
Dear John, 

 

You will see that I have responded to all the Reviewers’ comments, below, and 

edited accordingly. 

Additionally, because of removal of the old sections 2. Theoretical Background, I 

have provided a little bit of background in the new section 2 for the non-expert. 

Concerning the removal of the old section 3.1.1 Level Bottom, all references to this 

have been removed throughout the paper: in the discussion of both KdV and eKdV 

model results, the summary and conclusions, and a very slight change in the 

abstract. 

Thanks and best wishes, 

Kieran O’Driscoll   

 

 

Response to Referee #1 comments 

Kieran O’Driscoll would like to thank the reviewer for their considerable and 

thoughtful review.  

Based on the general comments of Reviewer 1 (and also those of Reviewer 2): 

Much of the material presented here in section 2 and 3 is well-known and does not 

need to be repeated here. 

Likewise, the behaviour of internal solitary waves propagating over a slope has been 

widely studied in both the KdV and eKdV models, with often a main focus on polarity 

change when the coefficient of the quadratic nonlinear term changes sign. 

The simulations with a linear bottom slope and with the topography of the Middle 

Atlantic Bight have some marginal interest in that most studies have examined the 

behaviour of a single solitary wave, rather than a developing wave train as here, 

although the outcome can be understood in terms of the known behaviour of a single 

solitary wave, namely adiabatic deformation and transition to an elevation solitary 

wave train riding on a negative pedestal when the usual transition is from a negative 

to positive coefficient.  

The most interesting and novel part of the paper is section 4 where the model 

simulations are compared with observational data from the Middle Atlantic Bight. 

Although there have been several such comparisons in the literature for other sites, 

this would seem to be the first for this site. In summary I would recommend that the 

authors prepare a heavily revised and shortened paper which focusses on the 

material in section 4. 

 



Response: Done. The article has been shortened by removing Sections 2 

(Theoretical Background), 3.1.1. (Two-layer model level bottom), and Figs. 1 – 

6.  

 

Specific Comments: 

(1) Further to the comments made above, in particular most of the text in 

section is not needed, and neither are figures 1-6. 

Done, see above. 

 

(2) The measure χ (10a) of the relative roles of nonlinearity and dispersion is 

unconventional and uninformative. A better measure is simply the ratio 

α/β, where it should be noted that in the KdV equation (1) division by β and 

a rescaling of time, clearly indicates that this is the effective measure of 

nonlinearity vis-a-vis dispersion. 

 

Done. Removed with Section 2. 

 

(3) The transition of the steepening front into a solitary wave train is best 

understood using the Whitham modulation theory and asymptotic solution, 

as developed by Gurevich and Pitaevskii. It is well known that, at least in 

the KdV model, the leading waves are solitary waves. The detailed 

discussion on this aspect is not needed here. 

 

Done. The detailed discussion on this aspect has been removed with 

the old section 3.1.1 (previous version) 

 

(4) The large-amplitude solitary wave solutions of the eKdV equation are more 

usually called “table-top” waves than the term “tanh” used in the text. 

 

Done. 

 

(5) The title should mention “internal” and should not use an acronym. 

Done. 

 

 

 

 

 

 

 

 



Response to Referee # 2 comments 

Kieran O’Driscoll would like to thank the reviewer for their substantial and 

considerate review.  

Based on the general comments of Reviewer 2 (and also those of Reviewer 1): 

I have a number of problems with the paper and think that is requires significant 

revision. My basic problem is that there doesn’t appear to be much that is new here 

other than the application to the CMO site in the Middle Atlantic Bight and that is 

quite a small part of the paper.  

The paper needs considerable polishing. Figures are in some cases hard to read 

and many dimensional values are given without units. It would probably benefit from 

being shortened and more focussed on the comparisons with observations however I 

am not convinced of the value of these simulations in that context. The authors make 

some comparisons of their results with those of Holloway et al from 30 years ago. 

Recent work has been done in this area using model equations that include rotation 

(e.g., Grimshaw and co-workers). The authors need to make a compelling argument 

for this set of simulations.  

Response: Done. The article has been shortened by removing Sections 2 

(Theoretical Background), 3.1.1. (Two-layer model level bottom), and Figs. 1 – 

6.  

 

Comments  

1. The title highlights KdV solutions with no mention of the eKdV solutions. I think it is 

well established by now that cubic nonlinearity is necessary to adequately model 

many observed solitary waves in the ocean, so if anything the eKdV equation should 

be mentioned in the title. Indeed, one wonders what the benefit of even considering 

the KdV equation is. Comparisons of the predictions of the KdV and eKdV (or 

Gardner) equations, as well as the RLW equation, with fully-nonlinear numerical 

simulations for a two-layer stratification are discussed in Lamb and Xiao (Ocean 

Modelling, 2014). This seems like a relevant reference.  

Done, thanks. 

 

2. Why are rotational effects not considered? The site of the observations is at mid-

latitutude where rotation is going to affect the evolution of the internal tide and the 

amount of energy that ultimately gets transferred to ISWs. For example in Figure 10 

the linear long wave propagation speed is about 0.5 m/s so waves take about 50 

hours to travel 100 km. That is lots of time for rotation to affect their evolution.  



The model is two-dimensional, so the waves propagate in the horizontal x-

direction only and rotation is not included. This is stated in the abstract, 

discussion and summary.   

3. First paragraph of page 4. Nonlinear effects can become important even without 

shoaling, as illustrated by the authors own flat-bottomed simulations so this should 

be reworded.  

Done: Section 2 (Theoretical Background) has been removed 

4. Page 5, lines 6–8. “It was originally developed in the context of internal waves by 

Benney ....”  

Done: Section 2 (Theoretical Background) has been removed 

5. Equations 10(b) and 10(c) are both incorrect.  

Done: Section 2 (Theoretical Background) has been removed 

6. Page 10. The introduction to section 3 repeats material from the introduction so 

should be deleted.  

Done 

7. Page 12, line 15: For a given water depth and wave amplitude cubic ...”. Then on 

lines 16–18, whether or not the eKdV model is similar to the KdV model depends a 

lot on the wave amplitude. For a two layer stratification, whenever the interface gets 

displaced close to the mid-depth cubic nonlinearity becomes important (though if 

h1/h2 << 1 higher-order nonlinear may be needed).  

Done: Section 3.1.1 (Two-layer model level bottom) has been removed 

8. Section 3.1.1. The cases explored in this section are not well explained. All four 

cases have different total depths H = h1 + h2 and different depth ratios h1/h2 while 

from what I can understand the initial wave amplitude is the same in all cases. So 

both the depth ratio h1/h2 and the initial nonlinearity have been changed. Comparing 

these cases is then a bit problematic, particularly with statements to the effect that 

you expect one case to be more nonlinear than the other. Also, throughout ratios 

such as α/c and β/c are given without units. These ratios are not dimensionless. The 

KdV and eKdV equation have been used a lot to model internal solitary waves in the 

ocean. What have we learned from this set of simulations? 

Done: Section 3.1.1 (Two-layer model level bottom) has been removed 

 

9. Section 3.1.2. What is new here? The general picture of the evolution of a 

shoaling internal tide has already been well described. What is the new contribution 

from this section?  



These simulations studied the development of evolving internal tide as a 

packet or developing wave train across the linear sloping bottom, whereas 

most other studies have inspected the development and advance of a single 

soliton across similar bottom slope. 

10. Page 17, Line 5: there are no higher-order terms to prevent the development of 

solitary waves in the models used here.  

Sentence has been removed. 

11. Page 18, lines 14–15: What do you mean by ’We expect the waves to become 

unstable”? Do you mean your numerical solution is unstable? If so should a smaller 

time step be used? If a physical instability what type of instability is referred to?  

No, physically unstable, ie., Kelvin-Helmholtz instability or billows.  

Done, thanks. 

12. Page 19, line 14: Do you mean the CMO line will be horizontal — lots of straight 

lines don’t have constant h1.  

Yes, thanks. I will add Fig S1 (to replace old Fig 2) which shows values of h1, 

h2 for CMO. 

Note: No need to add Fig S1 for this case, CMO parameter values are shown in 

Fig. 4a 

13. Page 21, lines 9–10. α/α1 is not a dimensionless parameter.  

Done, thanks. That was a typo, as seen from line 11, one line along. This 

section has now been removed. 

14. Page 22, lines 3–8. Why is α1 so much greater at the CMO site than in case A? 

Is it because h1 is so much less?  

Yes, thanks. Due to h1 half the value of h2. I have included Fig. S1 (α/α1) to 

show this. I have also included the equation: 
𝛼

𝛼1
= 4

ℎ1−ℎ2

ℎ1ℎ2(ℎ1
2+ℎ2

2+6ℎ1ℎ2)
  

while adding: , where ℎ1 and ℎ2 are, respectively, twice and less than that at the 

CMO site. Done. 

15. Page 25, line 15. Do you mean figure 16c?  

Yes, thanks. 

16. Page 26, 2nd paragraph. Something else that could be going on is the nonlinear 

evolution of inertia-gravity waves that form behind internal solitary waves due to 

rotation. See Grimshaw et al, JPO, 2014 or Lamb and Warn-Varnas, NPG, 2015. 

What about multiple packets forming each tidal period because of different 

generation mechanisms or multiple tidal constituents?  



