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Abstract. Numerical solutions of the Korteweg-de Vries (KdV) and extended Korteweg-de Vries (eKdV)
equations are used to model the transformation of a sinusoidal internal tide as it propagates across the
continental shelf. The ocean is idealized as being a two-layer fluid, justified by the fact that most of the
oceanic internal wave signal is contained in the gravest mode. The model accounts for nonlinear and
dispersive effects but neglects friction, rotation, and mean shear. The KdV model is run for a number of
idealized stratifications and unique realistic topographies to study the role of the nonlinear and dispersive
effects. In all model solutions the internal tide steepens forming a sharp front from which a packet of
nonlinear solitary-like waves evolves. Comparisons between KdV and eKdV solutions are made. The
model results for realistic topography and stratification are compared with observations made at moorings
off Massachusetts in the Middle Atlantic Bight. Some features of the observations compare well with the
model. The leading face of the internal tide steepens to form a shock like front, while nonlinear high
frequency waves evolve shortly after the appearance of the jump. Although not rank ordered, the wave of
maximum amplitude is always close to the jump. Some features of the observations are not found in the

model. Nonlinear waves can be very widely spaced and persist over a tidal period.
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1. Introduction

Internal waves are present throughout earth’s oceans wherever there is stratification, from the
shallowest near-shore waters to the deepest seas. Internal waves are important to physical oceanographers
because they transport momentum and energy, horizontally and vertically, through the ocean, e.g. Munk
(1981), Gill (1982). They provide shear to turbulence which results in energy dissipation and vertical
mixing, e.g. Holloway (1984), Sandstrom & Elliott (1984). Biological oceanographers are interested
because the internal waves carry nutrients onto the continental shelf and into the euphotic zone, e.g. Shea
& Broenkow (1988), Sandstrom & Elliott (1984), and Holloway et al. (1985). They are of interest to
geological oceanographers because the waves produce sediment transport on the shelf, e.g. Cacchione &
Drake (1986). Civil, hydraulic and ocean engineers are interested because the internal waves generate
local tidal and residual currents, e.g. Willmott & Edwards (1987), which can cause scour on nearshore as
well as offshore structures, e.g. Osborne et al. (1978). Large nonlinear IWs are also of interest to the navy
because they cause large vertical displacements and large vertical velocities that may affect underwater
operations.

This study is focused on the internal tide and subsequent evolution of nonlinear waves. Internal
waves in the ocean span the frequency spectrum from the buoyancy frequency, N, to the inertial
frequency, f. However, the internal, or baroclinic, tide accounts for a large fraction of the energy contained
in these waves. The internal tide is generated by the interaction of barotropic tidal current with topography
and not directly by the gravitational attraction of sun and moon. The properties and propagation of linear
internal tide and waves have been treated in detail by many investigators, see, for example, Garrett &

Munk (1979), or the monographs by Gill (1982), Lighthill (1978), or Apel (1987).
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As the internal tide shoals, the nonlinearity of fluid flow can cause these tidal waves of finite
amplitude to evolve into packets of high frequency nonlinear waves. The equations describing these
waves are much more complex than the linear equations and few mathematical solutions have been found.

We are interested in nonlinear internal waves because they are a very energetic part of the signal
in time series that we have observed on continental shelves and in the shallow ocean. We are guided by
numerical solutions of Korteweg-de Vries (KdV) type equations that incorporate both weak nonlinear and
weak dispersive effects.

The state of the art on the evolution of internal solitary waves across the continental shelf is
reviewed in Grimshaw et al. (2010). Grimshaw et al. (2004) simulated the transformation of internal
solitary waves across the North West shelf of Australia, the Malin shelf edge, the Arctic shelf; Holloway
(1987) discussed the evolution of the internal tide in a two-layer ocean on the Australian North West
Shelf. Our model simulations of the evolution of the internal tide across Middle Atlantic Bight topography
are unique since these waves have never been modelled across such topography and stratifications, and
the model results are compared with observations made at moorings off Massachusetts during the Coastal
Mixing and Optics (CMO) Experiment. Whereas most modelling studies regarding wave propagation
over linear bottom sloping realistic topography have focused on the behaviour of a single soliton, this
work is concerned with the development and evolution of a packet of solitary waves.

The goal of this paper is to study the observed variability in the evolution of the internal tide as it
crosses the continental shelf resulting from different stratifications and varying topography.

In section 2, the model framework is presented, and model runs and results of simulations are

discussed for cases of linearly sloping bottom topography and that at the site of the Coastal Mixing and
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Optics experiment (CMO). Model results are compared with data and observations collected at the CMO

site in section 3. A summary and conclusions are presented in section 4.

