
Response to comments (Referee 1) 
 
P1, L16, delete “and are happening now” 
We have deleted it. 
 
P1, L20, revise “Expensive decision”, “are already being made”. Can you revise it 
like this: Important decisions have to be made in both economic and societal 
activities. 
We have revised it. 
 
P2, L1, after this TG => TG, hereafter 
We have fixed it. 
 
P2, L 4, “necessarily only”, delete one of the words. “weighted towards” => mostly 
in the NH. 
 We have been fixed it. 
 
P3, L28, delete “to center data” 
 We have fixed it. 
 
P6, eq (6), how is d determined? 
The Eq (6) has no d-term. Eq. (3) has d-term and it is nested period. The nested period represents a 
periodic characteristic of Loading Vectors. The determination process is entirely up to the user. Usually, 
however, we can determine the nested period by considering the periodicity of an original signal. This 
requires some physical intuition about the dataset at hand. For the reconstruction, the choice of nested 
period has little impact on the resulting reconstruction as long as is not too short or is chosen at a length 
that is particularly ill-suited for the strongest signals in the data. In this study, the most robust repeating 
signal is an annual signal. So, we can determine the d-term on a yearly basis (e.g., 12-months, 24-
months). 
 
P7, L7, delete “system” 
 It has been deleted. 
 
P7, L9, it is confusing in the value of what in “if the value”. 
We have changed it as follows. 
(before) 
The threshold cross-correlation value did not have a sensitive effect on the regression if the value can select more 
than ten predictors; 
(after) 
The threshold cross-correlation value did not have a significant effect on the regression as long as the value was 
chosen to allow for at least ten predictors; 
 
P7, eq (7), is (t-rou) a variable of PCT or a factor of multiplication? If it is a 
variable (most likely, based on equation (5)), the left side might be expressed as 
PCT(t). If it is a multiplication, you may have to explain why. 
 We have fixed as follows. 



 
P7, L18, revise “Then using ..” as Using …, we can then extend …” 
 We have revised it. 
 
P8, L19, “that we assume” => to assume that 
 We have changed it. 
 
P8, L27, deemed => thought 
 We have changed it. 
 
P9, L5, Are “Eleven TGs” the location of eleven TGs, or eleven TG observations? It 
reads like TG observations, but the TG observations cannot be underestimated or 
overestimated. 
 We have revised it as follow. 

 
 
P9, L14, Fig. 6a 
 We have fixed it. 
 
P9, L17, Fig. 6b 
 We have fixed it. 
 
Figure 6, what is the unit of the amplitude? 
The amplitude has no unit. 
 
Figure 7, why the modes 1-2 are different from Figure 6? 
Actual signals of each mode can be recovered by multiplying of Loading Vector and its corresponding 
PC time series. These two figures are showing different things.  
 
P10, L3, delete “Normalized Root Mean Square Error;” 
 We have deleted. 
 
P10, L24, shows better agreement => shows a better agreement 
 We have corrected it. 
 



P10, L26, for the reconstruction process (in Hamlington?) 
 We have revised this part.

  
 
P11, second paragraph, the comparison between the trend of 1900–2014 and 
1993–2015 is not relevant. The trends over the same time period have to be used. 
This has to be revised. 
 We tried to show the alleviation of the local difference in Fig 2a. In Fig. 2a, the difference between Max 
and Min linear trend is about 7 mm/yr but in Fig. 12a, the difference between Max and Min linear trend 
is about 0.7 mm/yr. We have revised it as follow. 
 

 
 
P11, L13, altimeter data => altimeter data over 1993–2015. 
 We have revised it. 
 
Figures, a period “.” is needed at the end of the figure caption. 
 We have added the period. 
 
Figure 2 caption: two regions: one with high correlation coefficient (red-colored 
area in (a)) and the other with low correlation coefficient (blue-colored area in 
(a)). 
Actually, Figure 2 is not the correlation map, but we have mentioned about the color. 

 
 
Figure 6, move the figure legends to the middle of the figure? 
We have changed as follow. 



  
 
 
 
 
Figure 10, optional: change yellow into red? 
 We have changed as follow. 



 
 

 
 
Figure 11, move the figure legend to the middle of the figure? 
We have changed it. 
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Abstract. Since the advent of the modern satellite altimeter era, the understanding of the sea level has increased dramatically.

The satellite altimeter record, however, dates back only to the 1990s. The tide gauge record, on the other hand, extends through

the 20th century, but with poor spatial coverage when compared to the satellites. Many studies have been conducted to create

a dataset with the spatial coverage of the satellite datasets and the temporal length of the tide gauge records by finding novel

ways to combine the satellite data and tide gauge data in what is known as sea level reconstruction. However, most of the5

reconstructions of sea level were conducted on a global scale, leading to reduced accuracy on regional levels, especially when

there are relatively few tide gauges. The seas around the Korean Peninsula is one such area with few tide gauges before 1960. In

this study, new methods are proposed to reconstruct past sea level around the Korean Peninsula. Using spatial patterns obtained

from a cyclostationary empirical orthogonal function decomposition of satellite data, we reconstruct sea level over the period

from 1900 to 2014. Sea surface temperature data and altimeter data are used simultaneously in the reconstruction process,10

leading to an elimination of reliance on tide gauge data. Although we did not use the tide gauge data in the reconstruction

process, the reconstructed sea level has a better agreement with the tide gauge observations in the region than previous studies

that incorporated the tide gauge data. This study demonstrates a reconstruction technique that can potentially be used at regional

levels, with particular emphasis on areas with poor tide gauge coverage.

