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Abstract. Using 20 years of accurately calibrated, high resolution, observations of Sea Surface Height Anomalies (SSHA) 

by satellite borne altimeters we show that in the Indian Ocean south of the Australian coast the low frequency variations of 

SSHA are dominated by westward propagating, trapped, i.e. non-harmonic, Rossby (Planetary) waves. Our results 

demonstrate that the meridional-dependent amplitudes of the SSHA are large only within a few degrees of latitude next to 10 

the South-Australian coast while farther in the ocean they are uniformly small. This meridional variation of the SSHA signal 

is typical of the amplitude structure in the trapped wave theory. The westward propagation speed of the SSHA signals is 

analyzed by employing three different methods of estimation. Each one of these methods yields speed estimates that can 

vary widely between adjacent latitudes but the combination of at least two of the three methods yields much smoother 

variation. The estimates obtained in this manner show that the observed phase speeds at different latitudes exceed the phase 15 

speeds of harmonic Rossby (Planetary) waves by 140 % to 200 % (which was also reported in previous studies). In contrast, 

the theory of trapped Rossby (Planetary) waves in a domain bounded by a wall on its equatorward side yields phase speeds 

that approximate more closely the observed phase speeds in the study area. 

1 Introduction 

The analysis of observations of Sea Surface Height Anomalies (SSHA), i.e., the deviation of the Sea Surface Height from its 20 

mean value at any given point in the ocean, was carried out since the 1990s in various parts of the world ocean by various 

satellite borne altimeters. Chelton and Schlax (1996), for example, analyzed the first three years of altimetry data collected 

by the TOPEX/Poseidon satellite in the world ocean, Zang and Wunsch (1999) analyzed five years of TOPEX/Poseidon data 

in the North Pacific Ocean and Osychny and Cornillon (2004) analyzed six years of modified TOPEX/Poseidon data in the 

North Atlantic Ocean. Additional observational studies are summarized in Barron et al. (2009) and references therein.  25 

In most parts of the ocean the satellite observations showed a ubiquitous and pronounced westward migration of SSHA 

with amplitude of a few centimetres. This westward, rather than eastward, propagation led to the interpretation of these 

observations as a surface manifestation of the first baroclinic mode of planetary (also known as Rossby) waves that 
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propagate westward (i.e. their phase speed is negative) in the ocean thermocline. Recent studies (e.g., Chelton et al., 2007; 

Chelton et al., 2011), however, argue that the observed SSHA features belong to mesoscale eddies and are not surface 

manifestations of planetary waves in the thermocline but this change of view has no effect on the estimate of the westward 

propagation speed since these eddies propagate westward at the same phase speed as of long Rossby waves (Chelton et al., 

2011; O'Brien et al., 2013; Polito and Sato, 2015; see also Nof, 1981 for theoretical estimate of eddy migration rate on the -5 

plane). 

The quantification of the rate of westward propagation of the observed SSHA features is based on the construction of 

time-longitude (also known as Hovmöller) diagrams at a given latitude. The slopes of contours on these diagrams are 

proportional to the propagation speed of the SSHA features. These slopes can be calculated using methods that are 

commonly employed in image processing such as the Radon transform (or its more recent alternative – the variance method) 10 

and the Two Dimensional Fast Fourier Transform (2D FFT) which are described in details in Sect. 2.2 below.  

Previous studies of the westward propagation of observed SSHA in mid-latitudes have all yielded rates of westward 

propagation that are faster than the phase speeds predicted by the harmonic planetary wave theory (see below for details). 

Explanations for these underestimates by the harmonic theory were proposed which are based on considerations that involve 

either the addition of mean zonal flows in the equations (Killworth el al., 1997 and see also Colin de Verdière and Tailleux, 15 

2005, who emphasized the curvature effect of the mean flow rather the mean flow itself) or the influence of the bottom 

topography (Tailleux and McWilliams, 2001) while Killworth and Blundell (2005) applied a combination of these two 

effects. Watanabe et al. (2016) showed that the standard linear wave theory can be tailored to fit the observations in the 

tropics by considering parameters such as effective-β (that includes the meridional gradient of the background potential 

vorticity) and forcing by Ekman pumping. LaCasce and Pedlosky (2004) argued that due to baroclinic instability the wave 20 

structure is changed and becomes more barotropic so it propagates faster and no mean flow is required. Along similar lines, 

Hochet et al. (2015) suggested that the assumption that observations are of the first baroclinic mode cannot be made a-priori, 

but the vertical structure is predicted from the altimetry data. Thus, they found that in some regions the vertical structure is 

more barotropic than baroclinic so the theoretical phase speed is larger and no discrepancy exists between theory and 

observations. By incorporating physical elements that are not included in the simple linear wave theory of the Shallow Water 25 

Equations (e.g. velocity shear, non-linear terms, topography, mean flows and juxtaposing barotropic and baroclinic modes) 

these (and other) past studies were successful in bridging some of the discrepancies found between the observed SSHA 

propagation speeds and the phase speeds of harmonic wave theory.  