2. Two-Layer Model

We are interested in modeling the evolution of the internal tide as it propagates shoreward from the
shelf break. Since the greatest oceanic signal is the first internal mode, the stratification of the
continental shelf/slope region is modeled as a two-layer fluid. This approximation greatly simplifies the
problem; the numerical scheme is much less complex for the two-layer case than the continuously
stratified case, and the results are easier to interpret. Using this model configuration, we study the
propagation of the internal tide over linear sloping and CMO topography. All cases have been run
within the quadratic nonlinear framework of the KdV equation, and the results are compared with an

extended form of it, the eKdV Eq.(1) model, written as

c dQ
+cn, +la+ + +——n=0 1
1+, +(a + amnm, + B 20 "

which reduces to the KdV equation when «; = 0. The term in Q accounts for the horizontal variability

of the ocean depth (see, e.g., Zhou & Grimshaw (1989), Pelinovsky et al. (1977) and Holloway et al.

3
M with m = lth:

OCO 2

(1997)) and is given by Q = where hy and hy are upper and lower layer

thicknesses, respectively, and the zero subscript indicates a constant value at a predetermined starting

position. The coefficients of the KdV and eKdV equations are greatly simplified for a two-layer fluid
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and are written (e.g. Ostrovsky & Stepanyants, 1989) c¢ = ; a=—C ;
o h +h, h,h,
h.h 3c
ﬂ:c 162 ; alz_m(hlz—i_hzz—i_GhﬁLhz)'

For the KdV and eKdV equations to be valid, the leading two terms must constitute the primary
balance. The nonlinear and dispersive terms can become important, but the assumptions leading to the
KdV and eKdV equations are violated if either of the nonlinearity or dispersion terms approach the
magnitude of the leading terms. Nonlinear steepening of the internal tide leads to the generation of a
packet of short nonlinear waves which tend to become solitary-like in form as the dispersive term
becomes important.

Note, the KdV equation is well known to be a suitable physical model for describing weakly
nonlinear advective effects and linear dispersion in internal waves. It was originally developed by Benney
(1966) and extended to second order by Lee & Beardsley (1974). The KdV and eKdV Eq. (1) equations
are derived following the procedure of Lee & Beardsley (1974) and the discussion by Lamb & Yan
(1996). The two-layer KdV model approximation is discussed in Grimshaw et al. (2002), and justified
since most of the energy in the ocean appears to be contained in the first mode anyway, see e.g. Alford &
Zhao (2007). The coefficients of the KdV and eKdV equations are greatly simplified for a two-layer fluid,
e.g. Ostrovsky & Stepanyants (1989). The problem has been investigated for slowly varying topography
and stratification by Grimshaw (1979) and Pelinovsky et al. (1977). An interesting reference is Lamb &
Xiao (2014), who took a similar approach to ours, comparing predictions of the KdV and eKdV models,
and also the RLW equation, with fully-nonlinear numerical simulations for two-layer stratification over

selected topographies. See O’Driscoll (1999) for a full discussion of our experiments.
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For all simulations the density difference between the two layers is chosen to be a constant:
gap/p = .014m/s?, a representative value for the Coastal Mixing and Optics (CMO) experiment
(Levine & Boyd, 1999), for example at a mooring in the Middle Atlantic Bight located at 40.5°N, 70.5°W,

and also in agreement with the stratification near the mooring location displayed in Barth et al. (1998).

2.1 The Korteweg de Vries (KdV) Model solutions

Using the KdV equation, we investigate two cases with a constant sloping bottom, one with a
horizontal interface and one with a sloping interface, and finally make model runs with realistic
topography at the CMO site.

For convenience in solving the equation, we avail of a transformation, utilized by Pelinovsky &

Shavratsky (1976), of the space and time variables x and t to variables | and s, respectively, given by

E?—— : I =x. 2

The transformed eKdV is then

B

ZJ— (o +a, ), + G =0 3

where ¢ = n,/QiI ) and Q is the same as for Eq.(1). The transformation scales time so that disturbances
traveling at the linear speed, c, remain at constant s. The system is often referred to as a slowness

coordinate system. Because ¢ varies relatively slowly in I/c compared to s, terms such as ¢{; are
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neglected relative to {. The transformed KdV equation is the same as the transformed eKdV equation

with ¢y = 0.

We employ the same finite difference scheme as Holloway et al. (1997) to solve the eKdV
equation Eq.(3) numerically. The finite difference scheme is a central difference method, (e.g. Lapidus
& Pinder, 1982), which was first developed for the KdV equation by Berezin (1987), and for the

variable coefficients KdV by Pelinovsky et al. (1994). See O’Driscoll (1999) for further details.

