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Abstract 

 

 

A well-known “conundrum” in ocean dynamics has been expressed as follows: “How does the 

energy of the general circulation cascade from the large climate scales, where most of it is 

generated, to the small scales, where all of it is dissipated? In particular, how is the dynamical 

transition made from an anisotropic, 2D-like, geostrophic cascade at large scales-with its strong 

inhibition of down-scale energy flux-to 3D-like, down-scale cascades at small scales.” (Muller, 

McWilliams and Molemaker, 2002). To study this as yet unsolved problem, we introduce in the 

analysis a dynamical consideration based on the mesoscale model developed by Dubovikov (2003) 

and Canuto and Dubovikov (2005) within which in a quasi-adiabatic ocean interior the large scale 

baroclinic instability generates mesoscale eddy potential energy (EPE) at scales of the Rossby 

deformation radius ~ dr . Since at those scales the mesoscale Rossby number is small, the generated 

EPE cannot convert into eddy kinetic energy (EKE) and cascades to smaller scales at which the 

spectral Rossby number  increases until at some horizontal scales  it reaches 

. Under this condition, EPE converts into EKE and thus the cascade of the former 

terminates while the inverse EKE cascade begins. At scales ~ dr  the inverse EKE cascade 

terminates and reinforces the EPE cascade produced by the large scale baroclinic instability thus 

closing the mesoscale energy cycle. If the flow were exactly adiabatic, i.e. eddy energy were not 

dissipated, the latter would increase unlimitedly at the expense of the permanent production of the 

total eddy energy (TEE) by the mean flow. However, at the same scales  where the EPE 

cascade terminates and the inverse EKE cascade begins, the vertical eddy shear reaches the value 

of the buoyancy frequency N  that gives rise to the Kelvin-Helmholtz instability. The latter 

generates the stratified turbulence which finally dissipates EKE. A steady state regime sets in when 

the dissipation balances the TEE production by the mean flow. 
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1.Introduction 
 

For a long time it is recognized that one of the most enigmatic conundrums of ocean general 

circulation is: “how and where does the energy of the general circulation cascade from the large 

climatic scales, where most of it is generated, to the small scales, where all of it is dissipated?”  

“In particular, how is the dynamical transition made from a 2-D like geostrophic cascade at large 

scales-with its strong inhibition of down-scale energy flux-to the more isotropic, 3D-like, down-

scale cascades at small scales” (Muller et al., 2002; Mc Williams, 2003). In fact, interior ocean 

flows in the adiabatic approximation are sets of 2D ones within isopycnal surfaces between which 

non-linear interactions vanish. As discussed by Kraichnan (1965, 1967), in 2D flows only inversed 

(upscale) energy cascades are possible. Dubovikov (2003, D3) and Canuto and Dubovikov (2005, 

CD5) argued that mesoscale eddy energy (EKE) does cascade upscale, a process that is now 

commonly recognized (Ferrari and Wunsch, 2009; Bruggemann and Eden, 2015; Jansen et al., 

2015) and confirmed by sea surface height (SSH) data (Scott and Wang, 2005; Scott and Arbic, 

2007). It is worth noticing that the mentioned energy cascade is rather different than that in the 

two-level geostrophic model (Salmon, 1978,1980, 1998) within which at scales larger than the 

Rossby deformation radius dr  there are the down-scale baroclinic energy cascade and the upscale 

barotropic one while at scales less than dr  both cascades are directed down-scale. It is clear that 

such a flow contains no “conundrum”. It is widely thought (e.g. Bruggemann and Eden, 2015) that 

because of the inverse direction of the energy cascade, the EKE has to be dissipated at basin scales. 

Several such mechanisms have been discussed: bottom friction (Arbic et al., 2009; Wunsch and 

Ferrari, 2004; Muller et al., 2002; Barkan et al., 2015), energy dissipation in the vicinity of the 

surface (Muller et al., 2002; Ferrari and Wunsch, 2009), generation of internal lee waves 

(Nikurashin and Ferrari, 2011; Muller et al., 2002). In particular, Nikurashin and Ferrari (2011) 

estimated the dissipation through the lee waves to be 0.2 TW and the bottom drag 0.12 TW which 

is somewhat smaller than the results of fine resolution models for bottom friction by Arbic et al. 

(2009) ranging between 0.14 and  0.65 TW as well as by Bruggemann and Eden (2015), 0.31  

0.23 TW. These results should be compared with the 1 TW wind power input into the ocean as 

estimated by Wunsch (1998) and 1.85 TW as estimated by von Storch (2012) from eddy-permitting 

simulations. Wunsch and Ferrari (2004) and Ferrari and Wunsch (2009) concluded “that drag in 

the bottom boundary layer is too weak to represent the dominant eddy energy sink”. The opposite 

opinion is expressed by Jansen et al. (2015): “there is both observation and numerical evidence for 

strongly enhanced dissipation near the bottom boundary”. Nevertheless, they recognized that 

