

Interactive comment on “Mesoscale cascades and the “conundrum” of energy transfer from large to dissipation scales in an adiabatic ocean” by Mikhail S. Dubovikov

M. Dubovikov

m.dubovikov@gmail.com

Received and published: 10 August 2017

Reply to the comments of the Referee#1

First of all, I would like to thank the Referee for emphasizing the fact that the results of the manuscript under the discussion “are very much at odds with the general understanding of mesoscale turbulence”. However, namely “the general understanding” leads to one of the most enigmatic conundrums of ocean general circulation which is “how does the energy of the general circulation cascade from the large climate scales, where most of it is generated, to the small scales, where all of it is dissipated? In particular, how is the dynamical transition made from an anisotropic,

C1

2D-like, geostrophic cascade at large scales-with its strong inhibition of down-scale energy flux-to 3D-like, down-scale cascades at small scales.” (Muller et al., 2002. List of references see in the supplement). Specifically, the Referee states that: (1). “it is widely recognized that strong conversion EPE to EKE occurs at the radius of deformation (see e.g. the text book by Geoff Vallis)”. Indeed, in the chapter 6.8 titled “The energetics of linear baroclinic instability” Vallis studies the problem of the baroclinic instability and concluded in the end of the chapter that “baroclinic instability converts potential energy into kinetic energy.” This conclusion was drawn on the basis of the linear analysis within which the energy exchange between different Fourier modes is absent at all, as well as the energy cascades. Meanwhile, those phenomena and the non-linear (NL) interactions are crucial for the mesoscale dynamics and observational effects, as Dubovikov (2003, D3) and Canuto and Dubovikov (2005, CD5) showed theoretically. An analogous conclusion was drawn by Chelton et al. (2011) from the analysis of observational data: “essentially all of the observed mesoscales features are non-linear”, “mesoscales do not move with the mean velocity but with their own drift velocity” and the latter is “the most germane of all the non-linear metrics”. In D3 and CD5 we derived the mesoscale eddy drift velocity theoretically. In Fig.1 presented in the supplement we compare the predicted drift velocity with observational data which were obtained later (Fu, 2009; Chelton and Schlax, 2013). In D3 and CD5 we parameterized the NL terms of the dynamical mesoscale equations on the basis of the general approach to modeling NL interactions in turbulent flows developed by the authors before (see the list of those articles in the manuscript under the discussion). The basis of the D3, CD5 mesoscale parameterization is the generation of the inverse energy cascade in mesoscale turbulence whose existence is now commonly recognized (Ferrari and Wunsch, 2009; Bruggemann and Eden, 2015; Jansen et al., 2015) and confirmed by sea surface height data (Scott and Wang, 2005; Scott and Arbic, 2007). As Kraichnan (1975) showed, that cascade generates the negative turbulent viscosity which drastically changes the mesoscale equations whose solution has no fitting parameters and can be tested against data of observations and

C2

OGCMs numerical computations. Some validations of D3, CD5 are demonstrated in Figs.1-3 presented in the supplement. Thus, we expect that the NL mesoscale dynamics radically modifies the transformation of EPE and EKE in comparison with the results of the linear analysis presented in the quoted above Vallis's text book. In particular, consider Eq.(5.7) of the manuscript under discussion which yields the EKE production by EPE at scales of the deformation radius R_d (see Eq.(a) in the supplement). The negative sign in (5.7) and Eq.(a) which is due to the cascades, i.e. due to the NL interaction, means that at scales $\sim R_d$ EKE transforms into EPE. By contrast, at scales $l \sim 100m$ given by Eq.(6.3) in the manuscript under the discussion we have the conversion EPE to EKE. As a result, the sign of the total EKE production given in (5.10), is positive. Even without any mesoscale model it is clear that the negative sign of the EKE production at scales $\sim R_d$ straightforwardly follows from the existence of the strong inverse energy cascade and the observational fact that the transfer of EKE to large scales is much less than the energy exchange between EKE and EPE. The latter follows from the oceanic analog of the observed atmospheric Lorenz (1960) energy cycle summarized by Holton (1992), Fig.10.13 adapted from Oort and Peixoto (1974). The same conclusion follows from the numerical simulations by Boning and Budich (1992, Figs. 8,9). The conclusion on the negative sign of the EKE production at scales $\sim R_d$ is odd with the discussed statement of the Referee cited in the beginning of (1). (2). The Referee states that "it is widely recognized that total eddy energy is transferred to larger scales". This is not correct. Exactly the opposite is true: the total eddy energy is fed mostly by the large scale available potential energy which is due to the baroclinic instability. Specifically, the production of EPE which ultimately converts into EKE and finally is dissipated, is mostly contributed by the transfer of available potential energy from large scales, the conclusion which follows from, say, the Gent-McWilliams model as well as from D3 and CD5 ones. Thus, the large scale energy is transferred to the total eddy energy. (3). The Referee "strongly disagrees" with our input that "intense release EPE to EKE begins at scales where the spectral Rossby number $Ro(k)$ which at large scales is small, increases to

C3

unity". In the supplement on the basis of an analysis of NL interactions we prove the validity of that conclusion. Even without prove it is clear that in the case of a large $Ro(k)$ the effect of rotation is weak and the velocity equation yields the usual EPE to EKE conversion.

Please also note the supplement to this comment:

<https://www.ocean-sci-discuss.net/os-2017-23/os-2017-23-AC2-supplement.pdf>

Interactive comment on Ocean Sci. Discuss., <https://doi.org/10.5194/os-2017-23>, 2017.

C4