2.1.1 Constant Bottom Slope

The propagation of the internal tide along constant sloping topography was studied for cases of
constant upper layer thicknesses (Case A) and sloping interface (Case B), both of which are possible on
continental shelves. We chose the starting layer thicknesses at [ = 0 to be h; = 50m and h, = 150m,
with a bottom slope of 1/1000 so that total depth decreases from 200 to 0 m over a distance of 200 km.
Note a; = 0 for experiments discussed in section 2.1.

We first investigate the case of constant sloping bottom with fixed upper layer thickness (h; =
50m , Case A). The value of c decreases in shallow water, while «— 0 as h, — h; at a water depth of
100 m (Fig. 1a). Seaward of this depth where h, > h;, @ < 0 and solitary waves are waves of depression,
whereas shoreward of this depth (h, < hy,), @ > 0 and solitary waves exist as waves of elevation only.
S— 0 as the product h,h; — 0. Asthe magnitude of « is initially relatively large we expect the sinusoidal
internal tide to transform rapidly resulting in the formation of several nonlinear waves. Since a— 0, these

waves may not be so nonlinear as to violate the weakly nonlinear constraint on the KdV model. However,
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because the value of « rapidly increases for | > 100km, we expect the waves of elevation to become
highly nonlinear thereby possibly violating the weakly nonlinear condition.

Figs. 1b and c show the internal tide signal for Case A at increasing | and decreasing depth. The
internal tide steepens from a sinusoid at the open boundary, rapidly becoming nonlinear, resulting in the
generation of a shock-like front and subsequent undulations by [ ~50km. Shoaling further, the internal
tide becomes more nonlinear with the oscillations starting to resemble solitary waves by [ = 70km.
However, the waves never develop into mature internal solitary waves since the magnitude of «
continually decreases. By | = 90 km the waves resemble a symmetric, dispersive packet. Initially the
relatively large magnitude of « resulted in the rapid steepening of the internal tide. Approaching [ =
100km, a— 0 and the nonlinear waves cannot develop into solitary waves. At Il = 100km the packet
certainly looks symmetrical about a horizontal axis, that is to say the waves are neither polarized as
waves of depression nor elevation, since KdV solitary waves cannot exist when o = 0. At 115km the
waves have switched polarity; they have become waves of elevation, a result of « having become
positive. This transition is seen in Fig.2 where the leading waves are compared with sech? solitary form.
Beyond 100km the waves rapidly approach solitary waves of elevation since « becomes large quickly.

As the internal tide propagates into shallow water the front of the wave trough steepens but the
decreasing magnitude of « causes this steepening to slow down and there is virtually no change in wave
slope steepness between 70 and 90 km. The rate of change of the slope of the leading face of the trough
changes sign when o becomes positive and the slope decreases rapidly, while the back face of the internal
tide slackens. Fig. 1c gives a clear picture of the wave speed: the leading solitary-type wave initially

travels with speed very slightly greater than ¢ but becomes slower than ¢ when [ ~90km.

9
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The leading waves are slightly more nonlinear than dispersive when [ ~70 km but become less
so as | approaches 100 km. When o = 0 (I = 100km) the value of the nonlinear term is zero and the
waves look like a dispersive packet. Since o > 0 for | > 100 km, the nonlinear term is again a factor
and the waves become a hybrid by [ = 115km, interchanging back and forth across the length of the
wave between being more nonlinear and dispersive. The waves travel slower than c since the magnitude
of the dispersive term is slightly greater than the nonlinear term.

For Case B with constant sloping bottom and sloping upper layer, we also begin in 200m water
with h; = 50m, h, = 150m. In this instance the bottom slope is again 1/1000 and the interface slope is
1/4000 such that both layers vanish simultaneously at [ = 200 km. KdV parameter values are shown in
Fig. 3a. The magnitude of « increases from [ = 0 all the way to the shallowest water, unlike Case A
where « passes through zero, so we expect a wave train to develop sooner than for Case A, and any
solitary waves to remain as waves of depression. This combination of events will result in the weakly
nonlinear, dispersive KdV equation becoming invalid at I = 95 km. Fig. 3b is a plot of the internal tide
for Case B at several values of I. The internal tide steepens rapidly and a shock-like wave, followed by
undulations, has evolved from the transforming tide by [ = 40km. The internal tide continues to steepen
and several nonlinear waves have formed by | = 55km. These leading nonlinear waves mature into rank
ordered solitary waves by 65km, a feature observed out to 95km. Grimshaw & Yuan (2016) have
recently shown that the rank ordering is retained in shoaling waters as long as the waves do not encounter
a critical point of polarity change on the waves of depression, i.e. & < 0 always. This was not the case
for Case A (above, Fig. 1, and CMO, below, Fig. 4). Fig. 3c shows that most of the solitary waves

eventually travel with phase speed greater than c. The waves are more nonlinear than dispersive and the

10
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increasing value of the nonlinear parameter combined with the diminishing value of the dispersive

parameter leads to the model becoming numerically unstable (O’Driscoll 1999).