“exact pathways of mesoscale EKE to dissipation remain unknown” what is in accordance with 

the conclusion of Wunsch and Ferrari (2004): “little is known about mesoscale eddy dissipation; 

models can say little”. To clarify this issue in numerical models, one needs to perform simulations 

resolving the interval from the large scales ~1000 km to the Kolmogorov ones that is impossible 

now. Thus, at present the problem can be studied in analytical models only like the mesoscale 

dynamical model D3/CD5,6. Within that model, in the propounded essay we propose a pathway 

to the dissipation of mesoscale energy and a solution of the outlined conundrum together with the 

other mesoscale problems (we restrict ourselves by considering an adiabatic ocean only and, 

therefore, don’t account for effects of the surface and boundary layers like bottom drag). In the 

development of the proposed pathway we apply the following inputs: (1) the EKE cascade in 2D 

flows is always inverse (upscale), (2) the EPE cascade is always down-scale, (3) intense release  

EPEEKE begins at scales where the spectral Rossby number ( )Ro k which at large scale is 

small, increases to unity, (4) generation of the stratified turbulence (ST) begins at scales where the 
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spectral Richardson number ( )Ri k which at large scales is large, decreases to unity and thus the 

Kelvin-Helmholtz instability occurs, (5) at  scale d~ r  the mean potential energy (MPE) generates 

EPE only, (6) at  scale d~ r  there occurs the transition EKEEPE but not EPEEKE, (7) the 

assumption that in the scale interval between one kilometer and several tens meters which thus far 

was not resolved in fine resolution simulations of mesoscales, the slopes m  of the EKE and EPE 

spectra are approximately the same m ~2 as at resolved scales from one kilometer up to dr . The 

effects (1)-(5) are commonly recognized. The effect (6) follows from the D3/CD5 model which is 

based on equations for mesoscale fields at scales d~ r  with account for non-linear terms by contrast 

to the linear approximation widely used for study of mesoscales beginning with the Eady model. 

In order to check the assumption (7), it is necessary a better resolution than achieved thus far. Still, 

the assumption looks rather realistic since the interval between one kilometers and, say, 100 meters 

is less than that between d~ r  and one kilometer. Before applying the D3/CD5 model for non-linear 

terms to mesoscales, we developed and successfully tested a model of non-linear terms in different 

turbulent flows as presented in a series of paper (Canuto and Dubovikov, 1996-1999). Modeling 

of non-linear terms in D3/CD5 mesoscale equations allowed us to obtain a set of quantitative 

results compared favorably with observation and OGCMs data the majority of which are crucially 

determined by the non-linear interactions. The set of favorable comparisons of the model 

predictions with observation data is presented by Canuto et al. (2017): a) WOCE (2002) data for 

mesoscale kinetic enrgy in different locations, b) Philips and Rintoul (2000) measurements data 

for mesoscale diffusivity in ACC (143E, 51S), c) global data for mesoscale drift velocity by Fu 

(2009) and Chelton and Schlax (2011) at 150W and 110 W.  In fine resolution simulations Luneva 

et al. (2015) validated the model parameterizations for the surface eddy kinetic energy and for the 

vertical buoyancy flux in the mixed layer. It is worth mention the validation of the model 

parameterization for the sub-mesoscale tracer flux with account for the effect of wind by Canuto 

and Dubovikov (2010) with use of fine resolution simulation data by Capet et al. (2008). 

In the present study we discuss the following problems: 

(I) At what scales does the inverse energy cascade start up and what is its source? 

(II) Why does the kinetic energy spectrum that begins at the large climatic scales ~1000 km where 

the most part of the energy is generated, have a maximum not in the vicinity of the upper boundary 

of the spectrum like in 3D turbulent flows, but at mesoscales ~ dr  where dr  is the Rossby 

deformation radius? 

(III) What is the sink of the inverse (upscale) EKE cascade? What energy reservoir does the 

cascade flow into: either (a) mean kinetic energy (MKE) or (b) eddy potential energy (EPE)? 

Results of studies within different approaches reject scenario (a) showing a rather weak exchange 

between EKE and MKE (see, for example, results of the numerical simulations by Boning and 

Budich, 1992, Figs. 8,9,  and of the ocean analog of the observed atmospheric Lorenz energy cycle, 

1960, summarized by Holton, 1992, Fig.10.13 adapted from Oort and Peixoto, 1974). The same 

conclusion follows from the analytical mesoscale model D3, CD5 referred to above (see 

Appendix). As for as scenario (b), at first sight it is inconsistent with the just cited data which, as 

expected, show the opposite transformation EPEEKE after integrating over the whole spectra. 

However, this does not mean that EPE releases in all regions of its spectrum. Indeed, if at scales 

~ dr  the release EPEEKE occurred as well, EKE would be unlimitedly stored at dispense of the 

inverse EKE cascade due to the weakness of the EKEMKE transfer (see Appendix). Thus, we 

may expect that at scales ~ dr  the transfer EKEEPE occurs. In addition, only a down-scale 
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cascade of EPE could prevent its unlimited store at those scales. Note that the down-scale direction 

of cascades of variances of eddy scalar functions is the inherent property of 2-D flows (Lesieur, 

1990). Within D3, CD5 model the discussed condition is satisfied.  

