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Abstract: The spatial and temporal variability of Chlorophyll-a concentration (CHL) 16 

and sea surface temperature (SST) in the Yellow Sea (YS) were examined using 17 

Empirical Orthogonal Function (EOF) analysis, which was based on the monthly, 18 

cloud-free Data INterpolating Empirical Orthogonal Function (DINEOF) 19 

reconstruction datasets for 2003–2015. The variability and oscillation periods on an 20 

inter-annual timescale were also confirmed using the Morlet wavelet transform and 21 

wavelet coherence analyses. At a seasonal time scale, the CHL EOF1 mode was 22 

dominated by a seasonal cycle of a spring and a fall bloom, with a spatial distribution 23 

that was modified by the strong mixing of the water column of the Yellow Sea Cold 24 

Warm Mass (YSCWM) that facilitated nutrient delivery from the ocean bottom. The 25 

EOF2 mode was likely associated with a winter bloom in the southern region, where 26 

it was affected by the Yellow Sea Warm Current (YSWC) that moved from southeast 27 

to north in winter. The SST EOF1 explained 99 % of the variance in total variabilities, 28 

which was dominated by an obvious seasonal cycle (in response to net surface heat 29 

flux) that was inversely proportional to the water depth. At the inter-annual scale, the 30 

wavelet power spectrum and global power spectrum of CHL and SST showed 31 

significant similar periods of variations. The dominant periods for both spectra were 32 

2–4 years during 2003–2015. A significant negative cross-correlation existed between 33 

CHL and SST, with the largest correlation coefficient at time lags of 4 months. The 34 

wavelet coherence further identified a negative relationship that was significant 35 

statistically between CHL and SST during 2008–2015, with periods of 1.5–3 years. 36 

These results provided insight into how CHL might vary with SST in the future.  37 
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1. Introduction 41 

 Chlorophyll-a concentrations (CHL), as an index of phytoplankton pigment, are 42 

considered an important indicator of eutrophication in marine ecosystems, which is a 43 

process that may affect human life (Smith, 2006; Werdell et al., 2009). Additionally, 44 

it can be used to analyze the comprehensive dynamics of phytoplankton biomass 45 

(Muller-Karger et al., 2005). On the other hand, sea surface temperature (SST) 46 

anomalies indicate stratification of the water column, which is related closely to light 47 

and to nutrient loads of CHL (He et al., 2010). Certain studies have reported the 48 

spatio-temporal variability and relationship between CHL and SST (Gregg et al., 2005; 49 

Behrenfeld et al., 2006; Boyce et al., 2010). In the open ocean, Wilson and Coles 50 

(2005) analyzed global scale relationships between CHL and the monthly SST. 51 

Similarly, the spatio-temporal variability of regional CHL and SST in the South 52 

Atlantic Bight and the Mediterranean Sea have been investigated using long-term 53 

satellite datasets (Miles and He, 2010; Volpe et al., 2012). Gao et al. (2013) examined 54 

the spatio-temporal distribution of CHL that was associated with SST in the western 55 

South China Sea using the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and 56 

National Oceanic and Atmospheric Administration Advanced Very High Resolution 57 

Radiometer (AVHRR) data. For coastal waters, Li and He (2014) examined 58 

spatio-temporal distribution of CHL that was associated with SST in the Gulf of 59 
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Maine (GOM) using daily MODIS data. Moradi and Kabiri (2015) examined the 60 

spatio-temporal variability of CHL and SST in the Persian Gulf using MODIS 61 

Level-2 products. These studies found region-specific relationships between 62 

climate-driven SST and CHL. These findings also indicated that knowledge of the 63 

spatio-temporal variability in CHL and SST can assist scientists in developing a more 64 

comprehensive perspective of biological and physical oceanography of marine 65 

ecosystems in the global scale. 66 

The Yellow Sea (YS) has an average water depth of only 44 m, and it is marginal 67 

seas surrounded by China, and Korea (Fig. 1a). It responds quickly to atmospheric 68 

climate change and, in turn, the YS influences local climate variability as a result of 69 

the air-sea feedback process. The Yellow Sea Warm Current (YSWC) moves from 70 

southeast to north in winter (Fig.1b) (Teague and Jacobs, 2000; Lie et al., 2009; Yu et 71 

al., 2010), and the Yellow Sea Cold Water Mass (YSCWM; 122–125° E, 33–37° N) 72 

is entrenched at the bottom in summer (Fig. 1c) (Zhang et al., 2008). These water 73 

masses represent the two most important physical oceanographic features in the YS. 74 

In addition, a southward coastal flow is present in winter along the eastern and 75 

western sides of the YS, which corresponds to the northward YSWC in the central sea 76 

area (Wei et al., 2016; Xu et al., 2016). These features affect the physical properties, 77 

water mass and circulation in the YS, and they are complicated both spatially and 78 

temporally (Chu et al., 2005). 79 

To date, the importance of SST variability and the associated features such as  80 

thermal or tidal fronts, coastal waters, and currents in the YS have been addressed by 81 
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numerous satellite-based studies (Tseng et al., 2000; Lin et al., 2005; Wei et al., 2010; 82 

Yeh and Kim, 2010; Shi and Wang, 2012), and the long term CHL trends and 83 

seasonal variations have been studied as well (Shi and Wang, 2012; Yamaguchi, et al., 84 

2012; Liu and Wang, 2013). In recent years, warming signals of SST in the YS were 85 

reported by Yeh and Kim (2010) and Park et al. (2015), but few researchers have paid 86 

attention to how has the increasing SST affected the spatio-temporal pattern of CHL 87 

in the YS? What is the region-specific relationship between climate-driven SST and 88 

