Dear John,

You will see that | have responded to all the Reviewers’ comments, below, and
edited accordingly.

Additionally, because of removal of the old sections 2. Theoretical Background, |
have provided a little bit of background in the new section 2 for the non-expert.
Concerning the removal of the old section 3.1.1 Level Bottom, all references to this
have been removed throughout the paper: in the discussion of both KdV and eKdV
model results, the summary and conclusions, and a very slight change in the
abstract.

Thanks and best wishes,

Kieran O’Driscoll

Response to Referee #1 comments

Kieran O’Driscoll would like to thank the reviewer for their considerable and
thoughtful review.

Based on the general comments of Reviewer 1 (and also those of Reviewer 2):

Much of the material presented here in section 2 and 3 is well-known and does not
need to be repeated here.

Likewise, the behaviour of internal solitary waves propagating over a slope has been
widely studied in both the KdV and eKdV models, with often a main focus on polarity
change when the coefficient of the quadratic nonlinear term changes sign.

The simulations with a linear bottom slope and with the topography of the Middle
Atlantic Bight have some marginal interest in that most studies have examined the
behaviour of a single solitary wave, rather than a developing wave train as here,
although the outcome can be understood in terms of the known behaviour of a single
solitary wave, namely adiabatic deformation and transition to an elevation solitary
wave train riding on a negative pedestal when the usual transition is from a negative
to positive coefficient.

The most interesting and novel part of the paper is section 4 where the model
simulations are compared with observational data from the Middle Atlantic Bight.
Although there have been several such comparisons in the literature for other sites,
this would seem to be the first for this site. In summary | would recommend that the
authors prepare a heavily revised and shortened paper which focusses on the
material in section 4.



Response: Done. The article has been shortened by removing Sections 2
(Theoretical Background), 3.1.1. (Two-layer model level bottom), and Figs. 1 —
6.

Specific Comments:

(1) Further to the comments made above, in particular most of the text in
section is not needed, and neither are figures 1-6.
Done, see above.

(2) The measure x (10a) of the relative roles of nonlinearity and dispersion is
unconventional and uninformative. A better measure is simply the ratio
a/B, where it should be noted that in the KdV equation (1) division by 3 and
a rescaling of time, clearly indicates that this is the effective measure of
nonlinearity vis-a-vis dispersion.

Done. Removed with Section 2.

(3) The transition of the steepening front into a solitary wave train is best
understood using the Whitham modulation theory and asymptotic solution,
as developed by Gurevich and Pitaevskii. It is well known that, at least in
the KdV model, the leading waves are solitary waves. The detailed
discussion on this aspect is not needed here.

Done. The detailed discussion on this aspect has been removed with
the old section 3.1.1 (previous version)

(4) The large-amplitude solitary wave solutions of the eKdV equation are more
usually called “table-top” waves than the term “tanh” used in the text.

Done.

(5) The title should mention “internal” and should not use an acronym.
Done.



Response to Referee # 2 comments

Kieran O’Driscoll would like to thank the reviewer for their substantial and
considerate review.

Based on the general comments of Reviewer 2 (and also those of Reviewer 1):

| have a number of problems with the paper and think that is requires significant
revision. My basic problem is that there doesn’t appear to be much that is new here
other than the application to the CMO site in the Middle Atlantic Bight and that is
quite a small part of the paper.

The paper needs considerable polishing. Figures are in some cases hard to read
and many dimensional values are given without units. It would probably benefit from
being shortened and more focussed on the comparisons with observations however |
am not convinced of the value of these simulations in that context. The authors make
some comparisons of their results with those of Holloway et al from 30 years ago.
Recent work has been done in this area using model equations that include rotation
(e.g., Grimshaw and co-workers). The authors need to make a compelling argument
for this set of simulations.

Response: Done. The article has been shortened by removing Sections 2
(Theoretical Background), 3.1.1. (Two-layer model level bottom), and Figs. 1 —
6.