As for the problem (I) about scales  where the inverse energy cascade starts due to the 

release EPEEKE, here we have no such quantitative model as at scales ~ dr . Nevertheless, we 

will be able to carry out a semi-quantitative analysis to evaluate scales  where the spectral Rossby 

number ( )Ro k  reaches unity, i.e. . Under this condition EPE releases and generates 

the inverse cascade of EKE. This occurs at . To perform the analysis, we assume that 

the slopes of the EKE and EPE spectra are similar to ones found at scales of few kilometers in fine 

resolution simulations. Furthermore, at the same scales ~  the spectral Richardson number 

decreases to unity that allows the vertical shear fluctuations to create the Kelvin-Helmholtz 

instability. The later generates the stratified turbulence (ST) which produces a down-scale 3D 

energy cascade to the Kolmogorov scales where the energy is dissipated. Thus, at scales  there 

is a competition between the production of EKE which cascades upscale, and that of ST which 

dissipates the eddy energy. At scales ~ dr  the EKE cascade terminates and together with the 

baroclinic instability generates the EPE cascade closing the mesoscale energy cycle as   presented 

in Fig.1. It is clear that if the generation of the inverse EKE cascade exceeds that of ST one, the 

mesoscale energy is dissipated weakly and thus the maxima of the EKE and EPE spectra at scales 

~ dr  become rather pronounced. And vice versa, if the generation of ST exceeds feeding EKE 

cascade, the latter is weak so that the maximum of the EKE spectrum cannot be so pronounced. 

Since numerous observations in the real Ocean show a considerable growth of the EKE spectrum 

at scales ~ dr  (Stammer, 1998), we may conclude that at scales  the converse of the down-

scale EPE cascade into the up-scale EKE one exceeds the generation of ST that is in accordance 

with the quasi-adiabatic nature of the interior ocean flow. The outlined conversion EKE EPE 

is analogous to the conversion KE PE in the oscillation of a pendulum with a low attenuation. 

In steady state the loss of EKE due to the generation of ST is balanced by feeding the total eddy 

energy (TEE=EPE+EKE) by the mean flow. The outlined scenario shown In Fig.1 which we 

substantiate below, suggests a solution of the conundrums listed above and details the internal 

structure of the eddy blocks in the schemes of the energy exchange between large scale and 

mesoscales in the ocean interior (see, for example, Boning and Budich, 1992, Figs. 8,9 and the 

oceanic analog of the observed atmospheric Lorenz energy cycle summarized by Holton, 1992, 

Fig.10.13). In Fig.1 we omit the block MKE since, on the one hand, the exchange between MKE 

and EKE is small in comparison with the exchange between EPE and MPE, as we show in 

Appendix and have noticed above, and, on the other hand, in the present study we are not interested 

in the energy exchange between MKE and MPE. 

The organization of the paper is as follows. In section 2 we discuss the budget equations 

for the EKE and EPE. In section 3 we outlines the EPE and EKE mesoscale cascades and their 

mutual conversion in the framework of the idealized scheme when the conversion EKE EPE 

occurs at scales ~ dr  while EPE EKE at the minimal scales of the cascades . In section 4 we 

list conditions of realization of the sketched scenario which we discuss in more details in the rest 

part of the paper. In particular, in section 5 within the D3 and CD5 mesoscale models we evaluate 

the transition EKE EPE at scales ~ dr  while in section 6 the transition EPE EKE at scales 

. In section 7 we discuss the loss of TEE due to the production of ST and show that it occurs 

at the same scales ~  where there are the termination of the EPE cascade and the beginning of  

(1/ ) ~1Ro

~100m

~

~



 ~

 

~
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EKE one. In section 8 we evaluate the vertical scale of the generated ST turbulence and in section 

9 we summarize the obtained results. In Appendix we evaluate the energy exchange between MKE 

and EKE and show that it is weaker than the generation of EPE by MPE.  

  

2. Production of EKE and EPE in the adiabatic limit 

 

We begin with the equations for the horizontal eddy velocity and buoyancy fields which 

are obtained from the equations for the full fields  and b b b   by subtracting 

equations for averaged fields (bar denotes large scale fields averaged over sub-grid scales 

somewhat exceeding the eddy ones while prime marks eddy fields). In adiabatic approximation 

we have: 

 

   

*,t z HNL f p

NL

             

      

u

u

u U u U u e u

U u U u

          (2.1a,b) 

 

         0,t b bb b b NL NL b b                U U U U              (2.2a,b) 

 

where ( , )wU u  is 3D velocity field,  is the 3D gradient operator, H  is its horizontal component, 

,bNL
u

 are the non-linear terms in corresponding equations,  is eddy pressure, 

 is the reference density. Next, we multiply Eqs. (2.1a) and (2.2a) by  and 2/b N  

accordingly and average over the sub-grid scale to derive the evolution equations for eddy kinetic 

and potential energy K , W : 

        

2

2

*

/ 2 ,

, , trace( ), / 2

      

          

U U u

u R u u

t K

e L e L

K K K K H K

K K P

P P P P p P K

  (2.3a,b,c,d,e)  

  
2 2

22 2

/ 2 ,

, / 2

      

     

U U

U

t W

W

W W b N P

P N b b W b N

       (2.4a,b,c)) 

    

where  is the eddy Reynolds stress, 
,K WP  are production rates of EKE and EPE. In Eqs. 