CHL? 89 

 To answer these questions, we combined remote sensing datasets and statistical 90 

analysis to investigate the patterns of variability of CHL and SST over seasonal and 91 

inter-annual periods at temporal scales during 2003–2015 in the YS. The present work 92 

provides a comprehensive description of the phytoplankton biomass and the physical 93 

conditions using 13 years of satellite-derived datasets. The objectives of the study 94 

were (i) to identify the seasonal spatial and temporal patterns of CHL and SST with 95 

the empirical orthogonal function (EOF) statistical model in the YS, (ii) to investigate 96 

the inter-annual trends of CHL and SST in a long-term time series with the continuous 97 

wavelet transform (CWT) analysis, and (iii) to explore the temporal correlations 98 

between CHL and SST using wavelet coherency analysis at a regional scale.  99 

 100 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



6 
 

Fig. 1. (a) Bathymetric and geographic map of the study area in the Yellow Sea, 101 

China. (b) Major currents in the study region during winter. (c) Major currents in the 102 

study region during summer: Yellow Sea Coastal Current (YSCC), Yellow Sea Warm 103 

Current (YSWC), Yellow Sea Cold Water Mass (YSCWM). 104 

2. Data and Methodology 105 

2.1 Data 106 

The monthly MODIS-Aqua data for CHL and SST during January 107 

2003-December 2015 were used in this study. The CHL and SST data were level 3 108 

fields provided by the NASA ocean color web page (http://oceancolor.gsfc.nasa.gov). 109 

The standard CHL product that was derived from the OC3Mv5 algorithm (OC3M 110 
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updated version after the 2009 reprocessing) and the daytime SST 11 μm product 111 

(which uses the 11 and 12 μm bands) were obtained. The level 3 product was 112 

collected in a 4 km spatial resolution from 30–40° N in latitude and 118–126° E in 113 

longitude for the YS region. 114 

2.2. Methodology 115 

2.2.1 DINEOF 116 

Due to the cloud coverage of the MODIS images over the YS, MODIS pixel 117 

values were missing for some months. The EOF and wavelet analyses generally 118 

require a complete time series of input maps without data voids. Therefore, a method 119 

to reconstruct missing data based on the Data Interpolating Empirical Orthogonal 120 

Functions (DINEOF) decomposition was applied to obtain complete CHL and SST 121 

data (Beckers and Rixen, 2003; Beckers et al. 2006). It is a self-consistent, 122 

parameter-free technique for gappy data reconstruction. Recently, DINEOF has been 123 

used widely to reconstruct SST (Miles and He, 2010; Huynh et al., 2016), CHL and 124 

winds (Miles and He, 2010; Volpe et al., 2012; Liu and Wang, 2013; Liu et al., 2014), 125 

total suspended matter (Sirjacobs et al., 2011; Alvera-Azcarate et al., 2015), and sea 126 

surface salinity (Alvera-Azcarate et al., 2016). This technique presents some 127 

advantages over more classical approaches (such as optimal interpolation), especially 128 

when working on CHL and SST datasets (Miles and He, 2010; Volpe et al., 2012). 129 

CHL and SST are characterized by different scales of variability in coastal or open 130 

ocean areas. This method identifies dominant spatial and temporal patterns in CHL 131 

and SST datasets, and it fills in missing data. Thus, DINEOF was applied to 132 
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reconstruct the missing CHL and SST data in this study. Because the satellite CHL 133 

values spanned three orders of magnitude and CHL retrievals are often distributed 134 

log-normally (Campbell, 1995), raw data were log-transformed prior to reconstruction 135 

to homogenize the variance and to yield a near-normal distribution (Fig. 2). These 136 

images show clearly the utility of the DINEOF method in reconstructing monthly, 137 

high-resolution imagery from datasets with large amounts of cloud cover. For 138 

example, in the CHL, DINEOF gives a low concentration of CHL in the southeast 139 

regions of the YS (Fig. 2b). 140 

 141 

Fig. 2. The spatial pattern of CHL in Jan 2011. (a) cloud-covered and (b) DINEOF 142 

reconstructed CHL; the spatial pattern of SST in Jan 2011. (c) cloud-covered and (d) 143 

DINEOF reconstructed SST. 144 
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2.2.2 Empirical Orthogonal Function (EOF) analysis 145 

After DINEOF reconstruction, cloud free CHL values were log-transformed 146 

before we included them in figures and before statistical analysis. In Section 4, to 147 

better discern the spatial heterogeneity and the degree of coherence and temporal 148 

evolution of the CHL and SST fields, a traditional EOF analysis was applied further 149 

to the monthly, cloud-free DINEOF CHL and SST datasets, which is an approach that 150 

is also used widely in other disciplines (Hu and Si, 2016a). Each data set was 151 

organized in an M×N matrix, where M and N represented the spatial and temporal 152 

elements, respectively. Taking CHL for instance, the matrix 𝐼(𝑥, 𝑡)  can be 153 

represented by  𝐼(𝑥, 𝑡) = ∑ 𝑎𝑛(𝑡)𝐹𝑛(𝑥)𝑁
𝑛=1 , where  𝑎𝑛(𝑡)  are the temporal evolution 154 

functions and 𝐹𝑛(𝑥, 𝑦) are the spatial eigen-functions for each EOF mode. Prior to 155 

EOF analysis, the temporal means of each pixel were removed from the original data 156 

using: 𝐼′(𝑥, 𝑡) = 𝐼(𝑥, 𝑡) − 1/𝑁 ∑ 𝐼(𝑥, 𝑡𝑗)𝑁
𝑗=1 , where 𝐼′(𝑥, 𝑡)  are the resulting residuals 157 

(anomalies). The first two modes were decomposed to analyze the major variability in 158 