Comments

1. The title highlights KdV solutions with no mention of the eKdV solutions. | think it is
well established by now that cubic nonlinearity is necessary to adequately model
many observed solitary waves in the ocean, so if anything the eKdV equation should
be mentioned in the title. Indeed, one wonders what the benefit of even considering
the KdV equation is. Comparisons of the predictions of the KdV and eKdV (or
Gardner) equations, as well as the RLW equation, with fully-nonlinear numerical
simulations for a two-layer stratification are discussed in Lamb and Xiao (Ocean
Modelling, 2014). This seems like a relevant reference.

Done, thanks.

2. Why are rotational effects not considered? The site of the observations is at mid-
latitutude where rotation is going to affect the evolution of the internal tide and the
amount of energy that ultimately gets transferred to ISWs. For example in Figure 10
the linear long wave propagation speed is about 0.5 m/s so waves take about 50
hours to travel 100 km. That is lots of time for rotation to affect their evolution.



The model is two-dimensional, so the waves propagate in the horizontal x-
direction only and rotation is not included. This is stated in the abstract,
discussion and summary.

3. First paragraph of page 4. Nonlinear effects can become important even without
shoaling, as illustrated by the authors own flat-bottomed simulations so this should
be reworded.

Done: Section 2 (Theoretical Background) has been removed

4. Page 5, lines 6-8. “It was originally developed in the context of internal waves by
Benney ...."

Done: Section 2 (Theoretical Background) has been removed
5. Equations 10(b) and 10(c) are both incorrect.
Done: Section 2 (Theoretical Background) has been removed

6. Page 10. The introduction to section 3 repeats material from the introduction so
should be deleted.

Done

7. Page 12, line 15: For a given water depth and wave amplitude cubic ...”. Then on
lines 16—18, whether or not the eKdV model is similar to the KdV model depends a
lot on the wave amplitude. For a two layer stratification, whenever the interface gets
displaced close to the mid-depth cubic nonlinearity becomes important (though if
h1/h2 << 1 higher-order nonlinear may be needed).

Done: Section 3.1.1 (Two-layer model level bottom) has been removed

8. Section 3.1.1. The cases explored in this section are not well explained. All four
cases have different total depths H = h1 + h2 and different depth ratios h1/h2 while
from what | can understand the initial wave amplitude is the same in all cases. So
both the depth ratio h1/h2 and the initial nonlinearity have been changed. Comparing
these cases is then a bit problematic, particularly with statements to the effect that
you expect one case to be more nonlinear than the other. Also, throughout ratios
such as a/c and B/c are given without units. These ratios are not dimensionless. The
KdV and eKdV equation have been used a lot to model internal solitary waves in the
ocean. What have we learned from this set of simulations?

Done: Section 3.1.1 (Two-layer model level bottom) has been removed

9. Section 3.1.2. What is new here? The general picture of the evolution of a
shoaling internal tide has already been well described. What is the new contribution
from this section?



These simulations studied the development of evolving internal tide as a
packet or developing wave train across the linear sloping bottom, whereas
most other studies have inspected the development and advance of a single
soliton across similar bottom slope.

10. Page 17, Line 5: there are no higher-order terms to prevent the development of
solitary waves in the models used here.

Sentence has been removed.

11. Page 18, lines 14-15: What do you mean by 'We expect the waves to become
unstable”? Do you mean your numerical solution is unstable? If so should a smaller
time step be used? If a physical instability what type of instability is referred to?

No, physically unstable, ie., Kelvin-Helmholtz instability or billows.
Done, thanks.

12. Page 19, line 14: Do you mean the CMO line will be horizontal — lots of straight
lines don’t have constant h1.

Yes, thanks. | will add Fig S1 (to replace old Fig 2) which shows values of h1,
h2 for CMO.

Note: No need to add Fig S1 for this case, CMO parameter values are shown in
Fig. 4a

13. Page 21, lines 9—10. a/a1 is not a dimensionless parameter.

Done, thanks. That was a typo, as seen from line 11, one line along. This
section has now been removed.