Thanks, done. References to these papers and alternate generation and 

evolution processes included as follows: 

Another possible generation mechanism is the nonlinear evolution of inertia-gravity waves 

forming behind internal solitary waves due to rotation, see further in Grimshaw et al. (2014) 

and Lamb & Warn-Varnas (2015). It is also possible that multiple packets form each tidal 

period, due to different generation mechanisms such as multiple tidal constituents or 

harmonics of a tidal components as found, for example, at the site of the Littoral Optics 

Experiment where the 4th harmonic of the semi-diurnal tide was used to successfully 

simulate the evolution of the internal tide (O’Driscoll 1999).   

 

17. Page 29, lines 8–9. The internal tide is nonlinear right from the beginning — it 

doesn’t become nonlinear sooner as β is reduced. As β is reduced waves have to 

get narrower before dispersive effects become significant.  

Yes, thanks. Done. Changed accordingly. This has been removed since it is 

concerned with Cases 1-4, flat bottom and old Fig. 1-6. 

18. Page 29, line 16. I think you mean if this ratio is much larger than one  

Yes, thanks. Done. Edited accordingly. 

19. Page 30, line 8. What do you mean by ’the internal tide was forced with a sech2 

wave. Don’t you mean the simulation was initialized with a sech2 wave?  

No. It is forced, since it takes a tidal period for the wave to propagate into the 

model domain, i.e. the sech2 wave has tidal period.  

20. Figures. In general I find the font size too small in most of the figures – it is 

difficult to read them. In the caption for Figure 7 panels (a), (b) and (c) referred to in 

the text are not labeled. Figure 11 is of particularly poor quality 

Done. Figures with problem font sizes have been increased in size (because of 

removal of Figs. 1-6). Fig. 7 relabelled, Fig. 11 removed.  
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Simulations and observation of nonlinear internal waves on the 

continental shelf: KdVKorteweg-de Vries and extended Korteweg-de 

Vries solutions   5 

Kieran O’Driscoll1, Murray Levine* 
1Department of Civil Engineering, Queen’s University Belfast, Belfast, BT9 1NN, Northern Ireland  
*deceased 

Correspondence to: Kieran O’Driscoll (kieran.odriscoll@qub.ac.uk) 

Abstract. Numerical solutions of the Korteweg-de Vries (KdV) and extended Korteweg-de Vries (eKdV) 10 

equations are used to model the transformation of a sinusoidal internal tide as it propagates across the 

continental shelf. The ocean is idealized as being a two-layer fluid, justified by the fact that most of the 

oceanic internal wave signal is contained in the gravest mode. The model accounts for nonlinear and 

dispersive effects but neglects friction, rotation, and mean shear. The KdV model is run for a 

varietynumber of idealized stratifications and unique realistic topographies to study the role of the 15 

nonlinear and dispersive effects. In all model solutions the internal tide steepens forming a sharp front 

from which a packet of nonlinear solitary-like waves evolves. Comparisons between KdV and eKdV 

solutions is explored. The model results for realistic topography and stratification are compared with 

observations made at moorings off Massachusetts in the Middle Atlantic Bight. Some features of the 

observations compare well with the model. The leading face of the internal tide steepens to form a shock 20 

like front, while nonlinear high frequency waves evolve shortly after the appearance of the jump. 

Although not rank ordered, the wave of maximum amplitude is always close to the jump. Some features 



 

3 

 

of the observations are not found in the model. Nonlinear waves can be very widely spaced and persist 

over a tidal period.  

 

 

 5 

1.   Introduction 

Internal waves are present throughout earth’s oceans wherever there is stratification, from the 

shallowest near-shore waters to the deepest seas. Internal waves are important to physical oceanographers 

because they transport momentum and energy, horizontally and vertically, through the ocean, e.g. Munk 

(1981), Gill (1982). They provide shear to turbulence which results in energy dissipation and vertical 10 

mixing, e.g. Holloway (1984), Sandstrom & Elliott (1984). Biological oceanographers are interested 

because the internal waves carry nutrients onto the continental shelf and into the euphotic zone, e.g. Shea 

& Broenkow (1988), Sandstrom & Elliott (1984), and Holloway et al. (1985). They are of interest to 

geological oceanographers because the waves produce sediment transport on the shelf, e.g. Cacchione & 

Drake (1986). Civil, hydraulic and ocean engineers are interested because the internal waves generate 15 

local tidal and residual currents, e.g. Willmott & Edwards (1987), which can cause scour on nearshore as 

well as offshore structures, e.g. Osborne et al. (1978). Large nonlinear IWs are also of interest to the navy 

because they cause large vertical displacements and large vertical velocities that may affect underwater 

operations. 

This study is focused on the internal tide and subsequent evolution of nonlinear waves. Internal 20 

waves in the ocean span the frequency spectrum from the buoyancy frequency, N, to the inertial 

frequency, f. However, the internal, or baroclinic, tide accounts for a large fraction of the energy contained 
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in these waves. The internal tide is generated by the interaction of barotropic tidal current with topography 

and not directly by the gravitational attraction of sun and moon. The properties and propagation of linear 

internal tide and waves have been treated in detail by many investigators, see, for example, Garrett & 

Munk (1979), or the monographs by Gill (1982), Lighthill (1978), or Apel (1987). 

As the internal tide shoals, the nonlinear terms in the Navier-Stokes equations become important. 5 

These tidal waves of finite amplitude may evolve into packets of high frequency nonlinear waves. The 

equations describing these waves are much more complex than the linear equations and few mathematical 

solutions have been found.   

We are interested in nonlinear internal waves because they are a very energetic part of the signal 

in time series that we have observed on continental shelves and in the shallow ocean. We are guided by 10 

numerical solutions of Korteweg-de Vries (KdV) type equations that incorporate both weak nonlinear and 

weak dispersive effects.           

 The state of the art on the evolution of internal solitary waves across the continental shelf is 

reviewed in Grimshaw et al. (2010). Grimshaw et al. (2004) simulated the transformation of internal 

solitary waves across the North West shelf of Australia, the Malin shelf edge, the Arctic shelf; Holloway 15 

(1987) discussed the evolution of the internal tide in a two-layer ocean on the Australian North West 

Shelf. Our model simulations of the evolution of the internal tide across realistic in the Middle Atlantic 

Bight topography cases are unique since these waves have never been modelled across such topography 

and stratifications, butand the model results are compared with observations made at moorings off 

Massachusetts during the Coastal Mixing and Optics Experiment.(CMO) Experiment. For the model 20 

cases of linear bottom sloping realistic topography, whereas most studies have focused on the behaviour 
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of a single soliton, this work is concerned with the development and evolution of a packet of solitary 

waves.     

The goal of this paper is to study the observed variability in the evolution of the internal tide as it 

crosses the continental shelf resulting from different stratifications and varying topography.   

 In section 2, the model framework is presented, and model runs and results of simulations are 5 

discussed for cases of linearly sloping bottom topography and that at the site of the Coastal Mixing and 

Optics experiment (CMO). Model results are compared with data and observations collected at the CMO 

site in section 3. A summary and conclusions are presented in section 4. 

The theoretical background of the Korteweg-de Vries (KdV) equation and an extended form of it, 

the eKdV, are presented in section 2. In section 3, the model framework is presented, and model runs and 10 

results of simulations are discussed. Model results are compared with data and observations collected at 

the site of the Coastal Mixing and Optics experiment (CMO) in section 4. A summary and conclusions 

are presented in section 5. 

 

2.   Theoretical Background  15 

The Korteweg de Vries (KdV) 

2.    equation is well known to be a suitable physical model for describing weakly nonlinear 

advective effects and linear dispersion in internal waves.  It was originally developed by Benney (1966) 

and extended to second order by Lee & Beardsley (1974). The KdV equation is derived from classical 

nonlinear long wave theory using a two-parameter perturbation expansion in  and  which scale the 20 

nonlinear and dispersive effects, respectively.  
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The KdV equation, derived following the procedure of Lee & Beardsley (1974) and the discussion 

by Lamb & Yan (1996), but without mean current, is given by 

0 xxxxxt c                                           1 

where  is the vertical displacement amplitude of the wave mode, c is the linear long wave phase speed 

for the mode whose amplitude is ,  and  are coefficients of the non-linear and dispersive terms, while 5 

subscripts represent derivatives in time, t, and space, x, respectively. 

 Progressing to 2nd order in  and  (nonlinear and dispersive effects) yields four additional terms 

to Eq.(1) - a cubic nonlinear term, as well as higher-order linear and nonlinear dispersive terms -  and is 

known as the fully extended KdV equation (feKdV). Often only the second-order nonlinear term ('cubic 

nonlinearity') is added resulting in the extended KdV (eKdV) equation   10 

  01  xxxxxt c                      2 

where 1 is the coefficient of the cubic nonlinear term. In a two-layer model, for example, when the layers 

are of similar depth, or when the quadratic nonlinear term is small, the higher-order linear and nonlinear 

dispersive terms can be omitted, see discussion in Grimshaw et al. (2002). Continuous stratification can 

support an infinite number of modes.  For simplicity we consider wave propagation in a two-layer 15 

stratification which supports one mode only.  The justification for making this approximation is that most 

of the energy in the ocean appears to be contained in the first mode anyway, e.g. Alford & Zhao (2007) 

and discussion therein, while the shelf often has the appearance of a two-layer stratification:  an upper 

mixed layer separated from a weakly stratified bottom layer by a thin pycnocline.  This approximation 

greatly simplifies the problem; the numerical scheme is much less complex for the two-layer case than 20 

the continuously stratified case, and the results are easier to interpret. The coefficients of the KdV and 
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eKdV equations are greatly simplified for a two-layer fluid and are written (e.g. Ostrovsky & Stepanyants, 

1989)  
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where  is the density difference between upper and lower layers, and h1, h2 are thicknesses of the two 5 

layers. We are interested in applying the KdV and eKdV equations to conditions of spatially varying 

coefficients. This problem has been investigated for slowly varying topography and stratification by 

Grimshaw (1979) and Pelinovsky et al. (1977).  The eKdV equation then has variable coefficients and an 

additional term:  

  0
2

1   xxxxxxt Q
Q

c
c              (4)                                               10 

 where            
3

00

3

cM

Mc
Q      and  

21

21

hh

hh
M


                         5(a,b)                    

and both c and M in Q vary in the horizontal direction, where the zero subscript indicates a constant value 

at a predetermined position. We note that the effective depth, h, is the inverse of the parameter M , Eq. 