In contrast to the phase speed, other wave characteristics such as the meridional variations of the SSHA amplitudes 

(which are predicted by the harmonic theory to be sinusoidal) have never been verified in these past studies. The reason is 30 

that in the framework of the harmonic theory (see more details below) the central latitude, 0, which determines the origin of 

the y- (meridional) coordinate, is determined by the latitude of observation. Thus, observations of SSHA at adjacent latitudes 
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cannot be compared to one another since their y-dependencies are determined by the same equations but with different 

origins so the same y-coordinate denotes different points in the two sets of equations. 

The interpretation of these SSHA observations has employed the harmonic theory of westward propagating, low 

frequency, waves that assumes the existence of a zonal channel that bounds the north-south extent on the -plane. Under 

these assumptions zonally propagating wave solutions of the Shallow Water Equations can be constructed and explicit 5 

expressions can be derived for both the zonal phase speed of the waves and the spatial structure of their amplitudes. The 

emerging spatial structure of the waves is oscillatory (harmonic) in both the zonal and meridional coordinates i.e., the waves 

simply oscillate with wavenumber k in the zonal direction and wavenumber l in the meridional direction (Pedlosky, 1982; 

Cushman-Roisin, 1994; Vallis, 2006). 

An alternative to the traditional harmonic theory is the trapped wave theory which was developed on the mid-latitude -10 

plane by Paldor et al. (2007) and Paldor and Sigalov (2008). In this theory the meridional variation of the wave’s amplitude 

is not harmonic but is given instead by the Airy function (see details in Sect. 4.1 below) and the requirement of two channel 

walls of the harmonic theory is replaced in this trapped wave theory by a single wall that marks the equatorward boundary of 

the domain. In sufficiently wide meridional ranges the phase speed of the trapped waves is higher than that of the 

corresponding harmonic waves by a factor of 2 to 4.  15 

The current study employs the available series of SSHA observations sampled on a 1/4 spatial grid which are compared 

to the theoretical phase speeds and meridional structures of the height field using the trapped, and harmonic, wave theories. 

The comparisons provide a measure of the relevance of the trapped and harmonic wave theories to the observed SSHA fields 

in the Indian Ocean.  

This paper is organized as follows: Section 2 provides details of the observations and methods used for estimating the 20 

observed phase speed and in Sect. 3 we compare the theoretical and observational meridional variation of the height field in 

the Indian Ocean south of the Australian coast (which includes the Great Australian Bight). Section 4 describes theoretical 

expressions for the phase speed and the meridional structure of the height field of the harmonic and trapped wave theories 

that are compared with SSHA observations in the region of interest in Sect .5. The paper ends in Sect. 6 with summary and 

discussion of the findings. 25 

2 Data and Methods 

2.1 SSHA Data 

The altimetry products used for a comparison with theory were produced by Ssalto/Duacs and distributed by Aviso, with 

support from CNES. The data we used are the multi-mission (i.e., up to four satellites at a given time, e.g., TOPEX/Poseidon, 

Jason 1, Jason 2, Envisat) gridded Sea Surface Heights, sampled on a 1/4°1/4° Cartesian grid once a week from 1/1/1993 to 30 
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31/12/2012. These data are improved compared to those used in previous studies since the combination of data from several, 

present-day, satellites enables high precision altimetry in both time and space at finer resolutions. More details on the way 

the SSHA data are produced by Aviso can be found at http://www.aviso.altimetry.fr/duacs/. The SSHA time-series of each 

grid-point in this region were low-pass filtered in the present study by performing a 5-week running-average to eliminate 

short-term variability such as storms, tides (including the fortnightly component) and other variations of periods less than 5 

one month. Though this filtering leaves parts of the high frequency signals in the averaged signal these parts are minute since 

the window contains many cycles of the high amplitude signals such as the M2 tides. Calculations with wider windows of 27 

and 53 weeks (done to examine the possible contribution of longer term variability such as seasonal winds) yielded 

qualitatively identical results (see details in Sect. 3 below).  

2.2 Methods of estimating observed phase speed of SSHA 10 

The basis for estimating the speed of westward propagation of SSHA is time-longitude (Hovmöller) diagrams of the SSHA 

field at fixed latitude. In this diagram the westward propagation is evident from the left-upward tilt of constant SSHA values 

i.e., same color contours and the angle between this tilt and the ordinate is directly proportional to the speed of westward 

propagation. The diagram provides a time-series of the SSHA changes at fixed longitude and a longitude variation series at 

any particular time so Fast Fourier Transforms can be easily calculated in time and longitude to yield the frequency and 15 

zonal wavenumber spectra of observed SSHA.  