CHL and SST. 159 

 To assess the significance of the EOF modes, we followed the methods 160 

described by North et al. (1982). The error produced in a given EOF (ej) was 161 

calculated as: 𝑒𝑗 = 𝜆𝑗 ( 2/𝑛)0.5, where λ is the eigenvalue of that EOF, and n is the 162 

degrees of freedom. When the difference between neighboring eigenvalues satisfied 163 

𝜆𝑗 − 𝜆𝑗+1 ≥ 𝑒𝑗, then the EOF modes represented by these two eigenvalues were 164 

significant statistically.  165 

2.2.3 The continuous wavelet transform (CWT) 166 
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The continuous wavelet transform (CWT) was used to determine the 167 

inter-annual scales of variability and the oscillation periods of DINEOF CHL and SST. 168 

Prior to the CWT analysis, the seasonal variation of each pixel was removed from the 169 

original data. The CWT is a tool for decomposing the non-stationary time series at 170 

different spatial or time scales into the time-frequency space by translation of the 171 

mother wavelet and by analyzing localized variations of power (Messié and Chavez, 172 

2011). The mother wavelets used in this study were the “Morlet” wavelets, which is 173 

used commonly in geophysics, because it provides a good balance between time and 174 

frequency localization (Grinsted et al., 2004; Hu and Si, 2016b; She et al., 2016). The 175 

CWT can localize the signal in both the time and frequency domains, but the classical 176 

Fourier transform was able to localize the signal only in the frequency domain with no 177 

localization in time (Olita et al., 2011). In addition, cross-correlation functions 178 

(Venables and Ripley, 2002) were used to determine the degree of temporal 179 

correspondence between the CHL and SST time series datasets, after we removed the 180 

seasonal variations. Then, the wavelet coherence was used to show the local 181 

correlation between CHL and SST in time-frequency space (Ng and Chan, 2012) that 182 

was based on the cross-correlation result. We used the wavelet software provided by 183 

Grinsted et al. (2004) (http://noc.ac.uk/usingscience/cross 184 

wavelet-wavelet-coherence). 185 

3. Results 186 

3.1 Monthly Climatology of CHL and SST  187 

 The CHL monthly means during 2003–2015 followed a similar pattern from 188 
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month to month, with more CHL in the shallow coastal waters and a decreased in the 189 

seaward direction (Fig. 3). Although the maximum CHL appeared to be fairly 190 

consistent seasonally, the spatial extent of blooms had significant seasonal 191 

fluctuations. Monthly mean imagery showed the largest spatial coverage of CHL in 192 

YS was in spring and the smallest coverage was in summer. The CHL in coastal 193 

waters was relatively high in spring during every year. Some portions of 194 

phytoplankton blooms occurred only in subsurface waters, which made it impossible 195 

to see using satellite imagery. Overall, the CHL was the greatest in coastal waters in 196 

spring or in regions with greater diluted water, such as near the Yangtze River, where 197 

the CHL was characterized by a long-lasting summer CHL maximum that started in 198 

April and ended in September.  199 

The seasonal cycle was more evident in the SST field (Fig. 4). SST showed a 200 

sinusoidal seasonal cycle, with a persistent, seasonal, warming trend from winter 201 

(February) to summer (August). The SST in the YS during December–April were 202 

below 12 °C, increased to 15 °C in May, reached a maximum above 25 °C in August, 203 

and then decreased again in September–October. From December to May, there was a 204 

drastic temperature difference between northern waters and southern waters, but the 205 

SST during summer months was nearly uniform over the entire YS. Spatially, 206 

isotherms were generally parallel to the isobaths. There was a clear temperature 207 

contrast between coastal waters and offshore waters in winter and spring. Similarly, 208 

the thermal front in southeast waters was more visible during winter and spring. The 209 

thermal difference reached as high as ~ 4 °C between northern and southern regions in 210 
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February.  211 

Fig. 3. Long-term CHL monthly mean climatology computed from monthly DINEOF 212 

CHL during 2003–2015 in the YS. 213 
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 214 

Fig. 4. Long-term SST monthly mean climatology computed from monthly DINEOF 215 

SST during 2003–2015 in the YS. 216 

3.2 Annual Climatology of CHL and SST 217 
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 Spatial variation in the annual mean CHL during 2003–2015 resembled that of 218 

the monthly mean CHL (Fig. 5). CHL was relatively low in offshore waters in the YS 219 

and it was higher in the narrow band along the coast, where CHL was stable, except 220 

for areas near the Yangtze River. Inter-annual variation of CHL was relatively subtle 221 

in the YS, and mean annual values ranged from 2.65 to 3.28 mg m
–3

. The maximum 222 

CHL occurred in 2011, and the minimum CHL were observed in 2003. In summary, 223 

the CHL was stable and revealed the stationary level of CHL in the YS irrespective of 224 

monthly or annual cycles.  225 

Fig. 5. CHL annual mean climatology computed from monthly DINEOF CHL during 226 

2003–2015 in the YS. 227 
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 228 

Fig. 6. SST annual mean climatology computed from monthly DINEOF SST during 229 

2003–2015 in the YS. 230 

 For each year during 2003–2015, the annual isotherms of SST generally ran 231 

parallel to the isobaths (Fig. 6). There was a clear temperature contrast between 232 

northern and southern waters. Similarly, the thermal front in southeast waters was 233 

visible each year. The thermal difference reached as high as ~ 5 °C between northern 234 

and southern waters in 2011. Inter-annual variation of the SST was relatively minor, 235 

and ranged from 15.17 to 16.88 °C. The maximum SST occurred in 2015, and the 236 

minimum SST was in 2011.  237 

3.3 Monthly mean and temporal variability of CHL and SST  238 

The spatial patterns of CHL and SST concentration were produced by the 239 
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temporal means of monthly data during 2003–2015 (Fig. 7a and c) and variability 240 

associated with the standard deviations (STD) of monthly mean temporal values (Fig. 241 