(5b), contained in Q. For level bottom with horizontal interface the values of h1 and h2 are constant and 

Q=1 everywhere so the horizontal variability term vanishes, and the canonical KdV is the valid model. 15 

The variable coefficient KdV equation is the same as the variable coefficient eKdV equation but with 1 

= 0. For convenience in solving the equation, we avail of a transformation, utilized by Pelinovsky & 

Shavratsky (1976), of the space and time variables x and t to variables l and s, respectively, given by 
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          

x

t
xc

dx
s

0
)(

,         xl  .                                               6     

The transformed eKdV is then 

  0
1

412
 ssssl

cQc



                                     7 

and                             lQ  .                                                    8 

The transformation scales time so that disturbances traveling at the linear speed, c, remain at constant s. 5 

The system is often referred to as a slowness coordinate system.  Because  varies relatively slowly in l/c 

compared to s, terms such as 𝑐𝜁𝑙  are neglected relative to 𝜁𝑠 . The transformed KdV equation is the same 

as the transformed eKdV equation with 1 = 0. 

Important solutions of the KdV and eKdV equations are waves of permanent form. One family of 

these waves are the solitary waves.  There is a strong tendency for a long but otherwise arbitrary initial 10 

condition to evolve into a train of solitary waves (e.g. Lee & Beardsley, 1974; Drazin & Johnson, 1989).  

The solitary wave solution for the KdV equation in (l, s) space for constant parameters is given by (Zhou 

& Grimshaw, 1989)  



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




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
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3

0
 cV ,  

0

2 12




 .              9(a, b, c) 

The solitary wave is a single ‘bump’ propagating at speed V without change in form non-linearity being 15 

balanced by dispersion (Fig.1(a)).  The amplitude, 0, is inversely proportional to the square root of the 
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width,  - higher amplitudes imply narrower widths. The solitary waves can be either waves of elevation 

(0 > 0,  > 0) or waves of depression (0 < 0,  < 0).  Since the product 0 is always greater than zero, 

KdV solitary-like waves always travel with wave speed greater than c, Eq. (9b). For future use, it is useful 

to consider the difference between the magnitude of the nonlinear and dispersive terms: 

                      ssss
cc






42

                                                10 (a) 5 

and the analytical values of these terms for =0sech2   , where   is the argument given in Eq. (9a), 

are:  
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sss (sech2() tanh()))(2sech2() - tanh()).           10 (c) 

Note that for sech2() the nonlinear term is for the most part larger than the dispersive (Fig. 1(b)).   10 

The solitary wave solution to the eKdV equation has a more complicated analytical form (Stanton 

& Ostrovsky, 1998):  
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                      11(a) 

where  is a nonlinearity parameter between zero and one, and the other parameters are 

1
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The shape of the ‘tanh’ eKdV solitary wave is similar to the ‘sech2’ KdV solitary waves for small 

amplitude (Fig.1c).  As amplitude increases the eKdV solitary waves become thicker than the KdV 

solutions.  Unlike the sech2 solitary wave, the tanh wave has a maximum amplitude, which is given by 

/1 (e.g. Stanton & Ostrovsky, 1998). For our application we assume sinusoidal tidal forcing at the 

boundary l = 0, Eq. (12a), where a0 is tidal amplitude and  is the frequency of the internal tide, with 5 

periodic conditions Eq. (12b)   

   sals  sin0, 0       lsls ,,
2





 








 .            12(a,b) 

 We employed the same finite difference scheme as Holloway et al. (1997) to solve the eKdV Eq. 

(7) numerically.  The finite difference scheme is a central difference method, (e.g. Lapidus & Pinder, 

1982), which was first developed for the KdV equation by Berezin (1987), and for the variable 10 

coefficients KdV by Pelinovsky et al. (1977). The difference scheme for the generalized KdV equation 

remains numerically stable provided  
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where l and s are grid resolution spacing values in space and time, respectively, (e.g. Holloway et al., 

1997).  Note values of s = 55s and l = 10 m are used throughout this work.   15 

 

37. Two-Layer Model 

We are interested in modeling the evolution of the internal tide as it propagates shoreward from the 

shelf break.  Since the greatest oceanic signal is the first internal mode, the stratification of the 
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continental shelf/slope region is modeled as a two-layer fluid.  This approximation greatly simplifies the 

problem; the numerical scheme is much less complex for the two-layer case than the continuously 

stratified case, and the results are easier to interpret.  Using the two-layerthis model configuration, we 

study the propagation of the internal tide over various types oflinear sloping and CMO topography, 

including the simplest case of flat bottom with level interface and progressing to realistic topography 5 

with sloping interface. All cases have been run within the quadratic nonlinear framework of the KdV 

equation, and the results are compared with an extended form of it, the eKdV model. 

For the KdV Eq. (1) and eKdV Eqs. (1, Eq. (2) to be valid, the leading two terms must constitute 

the  

0 xxxxxt c                                            1 10 

        01  xxxxxt c                                 2 

 

primary balance.  The nonlinear and dispersive terms can become important, but the assumptions leading 

to the KdV and eKdV equations are violated if either of the nonlinearity or dispersion terms approach the 

magnitude of the leading terms.  Nonlinear transformation of the internal tide leads to the generation of 15 

nonlinear waves which tend to become solitary-like in form as the dispersive term becomes important.   

We begin by discussing the coefficients of the KdV and eKdV equations for a two-layer fluid, 

where the density difference between the layers is chosen to be a constant: g/ = .014 m/s2,Note, the 

KdV equation is well known to be a suitable physical model for describing weakly nonlinear advective 

effects and linear dispersion in internal waves.  It was originally developed by Benney (1966) and 20 

extended to second order by Lee & Beardsley (1974). The KdV Eq. (1) and eKdV Eq. (2) equations are 
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derived following the procedure of Lee & Beardsley (1974) and the discussion by Lamb & Yan (1996). 

The two-layer KdV model approximation is discussed in Grimshaw et al. (2002), and justified since most 

of the energy in the ocean appears to be contained in the first mode anyway, see e.g. Alford & Zhao 

(2007). The coefficients of the KdV and eKdV equations are greatly simplified for a two-layer fluid, e.g. 

Ostrovsky & Stepanyants (1989).  The problem has been investigated for slowly varying topography and 5 

stratification by Grimshaw (1979) and Pelinovsky et al. (1977). An interesting reference is Lamb & Xiao 

(2014), who took a similar approach to ours, comparing predictions of the KdV and eKdV models, and 

also the RLW equation, with fully-nonlinear numerical simulations for two-layer stratification over 

selected topographies. See O’Driscoll (1999) for a full discussion of our experiments.    

For all simulations the density difference between the two layers is chosen to be a constant: 10 

𝑔/ =  .014 𝑚/𝑠2 , a representative value for the Coastal Mixing and Optics (CMO) experiment 

(Levine & Boyd, 1999), for example at a mooring in the Middle Atlantic Bight located at 40.5oN, 70.5oW, 

and also in agreement with the stratification near the mooring location displayed in Barth et al. (1998). 

The linear phase speed, c, is then a function of h1 and h2 only, Eq. (3a) and (1998).Fig. 2a, with values of 

c symmetric about the line h1 = h2, since the parameter for the effective or harmonic depth,  15 

                                        
21

21'
hh

hh
h


                                              14                                                                            

is contained within the phase speed (Apel, 1987) and lines of constant total water depth are perpendicular 

to the line h1=h2. For a given total water depth, the speed is greatest when h1=h2 and decreases as 

difference in layer thickness increases. Starting at a point on the line h1=h2 and keeping the thickness of 

one of the layers constant, the speed of the wave decreases as the thickness of the other layer decreases.   20 
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 The coefficient of the non-linearity term, , is also a function of h1 and h2 only, Eq. 3b and Fig. 

2b.  The values of /c are anti-symmetric about the line h1=h2, where /c=0. Starting at a point on the 

line h1=h2 and keeping the thickness of one layer constant, the value of  as the thickness of the other 

layer decreases. The absolute value of /c changes least rapidly when h1 h2. When the thicker layer is 

larger than the thinner layer by at least a factor of 2-3, then /c is relatively insensitive to the thickness 5 

of the thick layer, that is when h2>>h1, then |/c|  3/2h1 and is not a function of h2. /c is also important 

since when multiplied by the amplitude, , it represents the ratio of the nonlinear to the linear terms in 

the KdV Eq. (1).                                                                                                                               

                The coefficient of the dispersive term, , divided by c is also a function of h1 and h2 only, Eq. 