Three objective methods are employed in the literature for calculating the phase speed of waves from time-longitude 

diagrams. The first method is the frequently used (e.g., Chelton and Schlax, 1996; Chelton et al., 2003; Tulloch et al., 2009) 

Radon transform used in image processing for detecting structures on any digital image (see details in e.g., Jain, 1989). The 

Radon transform of a two dimensional function f(x, y) that describes the intensity of an image at (x, y), such as SSHA values 20 

in a given (longitude, time) domain, is the integral of f(x, y) along a line L inclined at an angle  relative to the ordinate (i.e., 

      relative to the abscissa) and displaced a distance s from the origin. For each angle  we sum the squares of the 

values of the integrals along all lines having the same  (i.e., having different distance s). The angle at which this sum-of-

squares attains its maximum is the most accurate estimate for the orientation of structures with the same SSHA value on the 

time-longitude diagram. The tangent of this preferred  is proportional to the sought westward propagation speed. Note that 25 

in order to minimize the effect of few very high entries on the sum-of-squares we apply the Radon transform to a modified 

time-longitude diagram where the signal is scaled on the [0,1] interval and the mean of the scaled signal is subtracted. The 

second method is a relatively new algorithm (Polito and Liu, 2003; Barron et al., 2009) that constitutes an adaptation of 

Radon transform to a propagating wave. In this method the variance of amplitude values is calculated along the same lines. 

For each angle  we average the variances along all lines at allowed distances s and the westward propagation speed is then 30 

determined by the tangent of the angle  at which the mean of variances is minimal. The third method commonly used (e.g., 

http://www.aviso.altimetry.fr/%28http:/www.aviso.altimetry.fr/duacs/%29%22.
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Zang and Wunsch, 1999; Osychny and Cornillon, 2004) to obtain the observed phase speed is the application of the 2D FFT 

to the time-longitude diagram to get a frequency-wavenumber (i.e., , k) diagram of the signal’s amplitude. The phase speed 

is obtained by locating the values of  and k where the amplitude is maximal (i.e., maximum spectral coefficient) and 

calculating C=/k at this point of maximum spectral coefficient. Alternatively, the directionality of the spectral coefficients 

in the (, k) diagram can be found by sweeping over all lines that pass through the origin and inclined at angles ranging from 5 

0 to 180 relative to the abscissa (i.e., /k lines). The value of C is then determined as the slope of the line of maximal sum-

of-squares of spectral coefficients ("total energy"). 

A comparison between the three methods was made using synthetic signals (De-Leon and Paldor, 2016). Based on the 

insight gained from the study of synthetic signals, an estimation of the observed phase speed is accepted here only when an 

isolated peak (characterized by the point at which the derivative changes sign at a clearly defined sharp peak and maintains 10 

the same sign in bands that are at least 3 wide on either side of the peak) is evident in at least two of the three methods and 

the phase speeds that correspond to these peaks agree by better than 10 %.  

Note that the observed phase speed is obtained from the Hovmöller diagrams in units of one-quarter degree longitude 

per week which is converted to units of one centimetre per second by multiplying the observed phase speed by          

(where    is the latitude of observation). 15 

2.3 The study domain in the Indian Ocean 

The trapped wave theory in mid-latitudes applies without any modification to domains of large meridional extent (so the –

plane approximation applies) that are bounded on their equatorward side by a wide zonal boundary. As shown in Fig. 1 such 

a nearly zonal boundary exists in the Indian Ocean south of Australia. The domain of study extends from the south coast of 

Australia at about 31.5 S to only about 45 S since south of this latitude the SSHA field is strongly affected by the nearly 20 

2000 km wide, fast, and strongly meandering, Antarctic Circumpolar Current (ACC). 
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Figure 1: The domain under study in the Indian Ocean with a zoom in on the longitude band of 124.5 E - 134.5 E where 

altimetry data are analyzed (reproduced from Google Maps). 