(2.3a) and (2.4a) the second terms represent the advection of  and  by the mean flow while 

the third ones may be interpreted as their diffusion. Dubovikov and Canuto (2005) evaluated those 

terms and concluded that they are smaller than 
,K WP . In this sense the eddy production is 

approximately a horizontally local process. Thus, below we neglect the advection/diffusion terms 

in Eqs. (2.3a) and (2.4a), i.e. consider the equations in the local approximation which allows us to 

parameterize eddy correlation functions in terms of large scale fields at the same locations. Next, 

the first term in (2.3b) is due the exchange EPE EKE while the second one is the production of 

EKE by the mean flow. It is worth noticing that after averaging the direct production of EKE by 

MPE 
*

 u H p  vanishes. This conclusion is in an agreement with the referred to above diagrams 

u = u +u



0 *p p 

3 3

0 10 kgm  u

 R = U U

K W
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of the energy exchange between mean flow and mesoscale eddies by Lorenz (Holton, 1992) and 

Boning and Budich (1992) in which an exchange between EKE and MPE is absent. 

 

 Recall that Eqs. (2.1)-(2.4) correspond to the adiabatic approximation of the 2D eddy 

turbulence which neglects the energy transfer to the 3D stratified turbulence (ST) occurring due to 

the Kelvin-Helmholtz instability. Since ST is generated by the shear fluctuations, its production 

STP  is at expense of EKE. With account for STP , energy equations (2.3), (2.4) in the horizontally 

local approximation are modified as follows: 

 

,

eff

t K K ST t WK P P P W P                  (2.5a,b) 

 

The ST kinetic energy further cascades to the Kolmogorov scale where it is finally dissipated. 

Thus, the present model (2.5) overcomes the framework of the adiabatic approximation. 

Nevertheless, the relation 0WP   keeps its validity in the more accurate approximation (2.5).  

Next, as we show in Appendix, in the ocean interior the second term of KP  in (2.3b) which 

represents the EKE production by mean flow, is small in comparison with the first one which is 

due to the EPE EKE conversion. Thus, we may adopt the approximation: 

 

*K HP p   u      (2.6)   

 

As for the production term in (2.4), we present it in the following form: 

 

                (2.7a,b) 

   

where we use the notations  for the buoyancy frequency, , VF w b   for the 

horizontal and vertical components of the buoyancy flux and  for the slope of the mean flow. 

Transform  in the hydrostatic approximation as follows: 

 

     (2.8) 

   

and notice that the horizontal length scale of coarse resolution mean fields as well as of correlation 

functions of eddy fields is of the order of  while that of mesoscale fields . 

Therefore, the ratio of the last term of (2.8) to the penult one is  and so it is negligible. 

From Eqs. (2.6)-(2.8) we get the relations 

 

            (2.9a,b) 

 

together with the relation for the production of the total eddy energy TEE=EKE+EPE  

 

    (2.10) 

 

~ Kl

2,W H V HP F N b       F s s

2

zN b  H b F u

s

VF

* * * * * * * *V z z z z H z H HF w b w p w p p w w p p w p p p                                u u u

3~10L km ~ dr

~ / 0.1dr L 

*,W K H W W zP P R R w p       F s

T H WP R  F s
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The interpretation of the terms in the right hand side of (2.9a) is obvious: the first term represents 

the transformation EKE EPE, the second one determines the transition MPE  EPE due to the 

baroclinic instability of the mean flow, while the last term represents the redistribution of EPE 

between different layers. Indeed, the integral of that term over the ocean depth vanishes as it 

follows from the boundary condition which requires vanishing  at the ocean surface and bottom. 

Thus, the productions (2.6), (2.7) and (2.9) averaged over the ocean depth  are: 

 

   ,     0WR     

                (2.11a-d) 

 

where 

     (2.12) 

 

3. Cascades of EKE and EPE  
 

        We recall that in idealized turbulent cascades the energy sources and sinks in wave-number 

space are separated by a rather extended inertial interval within which the energy production, 

transformation and dissipation are small. The sources and sinks are characterized by the rates of 

productions 
,K WP  at the cascade beginnings and leakages , K W  where the cascades terminate. Of 

course, in real flows the above conditions may be satisfied rather roughly. In the majority of 3D 

turbulent flows, the spectra of sources are concentrated at the largest scales of the energy spectrum 

while the sink is the viscous energy dissipation K  occurring at Kolmogorov scales which are the 

smallest ones of the spectrum. The cascade sink   is not necessarily the viscous dissipation   . For 

example, in 2D homogeneous turbulence, the sink of the inverse energy cascade occurs at the largest 

scales of turbulence. The energy cascades from the sources to the sinks are missed in the linear 

approximation since they are produced by the non-linear interactions in the Navier-Stokes equation 

(NSE). The dominating non-linear interactions are ones between modes with close wave numbers, 

i.e. the non-linear interactions are local in k-space. It means that the energy flows fluently from the 

source to sink like water in a pipe. On the basis of the similarity Kolmogorov found the celebrated 

energy spectrum  for homogeneous isotropic turbulence. Analyzing the similarity in more 

details within the renormalization group approach, Dubovikov (1993), Canuto and Dubovikov 

(1996, 1997) developed Langevin-type equations for turbulent flows which have no adjustable 

parameters and yet with a satisfactory accuracy they yield spectra and turbulent statistics for a wide 

class of flows (Canuto and Dubovikov, 1996-1999). 