7b and d). One general evident spatial pattern was that mean CHL showed a sharp 242 

decrease from coastal waters to offshore regions (Fig. 7a). In our study, the highest 243 

CHL values (~ 6 mg m
–3

) and the lowest STD (~ 0.02 mg m
–3

) were observed in 244 

coastal waters (Fig. 7b) that were adjacent to the mouth of the Yangtze River where 245 

the water depth was less than 20 m. Compared with the coastal waters and the sea 246 

adjacent to large river mouths, central YS waters had lower CHL, but they displayed 247 

greater variability. In these regions, strong water mixing could make more deep-ocean 248 

nutrients available for utilization by phytoplankton in some months. The 249 

spatially-averaged time series showed clear inter-annual variability that was 250 

superimposed on the seasonal spring (April) and fall (August) blooms (Fig. 7e). A 251 

noticeable scenario was the increasing trend in CHL of ~ 0.03 mg m
–3 

year
–1

 252 

throughout the YS during 2003–2015; this phenomenon would require more 253 

observations of subsurface nutrients to understand the underlying mechanisms. 254 

The spatial distribution of the 13-year averaged SST in the YS showed the mean 255 

SST with a smooth transition from colder water along the coast to warmer water in 256 

offshore areas (Fig. 7c). Similarly, SST in the northern YS was colder compared to 257 

that in the southern YS. In contrast, the STD calculated from the 13-year time series 258 

of SST also revealed a high spatial distinction between the northern and southern 259 

regions (Fig. 7d). In the northern region, the STD reached its highest values in excess 260 

of 8 °C, in contrast to the STD of the southeastern YSWC region, which were 261 
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relatively small. Similarly, the zonal distribution of the variability demonstrated that 262 

the western region contained a much higher variability greater than 6.5 °C, which 263 

contrasted with the relatively small variability in the eastern region. The spatial mean 264 

of SST anomalies was superimposed by synoptic and inter-annual variability signals, 265 

which showed a positive trend of ~ 0.02 °C year
–1 

during 2003–2015 (Fig. 7f).  266 

Fig. 7. Long-term temporal mean and standard deviation maps of DINEOF CHL 267 

during 2003–2015 in the YS. (a) spatial pattern of temporal mean and (b) standard 268 

deviation map. Long-term temporal mean and standard deviation maps of DINEOF 269 

SST during 2003–2015 in the YS; (c) spatial pattern of temporal mean and (d) 270 
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standard deviation map. Time series of mean anomalies for DINEOF values during 271 

2003–2015 in the YS. The blue lines are least-square linear fits; (e) CHL anomaly and 272 

(f) SST anomaly. 273 

4. Discussion 274 

4.1 Modes of the variability in CHL and SST  275 

4.1.1 The dominant CHL EOF mode 276 

 The first EOF (EOF1) and second EOF (EOF2) modes accounted for 40 % of 277 

the total CHL variability in this study (Fig. 8), which are similar to those observed in 278 

previous studies on the regional and global CHL (Messié and Radenac, 2006; Thomas 279 

et al., 2012). The CHL EOF1 mode explained 34 % of the total variance. The 280 

anomalies were not distributed uniformly throughout the entire study area (Fig. 8a). 281 

One of the centers of CHL anomalies was located in an area with the geographical 282 

coordinates of about 35–37° N and 122–126° E, which was affected mainly by the 283 

YSCWM in the central waters of the YS (Teague and Jacobs, 2000; Lie et al., 2009; 284 

Yu et al., 2010). In that location, the stronger mixing of the water column brought the 285 

deeper nutrients upward, in turn favoring a phytoplankton bloom (Liu and Wang, 286 

2013). Another CHL positive center was in the southeast waters close to the YSWC, 287 

which indicated that the EOF1 mode could be explained by the influences of the 288 

currents in the YS. As such, EOF1 mode is a good representation of differences in the 289 

timing of the blooms. The temporal amplitude showed positive values from winter to 290 

spring (November to April) but negative values from summer and autumn (June to 291 

October) (Fig. 8b). The result was related to the seasonal cycles, with a high CHL 292 
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during winter-spring in offshore waters and a high CHL in summer in coastal waters. 293 

In addition, we postulate that this mode is likely associated with nutrient supply from 294 

the deep and warm current. The subsurface slope water is nutrient rich and, therefore, 295 

offers important nutrients from the subsurface (Townsend et al., 2010). The CHL 296 

EOF2 mode, which accounted for 6 % of total variance, showed an annual cycle that 297 

was different from the EOF1 mode. The spatial pattern showed a remarkable positive 298 

signal in the southeast waters of the YS, but the negative signal dominated in the 299 

northern YS (Fig. 8c). This distribution was different with previous studies conducted 300 

in the YS (Liu and Wang, 2013), in which a remarkable positive signal was found in 301 

the central YS. The temporal amplitude of this mode exhibited a positive signal in 302 

spring (March–May), but it was negative in other months (Fig. 8d).  303 

c 
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Fig. 8. The first two prominent EOF modes for CHL variability using DINEOF CHL 304 

anomaly data during 2003–2015 in the YS. (a) spatial pattern and (b) temporal 305 

amplitude from EOF1 mode; (c) spatial pattern and (d) temporal amplitude from 306 

EOF2 mode. 307 

4.1.2 The dominant SST EOF mode  308 

The SST EOF1 mode accounted for 99 % of the total variance (Fig. 9a). SST 309 

anomalies in the EOF1 mode for the entire study area were all positive, but they were 310 

not distributed uniformly throughout the entire study area. This indicated that SST 311 

exhibited a positive trend, which was consistent with the pattern that was depicted in 312 

Fig. 7f. Similar trends were observed by Liu and Wang (2013) and Park (2015) in 313 

their analysis of YS SSTs during the period 1997–2011 and 1981–2009, respectively.  314 