3c and Fig. 2c, whose values are symmetric about the line h1=h2. The value of /c for any given water 10 

depth is a maximum when h1=h2, values decrease as either of the layers becomes small.  The interpretation 

of     

Fig.2c as a ratio of terms is complicated since, unlike Fig.2b, the derivatives do not cancel and the ratio 

cannot be simplified.       

The coefficient of the cubic nonlinear term, 1, when divided by c is also a function of h1 and h2 15 

only, Eq. (3d) and Fig. 2d. 1 is always negative and is symmetric around the line h1=h2, while for a given 

water depth the magnitude of 1 is least when h1=h2.  The value of 1 as either one of h1 or h20. 

It is also useful to calculate the ratio /1, see O’Driscoll (1999). The relative importance of the quadratic 

to cubic nonlinearity is given by /1. For a given water depth cubic nonlinearity is most important 

when h1  h2, i.e. when the magnitude of  is small.  The magnitude of the quadratic nonlinear term is  20 
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much greater than that of the cubic nonlinear term when the water depth of one layer is much greater than  

the other and in this case the eKdV model is very similar to the KdV model. 

 

 

37.72.1 The Korteweg de Vries (KdV) Model solutions  5 

Using the KdV equation, we first investigate 42 cases with level bottom for different combinations of 

h1 and h2.  We then progress to constant sloping bottom, with both horizontal and sloping interface.  

Finally, we , and finally make model runs with realistic topography at the sites of the CMO.  

 

3.1.1 Level Bottom           10 

       We begin by studying the evolution of the internal tide over a level bottom, with level interface 

(h1 and h2 constant). This simple fluid arrangement is instructive when developing an intuitive feel for 

the generation and propagation of internal wave packets. A level bottom is also a good approximation for 

the continental shelf where the total water depth changes slowly in the horizontal.  Four cases (Cases 1-

4) using different layer thickness were selected to look at the effects of different relative magnitudes of  15 

and  (Table 1). Case 1 (h1=50m, h2=150m) was chosen because these are reasonable values of upper and 

lower layer depth on outer continental shelves. Results are shown in Fig. 3a-b and Fig. 4a-c. A sinusoidal 

internal tidal amplitude of 5 m was used as the forcing at l = 0, Eq. 12.  As it propagates, the internal tide 

steepens on the trailing edge or “back face” of the sine wave and a shock-like front forms at about l  50 

km.  At this stage we also see the beginnings of undulations developing behind the shock-like front.  By 20 

75 km a pack of nonlinear solitary-like waves has begun to form. It is evident at 100 km that the solitary-
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like waves of depression are rank ordered with the largest amplitude first. The first three waves at 100 

km are compared with the sech2 solitary wave-form in Fig. 4a.  Using the values of ,  and c, the shape 

of the solitary wave, Eq. (10), is determined by a single parameter, the amplitude, which is subjectively 

adjusted for best fit.  The fact that the subjectively chosen sech2 fits contain an arbitrary offset does not 

prevent the waves from being exact solutions to the KdV  site.     For 5 

convenience in solving the equation provided they propagate locally and at the local offset depth, as was 

shown by Zabusky & Kruskal (1965). The smaller amplitude trailing waves, Fig. 4b, appear more 

symmetric and sinusoidal in shape compared to solitary waves. Fig. 3b is a contour plot of displacement 

showing propagation of the internal tide in (l,s) space. The , we avail of a transformation to s and l space 

results in a wave of speed c following a line of constant s. A solitary wave with phase speed V > c will 10 

appear at smaller value of s for increasing l along the propagation path, i.e. will curve to the left as the 

tide progresses vertically up the plot along a maximum /minimum.  The maxima and minima of the 

nonlinear waves travel at different speeds with the leading one (at smallest s) traveling fastest. Since a, 

utilized by Pelinovsky & Shavratsky (1976), of the space and time variables x and t to variables l and s, 

respectively, given solitary-like wave may vary in amplitude as it propagates in l, we also expect the track 15 

of the wave to curve in s and l space. The trailing sinusoidal-like waves travel with wave speed less than 

c, indicating that dispersion is important. An interesting observation is that some of the minima of the 

nonlinear waves initially travel with wave speed less than c and eventually travel with speeds greater than 

c (for example see 7th min. in Fig.3b).by 
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The transformed eKdV is then 

  0
1
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 , and 0 subscripts represent initial values. The 

transformation scales time so that disturbances traveling at the linear speed, c, remain at constant s. The 

system is often referred to as a slowness coordinate system.  Because  varies relatively slowly in l/c 5 

compared to s, terms such as 𝑐𝜁𝑙  are neglected relative to 𝜁𝑠 . The transformed KdV equation is the same 

as the transformed eKdV equation with Fig. 4c shows the difference between the magnitudes of the 

nonlinear and dispersive terms,  (Fig.1b), for Case 1 at various distances in l.  At 100km we see the 

balance changing over the tidal period.  The leading waves at the left have the shape expected for a sech2 

solitary wave (Fig. 4a).  The trailing waves to the right appear more sinusoidal in shape, and are relatively 10 

more dispersive than a sech2 wave.  Upwards of twenty waves have formed when the internal tide has 

traveled 160 km.  The leading six to seven waves travel with speed greater than c and have a nearly sech2 

form.  The trailing waves travel slower than c as expected for waves that are more dispersive. 

 For Case 2 we choose h1 and h2 such that /c = .02 as in Case 1, but the value of /c is less than 

half that of Case 1. Since the ratio of the dispersive coefficient to the nonlinear coefficient has been 15 

reduced by more than half, we expect Case 2 to be more nonlinear, the internal tide to steepen sooner, 

and nonlinear internal waves to form at smaller l.  Fig. 5 shows that the internal tide evolves similarly to 

Case 1.  However, as expected, the shock-like front and subsequent undulations appear sooner (smaller 
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values of l). Comparing Figs. 3a and 5a, the internal tide is more nonlinear at l  50 km for Case 2 than it 

is for Case 1, while a greater number of solitary waves have formed in Case 2 by l=100km, and are more 

closely spaced. More of the leading waves have sech2 form at 165 km in Case 2 when compared to Case 

1.  For Case 2, a few more of the leading waves travel with speed greater than c compared with Case 1; 

the remaining waves have speed less than c, and disperse from the leading waves as l increases. 5 

For Case 3 we choose /c = 1250, as in Case 1, but with /c = .0021, a factor of ten less than the 

value used in Case 1 and 2. As a result, we expect the internal tide to be much less  

nonlinear. Indeed, the internal tide steepens slowly and even by l = 200 km solitary-type waves have not 

been generated (see O’Driscoll 1999).  

For Case 4 the nonlinearity parameter is half that used in Case 1, /c = .01 and /c is the same 10 

value. So, we expect the resultant internal tide to be more nonlinear than Case 3 but less so than either of 

Cases 1 or 2. The internal tide steepens slowly and the first wave of depression begins to form when l  

100 km (Fig. 6). Fewer nonlinear waves have formed at this point than in either Case 1 or Case 2.  By l 

= 200 km only two or three solitary-like waves have formed.   

 15 

3.1.21  =  0. See O’Driscoll (1999) for further details. 

 

2.1.1   Constant Bottom Slope          

 The propagation of the internal tide along constant sloping topography was studied for cases of 

constant upper layer thickness (Case A) and sloping interface (Case B), both of which are possible on 20 

continental shelves. We have chosenchose starting layer thickness at l=0 the same as Case 1 for a flat 
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bottom, i.e. h1=50m 𝑙 = 0 ℎ1 = 50𝑚  and h2 =150m ℎ2 = 150𝑚 , with bottom slope of 1/1000 

 1/1000 so that total depth decreases from 200200 to 0 m0 𝑚 over a distance of 200 km.  

   200 𝑘𝑚.  

We first investigate the case of constant sloping bottom with constant upper layer thickness (Case 

A). The value of c decreases in shallow water, while 00 as h2h1ℎ2ℎ1 at water depth of 100 m 5 

(Figs. 2, 7a).100 𝑚 (Fig. 1a). Seaward of this depth, where h2 > h1,  < 0ℎ2 > ℎ1, < 0 and solitary 

waves are waves of depression, whereas shoreward of this depth (h2 < h1),  > 0ℎ2 < ℎ1, ),  > 0 and 

solitary waves exist as waves of elevation only. 00 as the product h1h2 0.  Sinceℎ2ℎ10.  As 

the magnitude of  is initially relatively large we expect the sinusoidal internal tide to transform rapidly 

resulting in the formation of several nonlinear waves (as previously seen for the flat bottom cases). Since 10 

0. Since 0, these waves may not be so nonlinear as to violate the weakly nonlinear constraint on 

the KdV model. However, sincebecause the value of  rapidly increases for l>100km, we expect the 

waves of elevation to become highly nonlinear thereby possibly violating the weakly nonlinear condition.  