1 Introduction15

Although sea level rise is a global phenomenon, the impacts are different in localitiesand are happening now. Changes in

sea level are affecting communities across the globe on an almost daily basis through increased erosion, greater saltwater

intrusion, more frequent nuisance flooding, and higher storm surge causing severe damages on the coastal structures (e.g.,

Nicholls, 2011; Cheon and Suh, 2016; Suh et al., 2013). Planning for, adapting to, and mitigating current and future sea level

has necessarily begun in many threatened areas. Expensive decisions - both in
:::::::
Important

:::::::::
decisions

::::
have

::::
been

:::::
made

:::
in

::::
both20

economic and societal terms - are already being made
::::::::
activities. Examples can be found throughout the world, with coastal

communities making difficult decisions on how to address concerns associated with future sea level rise (e.g., Nicholls, 2011).

The present and near-term threat of sea level rise across the globe highlights the immediate need for actionable regional sea
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level projections. In order to improve future projections of sea level, understanding past sea level change is an important first

step.

Before the satellite altimeter era, the only available sea level observations came from tide gauge (after this TG
:::
TG,

::::::::
hereafter)

records. The TGs provide the records of local sea level variations, covering nearly two hundred years in some locations around

the globe. Using TG data, scientists have studied past sea level changes around the world. However, TGs provide poor spatial

coverage as they are necessarily only located at coastal sites and weighted towards
::::::
mostly

::
in

:
the Northern Hemisphere. On5

the other hand, the satellite altimeters collecting data since 1992 have near-global coverage of sea level but a relatively short

observation period compared to TG observations, which is a severe handicap to analyzing long-term changes in sea level. This

disadvantage is particularly true given the presence of sea level variability with decadal and longer timescales.

Chambers et al. (2002) was one of the first to reconstruct sea level anomalies (SLA) by combining TG data and satellite

altimeter data. In their research, they studied low-frequency variability in global mean sea level (GMSL) from 1950 to 2000.10

They interpolated sparse TG data into a global gridded SLA pattern applying EOFs (Empirical Orthogonal Functions) of SLA

using data from the TOPEX/Poseidon satellite altimeter to capture the interannual-scale signals, e.g., ENSO (El Nino-Southern

Oscillation) and PDO (Pacific Decadal Oscillation). Building on previous studies (Chambers et al., 2002; Kaplan et al., 1998,

2000), Church et al. (2004) created a reconstruction from 1950 to 2001 using EOFs of SLA data measured from satellite

altimeters and a reduced space optimal interpolation scheme. This research was subsequently updated to increase temporal15

coverage from 1870 to the present (Church and White, 2006, 2011) and the reconstructions have been made available to the

public through the website (http://www.cmar.csiro.au/sealevel/sl_data_cmar.html). In these studies, GMSL was found to rise

approximately 210 mm from 1880 to 2009, with a linear trend from 1900 to 2009 of 1.7 ± 0.2 mm/yr. The resulting SLA is

one of the most comprehensive and widely cited reconstructions. While these studies focused largely on the reconstruction of

GMSL, Hamlington et al. (2011) applied cyclostationary empirical orthogonal functions (CSEOF) as basis functions for the20

reconstruction of SLA in an attempt to improve the representation of variability about the long-term trends. This approach

provided an advantage for describing local variations such as ENSO and PDO. After that, Hamlington et al. (2012a) proposed

an improved scheme of their reconstruction using sea surface temperature (hereafter SST). Given the limited TG data in

the past, the reconstruction of SLA relying only on TGs were inaccurate, particularly before 1950. Leveraging other ocean

observations (e.g., SST) led to an improved SLA reconstruction further into the past. In addition, this approach provides an25

advantage for describing local variations such as ENSO and PDO because the SST data gave information where only few TGs

are available.

While sea level is a global phenomenon, the extent of sea level change varies dramatically across the globe. During the 24-

year satellite altimeter record, regional trends have been measured to be four times greater than the global average in some areas

(AVISO+, 2017). Therefore, sea level assessment on a regional level is necessary to plan for future sea level. Several studies30

have focused on regional reconstructions targeting a particular area of interest. As an example, using an optimal interpolation

method, Calafat and Gomis (2009) reconstructed the distribution of SLA in the Mediterranean Sea over 1945-2000. They used

EOFs of satellite altimeter data spanning from 1993 to 2005 as basis functions and interpolated the TG data using these spatial

patterns. A spatial distribution of sea level rise trends for the Mediterranean for the period of 1945-2000 indicated a positive
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trend in most areas. Hamlington et al. (2012b) performed a regional SLA reconstruction using CSEOFs as basis functions35

(Hamlington et al., 2011) with a domain covering only the Pacific Ocean. They found that a choice of basis functions had a

significant effect on the spatial pattern of the sea level rise and the ability to capture internal variability signals. Global basis

functions, either CSEOFs or EOFs, are typically dominated by large-scale variability in the Pacific Ocean associated with

ENSO or the PDO. As a result, global reconstructions are poorer in some ocean basins (e.g., Indian Ocean, Atlantic Ocean)

than others (Pacific Ocean). This issue is likely exacerbated further when looking at even smaller regions.5

In this paper, we focus on one such region: the seas around the Korean Peninsula. In South Korea, over twenty-seven percent

of its forty-five million people live in coastal city areas, and nearly thirty-six percent of Gross Regional Domestic Product

is produced by coastal city regions (Choi and Jeong, 2015). As a result, policymakers have a keen interest in a sea level rise

around the Korean Peninsula (hereafter KP; a suffix, ’-KP’ means the spatial domain of the data or variable is around the Korean

