upper 700 m OHC estimates from all experiments. Figure 8 shows the global 320 

distribution of the time-averaged upper 700 m OHC per unit area from all forecast 321 

experiments relative to that from the “truth.” E07 had the smallest RMSE for OHC 322 

compared to TRU (Fig. 8h). The RMSE in E06 was about 1.2 × 10
8
 J m

-2
 larger than 323 

that in E05, and this was primarily caused by the large bias in the subpolar regions 324 
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(Fig. 8f,g), where the T/S profiles were relatively sparse compared to the gridded 325 

satellite surface data. In the lower latitudes, the difference between E06 and TRU was 326 

smaller than that in E05. Interestingly, none of the standalone assimilation of surface 327 

data experiments (E01, E02, or E04) significantly improved the OHC estimates (Fig. 328 

8b,c,e). The joint assimilation of SST and SSH had already reduced the deficiency of 329 

OHC predictions to a large extent (Fig. 8d). When SSS was assimilated, the reduction 330 

was more significant (Fig. 8f). Thus, both surface variables and T/S profiles are 331 

important for OHC predictions. 332 

MLD 333 

Mixed layer depth is one of the most important quantities in the upper ocean. 334 

Here, we define MLD following Breugem et al. (2008) as the depth (z) at which the 335 

potential density is 𝜎 = 𝜎(           . ), where θ10m and S10m are the potential 336 

temperature and salinity at a depth of 10 m, respectively, and σ is the potential density. 337 

We examined the MLD in the tropical Pacific since its variability is closely related to 338 

the El Niño Southern Oscillation (ENSO). Figure 9 shows the spatial distribution of 339 

differences of the time-averaged MLD (over months 13–24) from all experiments 340 

relative to TRU in the tropical Pacific. A weak Central Pacific (CP) El Niño appeared 341 

in TRU. Compared to CTR, improvements in MLD were seen in all seven 342 

experiments, but the improvements were most significant in E06 and E07 (Fig. 9g,h). 343 

Noticeably, the differences of MLD from E02 were much smaller than those from 344 

E01, which suggests that assimilation of SSH instead of SST is important for 345 
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improving MLD forecasting. E06 performed better than E05 because the assimilated 346 

T/S profiles had a direct influence on the MLD of initial conditions used for 347 

forecasting (Fig. 9f,g). Since the surface variables are influenced by intense air–sea 348 

interactions, there are thus more uncertainties when calculating the background error 349 

covariance. Consequently, the deficiency of initial conditions resulting from the 350 

assimilation of surface data is then inherited in the forecast. 351 

Niño 3.4 352 

Figure 10 compares the Niño 3.4 index from all experiments. Over the 353 

assimilation period, the values of the index from all experiments including CTR 354 

gradually approached towards the “truth”, though relatively large deficiencies still 355 

existed in some experiments such as CTR and E02 (Fig. 10a). It is interesting to note 356 

that E04, which involved assimilating SSS, significantly improved the Niño 3.4 data. 357 

Over the prediction period, the values of the index started to diversify after four 358 

months (Fig. 10b). CTR and E04 did not produce a large positive Niño 3.4 index at 359 

the end of the prediction period, thus suggesting that standalone assimilation of SSS 360 

cannot well capture an El Niño event one year in advance. Conversely, E02 produced 361 

a too strong Niño 3.4 index, thus implying that standalone assimilation of SSH might 362 

overestimate an incoming El Niño event. E03, E05, and E07 produced the best 363 

estimates of Niño 3.4. These findings tell us that the joint assimilation of surface 364 

variables and T/S profiles are crucial for ENSO predictions. The newly developed 365 

system can well predict an El Niño event one year ahead. 366 
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Equatorial long wave propagations are critical to ENSO development. According 367 

to Boulanger and Menkes (1995), the coefficient amplitude of the SSH and surface 368 

zonal current represents the projection of the ocean variations onto these equatorial 369 

long waves (Kelvin waves and Rossby waves). In this study, we examined the 370 

prediction of wave propagation at a given longitude and time. Figure 11 shows the 371 

coefficients for the long waves, which were computed from SSH and surface current 372 

anomalies of TRU, and the differences from CTR and E01–07 relative to TRU. 373 

Eastward propagation of Kelvin waves and westward propagation of Rossby waves 374 

clearly appeared (Fig. 11i), and subsequently contributed to the occurrence of the CP 375 