3 The Meridional structure of SSHA 

The standard deviation of the temporal changes of SSHA observations in each point of this domain over the entire 20 years 5 

is shown in Fig. 2(a), which clearly demonstrates an increase in the SSHA signal from 4 cm to 9 cm in the band of width 2-

3 right next to the Australian coast. The meridional structure of the observed SSHA is clearly non-uniform, while in the 

harmonic (oscillatory) theory the height field is uniform (i.e., constant) for l=0 and sinusoidal for l>0. Although the ocean 

depth decreases towards the shore, the observed variability of SSHA signal there cannot be attributed to topography since 

steady winds affect only the average displacement of the sea surface which is subtracted from the SSHA signal when the 10 

standard deviation is calculated, while the effect of winds of periods shorter than 5 weeks are filtered out by our low-pass 

S53 
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(b) 

filter. In order to examine the possible effect of longer term winds (seasonal to annual) the calculations were repeated with 

windows of 27 weeks and 53 weeks. These calculations yielded very similar results to those obtained with the 5 weeks 

window but with slight decrease in the amplitude of main signal near the coast and minute changes in the structure far from 

it. For the same reason this coastal peak cannot be associated with a mean long-coast current since such a current will not 

show up on a map of temporal standard-deviation. The 5 week filter which we applied to the data also eliminates high-5 

frequency waves such as Kelvin waves and topographic Rossby waves (or continental shelf waves) since in the Great 

Australian Bight where the slope is 0.01 the period of these waves is O(1 day) (see e.g. Cushman-Roisin, 1994 for harmonic 

waves and Cohen et al., 2010 for non-harmonic waves). 

The mean over all longitudes (Fig. 2(b), thick blue line) of the 41 individual latitudinal cross-sections (thin light-blue 

lines) is compared with analytical expressions (described in the next section) for the meridional structure of the height field 10 

of both the trapped wave theory (dashed red line) and the harmonic theory (dotted green line). The decay rates with latitude 

of both observed and trapped wave theoretical curves are similar in contrast to the flat curve of the harmonic theory. An 

unexplained minor secondary peak is found near 36 on the observed curve (also evident near 36 S, 125 E in panel (a)) and 

upon examining a larger SSHA map it turns out that this secondary peak is an eastward extension of the Leeuwin current that 

flows poleward along the west coast of Australia between March and July (Godfrey and Ridgway, 1985). Alternatively, this 15 

peak can be interpreted as a poleward propagation (into the Indian Ocean) of energy generated in the equatorial Pacific 

Ocean by the wind and by Ekman pumping which forms Rossby waves in the study area (Potemra, 2001). 
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Figure 2. (a) The temporal standard deviation of satellite derived SSHA over the entire 20 year period poleward of the Great 

Australian Bight. The coastline is plotted in white. (b) Latitudinal cross-sections of the data of 2(a) every 0.25 degree longitude 

(thin light-blue lines), the mean over all longitudes of the latitudinal cross-sections (thick blue line) and the analytical expression 

for the meridional structure of the height field of trapped waves for zero zonal wavenumber and zero meridional mode number 

(dashed red line, see Eq. 5 below). The maximal trapped wave amplitude is set to match that of the mean observed cross-section 5 
where the off-shore minimum is about 4 cm since the temporal mean of Aviso's original data is not zero. The analytical expression 

for the meridional structure of the height field of harmonic waves for k=0 and l=0 is constant i.e. described by a straight line 

parallel to the abscissa at arbitrary value of the ordinate, here it is set to match the off-shore minimum of about 4 cm (dotted green 

line). 

4 Application of wave theories to observations 10 

The relevance of the trapped wave theory to observations can be best assessed by comparing the theoretical phase speed and 

meridional structure of the waves with observations such as those described above. In addition, it is also natural to compare 

the observations with phase speed and meridional structure of the harmonic planar theory and use the observations to assess 

the applicability of each of these theories. 

4.1 Explicit expressions for the phase speeds of the two wave types 15 

The Coriolis frequency on the -plane, expanded linearly about some latitude,     is given by            

        
  

 
       , where   is the frequency of Earth's rotation about its polar axis, a is Earth's radius and   

         (where   is the latitude) is the north coordinate. 

In a channel on the mid-latitudes -plane where the Coriolis frequency is expanded near      , the latitude of 

observation, the fastest baroclinic phase speed (in units of metre per second) of harmonic Rossby waves is (see Cushman-20 

Roisin, 1994; Vallis, 2006): 

                                                       
  

      
  
 

    

 
 
  
 
     

      
           

    

                                                                                

where k and l (the latter is denoted in other studies by n) are the zonal and meridional wavenumbers of the Cartesian 

coordinates, respectively, g' is the reduced gravity and H' is the weighted depth of the two (or more) layers that make up the 

baroclinic ocean so (g'H')
½
 is the speed of gravity waves. For sufficiently long waves when both k and l can be neglected this 

phase speed reduces to: 25 

                                                                                     
  

  
 

    

 
          
         

                                                                                       