Peninsula) to establish proper remedies to sea level rise. Studying SLA-KP, researchers have primarily relied upon globally10

reconstructed SLAs (Hamlington et al., 2011; Church and White, 2011). However, extracting SLA-KP (or more generally

any small regions) from a grobally reconstructed SLA have some problems. First, global scale reconstructions use a limited

number of basis functions to prevent the interpolation from over-fitting and creating spurious sea level fluctuations. There is

a difference between the dominant modes of variability at the global scale and local scale; e.g., there is a high possibility that

the globally selected basis functions, which represent 90 % of the total variance in the global level will not represent 90 % of15

the total variance in local scale. Second, the coverage of the TG around the KP (TG-KP) started around 1930 and only one TG

was avaiable until 1950; it is too little to secure accuracy on these local scales. As mentioned above, TG-KP coverage is poor

extending back into the 20th century, and relatively few TGs are available to analyze in some areas (Fig. 1). Hence, the goal

of this study is to propose a new scheme that builds off of Hamlington et al. (2012b) that applies CSEOFs to reconstruct local

SLA where the TG data is not enough to ensure a quality reconstruction through the 20th century. We focus on the KP both20

due to its exposure to risk from impending sea level rise and also as a test case to demonstrate how this technique could be

applied at other locations across the globe.

2 Data and Methods

2.1 Data

2.1.1 Sea level anomalies25

The basis functions of this study’s reconstructions are the CSEOFs of a gridded satellite data of SLA provided by AVISO

(the Archiving, Validation, and Interpretation of Satellite Oceanographic; ftp://ftp.aviso.altimetry.fr/global/delayed-time/grids/

climatology/monthly_mean/) from 1993 to 2015. This monthly data has a 0.25�⇥0.25� resolution and hereafter this dataset is

written as AVISO. Before conducting the CSEOF decomposition, mean values for each grid point were removedto center the

data. The annual signal has not been removed as it is accounted for by the CSEOF analysis (see more details in section 2.2.1).30

3



The data was trimmed to contain only the seas around the KP (31�-46�N and 117�-142�E) and it was multiplied by the square

root of the cosine of latitude to consider the actual area of each grid.

2.1.2 Sea surface temperature

In this study, two SST reconstruction datasets were used: ERSST (Extended Reconstructed Sea Surface Temperature; Huang

et al., 2015, 2016; Liu et al., 2015) and COBESST2 (Centennial in situ Observation-Based Estimates; Ishii et al., 2005). The

ERSST dataset is a global monthly SST dataset based on the observation of ICOADS (International Comprehensive Ocean-5

Atmosphere Dataset). This monthly analysis has a 2� ⇥ 2� grid resolution and its time coverage is from 1854 to the present,

and the included data are anomalies based on a monthly climatology computed from 1971-2000. The COBESST2 dataset is

a monthly interpolated 1� ⇥ 1� SST product from 1850 to the present. It integrates several SST observations: ICOADS 2.5,

satellite SST, and satellite sea ice. In addition to OI (Optimal Interpolation) scheme, this dataset used an EOF reconstruction.

Each data was trimmed to three different regions: a global domain (no trim), the Northwest Pacific domain (25�-55�N and10

110�-160�E), and around the KP area. Before conducting the CSEOF decomposition, these datasets were treated as follows.

1) The mean values for each grid point were removed. 2) The data were weighted by the square root of the cosine of latitude

to consider the actual area of each grid. 3) Any grid points that were not continuous in time were removed. Like the satellite

altimeter dataset, an annual signal was not removed.

2.1.3 Tide gauge data15

Monthly mean records of 47 TGs were obtained from the Permanent Service for Mean Sea Level (PSMSL, Fig. 1) from

1930 to 2013. The earliest data of the TGs is traced back to 1930 at Wajima Station (Fig. 1). Before 1965, the number of

available TG records is fewer than 10, with only one TG (Wajima Station) providing data unitl 1950. An ongoing GIA (Glacial

Isostatic Adjustment) correction was applied to the TG data using ICE-5G VM2 model (Peltier, 2004). Since an IB (Inverted

Barometer) correction was applied to the satellite altimetry data, the TG data are IB-corrected based on the pressure fields from20

20th Century Reanalysis V2c data (Compo et al., 2006, 2011; Hirahara et al., 2014). The TG data in this study are modified

with further editing criteria. The techniques for editing are similar to those of Hamlington et al. (2011), with TGs that have

shorter record length than 5 years and unphysical trends (greater than 7 mm/yr) likely owing to uncorrectable vertical land

motions being removed prior to analysis. After calculating a month-to-month change, jumps greater than 250 mm were also

removed.25

2.1.4 Reconstructed sea level anomalies of previous studies

Church and White (2011, 2006) created the reconstruction of a global SLA from 1870 to 2009 using EOFs of SLA from

satellite altimeter over 1993-2009. They applied a reduced space optimal interpolation technique. According to their research,

the GMSL rose about 210 mm over 1880-2009, and the linear trend through 1900-2009 was 1.7 ± 0.2 mm/yr. The resulting

SLA is one of the most comprehensive and widely cited reconstruction results. This dataset was employed for the long-30
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term background trend for this study (see section 2.2.3). The GMSL timeseries (Church and White, 2011, 2006) has been

extended and made publicly available (http://www.cmar.csiro.au/sealevel/GMSL_SG_2011_up.html). To reconstruct the past

SLA, Hamlington et al. (2011) combined the CSEOFs of the satellite altimetry and historical TG record. This weekly analysis

has a 0.5� ⇥ 0.5� grid resolution and its time coverage is over 1950-2009. This dataset was used for the comparison with the

reconstruction of this study (see section 2.2.3). This reconstruction dataset (Hamlington et al., 2011) can be downloaded from5

the NASA JPL/PO.DAAC (ftp://podaac.jpl.nasa.gov/allData/recon_sea_level/preview/L4/tg_recon_sea_level/).