2.1.2 Realistic topography and stratification

The CMO site was located in the Middle Atlantic Bight. CTD profiles were made across the
continental shelf from shallow water to beyond the continental slope. Boyd et al. (1997) have concluded
that the internal tide at the site is primarily a first mode internal wave, further justifying our choice of a
two-layer model. An upper layer thickness of 25 m is a representative average value for the duration of
the experiment (July and August 1996).

Fig. 4a shows KdV parameter values as a function of I. Though undulating, the bottom topography
is similar to the constant sloping bottom cases. Recall that we chose an upper layer depth of 50 m for
Case A, whereas here we have chosen h: = 25 m. « starts out negative with relatively large magnitude.
The magnitude decreases, similar to Case A, changing sign as the bottom shoals and h1>h> when the value
increases rapidly. Values of g, ¢ and the horizontal variability parameter, Q, are similar to Case A. Figs.
4b and ¢ show results for tidal forcing of amplitude 2 m at 180 m water depth. The internal tide evolves
similarly to Case A. A shock-like front has formed on the front of the internal tide wave trough at [ =
40km. Several nonlinear waves have formed by [ = 60km (mooring location) with the leading 4 — 5
waves appearing like solitary waves of depression and the trailing waves looking more like a dispersive

packet, i.e., the leading waves travel faster than ¢, to the left for increasing [ in Fig. 4c. Several more

waves have formed by 80km but the number of solitary-like waves seems to have been reduced to the

leading two waves. All of the trailing waves do appear as a dispersive packet since the magnitude of o

11
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has decreased. More waves continue to form but by 100 km the packet is neither a pack of waves of
elevation nor depression, not unlike Case A. Beyond [ = 125km, « becomes large, the waves reverse
polarity and rapidly develop into mature solitary waves of elevation. The results show that the CMO case
and Case A are similar, though more solitary waves have formed for the CMO case, due to the fact that
at the CMO site the value of « is initially twice that of Case A. The internal tide becomes numerically
unstable beyond [ = 130km. Fig. 4c is a plot of the evolution of the internal tide as it propagates over
the continental shelf, increasing in I. The leading solitary-like waves initially travel with speed very
slightly greater than c, as in Case A. The waves slow down to travel at speed ¢ where [ #90km and « is
very small. Wave speed then becomes slightly slower than c but faster and more complicated than Case

A, due to the undulating topography.

2.2 The extended Korteweg - de Vries (eKdV) model

The model runs discussed in section 2.1 were also made with the eKdV equation. The ratio of the

; a hy—h
nonlinear parameters, — = 4 12

. hahg(hy2+hy2 18Ry (see e.g. Ostrovsky & Stepanyants, 1989) is the

theoretical maximum amplitude for the solitary wave solution to the eKdV equation. The ratio of the

quadratic to cubic nonlinear terms in this equation depends upon displacement height, 7, and is given by

a

an

For Case A the ratio ai passes through zero (h, = h,) (Fig. 5) and we expect the cubic nonlinear
1

term to be important. The results of this model run are shown in Fig. 6. The internal tide evolves similar

12
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to the KdV case (Fig. 1b) with a shock-type wave followed by several nonlinear oscillations on the back
face of the internal tide at [ = 50km. The internal tide in both frameworks look similar at 70 km where
several nonlinear waves of depression have been formed. The KdV solitary-like waves flip polarity at
100 km due solely to the fact that « changes sign there.