           As we notice in Introduction, in the case of 2D mesoscale turbulence there are the two energy 

cascades: the downscale cascade of EPE and the up-scale one of EKE. The EPE is generated by the 

baroclinic instability of the large scale flow, i.e. by mean potential energy (MPE) at scales ~ dr  at 

which the Rossby number is small and, therefore, EPE cannot noticeably transform into EKE. As a 

result, the EPE cascades downscale until at ~1/k  the spectral Rossby number ( )Ro k  reaches 

unity that allows the conversion EPE  EKE. Thus, at scales ~  there occurs the leakage W ( )

of EPE and the production ( )KP  of EKE which in turn cascades up-scales. Further, as we notice in 

w

H

, ,K H V W V H T HP p F P F P          u F s F s

0

1

H

H dz



  

5/3~ k
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Introduction, a sink of the EKE cascade at scales ~ dr  may be either MKE or EPE. In Appendix we 

show that the later dominates that results in a pronounced maximum of EKE spectrum at 

. Thus, at scales ~ dr  the terminating downscale EKE cascade feeds EPE and reinforces 

the EPE cascade produced by the large scale baroclinic instability thus closing the mesoscale energy 

cycle. In summary, at the maximal scales of the mesoscale spectra  there are the production of 

EPE  and the leakage of EKE  while at the minimal scales  there occur the 

production of EKE  and the leakage of EPE . Since both  and  considerably exceed 

the Kolmogorov scales  at which the viscous dissipation K  occurs, we conclude that the latter 

is negligible in the region of the mesoscale cascades 1/ 1/dr k   in comparison with the leakages 

 and  which feed the productions and  correspondingly. As for K , it is 

produced by the stratified turbulence, ST, which is generated by the Kelvin-Helmholtz instability at 

scales  as we discuss below. Thus, besides of the EKE and EPE cascades, there also exists the 

third, the ST down scale one between the scales  and  which ultimately terminates due to the 

viscous dissipation at scales ~ . 

            Because of the absence of the viscous dissipation within the whole interval of the mesoscale 

spectra between the scales  and , we may treat  as negative productions, i.e. 

 

  , ,(sink) (sink) 0K W K WP        (3.1) 

 

Since the existence of the EKE and EPE cascades imply that the spectra of their productions and 

sinks are concentrated at the different ends of the cascades, Eqs.(2.9) are satisfied at scales  

and  separately. Then from (2.9a) with account for (3.1) and the fact that the spectrum of 

 is concentrated at scales ,  we obtain: 

 

     
( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0

K d K d W d H W d

W W K W

r P r P r R r

P P R





      

    

F s
           (3.2a,b)  

 

The transition of  from the source to the sink is characterized by the cascading fluxes (CF) 

 in wave number space which are directed from the sources to the sinks. In stationary flows 

we have 

 

  (3.3) 

 

Since in Eq.(2.5) STP  is contributed at scales  only, at the scales  from (3.2), (3.3) we 

obtain the following relations for the productions and CFs: 

 

( ) ( ) 0,

( ) ( ) ( ) 0

KK d K d

W W d K d H W d

r P r

P r P r R r

    

       F s
               (3.4a,b) 

0~ ~1/ dk k r

~ dr

( )W dP r ( )K dr ~

( )KP ( )W dr

~ Kl

( )K dr ( )W ( )W dP r ( )KP

~

~ Kl

Kl

~ ~ dr ,K W

~

~ dr

H F s ~ dr

,K W

,K W

,, , ,(source) (sink) (sink) 0K WK W K W K WP P     

~ ~ dr
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where KP  is given in (2.6). The source of EKE cascade occurs at scales  and, therefore, from 

(2.5a) we have (source)KP = ( )K STP P . Thus, from (3.3) we obtain: 

 

( ) 0,

( ) ( ) ( ) ( )

K K ST

WW W K W

P P

P P R

   

     
           (3.5a,b)  

 

The outlined idealized scheme of the energy cascades and productions presented in (3.3)-(3.5), 

may be sketched by Fig.1 which demonstrates that at scales  where are the source of EPE and 

the sink of EKE, we have relations (3.4), while at scales  where are the source of EKE and the 

sink of EPE as well as the source of ST, we have relations (3.5). 

Next, from (3.4) and (3.5) we get: 

 

, 0K H W ST ST ST WP R P P      F s            (3.6a,b) 

 

where all the functions  above are defined as follows: 

 

     (3.7) 

 

In the next section we list sequences of the realization of the outlined EPE EKE cycle and its 

coherence with the generation of the ST cascade. 