As a result of water depth, the SST spatial EOF1 was highly correlated with the 315 

distribution of water depth in the YS. The magnitude of variability of EOF1 in 316 

shallow water was larger compared to that in the slope region, which suggested an 317 

inverse relationship between the general pattern of CHL and bathymetry (O'Reilly et 318 

al., 1987). The strong match between the mean CHL and SST patterns throughout the 319 

entire YS region can be explained in terms of lower primary production levels that 320 

corresponded to stronger stratification of the water column (Behrenfeld et al., 2006; 321 

Doney, 2006) and, thus, to warmer surface waters (Wilson and Coles, 2005). This is 322 

because the variation in SST, in the first order, one-dimensional sense, is inversely 323 

proportional to water depth (He and Weisberg, 2003). The shallow ocean waters 324 

overall have a larger seasonal cycle. In contrast, SST in the slope region remained 325 
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fairly consistent especially in winter due to an increase in water depth (heat content) 326 

and the persistent warm water supply from the southeast water because thermal inertia 327 

is linearly proportional to the water column in a shallow ocean (Yan et al., 1990; 328 

Chen et al., 1994; Xie et al., 2002; Ichikawa and Beardsley, 2002; Xie et al., 2002; 329 

Park et al., 2005). The temporal amplitude in SST was dominated strongly by a 330 

seasonal periodicity that peaked in summer and winter (Fig. 9b). The influence of 331 

EOF2 mode on SST variability could be omitted, since it only accounted for 1 % of 332 

the total variance (Fig. 9c). 333 

Fig.9. The first two prominent EOF modes for SST variability using DINEOF SST 334 

anomaly data during 2003–2015 in the YS. (a) spatial pattern and (b) temporal 335 

amplitude from EOF1 mode; (c) spatial pattern and (d) temporal amplitude from 336 
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EOF2 mode.  337 

4.2 Scales of variability and oscillation periods on an inter-annual timescale 338 

The CWT were applied to the long-term monthly CHL and SST datasets after 339 

removing seasonal variations. The wavelet power spectrum and the global power 340 

spectrum obtained through the Morlet wavelet transform highlighted the dominant 341 

scales of variability and oscillation periods of CHL and SST (Fig. 10). The global 342 

power spectra showed the multi-period for CHL and SST (right panels of Fig. 10a and 343 

b). CHL exhibited dominant and significant periods of ~ 1 year, and insignificant 344 

periods of 3–4 years. SST exhibited significant periods of 0.8–1 year (10–12 months), 345 

and insignificant periods of 2–3 years. Variations in the frequency of occurrence and 346 

amplitude of the CHL anomaly were shown in the wavelet power spectrum (left 347 

panels of Fig. 10a and b), in which the power varied with time. During 2003–2012, 348 

there was a variation period of ~ 2 years for CHL. During 2012–2015, there was a 349 

significant period shift to 4 years, but we observed a variation period of ~ 1 year over 350 

the entire study period. Overall, the CHL exhibited dominant variations at periods of 1 351 

year and 3–4 years during the study period. During 2003–2009, there was a 352 

significant variation period of 2–3 years for SST, and during 2009–2015, there was a 353 

period of 1.5–2 years (Fig. 10b).  354 
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Fig.10. (a) Wavelets of the amplitudes for DINEOF CHL during 2003–2015 after 355 

seasonal variation had been removed. Thin solid lines demarcate the cones of 356 

influence and thick solid lines show the 95 % confidence levels; and (b) wavelets of 357 

the amplitudes for SST  during 2003–2015 after seasonal variation had been 358 

removed. The blue dotted lines in the right pannel show the 95% confidence levels. 359 

The anti-phase relationships agreed well with the negative correlation 360 

coefficients between CHL and SST, which agreed with other researchers (Hou et al., 361 

2016). In our study, the statistically significant cross-correlation between the monthly 362 

CHL and SST datasets after removing seasonal variations (Fig. 11a) also suggested 363 

that variability in CHL was slightly negatively correlated with variability in SST in 364 

the YS during the study period. The negative correlation was confirmed also by the 365 

scatter plot of CHL and SST (Fig. 11b). The cross-correlation between monthly CHL 366 
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and SST showed a significant and negative cross-correlation (R = –0.21, p < 0.01) 367 

with time lags of 4 months, which suggested that the CHL reached the maximum 368 

value 4 months after the SST got the minimum value in the YS. Therefore, to further 369 

examine the synchrony between CHL and SST, wavelet coherence analysis was used 370 

to reveal the coherency between CHL and SST (Fig. 12). The wavelet squared 371 

coherence values below the confidence level indicated that there were some randomly 372 

distributed sections. The vectors indicated the phase difference between CHL and SST 373 

at each time and period. The portion of figure 12 with significant correlation showed 374 

the anti-phase relationship between CHL and SST, with arrows pointing left, which 375 

suggested that the two series apparently have negative coherency in the 1.5–3 year 376 

band during 2008–2015. 377 

Fig. 11. (a) The cross-correlation between DINEOF CHL and SST during 2003–2015. 378 

The blue dashed lines indicate the points that correspond to a 95 % confidence; (b) the 379 

scatter plot of CHL and SST during 2003–2015. 380 
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Fig. 12. Wavelet coherency between DINEOF CHL and SST during 2003–2015 in the 381 

YS. Thin solid lines demarcate the cones of influence and thick solid lines show the 382 