El Niño (Fig. 9i). E07 produced the best estimates of the wave propagation (Fig. 11h). 376 

The second best estimate came from E05 (Fig. 11f). Comparing E03 and E05, the 377 

findings suggest that assimilation of SSS can improve the prediction of wave 378 

propagation. Besides, the prediction initialized from joint assimilation of surface data 379 

(E05) slightly outperformed that from assimilation of T/S profiles (E06) in terms of 380 

ENSO predictions. 381 

 382 

4. Discussion and conclusion 383 

In this study, we applied EnOI with a global ocean model (MOM4.0) to estimate 384 

three-dimensional global ocean states when assimilating various variables, e.g., SST, 385 

SSH, SSS, and T/S profiles, in an idealized twin-experiment framework. Tests were 386 

conducted step-by-step to explore the sensitivity of estimates to each variable. The 387 
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results were compared against quantities from the TRU experiment to assess the 388 

analysis and forecasting skills. The major findings are as follows: 389 

 390 

1. Data assimilation generally improved all investigated quantities; assimilation of all 391 

the variables together gave more improved results than assimilating them separately. 392 

2. A 12-month test forecast showed that initializations from E07 produced 393 

significantly improved forecasts compared to the others. 394 

3. The SST forecasts initialized from joint assimilation of surface data (E03 and E05) 395 

produced comparable global averaged RMSEs to that from assimilation of T/S 396 

profiles (E06), but the assimilation of T/S profiles should not be overlooked because 397 

subsurface deficiencies can develop into the surface during forecasts, particularly for 398 

highly nonlinear flow regions. 399 

4. The ocean surface currents in the tropics were better predicted when initial 400 

conditions were produced by assimilating T/S profiles (E06), while surface data 401 

assimilation (E05) became more important at higher latitudes, particularly near the 402 

western boundary currents. 403 

5. The development of a CP El Niño was well predicted in E05 and E07, thus 404 

indicating that it is important to jointly assimilate SST, SSH, and SSS for ENSO 405 

predictions. 406 

 407 
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To apply the data assimilation method in actual operations, we can decrease the 408 

forecast run number to 1 in LETKF. This time evolving run is combined with 100 409 

static ensemble members to build the background error covariance for data 410 

assimilation. We found that increasing the number of time evolving ensemble 411 

members from 1 to 5 was not effective for obtaining more accurate ensemble 412 

covariance using the LETKF assimilation scheme. If the number increases to 20, the 413 

covariance is more accurate. This has been demonstrated in many previous studies 414 

such as Miyazawa et al. (2012), Xu et al. (2013), and Xu and Oey (2014). However, 415 

the computer costs of more than 10 ensemble numbers limits the ability of this 416 

approach in operational applications. 417 

The inclusion of large errors in the initial conditions was aimed at testing the 418 

ability of the ocean assimilation system to correct the errors. We also conducted a 419 

series of experiments similar to the above experiments but initialized from January 5, 420 

1990 to reduce initial errors. Note that TRU was initialized starting from January 1, 421 

1990. The results showed improvements of the analysis and forecasts as well, though 422 

not as significant as those from the experiments listed in Table 1. 423 

The newly developed system was tested in a twin-experiment framework. This 424 

approach allowed for extensive tests of system accuracy, and such an approach has 425 

been widely used in data assimilation studies (e.g., Counillon et al. 2014; Zhou et al. 426 

2016). Even though the results were encouraging, our plan is to conduct a 427 

comprehensive test in a realistic framework before the system is put into operation. 428 
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Finally, coupled assimilation with ice properties and atmospheric fluxes has been 429 

shown to be advantageous in climate system analyses (e.g., Zhang et al. 2009; Zheng 430 

and Zhu 2010). Thus, we will consider the assimilation of those variables in future 431 

studies. 432 
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Table 1. Experimental design. 541 

  

SST 

 

SSH 

 

SSS 

T/S 

profiles 

Assimilation 

(months) 

Free run 

(months) 