2.2 Methods

We propose a modified reconstruction method for the seas around the Korean Peninsula which have poor TG coverage. This

method is a progression from the technique described in Hamlington et al. (2012a). In previous studies (Church et al., 2004;

Church and White, 2006, 2011; Hamlington et al., 2011, 2012a), they decomposed SLA into spatial patterns and corresponding10

amplitude timeseries, and extended the timeseries back in time, assuming similar spatial patterns over the full record. We

decompose SLA-KP using CSEOF analysis and extend amplitude timeseries using SST data applying multivariate regression

that accounts for time lags. In this section, we detail the procedure and discuss the underlying theory.

2.2.1 Cyclostationary empirical orthogonal functions

To understand the complex response of a physical system, the decomposition of data into a set of basis functions is frequently15

applied. The decomposed basis functions have the potential to give a better understanding of complex variability of the funda-

mental phenomenon. The simplest and most common computational basis functions are EOFs, which have often served as the

basis for climate reconstructions. When a reconstruction selects the EOFs as basis functions, one basis function is defined as a

single spatial map accompanied by a time series representing the amplitude modulation of this spatial pattern over time. The

EOF decomposition of the spatio-temporal system, T (r, t), is defined by the Eq. (1):20

T (r, t) =
X

i

LV

i

(r)PCT

i

(t), (1)

where LV (r) is a physical process (or loading vector) modulated by a time series PCT (t) (principal component time series

or PC time series). Combining each LV and PCT pair, a signal of single EOF mode can be produced.

The assumption underlying EOF-based reconstruction is the stationarity of the spatial pattern represented by the EOF over

the entire period. However, the fact that many geophysical phenomena are cyclostationary is well known (Kim et al., 2015).25

That is, some processes are periodic over a certain inherent timescale, with corresponding amplitudes varying over time. Even

though EOFs represent cyclostationary signals through a superposition of multiple modes, as stated in Dommenget and Latif

(2002), representing the cyclostationary signals with stationary EOFs can lead to an erroneous and ambiguous interpretation

of the data. It also requires many EOFs to explain a relatively small amount of variability in a dataset.

To remedy some of these issues, Hamlington et al. (2011) introduced CSEOFs as the basis for the global reconstruction of30

SLA instead of EOFs. The CSEOF analysis proposed to capture the cyclostationary patterns and longer scale fluctuations in

geophysical data (Kim et al., 1996; Kim and North, 1997; Kim and Wu, 1999; Kim and Chung, 2001; Kim et al., 2015). The
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CSEOF analysis can capture the time varying signals as a single mode by giving a time dependency to the loading vectors.

The system is defined as Eq.(2) and (3).

T (r, t) =
X

i

CSLV

i

(r, t)PCT

i

(t) (2)

CSLV (r, t) = CSLV (r, t+ d) (3)5

where CSLV (r, t) is a Cyclostationary Loading Vector (for convenience, we call this as LV) and it is time dependent and

periodic with a particular period (called a "nested period"). Previous studies (Kim et al., 1996; Kim and North, 1997; Kim et al.,

2015) provide more detailed walk-through for the CSEOF computation and properties. CSEOFs have a significant advantage

over EOFs since CSEOFs can explain cyclostationary signals in one mode; that is, CSEOFs of periodic processes are much

easier to interpret than EOFs (Kim et al., 1996; Kim and North, 1997; Kim and Wu, 1999; Kim et al., 2015). Hamlington et al.10

(2011, 2012a, b) demonstrated that CSEOFs provided significant benefits dealing with repeating signals such as ENSO and

Modulated Annual Cycle signals.

2.2.2 Multivariate regression using CSEOFs

When considering the complete Earth climate system, one variable is often directly connected to another variable. In some

cases, they are impacted by a common physical process, or in other cases, one variable may directly influence another. To take15

advantage of these relationships and establish links, we can perform a multivariate linear regression as following Eq. (4).

y = �0 +�1x1 +�2x2 + · · ·+�

k

x

k

+ ✏ (4)

where �0,�1,�2, · · · ,�k

are regression coefficients and the ✏ is random error. In this study, the response variables are each PCT

of AVISO’s CSEOF and the predictor variables are all PCT of each SST dataset’s CSEOF. Eq. (4) can be re-written as follows:

20

PCT

SLA

m(m,n)
::::

= �

m

0 +�

m

1 PCT

SST

1(1,n)
:::

+�

m

2 PCT

SST

2(2,n)
:::

+ · · ·�m

k

PCT

SST

k(k,n)
:::

+ ✏

m(m,n)
::::

(5)

where PCT

m

SLA

is the
:::::::::
PCT

(m,n)
SLA ::

is
:::
the

:
n
::
-th

:::::::::
component

:::
of

::
the

:
m-th PCT of AVISO’s CSEOF,

:::::::::
PCT

(k,n)
SST ::

is
:::
the

:
n
::
-th

::::::::::
component

::
of

:::
the

:
k
::
-th

::::
PCT

:::
of

:::::
SST’s

:::::::
CSEOF and �

m

k

are regression coefficients for the m-th target and k-th PCT of SST (
:
k

:
=

::
1,

::
2, . . . ,

::
K
:
,
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m = 1, 2, . . . , M ;
:::
and

::
n

:
=
::
1,
::
2,
:
. . .

:
,
::
N;

::
K

:
, M is total number of target’s modes), PCT

k

SST

is the k-th PCT of SST’s CSEOF
:::
and

:
N

::
are

:::
the

::::
total

::::::::
numbers

::
of

:::::::::
predictors,

::::::
targets

:::
and

:::::::::
timesteps,

::::::::::
respectively). The matrix form of the Eq. (5) is:25

2

666664

T

m

1

T

m

2

...