 

 

4. Coherence of the EPE, EKE and ST cascades  
 

The coherence of the outlined EPE, EKE and ST cascades implies the following conditions:  

1) Occurrence of the sink of the EKE cascade at scales  implies a negative production of EKE 

at those scales: 

 

( ) 0K dP r       (4.1) 

 

2) At scales ~ dr  the mesoscale Rossby number should be small to prevent the transformation EPE

EKE, 
1/2 / ( ) 1 dRo K fr     (4.2) 

 

3) Since spectral integrated EPE does convert into EKE, we expect that at higher k  (smaller scales) 

the spectral Rossby number increases and at some wave numbers  it reaches unity 

 

      (1/ ) ~1Ro      (4.3) 

 

where 

~

~ dr

~

A

( ) ( )dA A r A 

~ dr

~1/
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max

21
( ) ( ) / , ( ) ( )

2

k

k

Ro k kU k f U k E k dk                (4.4a,b) 

 

where  is the largest wave number of the mesoscale energy spectrum ( )E k  . At scales 

satisfying (4.3) the transformation process  EKE EPE   changes its direction and EPE 

transforms into EKE.  

4) To generate the ST cascade at the same scales , the spectral Richardson number should 

reach unity  

 

(1/ ) ~1Ri      (4.5) 

 

The mesoscale spectral Richardson number relates to the spectrum of the mesoscale shear 
22

zS   u  as follows: 

min

1

2 2( ) ( )



 
  

 
 

k

k

Ri k N S k dk      (4.6) 

  

Under condition (4.5) the eddy turbulence creates the Kelvin-Helmholtz instability which 

generates ST which finally dissipates the eddy energy. 

In the subsequent sections we show that within D3, CD5,6 models conditions (4.1), (4.2) 

are satisfied at scales  while at scales  determined by condition (4.3), condition (4.5) is 

satisfied as well.  

 

 

5. Transformation EKE EPE at scales  

 

To analyze condition (4.1), we present KP   (2.6) as follows: 

 

     
1

*

,

,

         

    

e u u e u u u u e

u e u u u

K z g z g a a g z

g z H a g

P f f f

f p
          (5.1a,b,c)  

 

where  are the geostrophic and a-geostrophic components of the eddy velocity. Consider 

the approximation of a stationary mean flow and infinite large scales in which limit mean fields 

are independent on horizontal coordinates and time while the mesoscale turbulence is stationary 

and horizontally homogeneous. Then in Fourier space relations (5.1) have the form: 

   
 

      (5.2a,b,c)   

maxk

~

~ dr ~

 ~ dr

g a( )u u

 

* 2

( , ) ( ) Re ( , ) ( , ) ,

( ) ( ), ( ) ( , )

K a g z

a a K K

P z f z z

P z d P z

     

   

k k + k u k u k e

u k u k k k
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In these formulae, following Killworth (1997, 2005) and D3, CD5, we use the same symbols KP   

and u  for the designation of the production and the mesoscale velocity fields in both physical and 

Fourier spaces. The analogous kind of notations are adopted below in all mesoscale equations and 

mesoscale fields and functions. The difference is that in Fourier space the independent variables 

are the wave vector k  (or k  k ) and the frequency  .  Since in physical space  and 

, in Fourier space in the approximation of axi-symmetric eddies we have the relations: 

 

( ) ( ), ( ) ( ), /a a g z gu k u k k   u k n u k n e n k        (5.3a,b,c)  

 

Equations of D3/CD5 model differ from those of the widely applied linear approximation by the 

presence of non-linear terms. In particular, in Eqs. (2.1a,b) for the mesoscale velocity in Fourier 

space in the vicinity of the maximum of the energy spectrum, i.e. at ~1/ dk r , the non-linear term 

equals 

 

,            (5.4a,b)  

 

where the minus sign is due to the inverse direction of EKE cascade. After Fourier transformation 

of (2.1a) with respect to the horizontal coordinates and time, with use of (5.3), (5.4) and the 

dispersion relation  we obtain [see details of the derivation in D3, Eqs. (24b-d), and 

CD5, Eq.(10a), (15a)]: 

 
2( ) [ ( )] ( )a d z gfu k i k u k       k u u e β     (5.5)  

 

where  fβ  and du  is the eddy drift velocity whose expression in terms of large scale fields in 

a pure adiabatic ocean is given in Eq.(25m) of D3 and Eq.(4f) of CD6. Substituting (5.4) and (5.5) 

into (5.1a), we notice that the imaginary term of (5.5) does not contribute to the real part of 

( , )KP zk  (5.2a). Since at scales ~ dr  the ageostrophic component of the mesoscale velocity is 

small, from (5.2), (5.3) and (5.5) we deduce the following relation for the spectrum of the EKE 

production at ~1/ dk r  : 

 

( ) 2 ( ), ~1/K dP k E k k r                 (5.6a,b) 

    

 

Integrate this spectrum around ~1/ dk r   in the interval ~1/ dk r  in which the mesoscale energy 

spectrum is concentrated. With account for (5.4b) we obtain the EKE production at scales ~ dr   

  
1 3/2( ) 2 0K d dP r r K       (5.7)  