95 % confidence levels. The color bar indicates strength of correlation, and the 383 

direction of arrow show the correlation type with the right pointing arrows being 384 

positive and left pointing arrows being negative. 385 

5. Concluding remarks 386 

The main purpose of this study was to identify the variability in CHL and SST 387 

on both seasonal and inter-annual time scales and its cross relationship based on the 388 

long-term, cloud-free, DINEOF CHL and SST datasets. In addition to the EOF, we 389 

also applied the wavelet coherency analysis to CHL and SST to determine temporal 390 

relations during 2003–2015. 391 

Similar with the other middle latitude regions, the CHL variability was 392 

dominated generally by a spring bloom with a secondary fall bloom throughout the 393 

entire YS region. The EOF1 mode showed stronger seasonal variability in the area 394 
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with stronger circulation in the water column. Temporally, the CHL EOF1 mode also 395 

exhibited a seasonal cycle with a maximum in late winter and early spring and a 396 

minimum in summer and early autumn for each year. This could be explained by the 397 

influences of the water currents in the YS. The SST EOF1 mode was dominated by a 398 

seasonal cycle: warmest in summer and coldest in winter. Further analysis showed 399 

that the magnitude of the seasonal cycle in different regions was a result of water 400 

depth and water currents in the YS. There is a strong match between the mean CHL 401 

and SST patterns throughout the entire YS region. This relationship can be explained 402 

in terms of lower primary production levels that corresponded to stronger 403 

stratification of the water column. 404 

There were positive trends both for CHL and SST in the inter-annual time scale 405 

during 2003–2015. There was a significant negative correlation between CHL and 406 

SST with time lags of 4 months. Thus, we speculate that CHL reached the maximum 407 

value 4 months later than the SST got the minimum value in the YS. Furthermore, the 408 

wavelet power spectrum and the global power spectrum for CHL and SST showed 409 

similar periods of variation, and similar synchronized and corresponding patterns of 410 

evolution. The dominant periods were 2–4 years during 2003–2015. CHL was 411 

significantly associated with SST in the time-frequency domain, and shared the 412 

common variation with the period of 1.5–3 years during 2008–2015, based on the 413 

wavelet coherence analysis. The CWT and wavelet coherence analysis extend the 414 

discussion on the scales of temporal variability and oscillation periods of CHL and 415 

SST, and they provided insights into how CHL might vary with SST in the future.  416 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



27 
 

 417 

Data availability. The SST and CHL datasets used in this study are available 418 

at http://oceancolor.gsfc.nasa.gov. 419 

 420 

Competing interests. The authors declare that they have no conflict of interest. 421 

 422 

Acknowledgements. This study was supported by the National Science Foundation of 423 

China (41206166); The Science and Technology Development Plan Project of Weihai 424 

(2014DXGJ36); The State Key Laboratory of Tropical Oceanography, South China 425 

Sea Institute of Oceanology, Chinese Academy of Sciences (LTO1608); The National 426 

Natural Science Foundation of China (41676171); Qingdao National Laboratory for 427 

Marine Science and Technology of China (2016ASKJ02); The Natural Science 428 

Foundation of Shandong Province, China (ZR2010DQ019). 429 

References 430 

Alvera-Azcárate, A., Vanhellemont, Q., Ruddick, K., Barth, A., and Beckers, J.-M.: 431 

2015. Analysis of high frequency geostationary ocean colour data using DINEOF, 432 

Estuarine, Cont. Shelf Res., 159, 28–36, 2015. 433 

Alvera-Azcárate, A., Barth, A., Parard, G., and Beckers, J.-M.: Analysis of SMOS sea 434 

surface salinity data using DINEOF, Remote Sens. Environ, 180, 137–145, 2016. 435 

Beckers, J.-M. and Rixen, M.: EOF calculations and data filling from incomplete 436 

oceanographic datasets, J. Atmos. Oceanic. Technol., 20, 1839–1856, 2003. 437 

Beckers, J.-M., Barth, A. and Alvera-Azcárate, A.: DINEOF reconstruction of 438 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



28 
 

clouded images including error maps-application to the sea surface temperature 439 

around Corsican Island, Ocean Sci., 2, 183–199, 2006. 440 

Behrenfeld, M. J., O’Malley, R. T. and Siegel, D. A.: 2006. Climate-driven trends in 441 

contemporary ocean productivity, Nature, 444, 752–755, 2006. 442 

Boyce, D. G., Lewis, M. R. and Worm, B.: Global phytoplankton decline over the past 443 

century, Nature, 466, 591–596, 2010. 444 

Campbell, J. W.: The lognormal distribution as a model for bio-optical variability in 445 

the sea, J. Geophys. Res., 100, 13237–13254, 1995. 446 

Chen, C., Beardsley, R., Limeburner, R. and Kim, K.: Comparison of winter and 447 

summer hydrographic observations in the Yellow and East China Seas and 448 

adjacent Kuroshio during 1986, Cont. Shelf Res., 14, 909–929, 1994. 449 

Chu, P., Chen, Y. C., Kuninaka, A.: Seasonal variability of the Yellow Sea/East China 450 

sea surface fluxes and thermohaline structure, Adv. Atmos. Sci., 22, 1–20, 2005. 451 

Doney, S. C.: Oceanography-Plankton in a warmer world, Nature, 444, 695–696, 452 

2006. 453 

Gao, S., Wang, H., Liu, G. M. and Li, H.: Spatio-temporal variability of chlorophyll a 454 

and its responses to sea surface temperature, winds and height anomaly in the 455 

western South China Sea, Acta Oceanol. Sin., 32, 48–58, 2013. 456 

Gregg, W. W., Casey, N. W. and McClain, C. R.: Recent trends in global ocean 457 

chlorophyll, Geophys. Res. Lett., 32, 259–280, 2005. 458 

Grinsted, A., Moore, J. C. and Jevrejeva, S.: Application of the cross wavelet 459 

transform and wavelet coherence to geophysical time series, Nonlinear Process. 460 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