For the CMO case, comparison of KdV and eKdV results shows a more significant difference than
for Case A. Fig. 7a-c show the KdV and eKdV model results for a 4m internal tide having propagated 60
km to a water depth of 69 m. The leading KdV model solitary wave (solid line) arrives at the CMO central
mooring ~0.1 tidal period ahead of the leading eKdV model solitary wave (broken line). The KdV and
eKdV models are so different at the CMO site when compared to Case A because the magnitude of ¢ is
greater at the CMO site. Though the magnitude of « is less in Case A, the fact that the magnitude of a1
is so small when compared to & means the addition of the cubic nonlinear term does little to change the
KdV results. This is not true at the CMO site where the greater magnitude of a1 is the reason for the
difference between the KdV and eKdV frameworks, particularly as the internal tide propagates into

shallower water and the magnitude of the ratio ai is much greater for Case A, where h; and h, are,
1

respectively, twice and less than that at the CMO site. Comparing the leading waves from the eKdV and
KdV solutions reveals a fundamental difference in wave form; the KdV waves are taller and thinner (Fig.
7¢). Solitary type solutions to the KdV (sech?) and to the eKdV (‘table-top> waves with tanh type
solutions, see O’Driscoll 1999 and references within) are fitted to the leading waves (Fig. 7d-e). The
leading wave in the KdV model is very well approximated by a sech? wave. The lead wave in the eKdV
model is neither well approximated by sech? or table-top wave, but appears to be a hybrid between the

two. Fits of sech? and table-top waves were made by subjectively choosing values of n, and v,

13
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respectively, while using the value of KdV and eKdV parameters for 69m water depth. Note that the

a
amplitude of the table-top wave is limited to P Increasing v only serves to make the waves wider once
1

its value is close to one (see ¢.g. O’Driscoll 1999). Amplitude and width of the leading waves in the
packet are also compared in Fig. 8a. The width is defined as the time it takes the wave to pass a fixed
point, as measured at 42% of the amplitude. Results from a range of different tidal amplitudes are also
shown. For reference, the dotted lines represent sech? and table-top waves for the local values of
parameters hy, hz, and g4/ p. For KdV the leading wave of the 2m tide always has amplitude greater than
the second and the amplitudes of subsequent waves decrease in a rank ordered fashion. The leading wave
is slightly thicker than the trailing ones which are all approximately equal in width. For the eKdV the
leading wave has larger amplitude and is thicker than the trailing waves. For the KdV model with 4m
amplitude tide all the waves fall on the same spot on the sech? curve. For the eKdV model with 4m
amplitude tide, the waves appear on the ‘thick’ side of the sech? curve with the lead wave the most
removed from the KdV theoretical curve. The same is true for amplitudes of 5m and 6m. The eKdV model
waves appear to be evolving toward the theoretical eKdV curve. Note that the amplitude of many of these
waves exceed the maximum amplitude of table-top waves of 9 m as determined by the local parameters
at the CMO site.

To learn more about the evolution of a sine wave to waves with sech? and table-top form, we ran
the model with constant parameters (flat bottom) using values at the mooring site. The runs were made
with initial tidal amplitudes of 1, 2 and 4 m in both KdV and eKdV frameworks and the width vs.

amplitude for the first and second wave in each packet is plotted at various increments of | (Fig. 8b). The

14
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KdV waves grow in amplitude with approximately constant width before turning to hug the theoretical
KdV line. They then decrease in amplitude while increasing slightly in thickness. Though the KdV model
waves continue to evolve, most of them can be well approximated as being ‘sech?” waves after ~100km.
For the eKdV case, the waves are initially close to the theoretical sech? KdV curve. The waves move
slowly towards the theoretical eKdV curve, ultimately decreasing in amplitude and increasing in
thickness. The last points have been plotted after the internal tide has propagated ~240km. It appears
that these waves are evolving toward table-top form, but mature over a relatively long distance. Also, the
amplitudes of the waves are greater than the theoretical eKdV maximum but their magnitudes decrease
as the tide evolves.

Another investigation to explore the evolution in the eKdV model (constant parameters) was made
using an initial condition of a sech? wave, the solitary wave solution to the KdV equation. sech?
amplitudes of 4m, 7m, 9m, and 13m (Fig. 8c) were chosen. The sech? waves are rapidly transformed to
table-top waves, e.g. the 4 examples plotted reach the theoretical eKdV curve after the wave has
propagated about 10 km. A solitary sech? wave evolves much more rapidly to table-top form (Fig. 8¢),
as opposed to when it is part of a packet of waves (Fig. 8b). The reason for this has not been thoroughly

investigated, but provides caution for treating a packet as a group of non-interacting waves.

3. Observations of Nonlinear Internal Waves
The data to be presented and discussed was collected during the CMO, for location see Fig. 9. The CMO
experimental field program was conducted to increase our understanding of the role of vertical mixing

processes in determining the mid-shelf vertical structure of hydrographic and optical properties. The field
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program was conducted on a wide shelf so as to reduce the influences of shelf break and nearshore
processes. The data we discuss was collected from the CMO Central Mooring in July and August 1996,

a time when a strong thermocline is present as a result of large-scale surface heating, Boyd et al. (1997).