In contrast to the harmonic wave theory which is fully described in many textbooks the application of the trapped wave 

theory requires some more detailed explanation. In this theory, the waves are trapped next to a single wall that marks the 
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equatorward boundary of the domain and the meridional variation of the wave’s amplitude is given by the regular (at 

infinity) Airy function, Ai, that oscillates (but is not periodic in contrast to harmonic/sinusoidal oscillations) in the (−∞, 0) 

interval and decays to zero faster than exponential in the (0, +∞) interval (see e.g., Abramowitz and Stegun, 1972). The 

phase speed of trapped waves in a mid-latitude channel is (see Eq. (6) of Gildor et al. (2016)): 

                                                                         
  

   
  
 

    
     

    
     

 
  

 
    
        

                                                                    

where    is the absolute value of the nth zero of Ai and    is the location of the equatorward wall. Following the studies of 5 

Paldor and Sigalov (2008) and De-Leon and Paldor (2009), we expand here the Coriolis frequency near      , where    

is the latitude of the equatorward boundary of the domain so      there in which case the last term in the denominator of 

Eq. (3) vanishes (in contrast to Gildor et al. (2016) where the wall was placed at   =-L/2 where L is the channel width). In 

addition, the boundary condition at    in Gildor et al. (2016) is the vanishing of the meridional velocity while in the present 

application Fig. 2(b) implies that the meridional derivative of the height field vanishes at   . Thus,    in Eq. (3) should be 10 

replaced in the present application by    - the absolute value of the n
th

 zero of the derivative of Ai (see the discussion 

following Eq. (5) below). The resulting expression for the phase speed of the first baroclinic mode of sufficiently long 

trapped waves (i.e., for zonal wavenumber k=0 and meridional mode number n=0 for which     .0 88, see P. 478 of 

Abramowitz and Stegun, 1972) is: 
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Note that in contrast to the planar harmonic theory where l is a meridional wavenumber (measured in units of m
-1

) which 15 

cannot be determined when no channel exists (and the same is true for the zonal wavenumber, k), in the trapped wave theory 

n is a non-dimensional mode number that counts the number of zeros of the eigenfunction inside the meridional domain.  

The trapped wave theory is valid when the meridional range is larger than        
     

         
 
 
  

 (see Eq. (7) of 

Gildor et al., 2016). For n=0, typical values of (g'H')
½
 of 2 to 3 m s

-1
 and w=30 this condition is satisfied when the domain 

is wider than about 500 kilometres. Accordingly, the harmonic theory applies only in unrealistically narrow channels that are 20 

only a few hundred kilometres wide (see also Fig. 3 in Paldor and Sigalov, 2008). 
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4.2 Explicit expressions for the meridional structure of the two wave types 

The meridional structure of the height field of harmonic waves in mid-latitudes varies with y, the meridional coordinate, as 

Acos(ly+) (where A is an arbitrary amplitude and  is a phase angle that guarantees, together with l, that the wave satisfies 

the boundary conditions) which for l=0 yields height and velocity fields that do not vary with y.  

The meridional structure of the height field of trapped waves is (see Eq. (5) in Gildor et al., 2016 with the modifications 5 

outlined in Sect. 4.1): 

     
     

       
    

   

     
       

 
  

      
   

     
       

 
  

      

         
   

     
       

 
  

                                                            

where    is an arbitrary amplitude and the phase speed, C, is given by C
trap

 of Eq. (3) with the modifications outlined in Sect. 

4.1. Note that this theoretical expression for (y) consists of two terms: Ai(y) and Ai'(y), so d/dy contains terms proportional 

to Ai(y), Ai'(y) and Ai''(y). The Airy differential equations relates Ai''(y) to yAi(y) so at y=0 the Ai''(y) term vanishes and the 

coefficient of Ai(y) is negligible compared to that of Ai'(y) which clarifies why the extremum of  occurs at  y0. 10 

5 Results and comparison between observations and theories 

5.1 Meridional structure of the height field 

The meridional structure of the height field of the trapped waves curve in the area of study is computed from (y) of Eq. (5) 

with C= C
trap

 of Eq. (4). In the calculation of these expressions of C
trap

 and (y) the value of w was set to 31.5 S, k=0=n (so 

            ), and (g'H')
½
, the speed of gravity waves, was set to 2.8 m s

-1
 following Fig. 2 in Chelton et al. (1998) 15 

(see also http://www-po.coas.oregonstate.edu/research/po/research/rossby_radius/). The analytical expression for the 

meridional structure of the height field of harmonic waves for k=0 and l=0 is constant i.e. described by a straight line parallel 

to the abscissa at arbitrary value of the ordinate. As shown in Fig. 2(b) the curve of the trapped wave theory (dashed red line) 

fits the observed one (solid blue line) much better than that of the harmonic theory (dotted green line). 