T

m

N

3

777775
=

2

666664

1 P

1
1 P

2
1 · · · P

K

1

1 P

1
2 P

2
2 · · · P

K

2

...
...

...
. . .

...

1 P

1
N

P

2
N

· · · P

K

N

3

777775
⇥

2

666664

�

m

0

�

m

1

...

�

m

K

3

777775
(6)

where T

m

n

is the n-th component of PCT

m

SLA

,
::
and

:
P

k

n

is the n-th component of PCT

k

SST ::
are

::::::::::
PCT

(m,n)
SLA :::

and
::::::::::
PCT

(k,n)
SST

,

::::::::::
respectively.

Additionally, many geophysical signals have lagged relations with other geophysical signals (Bojariu and Gimeno, 2003;

Dettinger et al., 1998; Hamlet et al., 2005; Hendon et al., 2007; Kawamura et al., 2004; McPhaden et al., 2006; Redmond and

Koch, 1991). Hence, by assuming that the each mode of CSEOF represents an independent physical event, we can assume5

the PCTs which are mathematically independent of each other also can have a lagged relationship. If we consider the lagged

relationships between the target and predictor variables and use only the predictors having a higher correlation, we can reduce

the number of predictors in the regression; generally, the more predictors applied for the regression, the more noise is likely to

appear in the result. Before performing the multivariate linear regression system as in (5), we calculated the cross-correlation

between the target PCT of AVISO and predictor PCTs of SST. The predictors were selected based on their cross-correlation10

values. The threshold cross-correlation value did not have a sensitive
:::::::::
significant effect on the regression if the value can select

more than
::
as

::::
long

::
as

:::
the

:::::
value

::::
was

::::::
chosen

:::
to

:::::
allow

:::
for

::
at

::::
least

:
ten predictors; in this study, we used 0.3 as the threshold.

By assuming the lag of the i-th mode with the m-th target having maximum cross-correlation at ⇢m
i

, the m-th mode’s PCT of

AVISO can be given as follow based on the Eq. (5).

PCT

SLA

m(m,n)
::::

= �

m

0 +
X

i=1

kK

:
�

m

i

PCT

SST

i(t� ⇢

m

i

)(m,n�⇢

m
i )

:::::::
+ ✏

m(m,n)
::::

(7)15

where PCT

m

SLA

is the
:::::::::
PCT

(m,n)
SLA ::

is
::::

the
:
n
:::
-th

:::::::::
component

:::
of

:::
the

:
m-th PCT of AVISO’s CSEOF

:::
and

::::::::
PCT

(i,n)
SST:::

is
:::
the

::
n

::
-th

:::::::::
component

::
of

:::
the

::
i
::
-th

::::
PCT

:::
of

:::::
SST’s

:::::::
CSEOF; ⇢m

i

is a lag of maximum correlation between the i-th predictor and the m-th

target; �m

0 and �

m

i

are represent regresstion constants and regression coefficients for the m-th targetand i-th PCT of SST (m =

1, 2, , M; M is total number of target’s modes) respectively; PCT

i

SST

is the i-th PCT of SST’s CSEOF.

To use Eq. (7), we need time lags of the maximum correlation (⇢m
i

) and the results of CSEOF decomposition of SLA-KP and20

SST for the same period (PCT

m

SLA

and PCT

i

SST:::::::::
PCT

(m,n)
SLA ::::

and
::::::::
PCT

(i,n)
SST

); and by Eq. (7), we can estimate the regressioin

coefficients (�m

0 and �

m

i

). Then using the regression coefficient
:::::
Using

:::
the

::::::::
regression

::::::::::
coefficients and SST’s PCTs which cover

the past, we can extend SLA’s PCTs prior to the altimeter record.
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2.2.3 Reconstruction of Sea Level Anomalies

As a starting point, every SST dataset was trimmed to have the time span of 1891-2014. The AVISO was trimmed around the25

KP and the southeast sea of the Japanese islands was removed. Every SST data was cut into three regions: around the KP,

the Northwest Pacific Ocean, and global (no trimming). All grid points that were not continuous in time were removed for

every dataset. In total, we made six different SST combinations. GMSL and mean values were removed from AVISO at each

grid point. Each data point was weighted by the square root of the cosine of latitude to consider the actual area of each grid.

We conducted the CSEOF decomposition for all data (AVISO without GMSL over 1993-2014 and six SST combinations over30

1891-2014) with twelve month nested period. The lagged relation between PCTs of AVISO and SST datasets were estimated

with two years maximum lag. Using the PCTs of each dataset’s CSEOF, we built the multiple linear regression systems

:::::::::
regressions based on Eq. (7) over 1993-2014. In this regression, the target variables were each PCT of AVISO and the predictors

are PCTs of each SST combination; the regression coefficients and their confidence intervals were estimated. Applying Monte

Carlo simulation that used the confidence intervals of regression coefficients, we randomly generated a thousand sample-sets5

of the regression coefficients; by substituding the regression coefficient sets and PCTs of SSTs over 1891-2014 into the Eq. (7),

we reproduced a thousand sets of PCTs of AVISO from 1891 to 2014. By combining the extended PCTs to the LVs of AVISO,

we produced a thousand SLAs without GMSL. By adding randomly generated GMSLs (Church and White, 2011, see section

2.1.4) to the reconstructed SLAs, a thousand of SLAs were generated. Finally, by statistical analysis of each time step of the

random samples, we estimated the mean variation and their confidence intervals of each reconstruction.10

For comparison, in addition to the TG, we used the reconstructed dataset of Hamlington et al. (2011). We trimmed the

dataset to have same domain with this study. The reconstruction results over 1970-2009 are quite reliable, because, after 1970,

the number of available TG record around the world is enough to accurately represent sea level in the reconstruction. The

correlation coefficient (⇢) and NRMSE (Normalized Root Mean Square Error; we obtain this value through dividing RMSE by

the standard deviation of the reference dataset; Eq. (8)) values for the entire domain and each TG location were calculated. By15

using these two values, we decided the best reconstruction case among the six reconstructions which are introduced in section

3.2.