Figs. 7b1b and c show the internal tide signal for Case A at different values of l, i.e. and also at 

different water depths. The internal tide steepens and rapidly becomes nonlinear, resulting in the 15 

generation of a shock-like front and subsequent undulations by l50km𝑙50𝑘𝑚. Shoaling further, the 

internal tide becomes more nonlinear with the oscillations starting to resemble solitary waves by 

l=70km𝑙 = 70𝑘𝑚. However, unlike Cases 1, 2, and 4, the waves never develop into mature internal 

solitary waves assince the magnitude of  continually decreases. By l = 90 km𝑙 = 90 𝑘𝑚 the waves 

resemble a symmetric, dispersive packet, as further evidenced by Fig. 8a2a. Initially the relatively large 20 
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magnitude of  resulted in the rapid steepening of the internal tide, so much so that the Case A tidal 

signal at l=50km resembles those of both Case 1 and Case 2 for flat bottom.. However, as the value of 

00 the nonlinear waves are prevented from developing into solitary waves, since higher order 

terms (neglected in KdV) become of order  or larger and thus cannot be ignored, thereby rendering the 

KdV model invalid in this neighborhood.  At l=100km𝑙 = 100𝑘𝑚 the packet certainly looks symmetrical 5 

about a horizontal axis, that is to say the waves are neither polarized as waves of depression nor elevation, 

since KdV solitary waves cannot exist when =0 = 0. At 115km115𝑘𝑚 the waves have switched 

polarity; they have become waves of elevation, a result of  having become positive. This transition is 

seen in Fig.8b2b where the leading waves are compared with sech2 solitary form. Beyond 100km100𝑘𝑚 

the waves rapidly approach solitary waves of elevation since  becomes large quickly.   10 

As the internal tide propagates into shallow water the leading face of the wave steepens but, unlike 

cases 1-4, the decreasing magnitude of  causes this steepening to slow down and there is virtually no 

change in wave slope steepness between 7070 and 90 km.90 𝑘𝑚.  The rate of change of the slope of the 

leading face changes sign when   becomes positive and the slope steepens rapidly, while the back face 

of the internal tide slackens. The steepening of the leading wave will lead to the formation of a second 15 

shock-like front (or a “reverse hydraulic jump” as has been described by Holloway et al., 1997). Fig. 7c1c 

gives a clear picture of the wave speed.  The: the leading solitary-type wave initially travels with speed 

very slightly greater than c but becomes slower than c when l 90km𝑙 90𝑘𝑚.  The second solitary-type 

wave also has initial speed greater than c but becomes slower than c when  l 80km.at 𝑙 80𝑘𝑚. All of 

the other waves travel with phase speed less than c. For values of l >100km𝑙 > 100𝑘𝑚 all waves travel 20 
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with speed less than c, the reason becomes clear upon examination of Fig. 8a2a which plots the difference 

between the magnitudes of the nonlinear and dispersive terms for Case A.  

The leading waves are slightly more nonlinear than dispersive when l 70 km 𝑙 70 𝑘𝑚 but 

become less so as l approaches 100 km100 𝑘𝑚. When =0 (l=100km) = 0 (𝑙 = 100𝑘𝑚) the value of 

the nonlinear term is zero and the waves look like a dispersive packet.  Since  >0 > 0 for l >100 km>5 

100 𝑘𝑚, the nonlinear term is again a factor and the waves become a hybrid by l=115km𝑙 = 115𝑘𝑚, 

interchanging back and forth across the length of the wave between being more nonlinear and dispersive. 

The waves travel slower than c since the magnitude of the dispersive term is slightly greater than the 

nonlinear term.  

For Case B with constant sloping bottom and sloping upper layer, we also begin in 200m200𝑚 10 

water with h1 =50m and h2 =150m. Forℎ1 = 50𝑚, ℎ2 = 150𝑚. In this caseinstance the bottom slope is 

again 1/10001/1000 and the interface slope is 1/4000 with the result1/4000 such that both layers vanish 

simultaneously at 200 km. The𝑙 = 200 𝑘𝑚. KdV parameter values of the KdV parameters are shown in 

Fig. 9a3a. The magnitude of  increases from l=0𝑙 = 0 all the way to the shallowest water, unlike Case 

A where  passes through zero, so we expect the internal tide to become nonlinear sooner than for Case 15 

A, and any solitary waves to remain as waves of depression. We do, however, expect the waves to become 

unstable,physically unstable, leading to a Kelvin-Helmholtz instability (see e.g. Cushman-Roisin & 

Beckers 2011), a result of the increasing magnitude of the nonlinear parameter combined with the 

decreasing value of the dispersive parameter. This combination of events will result in the weakly 

nonlinear, dispersive KdV becoming invalid at l = 95 km𝑙 =  95 𝑘𝑚. Fig. 9b3b is a plot of the internal 20 

tide for Case B at several values of l. The internal tide steepens rapidly and a shock-like wave, followed 
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by undulations, has evolved from the transforming tide by l=40km𝑙 = 40𝑘𝑚. The internal tide continues 

to steepen and several nonlinear waves have formed by l=55km𝑙 = 55𝑘𝑚. These leading nonlinear waves 

mature into rank ordered solitary waves by 65km65𝑘𝑚. Fig. 9c3c shows that most of the solitary waves 

eventually travel at awith phase speed greater than c. The waves are more nonlinear than dispersive and 

the increasing value of the nonlinear parameter combined with the diminishing value of the dispersive 5 

parameter leads to the model becoming numerically unstable (O’Driscoll 1999). 

 

32.1.32   Realistic topography and stratification  

We now proceed to the transformation of the internal tide for the case of realistic topography for the CMO 

site.    10 

The CMO site was located in the Middle Atlantic Bight. CTD profiles were made across the 

continental shelf from shallow water to beyond the continental slope. Boyd et al. (1997) have concluded 

that the internal tide at the site is primarily a first mode internal wave, further justifying our choice of a 

two-layer model. An upper layer thickness of 25 m25 𝑚 is a representative average value for the duration 

of the experiment (July and August 1996). The line ‘CMO’ in Fig.2 shows the values that the KdV 15 

parameters take as the internal tide propagates across the continental shelf.  Since the upper layer, h1, is 

constant, the ‘CMO’ line will be straight, but since the total depth does not vary linearly in l, the value of 

h2 does not change linearly along this line.   

Fig. 10a4a shows theKdV parameter values of the KdV parameters as a function of l.  Though 

undulating, the bottom topography is similar to the constant sloping bottom cases.  Recall that we chose 20 

an upper layer depth of 50 m for Case A, whereas here we have chosen h1 = 25 m.  starts out negative 
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with relatively large magnitude.  The magnitude decreases, similar to Case A, changing sign as the bottom 

shoals and h1>h2 when the value increases rapidly. Values of , c and the horizontal variability parameter, 

Q, are similar to Case A.  Figs. 10b4b and c show results for tidal forcing of amplitude 2 m at 180 m water 

depth.  The internal tide evolves similarly to Case A.  A shock-like front has formed on the back-face of 

the internal tide at l=40km𝑙 = 40𝑘𝑚 .  Several nonlinear waves have formed by l=60km𝑙 = 60𝑘𝑚 5 

(mooring location) with the leading 4-54 − 5 waves appearing like solitary waves of depression and the 

trailing waves looking more like a dispersive packet.  Several more waves have formed by 80km80𝑘𝑚 

but the number of solitary-like waves seems to have been reduced to the leading two waves.  All of the 

trailing waves do appear as a dispersive packet since the magnitude of  has decreased.  More waves 

continue to form but by 100 km100 𝑘𝑚 the packet is neither a pack of waves of elevation nor depression, 10 

not unlike Case A.  Beyond l=125km,𝑙 = 125𝑘𝑚,  becomes large ,, the waves reverse polarity and 

rapidly develop into mature solitary waves of elevation.  The results show that the CMO case and Case 

A are similar, though more solitary waves have formed for the CMO case, due to the fact that at the CMO 

site the value of   is initially twice that of Case A.  The internal tide becomes unstable beyond 

l=130km𝑙 = 130𝑘𝑚, a result of the increasing value of the nonlinearity parameter combined with the 15 

vanishing dispersion parameter.  Fig. 10c4c is a plot of the evolution of the internal tide as it propagates 

over the continental shelf, increasing in l. The leading solitary-like waves initially travel with speed very 

slightly greater than c, as in Case A.  The waves slow down to travel at speed c where l  90km𝑙  90𝑘𝑚 

and  is very small.  TheWave speed of the waves then becomes slightly slower than c but faster and 

more complicated than Case A, due to the undulating topography.    20 
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The difference in magnitudes of the nonlinear and dispersive terms, ,  ssss
cc






42

 , is 

plotted in Fig. 11. 5. The leading 2-3 three waves are initially more nonlinear than dispersive but the 

diminishing magnitude of  leads to the waves becoming more dispersive-like and the waves begin to 

slow down. The negligible value of  between l=100-115km𝑙 = 100 − 115 𝑘𝑚 results in the waves 

behavingacting very much like a dispersive packet and they travel with wave speed slightly less than c.  5 

The increasing value of  after it passes through zero, leads to the nonlinear term becoming almost the 

same order of magnitude as the dispersive term before the model becomes numerically unstable shortly 

beyond l=130km𝑙 = 130 𝑘𝑚.        

 

32.2 The extended Korteweg - de Vries (eKdV) model  10 

All of theThe model runs discussed in section 32.1 were also made usingwith the extended 

Korteweg-de Vries (eKdV) equation. The ratio of the nonlinear parameters, /1,
𝛼

𝛼1
=

4
ℎ1−ℎ2

ℎ1ℎ2(ℎ1
2+ℎ2

2+6ℎ1ℎ2)
 (see e.g. Ostrovsky & Stepanyants, 1989) is the theoretical maximum amplitude 

for the solitary wave solution to the eKdV solutionequation. The ratio of the quadratic to cubic nonlinear 

terms in the eKdVthis equation depends upon the displacement height, , and is given by /(1).  For 15 

flat bottom, Cases 1, 2 and 4, the maximum amplitude 0 ~18m for the KdV numerical solution. 
𝛼

𝛼1
.   
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For Case 1, /1 > 40 and therefore the nonlinearities result predominantly from the quadratic 

nonlinear term, see O’Driscoll (1999).  For Cases 2 and 4 the magnitude of /1 is just over 20 m, and 

both the quadratic and cubic nonlinear terms will be important.  