CTR / / / / 1–12 13–24 

E01 

Yes 

/ / / 

1–12 13–24 

E02 / 

Yes 

/ / 

1–12 13–24 

E03 Yes Yes / / 

1–12 13–24 

E04 / / Yes / 

1–12 13–24 

E05 Yes Yes Yes / 

1–12 13–24 

E06 / / / Yes 

1–12 13–24 

E07 Yes Yes Yes Yes 

1–12 13–24 

 542 
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 544 

Fig. 1. Locations of Argo floats on June 1, 2005, which were used to produce 545 

pseudo-observations of T/S profiles. 546 
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 548 

Fig. 2. Time series of domain-averaged RMSEs for (a) SST, (b) SSS, (c) SSH, (d) 549 

temperature in the upper 500 m, (e) temperature from 500 m to 1500 m, (f) salinity in 550 

the upper 500 m, and (g) salinity from 500 m to 1500 m from all the experiments 551 

(CTR and E01–E07) over the assimilation period (months 1–12). Temperature is in 552 

degrees Celsius, SSH is in meters, and salinity is in PSU. 553 

  554 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-31
Manuscript under review for journal Ocean Sci.
Discussion started: 6 June 2017
c© Author(s) 2017. CC BY 3.0 License.



 31 / 39 
 

555 

Fig. 3. Time series of domain-averaged RMSEs for (a) SST, (b) SSS, (c) SSH, (d) 556 

temperature in the upper 500 m, (e) temperature from 500 m to 1500 m, (f) salinity in 557 

the upper 500 m, and (g) salinity from 500 m to 1500 m from all the experiments 558 

(CTR and E01–E07) over the prediction period (months 13–24). The black lines 559 

denote the persistence. Temperature is in degrees Celsius, SSH is in meters, and 560 

salinity is in PSU. 561 
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 563 
Fig. 4. Global distribution of the RMSE for SST from CTR, and the RMSE 564 

differences between E01–E07 and CTR from months 13 to 24. Negative values mean 565 

that the RMSE from the assimilation runs is smaller than that from CTR. The black 566 

box (in [0°E–60°E], [48°S–60°S]) indicates an area with enhanced RMSE. The 567 

domain-averaged RMSE is shown on the top left of each panel in degrees Celsius. 568 
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570 
Fig. 5. Vertical profiles of the box-averaged temperature (°C) in all experiments (a, b) 571 

and the RMSE for temperature (c, d) in January and September (in [0°E–60°E], 572 

[48°S–60°S]) derived from 8 experiments along with the TRU experiment. 573 
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 575 

Fig. 6. As in Fig. 4, but for SSH. 576 
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 578 

Fig. 7. As in Fig. 4, but for surface current speed. 579 
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 616 

 617 

Fig. 8. Global distribution of the time-averaged upper 700 m ocean heat content 618 

(OHC) per unit area from the “truth” experiment from months 13 to 24 and the 619 

differences of the mean values between the forecast experiments (CTR, E01–E07) 620 

and the “truth.” The domain-averaged RMSE of OHC per unit area is shown on the 621 

top left of each panel in J m
-2

. 622 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-31
Manuscript under review for journal Ocean Sci.
Discussion started: 6 June 2017
c© Author(s) 2017. CC BY 3.0 License.



 37 / 39 
 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

Fig. 9. The time-averaged mixed layer depth (MLD) in the tropical Pacific from TRU 659 

and the differences between all prediction experiments (CTR, E01–E07) and TRU 660 

from months 13 to 24. The domain-averaged RMSE of MLD is shown on the top left 661 

of each panel in meter. 662 
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 664 

Fig. 10. Comparison of the estimated Niño 3.4 from all experiments from months 1 to 665 

12 (left) and from months 13 to 24 (right). 666 

  667 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-31
Manuscript under review for journal Ocean Sci.
Discussion started: 6 June 2017
c© Author(s) 2017. CC BY 3.0 License.



 39 / 39 
 

 668 

Fig. 11. Coefficients of the equatorial waves for (i) TRU and the difference between  669 

all experiments  including (a) CTR and (b–h) E01–E07 and TRU. The coefficients 670 

are nondimensional and computed from the surface zonal current and the sea surface 671 

height anomalies. 672 
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