29 
 

Geophys, 11, 561–566, 2004. 461 

He, R., Weisberg, R. H., 2003. West Florida shelf circulation and temperature budget 462 

for 1998 fall transition. Cont. Shelf Res. 23(8), 777–800. 463 

He, R., Chen, K., Moore, T. and Li, M.: Mesoscale variations of sea surface 464 

temperature and ocean color patterns at the Mid-Atlantic Bight shelfbreak, 465 

Geophys. Res. Lett., 37, 493–533, 2010. 466 

Hou, X. Y., Dong, Q., Xue, C. J., Wu, S. C.: Seasonal and interannual variability of 467 

chlorophyll-a and associated physical synchronous variability in the western 468 

tropical Pacific, J. Mar. Syst., 158, 59–71, 2016. 469 

Hu, W. and Si, B. C.: Estimating spatially distributed soil water content at small 470 

watershed scales based on decomposition of temporal anomaly and time stability 471 

analysis. Hydrol. Earth Syst. Sci. 20, 571–587, 2016a. 472 

Hu, W. and Si, B. C.: Multiple wavelet coherence for untangling scale-specific and 473 

localized multivariate relationships in geosciences, Hydrol. Earth Syst. Sci., 20, 474 

3183–3191, 2016b. 475 

Huynh, H-N.T., Alvera-Azcárate, A., Barth, A. and Beckers, J.-M.: Reconstruction 476 

and analysis of long-term satellite-derived sea surface temperature for the South 477 

China Sea, J. Oceanogr., 72, 707–726, 2016. 478 

Ichikawa, H. and Beardsley, R. C.: The current system in the Yellow and East China 479 

Seas, J. Oceanogr., 58, 77–92, 2002. 480 

Li, Y. Z. and He, R. Y.: Spatial and temporal variability of SST and ocean color in the 481 

Gulf of Maine based on cloud-free SST and chlorophyll reconstructions in 482 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



30 
 

2003-2012, Remote Sens. Environ., 144, 98–108, 2014. 483 

Lie, H.-J., Cho, H.-C. and Lee, S.: Tongue-shaped frontal structure and warm water 484 

   intrusion in the southern Yellow Sea in winter, J. Geophys. Res., 114, 362–370, 485 

2009. 486 

Lin, C., Ning, X., Su, J., Lin, Y. and Xu, B.: Environmental changes and the responses 487 

of the ecosystems of the Yellow Sea during 1976–2000, J. Mar. Syst., 55, 223–488 

234, 2005. 489 

Liu, D. Y. and Wang, Y. Q.: Trends of satellite derived chlorophyll-a (1997–2011) in 490 

the Bohai and Yellow Seas, China: Effects of bathymetry on seasonal and 491 

inter-annual patterns, Prog. Oceanogr., 116, 154–166, 2013. 492 

Liu, M., Liu, X., Ma, A., Li, T. and Du, Z.: Spatio-temporal stability and abnormality 493 

of chlorophyll-a in the Northern South China Sea during 2002–2012 from 494 

MODIS images using wavelet analysis, Cont. Shelf Res., 75, 15–27, 2014. 495 

Messié, M. and Chavez, F.: Global modes of sea surface temperature variability in 496 

relation to regional climate indices, J. Clim., 24, 4314–4331, 2011. 497 

Messié, M., Radenac, M.: Seasonal variability of the surface chlorophyll in 498 

thewestern tropical Pacific fromSeaWiFS data. Deep-Sea Res. I Oceanogr. Res. 499 

Pap. 53 (10), 1581–1600, 2006. 500 

Miles, T. N. and He, R.: Temporal and spatial variability of CHL and SST on the 501 

South Atlantic Bight: Revisiting with cloud-free reconstructions of MODIS 502 

satellite imagery, Cont. Shelf Res., 30, 1951–1962, 2010. 503 

Moradi, M., Kabiri, K.: Spatio-temporal variability of SST and Chlorophyll-a from 504 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



31 
 

MODIS data in the Persian Gulf, Mar. Pollut. Bull., 98, 14–25, 2015. 505 

Muller-Karger, F. E., Hu, C., Andréfouët, S., Varela, R. and Thunell, R.: The color of 506 

the coastal ocean and applications in the solution of research and management 507 

problems. Remote Sensing of Coastal Aquatic Environments. Springer, 101–127, 508 

2005. 509 

Ng, E. K. W. and Chan, J. C. L.: Geophysical applications of partial wavelet 510 

coherence and multiple wavelet coherence, J. Atmos. Ocean. Technol., 29, 1845–511 

1853, 2012. 512 

North, G. R., Bell, T. L., Cahalan, R. F. and Moeng, F. J.: Sampling errors in the 513 

estimation of empirical orthogonal functions, Mon. Wea. Rev. 110, 699–706, 514 

1982. 515 

O’Reilly, J. E., Evans-Zetlin, C. and Busch. D. A.: Primary production. In R. H. 516 

Backus (Ed), Georges Bank ( 221–233). Cambridge, MA: MTT Press, 1987.  517 

Olita, A., Ribotti, A., Sorgente, R., Fazioli, L. and Perilli, A.: SLA-chlorophyll-a 518 

variability and covariability in the Algero-Provençal Basin (1997–2007) through 519 

combined use of EOF and wavelet analysis of satellite data, Ocean Dyn., 61, 89–520 

102, 2011. 521 

Park, K. A., Chung, J. Y., Kim, K. and Cornillon, P. C.: Wind and bathymetric 522 

forcing of the annual sea surface temperature signal in the East (Japan) Sea, 523 

Geophys. Res. Lett., 32, 215–236, 2005. 524 

Park, K. A., Lee, E. Y., Chang, E. and Hong, S. W.: Spatial and temporal variability of 525 

sea surface temperature and warming trend in the Yellow Sea, J. Mar. Syst., 143, 526 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