3.1 Observations during the Coastal Mixing and Optics Experiment

The Central Mooring of the CMO experiment was located at 40° 29.50° N 70°30.46° W in water
depth of 69 m. A total of 24 temperature recorders and 5 conductivity sensors were distributed along the
mooring. Currents were measured at 14 depths from an ADCP placed a few metres above the bottom.

Boyd et al. (1997) have calculated the first mode internal wave amplitude from the velocity time
series for the period 29 July to the 31 August 1996 (year day 210 - 245, Fig. 10 i)). The dominant
barotropic tidal signal in the Middle Atlantic Bight is semi-diurnal, and is strongest over the period day
241-245 during spring tide (Fig. 11). A semi-diurnal signal is apparent in the first mode record,
particularly during the spring tide period. A spectrum of the first mode amplitude (Fig. 12) shows energy
peak at both low and high tidal frequencies. Much of the high frequency energy is due to bursts or pulses
of high frequency nonlinear internal waves that occur for a short period during the semi-diurnal tidal
cycle. These nonlinear internal waves propagate shoreward across the continental shelf to the south of
Martha’s Vineyard. The energy at high frequency is greater over the period day 241-245 during spring
tides (Fig. 12). There is a clear maximum in energy at 2 cpd over this period, and a significant amount of
energy is also contained at 4 cpd. The energy rapidly drops for frequencies greater than 4 cpd but there is
a significant increase in energy at ~50 cpd and ~90 cpd. To help interpret these observations, we

compare them with the two-layer eKdV model using the CMO parameters. Since we do not know where
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the internal tide is generated or its amplitude, the model was run assuming a sinusoidal internal tide at
distances of 24 km, 48 km and 60 km seaward of the mooring site. Three initial amplitudes of 2 m,4 m
and 6 m were used at each distance. Fig. 10 iii) shows the internal tide as it appears at the CMO mooring
site for these nine cases. In all instances, the leading face of the crest of the periodic sinusoidal wave
slackens (or flattens) as the internal tide propagates shoreward. This is followed by a steepening of the
back face which develops into a shock-like front. The shock-like front is followed by oscillations which
subsequently evolve into a packet of solitary-like waves.

This same pattern can often be seen in the observed time series of the first internal mode. Fig. 13
shows several individual jumps at the CMO mooring. Fig. 13 i) (top left panel) shows first modes which
best match the model results of Fig. 10 iii). Some features of the observations compare well with the
model. The slackened leading face of the tide is always followed by a steep - almost shock like - front
followed by several highly nonlinear short period waves. Although not rank ordered, the largest amplitude
wave in the observed packet is always at or near the jump. The model results show that the amplitude of
the jJump is greater for larger initial condition, and decreases with distance from the point of generation.
Although nonlinear waves continue to evolve, their amplitudes decrease as they propagate shoreward
from their generation point, and they become ‘thicker’, i.e. they become more table-top like. Though the
modelled waves have amplitudes less than the theoretical limit for local eKdV parameters, they
nonetheless fit the shape of several observed waves at the CMO site.

There are also features of the observations that are not found in the model. Fig. 13 i) (top left) (f)
and (g) differ in that the packet that follows the shock-like front, persists until the end of the tidal period,

and the waves are spread apart from each other. Fig. 13 i) top left (c) shows two packets of solitary-like
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waves propagating past the mooring site over a tidal period. The leading slackened face is followed by a
shock-like front and a packet of solitary waves. The trailing face then slackens to assume a slope similar
to the leading face but a second shock-like front, followed by a packet of solitary waves, passes before
the end of the tidal period. This could be from a second internal tide front coming from another generation
site, there can be overlapping semi-circles of internal wave fronts from multiple generation sites, see for
example discussion in Apel et al. (1988). Another possible generation mechanism is the nonlinear
evolution of inertia-gravity waves forming behind internal solitary waves due to rotation, see further in
Grimshaw et al. (2014) and Lamb & Warn-Varnas (2015) who have shown that rotation effects can
become important after one or more inertial periods. However, in this model to observation comparison,
the waves have travelled for not much longer than one inertial period, and rotation has been ignored in
the model runs. It is also possible that multiple packets form each tidal period, due to different generation
mechanisms such as multiple tidal constituents or harmonics of a tidal components as found, for example,
at the site of the Littoral Optics Experiment where the 4" harmonic of the semi-diurnal tide was used to
successfully simulate the evolution of the internal tide (O’Driscoll 1999).