For the case of sloping bottom with horizontal interface, Case A, the ratio /1 passesthrough
𝛼

𝛼1
 

passes through zero (h1=h2)ℎ1 = ℎ2) and we expect the cubic nonlinear term to be important. The results 5 

of this model run are shown in Fig. 126. The internal tide evolves similar to the KdV case (Fig. 7b1b) 

with a shock-type wave followed by several nonlinear oscillations on the back face of the internal tide at 

l=50km𝑙 = 50𝑘𝑚. The internal tide in both frameworks look similar at 70 km70 𝑘𝑚 where several 

nonlinear waves of depression havinghave been formed. The KdV solitary-like waves flip polarity at 100 

km100 𝑘𝑚 due solely to the fact that  changes sign there.  10 

For the CMO case, comparison of KdV and eKdV modelsresults shows a more significant 

difference than for Case A. Fig. 13a7a-c showsshow the KdV and eKdV model results for a 4m4𝑚 

internal tide having propagated 60 km to a water depth of 69 m. The leading KdV model solitary wave 

(solid line) arrives at the CMO central mooring ~0.1~0.1 tidal period ahead of the leading eKdV model 

solitary wave (broken line).  The KdV and eKdV models are so different at the CMO site when compared 15 

to Case A because the magnitude of 11 is greater at the CMO site.  Though the magnitude of  is less 

in Case A, the fact that the magnitude of 1 is so small when compared to   means the addition of the 

cubic nonlinear term does little to change the KdV results. This is not true at the  CMO site where the 

greater magnitude of 1 is the reason for the difference between the KdV and eKdV frameworks, 

particularly as the internal tide propagates into shallower water and the magnitude of the ratio /1 
𝛼

𝛼1
 is 20 
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much greater for Case A, where ℎ1 and ℎ2 are, respectively, twice and less than that at the CMO site. 

Comparing the leading waves from the eKdV and KdV solutions reveals a fundamental difference in 

wave form; the KdV waves are taller and thinner (Fig. 13c7c). Solitary type solutions to the KdV (sech2) 

and to the eKdV (tanh, also known as ‘table-top’ waves) are fitted to the leading waves (Fig. 13d7d-e).  

The leading wave in the KdV model is very well approximated by a sech2 wave.  The lead wave in the 5 

eKdV model is neither well approximated by sech2 or tanhtable-top wave, but appears to be a hybrid 

between the two. Fits of sech2 and tanhtable-top waves were made by subjectively choosing values of 

0𝜂0 and ,𝜐, respectively, while using the value of KdV and eKdV parameters for 69m69𝑚 water depth. 

Note that the amplitude of the tanhtable-top wave is limited to /1.
𝛼

𝛼1
. Increasing  only serves to 

make the waves wider once theits value of  is close to one (Fig. 1c). The amplitudesee e.g. O’Driscoll 10 

1999). Amplitude and width of the leading waves ofin the packet are also compared in Fig. 14a8a.  The 

width is defined as the time it takes the wave to pass a fixed point, as measured at 42%42% of the 

amplitude. Results from a range of different tidal amplitudes are also shown. For reference, the dotted 

lines represent sech2 and tanhtable-top waves for the local values of parameters h1, h2, and g/. For 

KdV the leading wave of the 2m2𝑚 tide always has amplitude greater than the second and the amplitudes 15 

of subsequent waves decrease in a rank ordered fashion. The leading wave is slightly thicker than the 

trailing ones which are all approximately equal in width.  For the eKdV the leading wave has larger 

amplitude and is thicker than the trailing waves.  For the KdV model with 4m4𝑚 amplitude tide all the 

waves fall on the same spot on the sech2 curve.  For the eKdV model with 4m4𝑚 amplitude tide, the 

waves appear on the ‘thick’ side of the sech2 curve with the lead wave the most removed from the KdV 20 
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theoretical curve. The same is true for amplitudes of 5m and 6m. The eKdV model waves appear to be 

evolving toward the theoretical eKdV 'tanh' curve. Note that the amplitude of many of these waves 

exceedsexceed the maximum amplitude of table-top/tanh wavewaves of 9 m9 𝑚 as determined by the 

local parameters at the CMO site.    

To learn more about the evolution of a sine wave to waves with sech2 and tanhtable-top form, we 5 

ran the model with constant parameters (flat bottom) using values at the mooring site.  The runs were 

made with initial tidal amplitudes of 1, 2 and 4 m in both KdV and eKdV frameworks and the width vs. 

amplitude for the first and second wave in each packet is plotted at various increments of l (Fig. 14b8b).  

The KdV waves grow in amplitude with approximately constant width before turning to hug the 

theoretical KdV line. They then decrease in amplitude while increasing slightly in thickness. Though the 10 

KdV model waves continue to evolve, most of them can be well approximated as being ‘sech2’ waves 

after ~100km (as was previously shown for Case 1 and Case 4).~100𝑘𝑚. For the eKdV case, the waves 

are initially close to the theoretical sech2 KdV curve. The waves move slowly towards the theoretical 

eKdV tanh curve, ultimately decreasing in amplitude and increasing in thickness. The last points have 

been plotted after the internal tide has propagated ~240km~240𝑘𝑚. It appears that these waves are 15 

evolving toward tanhtable-top form, but mature over a relatively long distance. Also, the amplitudes of 

the waves are greater than the theoretical eKdV maximum but their magnitudes decrease as the tide 

evolves. 

Another investigation to explore the evolution in the eKdV model (constant parameters) was made 

using an initial condition of a sech2 wave, the solitary wave solution to the KdV equation. Sech2sech2 20 

amplitudes of 4m, 7m, 9m, and 13m (Fig. 14c8c) were chosen. The sech2 waves are rapidly transformed 
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to tanhtable-top waves, e.g. the 4 examples plotted reach the theoretical eKdV curve after the wave has 

propagated about 10 km10 𝑘𝑚. A solitary sech2 wave evolves much more rapidly to the tanhtable-top 

form (Fig. 14c8c), as opposed to when it is part of a packet of waves (Fig. 14b8b).  The reason for this 

has not been thoroughly investigated, but provides caution for treating a packet as a group of non-

interacting waves. 5 

 

38.3. Observations of Nonlinear Internal Waves 

The data to be presented and discussed was collected during the CMO, for location see Fig. 159. The 

CMO experimental field program was conducted to increase our understanding of the role of vertical 

mixing processes in determining the mid-shelf vertical structure of hydrographic and optical properties. 10 

The field program was conducted on a wide shelf so as to reduce the influences of shelf break and 

nearshore processes. The data we discuss was collected from the CMO Central Mooring in July and 

August 1996, a time when a strong thermocline is present as a result of large-scale surface heating, Boyd 

et al. (1997). 

 15 

43.1   Observations during the Coastal Mixing and Optics Experiment  

 The Central Mooring of the CMO experiment was located at 40o 29.50’ N  70 o 30.46’ W in water 

depth of 69 m69 𝑚. A total of 24 temperature recorders and 5 conductivity sensors were distributed along 

the mooring. Currents were measured at 14 depths from an ADCP placed a few metres above the bottom. 

  Boyd et al. (1997) have calculated the first mode internal wave amplitude from the velocity 20 

time series for the period 29 July to the 31 August 1996 (year day 210 - 245, Fig. 16a).10 i)). The dominant 
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barotropic tidal signal in the Middle Atlantic Bight is semi-diurnal, and is strongest over the period day 

241-245 during spring tide (Fig. 17). 11). A semi-diurnal signal is apparent in the first mode record, 

particularly during the spring tide period. A spectrum of the first mode amplitude (Fig. 1812) shows 

energy peak at both low and high tidal frequencies. Much of the high frequency energy is due to bursts 

or pulses of high frequency nonlinear internal waves that occur for a short period during the semi-diurnal 5 

tidal cycle. These nonlinear internal waves propagate shoreward across the continental shelf to the south 

of Martha’s Vineyard.  The energy at high frequency is greater over the period day 241-245 during spring 

tides (Fig. 1812). There is a clear maximum in energy at 2 cpd over this period, and a significant amount 

of energy is also contained at 4 cpd. The energy rapidly drops for frequencies greater than 4 cpd but there 

is a significant increase in energy at ~50 cpd~50 𝑐𝑝𝑑 and at ~90 cpd~90 𝑐𝑝𝑑. To help interpret these 10 

observations, we compare them with the two-layer eKdV model using the CMO parameters. Since we do 

not know where the internal tide is generated or its amplitude, the model was run assuming a sinusoidal 

internal tide at distances of 24 km, 48 km24 𝑘𝑚, 48 𝑘𝑚 and 60 km60 𝑘𝑚 seaward of the mooring site. 

Three initial amplitudes of 2 m, 4 m2 𝑚, 4 𝑚 and 6 m6 𝑚 were used at each distance. Fig. 14c10 iii) 

shows the internal tide as it appears at the CMO mooring site for these nine cases. In all casesinstances, 15 

the leading face of the periodic sinusoidal wave slackens (or flattens) as the internal tide propagates 

shoreward.  This is followed by a steepening of the back face which develops into a shock-like front.  The 

shock-like front is followed by oscillations which subsequently evolve into a packet of solitary-like 

waves. 