14. Page 22, lines 3—8. Why is a1 so much greater at the CMO site than in case A?
Is it because hl is so much less?

Yes, thanks. Due to h1 half the value of h2. | have included Fig. S1 (a/a1) to

. . . a hi—h
show this. | have also included the equation: — = 4 ——
aq hth(hl +h2 +6h1h2)

while adding: , where h, and h, are, respectively, twice and less than that at the
CMO site. Done.

15. Page 25, line 15. Do you mean figure 16¢?
Yes, thanks.

16. Page 26, 2nd paragraph. Something else that could be going on is the nonlinear
evolution of inertia-gravity waves that form behind internal solitary waves due to
rotation. See Grimshaw et al, JPO, 2014 or Lamb and Warn-Varnas, NPG, 2015.
What about multiple packets forming each tidal period because of different
generation mechanisms or multiple tidal constituents?



Thanks, done. References to these papers and alternate generation and
evolution processes included as follows:

Another possible generation mechanism is the nonlinear evolution of inertia-gravity waves
forming behind internal solitary waves due to rotation, see further in Grimshaw et al. (2014)
and Lamb & Warn-Varnas (2015). It is also possible that multiple packets form each tidal
period, due to different generation mechanisms such as multiple tidal constituents or
harmonics of a tidal components as found, for example, at the site of the Littoral Optics
Experiment where the 4" harmonic of the semi-diurnal tide was used to successfully
simulate the evolution of the internal tide (O’Driscoll 1999).

17. Page 29, lines 8-9. The internal tide is nonlinear right from the beginning — it
doesn’t become nonlinear sooner as B is reduced. As (8 is reduced waves have to
get narrower before dispersive effects become significant.

Yes, thanks. Done. Changed accordingly. This has been removed since it is
concerned with Cases 1-4, flat bottom and old Fig. 1-6.

18. Page 29, line 16. | think you mean if this ratio is much larger than one
Yes, thanks. Done. Edited accordingly.

19. Page 30, line 8. What do you mean by 'the internal tide was forced with a sech2
wave. Don’t you mean the simulation was initialized with a sech2 wave?

No. It is forced, since it takes a tidal period for the wave to propagate into the
model domain, i.e. the sech2 wave has tidal period.

20. Figures. In general | find the font size too small in most of the figures — it is
difficult to read them. In the caption for Figure 7 panels (a), (b) and (c) referred to in
the text are not labeled. Figure 11 is of particularly poor quality

Done. Figures with problem font sizes have been increased in size (because of
removal of Figs. 1-6). Fig. 7 relabelled, Fig. 11 removed.
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Abstract. Numerical solutions of the Korteweg-de Vries (KdV) and extended Korteweg-de Vries (eKdV)
equations are used to model the transformation of a sinusoidal internal tide as it propagates across the
continental shelf. The ocean is idealized as being a two-layer fluid, justified by the fact that most of the
oceanic internal wave signal is contained in the gravest mode. The model accounts for nonlinear and
dispersive effects but neglects friction, rotation, and mean shear. The KdV model is run for a
varietynumber of idealized stratifications and unique realistic topographies to study the role of the
nonlinear and dispersive effects. In all model solutions the internal tide steepens forming a sharp front
from which a packet of nonlinear solitary-like waves evolves. Comparisons between KdV and eKdV
solutions is explored. The model results for realistic topography and stratification are compared with
observations made at moorings off Massachusetts in the Middle Atlantic Bight. Some features of the
observations compare well with the model. The leading face of the internal tide steepens to form a shock
like front, while nonlinear high frequency waves evolve shortly after the appearance of the jump.

Although not rank ordered, the wave of maximum amplitude is always close to the jump. Some features
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of the observations are not found in the model. Nonlinear waves can be very widely spaced and persist

over a tidal period.