5.2 Phase speeds 20 

An estimation of the speed of westward propagation of observed SSHA is obtained by analyzing time-longitude (Hovmöller) 

diagrams of the SSHA field at fixed latitude as explained in Sect. 2.2. Figure 3 shows two examples of such diagrams 

calculated at 36 S (panel a) and at 45 S (panel b); both are sufficiently far from any major current or continent and 

http://www-po.coas.oregonstate.edu/research/po/research/rossby_radius/
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sufficiently far from the equatorward boundary so that the condition for the validity of the trapped wave theory derived in the 

paragraph following Eq. (4) is satisfied (and sufficiently far (at least 200km) from the ACC). Also plotted on these diagrams 

are the two lines corresponding to the theoretical phase speeds for k=0 and n=0 of trapped wave theory (Eq. (4), dashed) and 

the harmonic wave theory (Eq. (2), dotted). A casual visual inspection shows that the line of trapped wave theory fits the 

observed tilt of SSHA features more closely than the harmonic one (especially at 45 S (panel b)).  5 
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Figure 3. Time-longitude (Hovmöller) diagrams at m=36 S (panel a) and at m=45 S (panel b), where the abscissa is longitude 

and the ordinate is the date. The temporal average was subtracted from the record of each grid point. Dashed lines: trapped wave 

phase speed (Eq. (4)); Dotted lines: harmonic wave phase speed (Eq. (2)).  30 

Longitude (E) along 36S

 

 

125 130 134
Jan 1993

Jan 1997

Jan 2001

Jan 2005

Jan 2009

Dec 2012

S
S
H

A
 [

cm
]

-15

-10

-5

0

5

10

15

20

25

Longitude (E) along 45S

 

 

125 130 134
Jan 1993

Jan 1997

Jan 2001

Jan 2005

Jan 2009

Dec 2012

S
S
H

A
 [

cm
]

-20

-15

-10

-5

0

5

10

15

(a) (b) 



12 

 

The various objective methods for obtaining the phase speed from Hovmöller diagram are now applied to the diagram 

in Fig. 3(b). The distribution of the sum-of-squares (or standard deviation) of the Radon transform as a function of the angle 

 (for  values near the peak) is shown in Fig. 4(a) (solid blue curve) where the maximum is at 30 (i.e., C1.9 cm s
-1

, in 

absolute value, hereafter). The distribution of the mean of variances as a function of the angle   is shown in Fig. 4(b) where 

the mean of variances is minimal at =33 (i.e., C2.1 cm s
-1

). The -values corresponding to the phase speed of trapped 5 

waves (obtained from Eq. (4), 37 i.e., C2.4 cm s
-1

; solid red vertical line) and to the harmonic phase speed (obtained 

from Eq. (2), 20 i.e., C1.2 cm s
-1

; dashed green vertical line) are also shown in panels (a), (b) and (d) of Fig. 4. 

The frequency-wavenumber diagram obtained by applying 2D FFT to the time-longitude diagram at this latitude is 

shown in Fig. 4(c) in the range of low frequency and low wavenumber (in the rest of the frequency-wavenumber plane the 

amplitudes vanish). The maximum amplitude (outside k=0 since only k0 values yield finite westward phase speeds by /k) 10 

of the frequency-wavenumber diagram shown in Fig. 4(c) occurs at k=0.1571 which is a sufficiently small value that justifies 

the long-wave approximation made earlier (k=0.1571 corresponds to wavelength of about 160 degrees of longitude). The 

frequency with maximal spectral amplitude at this wavenumber is -0.09045 so the resulting phase speed of maximal spectral 

amplitude is -0.09045/0.1571=-0.5757 (in degrees of longitude per 4 weeks, i.e., C1.9 cm s
-1

) and this phase speed equals 

the phase speed obtained independently by the Radon transform. Figure 4(c) also compares the phase speeds of the two 15 

theories with the observed speed and it demonstrates that the phase speed of trapped waves (dashed red line) is slightly (but 

not significantly) closer to the observed speed (defined by both the maximum amplitudes and the directionality of the band 

of high amplitudes in frequency-wavenumber plane) than that of the harmonic waves (dotted light-green line). Though this 

red line (that corresponds to trapped waves) connects the two maximal values of the 2D FFT at the smallest k0 (and passes 

through the origin as expected), at larger k its fit to the location of maximal amplitude is no better than that of the line 20 

corresponding to harmonic waves. 

The distribution of the sum-of-squares of the spectral coefficients along /k lines versus the inclination angle, arctan(C), 

is shown in Fig. 4(d) (blue curve) where the curve attains its maximum at arctan(C)151 i.e. 29 in terms of the Radon 

transform method (C1.8 cm s
-1

).  