This same pattern can often be seen in the observed time series of the first internal mode.  Fig. 20 

1913 shows several individual jumps at the CMO mooring.  Fig. 19a (13 i) (top left panel) shows first 
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modes which best match the model results of Fig.16c.10 iii). Some features of the observations compare 

well with the model.  The slackened leading face of the tide is always followed by a steep - almost shock 

like - front followed by several highly nonlinear short period waves. Although not rank ordered, the 

largest amplitude wave in the observed packet is always at or near the jump.  The model results show that 

the amplitude of the jump is greater for larger initial condition, and decreases with distance from the point 5 

of generation. Although nonlinear waves continue to evolve, their amplitudes decrease as they propagate 

shoreward from their generation point, and they become ‘thicker’, i.e. they become more tanhtable-top 

like. Though the modelled waves have amplitudes less than the theoretical tanh limit for local eKdV 

parameters, they nonetheless fit the shape of several observed waves at the CMO site.    

      10 

There are also features of the observations that are not found in the model. Fig. 19 (13 i) top left 

panel (f) and (g) differ in that the packet that follows the shock-like front, persists until the end of the 

tidal period, and the waves are spread apart from each other. Fig. 19 (13 i) top left panel (c) shows two 

packets of solitary-like waves propagating past the mooring site over a tidal period. The leading slackened 

face is followed by a shock-like front and a packet of solitary waves. The trailing face then slackens to 15 

assume a slope similar to the leading face but a second shock-like front, followed by a packet of solitary 

waves, passes before the end of the tidal period. This could be from a second internal tide front coming 

from another generation site, there can be overlapping semi-circles of internal wave fronts from multiple 

generation sites, see for example discussion in Apel et al. (1988). Another possible generation mechanism 

is the nonlinear evolution of inertia-gravity waves forming behind internal solitary waves due to rotation, 20 

see further in Grimshaw et al. (2014) and Lamb & Warn-Varnas (2015). It is also possible that multiple 
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packets form each tidal period, due to different generation mechanisms such as multiple tidal constituents 

or harmonics of a tidal components as found, for example, at the site of the Littoral Optics Experiment 

where the 4th harmonic of the semi-diurnal tide was used to successfully simulate the evolution of the 

internal tide (O’Driscoll 1999).   

 5 

Another common observation that is not found in the model results is a ‘drop’ in amplitude 

before the jump that occurs at the beginning of the wave packet. Fig. 19 (13 top left panel (h) shows that 

the first internal mode drops between day 243.5 and 243.6 but the slackening slope is restored before 

the arrival of the jump and packet of solitary waves. Similar ‘drops’ also occur in Fig. 19 (13 top left 

panel (b) and (e) and (middle panel top right (a) and (i). Another phenomenon observed is that the slope 10 

of the leading face of the tide changes sign before the packet in several of the examples in Fig. 19 

(middle panel).13 top right. In Fig. 19 (middle panel 13 top right (h) the low frequency slope changes 

sign at day 236, and the solitary waves appear as usual ahead of the trailing, low frequency signal. The 

signal becomes even more complicated when both a ‘drop’ and low frequency slope change are present, 

e.g. Fig. 19 (middle panel 13 top right (d). In this case, the slope of the leading slackening low 15 

frequency signal changes sign at day 242.5 and is followed by a packet of four solitary waves. The low 

frequency signal is restored before the passage of a jump followed by a packet of five large solitary 

waves. The trailing face retains the slope of the low frequency signal. Fig. 19 (right panel)13 bottom 

shows a series of jumps which are more complex than those in the left and centertop panels, though they 

retain the basic structure of the model results over the tidal period.   20 
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To examine the details of the wave packets themselves, the width vs. amplitude was estimated for 

each wave from all events during the period day 210-245 (Fig. 2014). These waves are plotted along with 

the leading two waves from six of the nine model runs shown in Fig. 16c. 10 iii). Also shown are the 

theoretical relations for solitary waves for the eKdV and KdV equations using CMO site parameters. The 

observed nonlinear waves vary greatly in amplitude and width, generally having amplitudes of between 5 

5 and 255 −  25 metres, and widths of between 200 and 600200 −  600 seconds. Larger amplitude 

observed waves are well approximated by model runs with large initial amplitude, particularly the 4m4𝑚 

model. The 6m6𝑚 model run from 24km24𝑘𝑚 seaward of the CMO site is also a very good match for 

several of the observed waves. A large fraction of observed waves with amplitude less than 15m15𝑚, 

and particularly less than 10m10𝑚 , are much ‘thinner’ than model waves with similar amplitudes.  10 

However, it seems reasonable to say that the observed waves are a good fit to the model waves.   

While some features of the observations are reproduced in the model, there are many 

differences. The eKdV model used here is highly idealized. There are many effects that have not been 

includedconsidered, including bottom and internal friction, earth’s rotation and mean shear. Given these 

limitations, we conclude that the observations are reasonably well matched by our model. 15 

 

39.4. Summary and conclusions 

Observations of highly nonlinear internal waves contained in the first mode time series on the mid-

continental shelf and in current meter records in shallow water have led us to investigate the transformation 

of the shoaling internal tide. Observations were made in the mid-continental shelf at the site of the Coastal 20 

Mixing and Optics Experiment (CMO). An existing model based on generalized KdV and eKdV equations 
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has been simplified for use in a two-layer ocean, which is representative of realistic stratification. The model 

accounts for weakly nonlinear and dispersive properties of the internal tide. Earth’s rotation, internal 

dissipation, bottom friction, and internal shear are not included. The internal tide was forced with a periodic  

sinusoidal boundary condition and allowed to propagate shoreward. 

The model was first run within a KdV framework with realistic continental shelf, constant sloping 5 

bottom with flat and sloping interface, and CMO shelf parameters. The internal tide steepens on its back 

face as it propagates shoreward, which is a direct result of the much greater magnitude of the nonlinear 

term in comparison with the dispersive term.  Nonlinear waves evolve from the internal tide after the back 

face forms a shock-like front. The waves can appear as a rank ordered packet with the leading waves 

traveling fastest, since they are the most nonlinear. The leading waves of depression usually travel faster 10 

than the linear wave speed, c, and nearly fit solitary wave form for local KdV parameters (“sech2”). The 

trailing waves usually travel slower than c, tend to be thinner than the local sech2 waves and are relatively 

more dispersive than the leadingWaves of elevation also develop into sech2 waves.  

The transformation of the internal tide is dependent upon the ratio of the nonlinear to linear terms, 

/c, in the KdV equation: for greater values of this ratio the internal tide steepens sooner and nonlinear 15 

waves are emitted sooner. The amplitude of the jump and subsequent waves is dependent upon the initial 

tidal amplitude: larger tidal amplitudes imply larger jump and nonlinear wave amplitudes. For a fixed 

nonlinear parameter, , the internal tide becomes nonlinear sooner upon decreasing the value of the 

dispersive parameter, .   

The nonlinear waves are waves of depression when the nonlinear parameter, , is negative, and waves 20 

of elevation when it is positive. If a packet of waves of depression propagates into a region where  >0 the 
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minima, or troughs, of the waves of depression become maxima, or peaks, of the waves of elevation as they 

flip polarity.   

All of theThe model runs made within the KdV framework were also made within the eKdV 

framework which includes a cubic nonlinearity term scaled by 1. The results may or may not be similar, 

depending upon the ratio of the two nonlinear terms, 
𝛼

𝛼1𝜂
 . If this ratio is large (much greater than one) 5 

the cubic nonlinear term is not important and the KdV and eKdV results are similar. If the ratio is of order 

one or less the eKdV may evolve differently from the KdV. For most of the constant bottom slope 

simulations the model results were similar in both frameworks. However, there are some significant 

differences to the waves that cross the shelf using CMO parameters. The modeled leading waves at the 

CMO mooring site were much ‘thicker’ than sech2 waves with local KdV parameters, but they had not 10 

quite developed into solitary wave solutions of the eKdV equation (‘tanh’ or table-top waves). 

To better understand the evolution of waves toward tanhtable-top form in an eKdV framework, without 

the complications of varying parameters, model runs were made using constant eKdV parameters 

representative of the CMO site. Upon formation, the leading waves of the packet are similar to sech2 waves. 

The waves become ‘thicker’ and tend toward the tanhtable-top form upon further propagation, but never 15 

reach the theoretical tanh curve in our limited domain. To help understand why the evolution of waves from 

being close to sech2 waves to being close to tanh waves was so slow, the internal tide was forced with a 

sech2 wave. The evolving sech2 rapidly moves to the theoretical tanh curve for all amplitudes. We conclude 

that the interaction between the solitary like-waves in a packet slows them from evolving into exact solitary 

‘sech2’ or ‘tanh’ waves.    20 
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Model runs with varying initial amplitudes and generation regions were made to help interpret the 

observations made at the CMO site.  Some features of the observations compare well with the model. The 

leading face of the internal tide steepens to form a shock like front. Nonlinear high frequency waves evolve 

shortly after the appearance of the jump. Although not rank ordered, the wave of maximum amplitude is 

always close to the jump. Some features of the observations are not found in the model. Nonlinear waves 5 

can be very widely spaced and persist over a tidal period. The amplitude of the observed waves often 

decreases before the arrival of the jump, while the leading face may change slope before the jump arrives.   