1. Introduction

Internal waves are present throughout earth’s oceans wherever there is stratification, from the
shallowest near-shore waters to the deepest seas. Internal waves are important to physical oceanographers
because they transport momentum and energy, horizontally and vertically, through the ocean, e.g. Munk
(1981), Gill (1982). They provide shear to turbulence which results in energy dissipation and vertical
mixing, e.g. Holloway (1984), Sandstrom & Elliott (1984). Biological oceanographers are interested
because the internal waves carry nutrients onto the continental shelf and into the euphotic zone, e.g. Shea
& Broenkow (1988), Sandstrom & Elliott (1984), and Holloway et al. (1985). They are of interest to
geological oceanographers because the waves produce sediment transport on the shelf, e.g. Cacchione &
Drake (1986). Civil, hydraulic and ocean engineers are interested because the internal waves generate
local tidal and residual currents, e.g. Willmott & Edwards (1987), which can cause scour on nearshore as
well as offshore structures, e.g. Osborne et al. (1978). Large nonlinear IWs are also of interest to the navy
because they cause large vertical displacements and large vertical velocities that may affect underwater
operations.

This study is focused on the internal tide and subsequent evolution of nonlinear waves. Internal
waves in the ocean span the frequency spectrum from the buoyancy frequency, N, to the inertial

frequency, f. However, the internal, or baroclinic, tide accounts for a large fraction of the energy contained

3
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in these waves. The internal tide is generated by the interaction of barotropic tidal current with topography
and not directly by the gravitational attraction of sun and moon. The properties and propagation of linear
internal tide and waves have been treated in detail by many investigators, see, for example, Garrett &
Munk (1979), or the monographs by Gill (1982), Lighthill (1978), or Apel (1987).

As the internal tide shoals, the nonlinear terms in the Navier-Stokes equations become important.
These tidal waves of finite amplitude may evolve into packets of high frequency nonlinear waves. The
equations describing these waves are much more complex than the linear equations and few mathematical
solutions have been found.

We are interested in nonlinear internal waves because they are a very energetic part of the signal
in time series that we have observed on continental shelves and in the shallow ocean. We are guided by
numerical solutions of Korteweg-de Vries (KdV) type equations that incorporate both weak nonlinear and
weak dispersive effects.

The state of the art on the evolution of internal solitary waves across the continental shelf is
reviewed in Grimshaw et al. (2010). Grimshaw et al. (2004) simulated the transformation of internal
solitary waves across the North West shelf of Australia, the Malin shelf edge, the Arctic shelf; Holloway
(1987) discussed the evolution of the internal tide in a two-layer ocean on the Australian North West
Shelf. Our model simulations of the evolution of the internal tide across reakistic-in-the-Middle Atlantic
Bight topography eases-are unique since these waves have never been modelled across such topography
and stratifications, butand the model results are compared with observations made at moorings off

Massachusetts during the Coastal Mixing and Optics Experiment.(CMO) Experiment. For the model

cases of linear bottom sloping realistic topography, whereas most studies have focused on the behaviour




of a single soliton, this work is concerned with the development and evolution of a packet of solitary

waves.
The goal of this paper is to study the observed variability in the evolution of the internal tide as it
crosses the continental shelf resulting from different stratifications and varying topography.

5 In section 2, the model framework is presented, and model runs and results of simulations are

discussed for cases of linearly sloping bottom topography and that at the site of the Coastal Mixing and

Optics experiment (CMO). Model results are compared with data and observations collected at the CMO

site in section 3. A summary and conclusions are presented in section 4.
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37 Two-Layer Model < —{ Formatted: No bullets or numbering

We are interested in modeling the evolution of the internal tide as it propagates shoreward from the

shelf break. -Since the greatest oceanic signal is the first internal mode, the stratification of the

10
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continental shelf/slope region is modeled as a two-layer fluid. -This approximation greatly simplifies the
problem; the numerical scheme is much less complex for the two-layer case than the continuously

stratified case, and the results are easier to interpret. -Using the-two-tayerthis model_configuration, we

study the propagation of the internal tide over varieus-types-oflinear sloping and CMO topography;

with-sloping-interface. All cases have been run within the quadratic nonlinear framework of the KdV

equation, and the results are compared with an extended form of it, the eKdV model. ( Formatted: Font: Bold, Font color: Red