 

which satisfies condition (4.1) and means that at the scales ~ dr  EKE transforms into EPE. To get 

a pronounced maximum of ( )E k  at those scales, the absolute value of ( )K dP r  needs to exceed the 

acurl 0u

gdiv 0u

( )   
u

k uNL
1 1/2

dK r
 

d  k u
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dissipation of mesoscale energy which practically coincides with the dissipation of ST in analogy 

with a weakly attenuating pendulum in which the transformation PE KE  exceeds the 

dissipation. To check the analogous condition for mesoscales, we adopt 42 10 dr m , 210K   
2 2m s  and the ocean depth ~1H km . Then from (5.7) we obtain the column production 

 
4 3 3( ) ~10 

K dH P r m s     (5.8) 

 

Compare this result with the column production of TEE 
TP H  using (2.11c) and the Gent-

McWilliamc (1990, 1995, GM) large scale horizontal  buoyancy  flux: 

 

  F
GM

H M H b     (5.9) 

 

where 
3 2 1~10 

M m s  is the mesoscale diffusivity. We obtain 

 
22 5 3 3~ ~10  sT MHP N H m s    (5.10) 

 

From (5.8), (5.10) and (3.6a) we obtain the condition 

 

( )K d T ST STP r P P      (5.11) 

 

which ensures the realization of the pronounced maximum of EKE spectrum. 

  

 

6. The transformation EPE EKE at scales  
 

As we noticed in Introduction, although at scales less than  we have no such a quantitative 

models as D3 and CD5, we are able to perform a semi-quantitative analysis in that region assuming 

that the slope of the energy spectrum deduced from the data of fine resolution simulations (Zhong 

and Bracco, 2013) and observations (Callies and Ferrari, 2013) at scales ~ few kilometers 

 

 ( ) ~
m

d dE k r K r k


,    ~ 2m     (6.1) 

 

is maintained to scales of  the order of tens meters. Then from (4.4) we obtain the velocity and the 

Rossby number at scales ~1/ k :   

 

           
( 1)/2 1 ( 3)/21/2 1/2( ) ~ , ( ) ~
m m

d d dU k K r k Ro k fr K r k
    

         (6.2a,b) 

 

Thus, condition (4.3) is satisfied at scales  for which 

 

       
3 2

/ ~ , 3
m

d dr r f K m
 

     (6.3) 

 ~

~ dr
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At those scales EPE finally releases into EKE and the down-scale EPE cascade terminates while 

the inverse EKE cascade starts up. Thus, we conclude that both EKE and EPE cascades occur in 

the wavenumber interval 

 

    (6.4) 

   

If we adopt the idealized scheme of the conversion EPE EKE which is concentrated at the scales 

 as sketched in Fig.1, the exponent in (6.1) is the Kolmogorov one 5 / 3m  . Then from (6.3) 

we have: 

 
3/2 1/2 3/45 / 3, ~ ~100dm f r K m     (6.5)  

 

where in the numerical evaluation we choose the typical values 4 110f s  , 4~ 2 10dr m ,  
2 2 2~10K m s  . If the region of the conversion is somewhat spread above the scales , then

5 / 3m  . In particular, adopting m=2, from (6.3) we have 

 
1 22, ~ ~ 50  dm r f K m     (6.6)   

 

 

7. Dissipation of TEE at ~1/k   
 

Next, we show that within the present model condition (4.5) also is satisfied, i.e. at the scales  

the vertical eddy shear fluctuations 
22

zS   u  create the Kelvin-Helmholtz instability which 

generates the stratified turbulence (ST) which finally dissipates eddy energy. To evaluate  2S , we 

need its spectrum 
2 ( )S k . Since in the whole range (6.4)  does not exceed unity considerably, 

for evaluating the eddy shear we may use the geostrophic relation. Thus, in wavenumber space we 

obtain the evaluation: 

 
2 2 2 2( ) ~ ( )S k f k b k       (7.1)  

 

The buoyancy variance spectrum is related to EPE spectrum   as follows 

 
2 2( ) 2 ( )b k N W k      (7.2)  

 

Adopt 

 

~ ( )E k      (7.3) 

 

1/ 1/dr k 



~

~

~

( )Ro k

( )W k

( )W k
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that is true at scales ~ dr . Substitute (7.3) , (7.2) and (6.1) into (4.6) and use the fact that the integral 

in (4.6) is contributed mostly by the region in the vicinity of the upper limit. With account for 

(6.2b) we obtain: 

 

     
1/22 3 1 1( ) ~ ~ ( )
  m m

dRi k f k r K Ro k     (7.4) 

 

Substituting here relation (6.1), we conclude that (1/ )Ri  satisfies condition (4.5), and, therefore, 

the vertical eddy shear fluctuations create the Kelvin-Helmholtz instability which generates ST 

which finally dissipates the turbulence energy supplied by EKE. So at scale  (6.1) not only the 

EPE cascade terminates and EPE releases into EKE generating the inverse EKE cascade, but in 

addition, at the same scales the eddy shear fluctuations generate ST which dissipates the eddy 

energy. Both evaluations of  (6.5) and (6.6) are consistent with the observed horizontal scale of 

ST~50m (Muller et al., 2002). The column energy dissipation of ST ST  approximately coincides 

with column production of TEE TP . This conclusion is in agreement with result (3.6a).  