Individual observed waves were examined and the details compared to model results. The observed 

nonlinear waves vary greatly in amplitude and width, generally having amplitudes of between 5 and 25 

metres, and widths of between 200 and 600 seconds. Larger amplitude waves are well approximated by 10 

waves evolving from large amplitude model waves. A large fraction of smaller amplitude observed waves, 

particularly less than 10 m, are thinner than model waves of similar amplitude. We conclude that the 

observed waves are a good match to modeled waves given the highly idealized eKdV model used, and the 

fact that we have neglected friction, rotation and mean shear. 

 15 
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Figures 

 15 

Fig1. (a)  KdV 'sech2' wave with amplitude of -1 m, where the wave argument value is shown on the 

abscissa and level interface, h1 = 50 m). KdV parameter values are calculated from Case 1 model runs 
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(h1 = 50 m, h2 = 150 m, g/ = .014 m/s2).  The amplitude of these waves is reduced to 42% of its 

maximum value when the argument is 1. (b) The difference of the absolute values of the nonlinear and 

dispersive terms, , in the KdV equation for the 'sech2' wave shown in (a). (c) eKdV 'tanh' wave for several 

values of the nonlinear parameter, .  Parameter values as in (a).   

 5 

Fig. 2.  (a) Linear wave speed, c(m/s), as a function of the depth of the upper layer, h1, and lower layer, 

h2.  Also shown are the values for level bottom (Cases 1-4), sloping bottom (Cases A and B) and realistic 

slope and stratification (CMO). (b) KdV quadratic nonlinear parameter, , divided by the linear wave 

speed, c, as in (a). (c) KdV dispersion parameter, , divided by the linear wavephase speed, c, as 10 

inhorizontal variability factor, Q, and depth (a). (d) eKdV cubic nonlinear parameter, 1, divided by the 

linear wave speed, c, as in (a). 
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Fig. 3. Case 1 (h1 = 50 m, h2 = 150 m, level bottom) amplitudeAmplitude of the internal mode for two-

layer fluid (ab) at various distances from the boundary within KdV model framework and (bc) as a 

function of distance l and time s within KdV model framework.  The legend on the right corresponds to 

the amplitude of the waves (m).  5 
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Fig. 4. Case 1. (a) The three leading waves of depression (solid line) at a distance of 100 km from the 

boundary shown in Fig. 3a are plotted with three individual sech2 waves (broken lines).  

(b) Same as (a) but for trailing waves in the packet. (c) Difference2.  Case A, (a) difference between the 5 

magnitudes of the nonlinear and dispersive terms,  (non-dimensional) at various distances from the 

boundary, and (b) leading waves of elevation (black line) at various distances 𝑙 > 100𝑘𝑚 from the 

boundary plotted with individual sech2 waves (blue lines) within KdV model framework. 
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Fig.

 

3.  Same as Fig. 5.1 Same as Fig. 3 but for Case 2 (h1 = 40 m, h2 = 85.7 m, level bottom). 

 

5 

Fig. 6.  Same as Fig. 3 but for Case 4 (h1 = 65.1 m, h2 = 115.1 m, level bottom. 
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Fig. 7.  Case AB (constant sloping bottom with levelsloping interface, h1 = 50 m). (a, left) KdV parameter 

values for quadratic nonlinear parameter, , dispersion parameter, , linear phase speed, c, horizontal 

variability factor, Q, and depth. (b, center) and (c, right) Same as Fig. 3 but for Case A parameters.). 
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Fig. 4.  Same as Fig.  
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Fig. 8.  Case A, (a, left1 but for CMO experiment site (with flat interface, ℎ1  =  25 𝑚). 
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Fig. 5.  CMO experiment site (with flat interface, ℎ1  =  25 𝑚) difference between the magnitudes of the 

nonlinear and dispersive terms at various distances from the boundary, and (b, right) leading waves of 

elevation (black line) at various distances greater than 100km from the boundary plotted with individual 

sech2 waves (blue lines) within KdV model framework. 5 
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Fig. 9.  Same as Fig. 7 but for Case B (constant sloping bottom with sloping interface). 
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Fig. 10.  Same as Fig. 7 but for CMO experiment site (with flat interface, h1 = 25 m). 
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Fig. 11.  CMO experiment site (with flat interface, h1 = 25 m) difference between the magnitudes of the 

nonlinear and dispersive terms at various distances from the boundary within KdV model framework. 
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Fig. 126.  Case A (constant sloping bottom with flat interface, h1 = 50 mℎ1  =  50 𝑚) amplitude of the 

internal mode for two-layer fluid at various distances from the boundary within eKdV model framework. 
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Fig. 137.  CMO experiment site (realistic topography with level interface, h1 = 25 m(ℎ1  =  25 𝑚) 

amplitude of the internal mode for two-layer fluid at 60 km60 𝑘𝑚 in 69 m69 𝑚 depth water (CMO 

mooring site).  (a) Comparison of KdV (solid line) and eKdV (broken line) solutions.  (b) Close up of 

(a).  (c) Leading KdV model waves (solid line) with superimposed eKdV model waves (broken line) 5 

shifted forward in time (s) so that the leading waves coincide. (d) and (e). The leading wave of depression 

(solid line) plotted with an individual sech2 wave (dot-dash line) and with an individual tanh wave (dashed 

line) for KdV model (d), and eKdV model (e). 
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Fig. 14 (a)8 Width vs. amplitude of the leading waves of the KdV and eKdV solutions at the CMO 

mooring site (h1 = 25 m, h2 = 44mℎ1  =  25 𝑚, ℎ2  =  44𝑚) at 60 km60 𝑘𝑚 from the boundary in 69 

m69 𝑚 depth water.  Results for initial tidal amplitudes of 2, 4, 5, and 6 m are shown.  The theoretical 

values for sech2 and tanh waves using local parameters are also shown (dotted lines).  The width is 5 

calculated at 42% of the total amplitude. (b) Evolution of the width vs. amplitude of the two leading 

waves of the KdV and eKdV solutions for flat bottom (h1 = 25 m, h2 = 44 m) with same parameters as at 

the CMO site.  Results for initial tidal amplitudes of 1, 2, and 4 m are shown.  A value is plotted every 10 

km for the 1 m tide beginning at 160 km and the lines run from 160 km to 260 km.  A value is plotted 

every 20 km for the 2 m tide beginning at 80 km and the lines run from 80 km to 200 km. A value is 10 

plotted every 20 km for the 4 m tide beginning at 40 km and the lines run from 40 km to 100 km.  The 

theoretical width vs. amplitude for sech2 and tanh waves is also shown (dotted lines), and the width is 

calculated at 42% of the total amplitude. (c)  Evolution of the width vs. amplitude of four solitary sech2 

waves of the eKdV solutions for flat bottom (h1 = 25 m, h2 = 44 m) with same parameters as at the CMO 

site. Results are shown for sech2 amplitudes of 4, 7, 9 and 13 m. A value is plotted every 1 km up to a 15 

(c) 
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maximum distance of 15 km. The theoretical width vs. amplitude for sech2 and tanh waves is also shown 

(dotted lines).  The width is calculated at 42% of the total amplitude. 
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Fig. 159. Site of the Coastal Mixing & Optics experiment (left) located in the Middle Atlantic Bight to 

the south of Massachusetts. The data discussed was collected at the mooring marked ‘CTD #6’.  5 
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 5 

Fig. 16. (a) Left panel: Amplitude10. Top left, i), amplitude of the first internal mode calculated from the 

current meter record at the CMO mooring site over the period day 210-245 of 1996. (b) Center panel:Top 

right, ii), Same as left paneli) except for the period day 241-245. (c) Right panel:  ThreeBottom, iii), three 

sinusoids of amplitude 2 m, 4 m and 6 m, respectively, and with tidal period, as they appear at the CMO 

mooring site in the eKdV framework.  The sinusoids have propagated shoreward from boundaries at 60 10 

km, 48 km and 24 km offshore, respectively. 
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Fig. 1711.  Pressure (tidal) record at the CMO mooring site (top) overincluding for the period day 210 – 

245 1996 (from Boyd et al., 1997). 
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Fig. 1812.  Energy spectra of the first internal mode at the CMO mooring for the period day 210 – 245 

(left), and the period 241 – 245 (right).   
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Fig. 1913.  Observations at the CMO Mooring site over a semi-diurnal period.  Left: TheseTop left, i), 

sections of the record were chosen since they are similar to events observed over a tidal period in the 

model runs of Fig. 16c. Center: Same10 iii). Top right, ii), same as Lefti) except the record is a little bit 5 

more complicated over a tidal period. Right: SameBottom, iii), same as Center.ii). 
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Fig. 2014.  Wave amplitude vs. wave width at the CMO mooring for waves from all events during the 

period day 210 - 245. Also plotted are the two leading waves from six of the nine model runs shown in 

Fig. 1610 (diamonds).  
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Supplementary Figure  

 

Fig.Tables 

Case    h1   h2   /c    /c               c (12/)1/2 

   1   50 150 - .02  1250 - .0145  906 0.725     628 

    2   40 85.7 - .02    571 - .0124  353 0.618        362 

   3   80 93.8 - .0021  1250 - .0016  972 0.777   2041 

   4  65.1 115.1 - .01  1250 - .0076      954 0.763   1227 

Table 1.  KdV parameter values for Cases 1 - 4.   

 S1.  Quadratic nonlinear parameter, 𝛼, divided by the cubic nonlinear parameter, 𝛼1, as a function of the 5 

depth of the upper layer, ℎ1, and lower layer, ℎ2. Values for sloping bottom (Cases A and B) and realistic 

slope and stratification at the CMO site are shown by the broken lines.  
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