NRMSE = 1� kx
ref

(i)�x(i)k
kx

ref

(i)�µ

xref k
(8)

where k⌅k indicates the Euclidean norm (or 2-norm) of a vector, x
ref

and x are reference data and tested data respectively.

3 Results and Discussions20

3.1 Sea Level Anomalies around the Korean Peninsula

Using the AVISO over 1993-2015, a linear trend map was estimated as shown in Fig. 2. The mean trend was found to be 3.1

± 0.5 mm/yr. The linear trend of mean SLA-KP agrees closely with the GMSL trend, 3.0 ± 0.4 mm/yr (Fig. 2). Due to the

similarity between the long-term trends of mean SLA-KP and GMSL (Fig 2), it is reasonable that we assume
::
to

::::::
assume

::::
that
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the SLA-KP can be described as the combination between background signals (GMSL) and the residuals which contain local25

characteristics of SLA-KP. Most of the SLA-KP trends were close to the mean, but some parts of the East/Japan Sea, and

of the Yellow Sea close to land, exhibited extreme patterns. Some areas showed trends over 7 mm/yr, while in other regions

there were trends less than 1 mm/yr of the linear trend (Fig. 2). To check whether the extreme linear trends patterns had a

significant influence on mean SLA-KP, we compared the mean SLA of the area having the extreme linear trends and the other

area. We calculated the mean correlation (hereafter ⇢̄) of each grid point of AVISO to separate the two areas. For example, ⇢̄30

at a single grid point P was calculated by taking mean of ⇢ values that had been estimated between P and all other points. By

repeating these calculations at all the points of AVISO, we obtained Fig. 3. We deemed
::::::
thought

:
that the SLAs of the regions

having relatively high ⇢̄ fluctuate together, on the other hand, the SLAs of the low ⇢̄ regions oscillate separately. The regions

that had the relatively low correlation coefficient agreed with the regions that had the extreme linear trends (Fig. 2 and 3).

We divided the SLA-KP into two regions according to the mean correlation coefficient; we roughly selected the threshold

value as 0.5, which can separate the area having extreme trend and the remaining area. The mean SLA of each region shows5

a good agreement each other (Fig. 3). This demonstrates that the small-scale extreme features tend to cancel out and do not

significantly impact on mean SLA-KP. This also suggests that the entire region can be treated as local variability fluctuating

about some background long-term mean, an important feature for this reconstruction procedure.

The linear trend at each TG location was estimated and it was compared with the nearest point in AVISO; using the same

data, the ⇢ values were estimated and the mean value of the ⇢ was about 0.72 (Fig. 4). Eleven TGs showed greater than
:
In

::::
Fig.

::
4,10

::
the

:::
11

:::
TG

:::::::
stations

::::::
(square

:::::::
shapes)

::::::::
estimated

:::
the

:::::
linear

::::
trend

::
at
:::::
least 30% of underestimation and twenty-one TGs had greater

than
::::
lower

::::
than

:::
the

:::::::
AVISO,

:::::
while

:::
the

::
21

:::
TG

:::::::
stations

::::::::
(diamond

::::::
shapes)

::::::::::::
overestimated

:::
the

::::
trend

:::
by

::::
than 30%of over estimation.

To figure out the effect of these disagreements, the mean SLA of AVISO was compared with the TG’s mean SLA, and they

showed ⇢̄ = 0.89 and NRMSE = 0.52 (Fig. 5). The linear trend of mean SLA of the TGs was estimated as 4.31 mm/yr and this

value is about 40% higher than the mean SLA of AVISO (3.1 mm/yr). This disagreement likely results from the mismatching15

between locations of TG stations and AVISO grid points, the short time period, and a lack of TGs. Unresolved vertical land

motion at the TGs could also lead to such disagreements.

CSEOF decomposition was conducted to investigate the variability of SLA-KP with twelve month nested period after re-

moving mean values at each grid point. The first mode represents an annual variation considering the spatial patterns and PCT

of the CSEOF (Fig. 6
:
a). Nearly 60% of SLA-KP variations can be presented by the first mode. The second mode shows sim-20

ilar spatial patterns having positive value for all months, and the PCT shows clear positive trend (Fig. 6
:
b). This mode can be

interpreted as representing the rising sea levels, explaining 10% of variations of SLA-KP roughly. The third and fourth modes

were not obviously related to specific modes of variability, explaining only 5% and 3% respectively. Using the four modes,

we can explain about 70% of SLA-KP. The first and second modes have the linear trend, but the linear trend in the first mode

is negligibly small compared with the signal itself (Fig. 7). Hence, we can say that the second mode is the most important to25

estimating SLA-KP.
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3.2 Reconstruction of Sea Level Anomalies

One of the unique characteristics of the current study is that we only used SST as a proxy of former SLA; other studies,

however, used TG data or combined data (TG and SST). There are multiple reasons why we chose not to use TG data for the

current reconstruction. The first reason is due to both the poor data coverage and the poor data quality. There are relatively few30

tide gauges extending into the past in our study area, and even fewer that are of high quality (i.e., unaffected by vertical land

motion, with few gaps, free of non-physical jumps). The second reason, and related to the first, is that due to a methodological

characteristic of the CSEOF analysis, a dataset that is free of gaps (temporally continuous) is needed. To satisfy this require-

ment, we are led to other gridded reconstruction or reanalysis products. There are many types of data that could potentially

be used in our scheme (e.g. wind, ocean current, precipitation, atmospheric pressure). We used only SST for the following

reasons. 1) SST and SLA have a distinct relationship when we analyze both of data through CSEOF analysis (Hamlington

et al., 2016, 2011, 2012b) and Hamlington et al. (2012a) showed that SST could be a good proxy of SLA in this part of the

ocean. 2) Limiting our analysis to SST reduces the possibility of overfitting in the regression scheme we use to reconstruct. As

a final benefit of using SST, we can check against the available tide gauge data to provide an independent comparison to our5

reconstruction.