For the KdV Eg. (1) and eKdV Egs—{%-Eq. (2) to be valid, the leading two terms must constitute

the

N +Cay +anmn, + B, =0 1

_ e +laramn + B, =0__ 2

primary balance.- The nonlinear and dispersive terms can become important, but the assumptions leadings —  Formatted: Indent: First line: 0 cm

to the KdV and eKdV equations are violated if either of the nonlinearity or dispersion terms approach the

magnitude of the leading terms. Nonlinear transformation of the internal tide leads to the generation of

nonlinear waves which tend to become solitary-like in form as the dispersive term becomes important.

KdV equation is well known to be a suitable physical model for describing weakly nonlinear advective

effects and linear dispersion in internal waves. It was originally developed by Benney (1966) and

extended to second order by Lee & Beardsley (1974). The KdV Eg. (1) and eKdV Eqg. (2) equations are

11
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derived following the procedure of Lee & Beardsley (1974) and the discussion by Lamb & Yan (1996).

The two-layer KdV model approximation is discussed in Grimshaw et al. (2002), and justified since most

of the energy in the ocean appears to be contained in the first mode anyway, see e.q. Alford & Zhao

(2007). The coefficients of the KdV and eKdV equations are greatly simplified for a two-layer fluid, e.qg.

Ostrovsky & Stepanyants (1989). The problem has been investigated for slowly varying topography and
stratification by Grimshaw (1979) and Pelinovsky et al. (1977). An interesting reference is Lamb & Xiao

(2014), who took a similar approach to ours, comparing predictions of the KdV and eKdV models, and

also the RLW equation, with fully-nonlinear numerical simulations for two-layer stratification over

selected topographies. See O’Driscoll (1999) for a full discussion of our experiments.

For all simulations the density difference between the two layers is chosen to be a constant:

gAp/p = .014m/s?, a representative value for the Coastal Mixing and Optics (CMO) experiment
(Levine & Boyd, 1999), for example at a mooring in the Middle Atlantic Bight located at 40.5°N, 70.5°W,

and also in agreement with the stratification near the mooring location displayed in Barth et al. {998}

hetrenrshesesposd e s thenounelione b andh copb o Ce Do 0ne (1098),  Zo—edhnluec el
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of-the-thiek-layer—thatis-when-h.>>h: —then-fe/el+-3/2h-andHs-netafunetion-ef-h.—ede-is-alse-imporant
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5 37721 The Korteweg de Vries (KdV) Model solutions
Using the KdV equation, we first-investigate 42 cases with level-bettem-for-different-combinationsof
hi-and-h—We-thenprogress-to-constant sloping bottom, with-beth-horizontal and sloping interface-

Finatyswe-, and finally make model runs with realistic topography at the sites-ofthe CMO:-
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utilized by Pelinovsky & Shavratsky (1976), of the space and time variables x and t to variables | and s,

15 respectively, given

20 S=|——-t, | =x. 3
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The transformed eKdV is then .« [Formatted: Font color: Black, Kern at 16 pt
f [Formatted: Normal, Line spacing: Double
1 ) { Formatted: Font: Italic
+———lla+a + 5w =0 4 : Font:
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Mc® h, +h, . -
where ¢ = rNQ(I)J_Q = e M = Py and 0 subscripts represent initial values. The
- OCO 172

transformation scales time so that disturbances traveling at the linear speed, c, remain at constant s. The

system is often referred to as a slowness coordinate system. Because £ varies relatively slowly in l/c
compared to s, terms such as ¢{; are neglected relative to {. The transformed KdV equation is the same

as the transformed eKdV equation with Fig—4e-shews-the-difference-between-the-magnitudes—of-the

16
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3312a; = 0.See O’Driscoll (1999) for further details.