For this time-longitude diagram the phase speed obtained by the variance method differs by about 11 % to 14 % from 25 

that obtained by the Radon and 2D FFT methods that yield nearly identical phase speeds, so according to our criteria 

mentioned in the end of Sect. 2.2 the latter estimate for the phase speed is accepted. However, this observed phase speed 

does not clearly validate any of the two theoretical phase speeds since the corresponding vertical lines in panels (a) and (d) 

of Fig. 4 are located at nearly the same distance on both sides of the observed peak. In contrast, the estimate of the observed 

phase speed obtained by the variance method (Fig. 4(b)) is much closer to that of the trapped wave phase speed than the 30 

harmonic one. Thus, the determination of the relevant theory that yields the correct phase speed that matches the propagation  
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Figure 4. Analyses of the phase speeds of the Hovmöller diagram of Fig. 3(b). (a) Solid blue curve: The sum-of-squares 

of the Radon transform as a function of  (near the peak) normalized such that the maximum value equals 1; Dashed 

green vertical line: the angle of the harmonic wave theory (Eq. (2); Solid red vertical line: the angle of the trapped wave 

theory (Eq. (4);). The same two vertical lines appear also in panels (b) and (d). (b) Solid blue curve: The distribution of 

the mean of variances versus , normalized such that the maximum (maximum) values equal 1 ( 0). (c) The 2D FFT 

frequency-wavenumber diagram in the low frequency-low wavenumber regime (k is measured in units of (¼ degrees of 

longitude)-1,  is measured in units of week-1 and the amplitude units are arbitrary). Dashed red line: trapped wave’s 

phase speed, Eq. (4); Dotted light-green line: harmonic wave’s phase speed, Eq. (2). (d) The distribution of the sum-of-

squares of the 2D FFT amplitudes along different lines (sweeping) versus arctan(C), normalized such that the maximum 

value equals 1 (blue curve). Only values of 90<arctan(C)< 180 are shown since only these values correspond to 

westward propagating speeds.  
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rate determined from observations cannot rely solely on the match at any particular latitude and therefore match over an 

entire range of latitudes was also examined. 

The implications from similar comparisons carried out every 0.5 between 33 S and 45.5 S can be summarized as 

follows: At about third of the diagrams analyzed the signal was too blurred or the three methods yielded three different phase 

speed estimates. The application of a single method over the entire range of latitudes yields estimates that occasionally vary 5 

by over 50 % between adjacent 0.5 latitudes so the latitudinal continuity of the phase speed rules out the use of a single 

method. In only one or two latitudes (out of 22) all three methods have yielded the same (up to 10 %) estimate. Our 

conclusion from these comparisons bolsters our criteria that only when at least two of the three methods yield phase speed 

estimates that are closer to one another than 10 %, the resulting phase speed estimate can be considered reliable.  

Phase speed estimates north of 35 S and between 37 S and 39 S have not satisfied the agreement criteria between 10 

methods outlined in the end of Sect. 2.2. The lack of reliable phase speed estimates at these latitudes even though the 

amplitudes of the SSHA there are higher than in adjacent latitudes in which the phase speed estimates were deemed reliable 

(and especially north of 35 S) requires an explanation. In linear theories amplitudes can only be determined up to a 

multiplicative factor while phase speeds are determined completely. Accordingly, the harmonic theory where the solution is 

determined by m alone, does not provide any information on the variation of the SSHA amplitude with m, while in the 15 

trapped wave theory the variation of the amplitude with m is determined up to an overall multiplicative constant. Regardless 

of whether the meridional structure of SSHA is determined or not it should be stressed that higher/lower amplitudes do not 

necessary imply that the corresponding phase speed estimates are more/less reliable and it is possible for the amplitude to be 

high while the phase speed estimates are not reliable (using the methods and criteria we apply) or for the phase speed to be 

significant where the amplitudes are small (e.g. south of 40 S). 20 

Figure 5 shows the observed and the two theoretical speeds as a function of m between 35 S and 45.5 S where reliable 

estimates are obtained. The theoretical trapped speed is calculated using Eq. (4) and the theoretical harmonic speed is 

calculated using Eq. (2). It is clear that the trapped speeds (solid red line) are closer to the observed speeds (blue dots, 

squares and triangles) than the harmonic speed (dashed green line). A quantitative confirmation of this qualitative conclusion 

can be obtained by calculating the sum of squares of the distances between the observed and theoretical speeds. This 25 

calculation shows that trapped speeds with sum of squares that equals 3.5 are much closer than harmonic speeds where the 

sum of squares is 15.3 i.e. more than four times that of trapped waves. Since the value of 10 % agreement (shown by blue 

circular dots) is somewhat arbitrary, we also include in Fig. 5 estimates of 11 and 12 % agreement (light-blue triangles) and 

estimates that agree by 25 % (light-blue squares). 
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Figure 5. The observed phase speeds and the two theoretical phase speeds (trapped and harmonic) as a function of m in intervals 

of 0.5 latitude. Blue dots denote latitudes where the estimates of at least two methods agreed by 10 % or less, triangles denote 

latitudes where such estimates agreed by 11 to 12 % and squares denote latitudes where the agreement is 25 %. No reliable 

estimates were obtained north of 35 S and in some more latitudes. The sum of squares of the distances in (cm s-1)2 between 5 
trapped wave phase speeds and observed speeds (3.5) is much smaller than that of harmonic phase speeds (15.3).   