Another common observation that is not found in the model results is a ‘drop’ in amplitude
before the jJump that occurs at the beginning of the wave packet. Fig. 13 i) (top left) (h) shows that the
first internal mode drops between day 243.5 and 243.6 but the slackening slope is restored before the
arrival of the jump and packet of solitary waves. Similar ‘drops’ also occur in Fig. 13 1) (top left) (b)
and (e) and ii) (top right) (a) and (i). Another phenomenon observed is that the slope of the leading face
of the tide changes sign before the packet in several of the examples in Fig. 13 ii) (top right). In Fig. 13

i) (top right) (h) the low frequency slope changes sign at day 236, and the solitary waves appear as

18



usual ahead of the trailing, low frequency signal. The signal becomes even more complicated when both
a ‘drop’ and low frequency slope change are present, e.g. Fig. 13 ii) (top right) (d). In this case, the
slope of the leading slackening low frequency signal changes sign at day 242.5 and is followed by a
packet of four solitary waves. The low frequency signal is restored before the passage of a jump
5 followed by a packet of five large solitary waves. The trailing face retains the slope of the low
frequency signal. Fig. 13 iii) (bottom) shows a series of jumps which are more complex than those in
the top panels, though they retain the basic structure of the model results over the tidal period.
To examine the details of the wave packets themselves, the width vs. amplitude was estimated for
each wave from all events during the period day 210-245 (Fig. 14). These waves are plotted along with
10 the leading two waves from six of the nine model runs shown in Fig. 10 iii). Also shown are the theoretical
relations for solitary waves for the eKdV and KdV equations using CMO site parameters. The observed
nonlinear waves vary greatly in amplitude and width, generally having amplitudes of 5 — 25 metres, and
widths of 200 — 600 seconds. Larger amplitude observed waves are well approximated by model runs
with large initial amplitude, particularly the 4m model. The 6m model run from 24km seaward of the
15 CMO site is also a very good match for several of the observed waves. A large fraction of observed waves
with amplitude less than 15m, and particularly less than 10m, are much ‘thinner’ than model waves with
similar amplitudes. However, it seems reasonable to say that the observed waves are a good fit to the
model waves.
While some features of the observations are reproduced in the model, there are many

20 differences. The eKdV model used here is highly idealized. There are many effects that have not been
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considered, including bottom and internal friction, earth’s rotation and mean shear. Given these

limitations, we conclude that the observations are reasonably well matched by our model.

4. Summary and conclusions

5 Observations of highly nonlinear internal waves contained in the first mode time series on the mid-
continental shelf and in current meter records in shallow water have led us to investigate the transformation
of the shoaling internal tide. Observations were made in the mid-continental shelf at the site of the Coastal
Mixing and Optics Experiment (CMO). An existing model based on generalized KdV and eKdV equations
has been simplified for use in a two-layer ocean, which is representative of realistic stratification. The model
10 accounts for weakly nonlinear and dispersive properties of the internal tide. Earth’s rotation, internal
dissipation, bottom friction, and internal shear are not included. The internal tide was forced with a periodic

sinusoidal boundary condition and allowed to propagate shoreward.
The model was first run within a KdV framework with realistic continental shelf, constant sloping
bottom with flat and sloping interface, and CMO shelf parameters. The internal tide steepens on the back
15 face of its crest as it propagates shoreward, a direct result of the much greater magnitude of the nonlinear
term in comparison with the dispersive term. Nonlinear waves evolve from the internal tide after the back
face forms a shock-like front. The waves can appear as a rank ordered packet with the leading waves
traveling fastest, since they are the most nonlinear. The leading waves of depression usually travel faster
than the linear wave speed, ¢, and nearly fit solitary wave form for local KdV parameters (“sech?’). Waves

20 of elevation also develop into sech? waves.
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The model runs made within the KdV framework were also made within the eKdV framework which

includes a cubic nonlinearity term scaled by a1. The results may or may not be similar, depending upon

the ratio of the two nonlinear terms, aa—n . If this ratio is large (much greater than one) the cubic nonlinear
1

term is not important and the KdV and eKdV results are similar. If the ratio is of order one or less the
eKdV may evolve differently from the KdV. For the constant bottom slope simulations the model results
were similar in both frameworks. However, there are some significant differences to the waves that cross
the shelf using CMO parameters. The modeled leading waves at the CMO mooring site were much
‘thicker’ than sech? waves with local KdV parameters, but they had not quite developed into solitary wave
solutions of the eKdV equation (table-top waves).