 

8. The vertical scale of ST  
 

The vertical scale of the ST coincides with the vertical displacement of isopycnals at horizontal 

scales . From (7.1), (4.5) we deduce 

 
2 4 2 4 2 2 2 2 2 2(1/ ) ~ (1/ ) ~ (1/ ) ~   z N b N f S N f    (8.1) 

 

which together with (6.5), (6.6) is consistent with the observed vertical scale of ST 

 
1/2

2 (1/ ) ~ 10 
 
z m       (8.2) 

 

 (see Muller et al., 2002).  

 

9. Summary 
 

Even though it is recognized that the generation of mesoscale eddies is the dominant sink of the 

large scales energy, it is only a path toward dissipation but not dissipation itself (Wunsch and 

Ferrari, 2004). The commonly recognized conundrum is ”how is the dynamical transition made 

from a 2-D cascade at large scales-with its strong inhibition of down-scale energy flux-to the more 

isotropic, 3D-like, down-scale cascades at small scales” where the energy is dissipated (Muller et 

al., 2002; Mc Williams, 2003). In the present essay we have sketched the pathway to the dissipation 

in the framework of D3/CD5 mesoscale model within which we have discussed also other related 

problems of generation of the inverse energy cascade and its termination.  As we sketch the process 

in Fig.1, the large scale baroclinic instability feeds EPE at scales . Since at those scales the 

mesoscale Rossby number is small, EPE cannot release into EKE and so it cascades to smaller 

~

~ dr
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scales. Even more, D3/CD5 predicts the conversion EKE EPE at the scales  that provides 

an additional EPE feeding and amplifies the downscale EPE cascade generated by the baroclynic 

instability. However, at smaller scales the spectral Rossby number (6.2) increases. Finally, at 

scales ~100 m (6.5) the spectral Rossby number reaches unity and so EPE converts into EKE 

which, in turn, cascades upscale and at scales  converts back into EPE closing the conversion 

cycle EPE  EKE. In addition, at scales  the fluctuations of the vertical shear create the 

Kelvin-Helmholtz instability which generates ST dissipating the eddy energy. We have evaluated 

 under the assumption that the slope of the energy spectrum (6.1) deduced from the data of fine 

resolution simulations (Zhong and Bracco, 2013) and observations (Callies and Ferrari, 2013)  

until to scales ~  few kilometers, is maintained at scale of  the order of tens meters. In the steady 

state the eddy energy dissipation  integrated over the ocean depth balances the column 

production of TEE by large scale baroclinic instability TP  (2.11c). At the non-balanced stage of 

flow development when 
Tdz P  , eddy fields increase. Thus, if  were negligible, the eddy 

field would unlimitedly grow and the maximum of the energy spectrum would become more and 

more prominent until  will balances . Let us stress that the suggested pathway of the ocean 

energy from its generation to dissipation is not the only one in Word Ocean. In Introduction we 

have referred to the main mechanisms considered thus far all of which are quite different than the 

one presented above. However, in our opinion, the latter dominates. Still, we stress that the 

suggested cartoon is rather rough and idealized. In particular, within the range of perfect cascades, 

energy production and losses (i.e. the conversion EPE EKE) would be absent that would result 

in Kolmogorov EKE spectrum (6.1) with m 5/ 3 .  However, in reality in the whole interval 

d(1/ r ) some conversion occurs that results in a correction to the Kolmogorov m 5/ 3 . 
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Appendix . Contribution of mean flow to production of EKE  
 

Consider EKE production by the horizontal (isopycnal) mean shear. It is more convenient to 

consider the problem in isopycnal coordinates where in the adiabatic approximation the mesoscale 

Reynolds stress and the mean shear are 2D tensors: 

 

     , / 2ij i j ij ij j i i jR u u K S u u         (A.1) 

 

The EKE production by the horizontal mean shear equals: 

 

 ~ dr

~

~ dr

~





 T
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hor

K ij ijP R S       (A.2) 

 

Because of the approximate axi-symmetry of mesoscale eddies, we have 
ijR K  while 

~ /ijS Lu   where 6~10L m  is the large scale. Thus we may evaluate (A.2) as follows: 

 

 hor / uKP L K     (A.3) 

     

Substituting , 2 2 2~10K m s   , we evaluate the column production  

      hor 7 3 310 KH P m s     (A.4)  

 

which in two orders of magnitude is less than the column production of  TEE (5.10) generated by 

the baroclinic instability. 
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Caption to the figure 

 
Fig.1. Sketch of an idealized pathway of the ocean large scale energy to its dissipation at 

Kolmogorov scales via mesoscale cascades and their leakage into the stratified turbulence 

generated by the Kelvin-Helmholtz instability of mesoscale cascades. Solid arrows show local (in 

wavenumber space) energy productions while dashed ones show the cascading fluxes K , W  

and ST  whose relations to the local productions and dissipations at the ends of the cascades are 

given in Eqs. (3.4)-(3.6). 
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