6 Discussion and Summary 

The phase speed of harmonic waves decreases monotonically with the latitude of observation, m, as is evident from Eqs (1)-

(2). In contrast, the phase speed of trapped waves depends on w only (i.e. the latitude of the zonal boundary) and is 

independent of m. Our analyses of the propagation speeds of SSHA signals show that the rate at which the observed speed 10 

decreases with m (the trend of the data in Figure 5 is 0.12 cm s
-1

 deg
-1

) exceeds the rates of decrease of both harmonic 
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(where the trend is 0.09 cm s
-1

 deg
-1

) and trapped (no trend) phase speeds. In contrast, the values of the observed phase 

speeds are much closer to the trapped phase speeds than to the harmonic speeds. 

Colin de Verdière and Tailleux (2005) argue that the addition of mean flows affects the propagation speed of Rossby 

waves via its curvature: increase (decrease) of the westward phase speed for eastward (westward) surface mean flow. 

However, in the domain of the Indian Ocean studied here it is not clear whether or not a mean flow exists (in contrast to west 5 

of Australia where a subtropical gyre has been observed, see e.g. Stramma and Lutjeharms, 1997) and what it is its direction 

(some of the flows vary seasonally, see Wyrtki, 1973) so even if the numerical values of parameters such as Richardson 

number or buoyancy could be somehow estimated it is still unclear whether the mean flow increases or decreases the phase 

speed.  

We should note that the simple choice, here and in many other prior studies, to interpret that observed SSHA 10 

propagation as that of the first baroclinic mode is not the only possible choice. Other choices of a single mode to fit the 

observation require detailed analyses of the hydrography while a (linear) combination of several modes (including the fast 

barotropic mode) with weights that are tuned so as to fit the observed speed can yield a better fit (see Hochet et al., 2015). 

Chelton et al. (2007) and Chelton et al. (2011) argue that most of the observed SSHA features in the global ocean are 

nonlinear mesoscale eddies whose propagation speed is close to the phase speed of long harmonic Rossby waves (but linear 15 

eddies move much faster). The nonlinearity in those studies is determined by a combination of second order spatial 

derivatives of the SSHA that are used in the calculation of the Okubo-Weiss parameter. Since no derivatives can be 

computed by the methods in the present study it is impossible to use these methods to directly determine whether the SSHA 

features examined in the present study are linear or not. However, all observed propagation speeds calculated here move 

faster than the phase of long harmonic Rossby waves (see Fig. 5) which implies that only linear (in the sense defined in 20 

Chelton et al., 2007) eddies that propagate faster than the phase speed of long harmonic Rossby waves exist in the Indian 

Ocean south of Australia. 

As was concluded in De-Leon and Paldor (2016) an estimation of the observed phase speed using one method only, is 

not reliable in most of the observed signals. On the other hand, even when estimates of the observed speed of at least two 

methods agree with each other, a comparison of the observed speed and the theoretical speeds varies in accordance with the 25 

method used for obtaining the observed speed. For example, in Fig. 4 the observed speed obtained by the variance method 

(panel b) is much closer to the trapped speed than to the harmonic speed while the observed speed obtained by the Radon 

and 2D FFT methods does not fit either the trapped or the harmonic speed preferentially. These differences between different 

methods point to the low accuracy/reliability of existing SSHA data. 

As mentioned in the introduction, many studies compared observations of Rossby waves in the ocean with the harmonic 30 

Rossby waves. However from a theoretical point of view, the harmonic theory in mid-latitudes is valid only in domains 

narrower than a few hundred kilometres so it is not clear why one should expect the harmonic speed to match the observed 
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speed at unbounded domains. The case of Australia is unique since the trapped wave theory applies there while no other 

place exists that has a sufficiently wide, nearly straight, zonal coast line and meridional extent of the ocean that spans over 

10 poleward of the equatorward boundary. In cases of narrower straight zonal coast line such as Puerto Rico the trapped 

wave theory is inapplicable. In unbounded domains of the world ocean the trapped wave theory does not apply 

straightforwardly and additional theoretical considerations have to be developed. 5 
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