32 
 

24–38, 2015. 527 

She, D. L., Fei, Y. H., Chen, Q. and Timm, L. C.: Spatial scaling of soil salinity 528 

indices along a temporal coastal reclamation area transect in China using wavelet 529 

analysis, Arch. Agron. Soil Sci., 62, 1625–1639, 2016. 530 

Shi, W. and Wang, M.: Satellite views of the Bohai Sea, Yellow Sea, and East China 531 

Sea, Prog. Oceanogr., 104, 30–45, 2012. 532 

Sirjacobs, D., Alvera-Azcárate, A., Barth, A., Lacroix, G., Park, Y., Nechad, B. and 533 

Beckers, J.-M.: Cloud filling of ocean colour and sea surface temperature remote 534 

sensing products over the Southern North Sea by the Data Interpolating Empirical 535 

Orthogonal Functions methodology, J. Sea Res., 65, 114–130, 2011. 536 

Smith, V. H.: Responses of estuarine and coastal marine phytoplankton to nitrogen 537 

and phosphorus enrichment, Limnol. Oceanogr., 51, 377–384, 2006. 538 

Teague, W. J. and Jacobs, G. A.: Current observations on the development of the 539 

Yellow Sea Warm Current, J. Geophys. Res., 105, 3401–3411, 2000. 540 

Thomas, A.C., Ted Strub, P., Weatherbee, R.A., James, C.; Satellite views of Pacific 541 

chlorophyll variability: comparisons to physical variability, local versus nonlocal 542 

influences and links to climate indices. Deep-Sea Res. II Top. Stud. Oceanogr. 543 

77–80 (0), 99–116,2012. 544 

Townsend, D. W., Rebuck, N. D., Thomas, M. A., Karp-Boss, L. and Gettings, R. M.: 545 

A changing nutrient regime in the Gulf of Maine, Cont. Shelf Res., 30, 820–832, 546 

2010. 547 

Tseng, C., Lin, C., Chen, S. and Shyu, C.: Temporal and spatial variations of sea 548 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



33 
 

surface temperature in the East China Sea, Cont. Shelf Res., 20, 373–387, 2000. 549 

Venables, W. N. and Ripley, B. D.: Modern Applied statistics with S, fourth ed. 550 

Springer-Verlag, New York, 2002. 551 

Volpe, G., Nardelli, B. B., Cipollini, P., Santoleri, R. and Robinson, I. S.: Seasonal to 552 

interannual phytoplankton response to physical processes in the Mediterranean 553 

Sea from satellite observations, Remote Sens. Environ., 117, 223–235, 2012. 554 

Wei, H., Shi, J., Lu, Y. and Peng, Y.: Interannual and long-term hydrographic changes 555 

in the Yellow Sea during 1977–1998, Deep-Sea Res. II., 57, 1025–1034, 2010. 556 

Wei, Q. S., Li, X. S., Wang, B. D., Fu, M. Z., Ge, R. F. and Yu, Z. G.: Seasonally 557 

chemical hydrology and ecological responses in frontal zone of the central 558 

southern Yellow Sea, J. Sea Res., 112, 1–12, 2016. 559 

Werdell, P. J., Bailey, S. W., Franz, B. A., Harding Jr., L. W., Feldman, G. C. and 560 

McClain, C. R.: Regional and seasonal variability of chlorophyll-a in Chesapeake 561 

Bay as observed by SeaWiFS and MODIS-aqua, Remote Sens. Environ., 113, 562 

1319–1330, 2009. 563 

Wilson, C. and Coles, V. J.: Global climatological relationships between satellite 564 

biological and physical observations and upper ocean properties, J. Geophys. Res., 565 

110, 1–14, 2005. 566 

Xie, S. P., Hafner, J., Tanimoto, Y., Liu, W. T., Tokinaga, H. and Xu, H.:  567 

Bathymetric effect on the winter sea surface temperature and climate of the 568 

Yellow and East China Seas, Geophys. Res. Lett., 29, 2228–2231, 2002. 569 

Xu, M., Liu, Q. H., Zhang, Z. N. and Liu, X. S.: Response of free-living marine 570 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



34 
 

nematodes to the southern Yellow Sea Cold Water Mass, Mar. Pollut. Bull., 105, 571 

58–64, 2016. 572 

Yamaguchi, H., Kim, H. C., Son, Y. B., Kim, S. W., Okamura, K., Kiyomoto, Y. and 573 

Ishizaka, J.: Seasonal and summer-interannual variations of SeaWiFS chlorophyll 574 

a in the Yellow Sea and East China Sea, Prog. Oceanogr., 105, 22–29, 2012. 575 

Yan, X. H., Shubel, J. R. and Pritchard, D. W.: Oceanic upper mixed depth 576 

determination by the use of satellite data, Remote Sens. Environ., 32, 55–74, 577 

1990. 578 

Yeh, S. W. and Kim, C. H.: Recent warming in the Yellow/East China Sea during 579 

winter and the associated atmospheric circulation, Cont. Shelf Res., 30, 1428–580 

1434, 2010. 581 

Yu, F., Zhang, Z. X., Diao, X. Y. and Guo, J. S.: Observational evidence of the Yellow 582 

Sea Warm Current, Chin. J. Oceanol. Limnol., 28, 677–683, 2010. 583 

Zhang, S. W., Wang, Q. Y., Lü, Y., Cui, H. and Yuan, Y. L.: Observation of the 584 

seasonal evolution of the Yellow Sea Cold Water Mass in 1996–1998, Cont. Shelf 585 

Res., 28, 442–457, 2008. 586 

Ocean Sci. Discuss., doi:10.5194/os-2017-11, 2017
Manuscript under review for journal Ocean Sci.
Discussion started: 28 April 2017
c© Author(s) 2017. CC-BY 3.0 License.