We made six reconstructions (Sec. 2.1.2 and Fig. 8), and compared the six reconstructions with TG over 1970-2008; we

could not use complete TG coverage for the comparison because there were only a few TG data available before 1970. Both

a correlation coefficient and an NRMSE (Normalized Root Mean Square Error; Eq. 8) were applied for the quantified com-

parison (Fig. 8). Considering the NRMSE, all reconstructions except the global ERSST case provided
:
a better agreement than10

Hamlington et al. (2011); the best reconstruction was the case of COBESST2 of the Northwest Pacific. Regarding correlation

coefficient, two reconstructions (COBESST2 of the Northwest Pacific and ERSST of the Northwest Pacific) showed better

results than Hamlington et al. (2011); the reconstruction from COBESST2 of the Northwest Pacific provided the best result.

Consequently, we selected the reconstruction from COBESST2 of the Northwest Pacific as the best reconstruction regarding

both NRMSE and correlation coefficient. The mean SLA of the best case showed a reasonable agreement with the mean SLA15

of TG over 1965-2014 (Fig. 9). For the period before 1965, however, the result showed considerable disagreement.

Most of the reconstructions show
:
a
:
better agreement than Hamlington et al. (2011) when considering the correlations with

the TGs despite not using TG data during the reconstruction process. The mean of reconstructed SLA shows good agreement

with the Hamlington et al. (2011), but poor agreement with the TG (Fig. 9). This disagreement with TG, however, is likely

caused by lack of high-quality TGs before 1970. We further calculated correlation coefficients and linear trends using TGs and20

reconstructions (current study and Hamlington et al. (2011)) at the each TG location. For the reconstructed data, we calculated

the linear trends at the nearest grid points. We made two correlation comparisons: one between this study and TG, and the other

between Hamlington et al. (2011) and TG. This study’s reconstruction showed higher correlation coefficients than Hamlington

et al. (2011) demonstrating the better agreement between the current reconstruction and TG (Fig. 10a). The linear trends of TG,

current reconstruction, and Hamlington et al. (2011) were estimated at the TG location over 1970 to the present. For the calcula-25

tion, each time series was edited to have the same time span. The estimated linear trends are given in Fig. 10b. The current study
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has similar linear trends with Hamlington et al. (2011) at the TG location, and the variance of the trends are smaller than TG

(Fig. 10b). We conducted t-test to check statistical significances of the trend values, and most of values are statistically signifi-

cant except some values (TG: No. 2, 3, 29, and 47; Hamlington et. al. (2011): No. 3; current study: No. 35). The current study

shows
:
a
:
better agreement with the AVISO than Hamlington et al. (2011) over satellite era (Fig. 11). It also has more fluctuations30

(Fig. 9), and these detailed fluctuations are closer to the AVISO, and this is likely a result of two reasons: 1) using less number

of
:
a
::::::
greater

:::::::
number

::
of

:::::
target modes for the reconstruction process

:::
than

:::::::
previous

::::::
studies

:::::::::::::::::::::::::::::
(Hamlington et al., 2011, 2012a, b), 2)

considering lagged relations between PCTs. Hamlington et al. (2011)
:::::::::::::::::::::::::::::
Hamlington et al. (2011, 2012a, b) used a limited num-

ber (< 90% of total variance) of CSEOF modes to avoid over-fitting issues, but in this study, we used nineteen CSEOF modes

which explain 98% of total variance of SLA-KP by using selective predictors. Further considering lagged relation between35

targets and predictors, we have a better representaion of targets even using less number of predictors.

Using Monte Carlo simulation, the means and standard deviations of reconstructed SLAs were estimated for the best recon-

struction case (COBESST2 of the Northwest Pacific). By applying the means and standard deviations of regression coefficients

(Eq. 7), each mode’s PCT was randomly extended into the past, and the process was repeated by a thousand times. The ex-

tended PCTs were combined with corresponding LVs of AVISO. Through this process, a thousand of SLA were generated, and5

the mean and standard deviation were estimated at each time step and grid point. The resulting mean SLA and 95% confidence

interval are shown in Fig. 12. The wider confidence interval of early years is likely owing to two reasons: the large uncertainties

of observation of SST and the large uncertainties of added GMSL in early years.

The linear trend in the reconstructed SLA over 1900-2014 is estimated as 1.71 ± 0.04 mm/yr, and this value is similar to the

linear trend of Church and White (2011) as 1.70 ± 0.02 mm/yr. A linear trend map of the reconstructed SLA was calculated,10

and the maximum and minimum linear trends are about 2.1 mm/yr and 1.4 mm/yr, respectively (Fig. 12). The difference
:
,
:::::
about

:::
0.7

::::::
mm/yr,

:
between two extreme values of the reconstructed SLA is much less than the AVISO over 1993-2015 (3.1

:::::
about

:
7
:
mm/yr), particularly in the Yellow Sea, (Fig. 2 and 12). This alleviation means that the extended reconstruction period can

reduce the impact of internal variability on estimated trends.