To better understand the evolution of waves toward table-top form in an eKdV framework, without
the complications of varying parameters, model runs were made using constant eKdV parameters
representative of the CMO site. Upon formation, the leading waves of the packet are similar to sech? waves.
The waves become ‘thicker’ and tend toward the table-top form upon further propagation, but never reach
the theoretical eKdV curve in our limited domain. To help understand why the evolution of waves from
being close to sech? waves to being close to table-top waves was so slow, the internal tide was forced with
a sech? wave. The evolving sech? rapidly moves to the theoretical eKdV curve for all amplitudes. We
conclude that the interaction between the solitary like-waves in a packet slows them from evolving into
exact solitary ‘sech?’ or ‘table-top’ waves.

Model runs with varying initial amplitudes and generation regions were made to help interpret the
observations made at the CMO site. Some features of the observations compare well with the model. The

leading face of the trough of the internal tide steepens to form a shock like front. Nonlinear high frequency
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waves evolve shortly after the appearance of the jump. Although not rank ordered, the wave of maximum
amplitude is always close to the jump. Some features of the observations are not found in the model.
Nonlinear waves can be very widely spaced and persist over a tidal period. The amplitude of the observed
waves often decreases before the arrival of the jump, while the leading face may change slope before the
jump arrives.

Individual observed waves were examined and the details compared to model results. The observed
nonlinear waves vary greatly in amplitude and width, generally having amplitudes of between 5 and 25
metres, and widths of between 200 and 600 seconds. Larger amplitude waves are well approximated by
waves evolving from large amplitude model waves. A large fraction of smaller amplitude observed waves,
particularly less than 10 m, are thinner than model waves of similar amplitude. We conclude that the
observed waves are a good match to modeled waves given the highly idealized eKdV model used, and the

fact that we have neglected friction, rotation and mean shear.
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Fig. 1. Case A (constant sloping bottom with level interface, hy = 50 m). KdV parameter values for

quadratic nonlinear parameter, «, dispersion parameter, £, linear phase speed, c, horizontal variability
factor, Q, and depth (a). Amplitude of the internal mode for two-layer fluid (b) at various distances from
15 the boundary within KdV model framework and (c) as a function of distance | and time s within KdV

model framework. The legend on the right corresponds to the amplitude of the waves (m).
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Fig. 2. Case A, leading waves of elevation (black line) at various distances [ > 100km from the

boundary plotted with individual sech? waves (blue lines) within KdV model framework.
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Fig. 5. Quadratic nonlinear parameter, a, divided by the cubic nonlinear parameter, «,, as a function of
the depth of the upper layer, h,, and lower layer, h,. Values for sloping bottom (Cases A and B) and

realistic slope and stratification at the CMO site are shown by the broken lines.
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Fig. 7. CMO experiment site (realistic topography with level interface, (h; = 25 m) amplitude of the
internal mode for two-layer fluid at 60 km in 69 m depth water (CMO mooring site). (a) Comparison of
KdV (solid line) and eKdV (broken line) solutions. (b) Close up of (a). (c) Leading KdV model waves
(solid line) with superimposed eKdV model waves (broken line) shifted forward in time (s) so that the
leading waves coincide. (d) and (e). The leading wave of depression (solid line) plotted with an individual
sech? wave (dot-dash line) and with an individual table-top wave (dashed line) for KdV model (d), and
eKdV model (e).
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parameters are also shown (dotted lines). The width is calculated at 42% of the total amplitude. (b)
Evolution of the width vs. amplitude of the two leading waves of the KdV and eKdV solutions for flat
bottom (h: = 25 m, ho = 44 m) with same parameters as at the CMO site. Results for initial tidal
amplitudes of 1, 2, and 4 m are shown. A value is plotted every 10 km for the 1 m tide beginning at 160
km and the lines run from 160 km to 260 km. A value is plotted every 20 km for the 2 m tide beginning
at 80 km and the lines run from 80 km to 200 km. A value is plotted every 20 km for the 4 m tide beginning
at 40 km and the lines run from 40 km to 100 km. The theoretical width vs. amplitude for sech?and table-
top waves is also shown (dotted lines), and the width is calculated at 42% of the total amplitude. (c)
Evolution of the width vs. amplitude of four solitary sech? waves of the eKdV solutions for flat bottom
(h1 = 25 m, h, = 44 m) with same parameters as at the CMO site. Results are shown for sech? amplitudes
of 4, 7,9 and 13 m. A value is plotted every 1 km up to a maximum distance of 15 km. The theoretical
width vs. amplitude for sech? and table-top waves is also shown (dotted lines). The width is calculated at
42% of the total amplitude.
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