4 Summary15

There were two primary goals of the work presented in this study: 1) Improve the understanding of the sea level around the KP

both in the past and present and 2) Present a new reconstruction scheme for local areas with insufficient tide gauge coverage.

To meet these goals, we used the satellite altimeter data
:::
over

:::::::::
1993-2015

:
and the TG data to investigate the characteristics of

SLA-KP. The linear trend of SLA-KP was estimated as 3.1 ± 0.5 mm/yr from the satellite altimeter data (Fig. 2). However,

when we looked into the trend map, some areas (such as near the river mouth in the Yellow Sea and in the middle of the20

East/Japan Sea) showed significant departures from the mean trend (Fig. 2).

To investigate this further, the reconstruction was performed using AVISO and two SST reanalysis datasets. Each SST

dataset was divided into three cases (global, the Northwest Pacific and KP). The six datasets were decomposed by CSEOF

analysis; the AVISO was decomposed into CSEOF modes after removing the GMSL. The decomposed LVs played a role of
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basis functions for the reconstruction, and the main process of reconstruction was extending the PCTs of each mode into the25

past. Six reconstructions were generated by this study over 1900-2014. Using a correlation coefficient and an NRMSE, the best

reconstruction was selected. The best reconstruction was produced by COBESST2 of the Northwest Pacific. Through the best

reconstruction results, the linear trend of SLA was estimated as 1.71 ± 0.04 mm/yr over 1900-2014 (Fig. 12). The extreme

linear trends shown in Fig. 2 did not appear in the reconstructed SLA-KP (Fig. 2 and 12).

While we focus here on a specific example (the KP), this study can be used to inform other efforts in studying past and30

present sea level in areas with poor tide gauge coverage. Our interest was on the KP, specifically, but it was found that including

information from the Northwest Pacific improved the localized representation of sea level. Consequently, considering large-

scale ocean variability and teleconnections between different parts of the ocean is important when selecting the reconstruction

domain. This study also demonstrates that TG data may not even be necessary to understand sea level in the past. Using only

satellite-based sea level information and SST, we found dramatic improvements between the current reconstruction and past5

efforts, particularly when comparing to the TG variability. Many TGs are influenced by vertical land motion that cannot easily

be corrected for. Relying on SST alleviates concerns associated with non-ocean related trends. It should be noted that this

reconstruction may not work as well in other parts of the ocean, especially those with a less pronounced agreement between

sea level and SST. This study does, however, demonstrate the extended efforts that must be made to obtain accurate information

about past sea level. As planning efforts get underway in more parts of the world, such comparisons between past and present10

sea level will become more important, and alternative approaches to simply using TG information are going to be needed.
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Figure 1. (a) The locations of tide gauge station used in this study around the Korean Peninsula. The black square is Wajima station which

has the longest record length (1930-present); (b) The number of tide gauge stations provided by PSMSL around the Korean Peninsula
:
.
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Figure 2. (a) Linear trend map of sea level anomalies around the Korean Peninsula from AVISO without annual signal from 1993 to 2015

:::
(the

:::::::::
red-colored

:::
area

:::
has

:
a
:::::
higher

:::::
linear

::::
trend

:::
than

:::
3.0

:::::
mm/yr,

:::
and

:::
the

::::::::::
blue-colored

:::
area

:::
has

:
a
:::::
lower

::::
linear

::::
trend

::::
than

::
3.0

::::::
mm/yr); (b) Spatial

mean time series of sea level anomalies around the Korean Peninsula (gray
::
red) and global (black

:::
blue) from AVISO without annual signal

:
.
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Figure 3. (a) Mean correlation coefficient map of sea level anomalies around the Korean Peninsula from AVISO without annual signal from

1993 to 2015; (b) Spatial mean time series of sea level anomalies from two regions of (a) where the red-colored area of (a) is high correation

coefficient zone and the blue-colored area is low correlation coefficient zone.
:
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Figure 4. Linear Trends comparison (shapes) and correlation coefficients (colors) between tide gauge and the closest AVISO grid point (<

12 km) from 1993 to 2014, where FD = SLRTG / SLRAVISO (without annual signals).

Figure 5. Spatial mean time series of sea level anomalies of tide gauge and AVISO around the Korean Peninsula without annual signal.

18



Figure 6. The first (a) and second (b) CSEOF modes of AVISO around the Korean Peninsula.

19



Figure 7. Mean SLA of the four biggest modes of CSEOF decomposition of AVISO around the Korean Peninsula
:
.

Figure 8. Results of goodness of fit test for Reconstructed Mean SLA according to Hamlington et al. (2011) and TG Mean SLA; the top

figure include normalized root mean squared error and the other include the correlation coefficients; here subscripts K, G, and N represent

around the Korean Peninsula, Global, and the North-West Pacific, respectively and CB2 and ER represent COBESST2 and ERSST
:
.
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Figure 9. Comparison of spatial mean time series of sea level anomalies around the Korean Peninsula without annual signal; the top figure

is the expansion of a box in bottom figure.
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Figure 10. (a) Comparison of correlation coefficients between TGs and the reconstructions over 1970-2008; (b) Comparison of linear trends

over 1970-2008
:
.

Figure 11. (a) Correlation coefficient map between Hamlington et al. (2011) and AVISO over 1993-2008; (b) Correlation coefficient map

between this study and AVISO over 1993-2008.
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Figure 12. (a) Linear trend map of the best reconstruction of current study from 1900 to 2014; (b) Spatial mean time series of sea level

anomalies (MSLA) of the best recostruction case (COBESST2 of Northwest Pacific) and 95% confidence interval.
:
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