2.1.1 Constant Bottom Slope
The propagation of the internal tide along constant sloping topography was studied for cases of
20 constant upper layer thickness (Case A) and sloping interface (Case B), both of which are possible on

continental shelves. We have-chesenchose starting layer thickness at +=0-the-same-as-Case-1fora-flat

17
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bettom—ke—hi=50m- = 0 h1l = 50m and h =150m-h2 = 150m, with bottom slope of—4/1000

1/1000 so that total depth decreases from 200200 to 8-+%0 m over a distance of 200-km———

200 km.,

We first investigate the case of constant sloping bottom with constant upper layer thickness (Case
A). The value of c decreases in shallow water, while &=>8a—0 as h—h1h, —h, at water depth of 100-m
{Figs—2—+7a)-100 m_(Fig. 1a). Seaward of this depth; where ho >-hi—e<0h, > h;, @ < 0 and solitary
waves are waves of depression, whereas shoreward of this depth (h. <-hi}-e¢>06h, < hy,), > 0 and
solitary waves exist as waves of elevation only. #—>0/4—0 as the product hih>—>0—Sineeh,h; —0. As
the magnitude of «« is initially relatively large we expect the sinusoidal internal tide to transform rapidly
resulting in the formation of several nonlinear waves-{as-previeushy-seen-for-the-flat- bettom-cases)--Sinee
«—0. Since a—0, these waves may not be so nonlinear as to violate the weakly nonlinear constraint on
the KdV model. However, sincebecause the value of « rapidly increases for 1>100km, we expect the
waves of elevation to become highly nonlinear thereby possibly violating the weakly nonlinear condition.

Figs. #b1b and c show the internal tide signal for Case A at different values of I—e-_and also at
different water depths. The internal tide steepens and rapidly becomes nonlinear, resulting in the
generation of a shock-like front and subsequent undulations by +=56kml~50km. Shoaling further, the
internal tide becomes more nonlinear with the oscillations starting to resemble solitary waves by
1=70kml = 70km. However, unlike-Cases—12,and-4—the waves never develop into mature internal
solitary waves assince the magnitude of « continually decreases. By +=-96-kmil = 90 km the waves

resemble a symmetric, dispersive packet, as further evidenced by Fig. 8a2a. Initially the relatively large
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magnitude of <« resulted in the rapid steepening of the internal tide;-se-much-so-that-the-Case-A-tidal

-. However, as the value of

«—08a—0 the nonlinear waves are prevented from developing into solitary waves, since higher order
terms (neglected in KdV) become of order « or larger and thus cannot be ignored, thereby rendering the
KdV model invalid in this neighborhood. -At 1=106km! = 100km the packet certainly looks symmetrical
about a horizontal axis, that is to say the waves are neither polarized as waves of depression nor elevation,
since KdV solitary waves cannot exist when e=0« = 0. At 135km115km the waves have switched
polarity; they have become waves of elevation, a result of « having become positive. This transition is
seen in Fig.8b2b where the leading waves are compared with sech? solitary form. Beyond 100km100km
the waves rapidly approach solitary waves of elevation since « becomes large quickly.

As the internal tide propagates into shallow water the leading face of the wave steepens but-unlike
eases-1-4. the decreasing magnitude of «« causes this steepening to slow down and there is virtually no
change in wave slope steepness between 7870 and 99-km-90 km. The rate of change of the slope of the
leading face changes sign when &« becomes positive and the slope steepens rapidly, while the back face
of the internal tide slackens. The steepening of the leading wave will lead to the formation of a second
shock-like front (or a “reverse hydraulic jump” as has been described by Holloway et al., 1997). Fig. #elc
gives a clear picture of the wave speed—TFhe: the leading solitary-type wave initially travels with speed
very slightly greater than c but becomes slower than ¢ when +~96kml~90km. The second solitary-type
wave also has initial speed greater than ¢ but becomes slower than ¢ when—~80km-at [~80km. All of

the other waves travel with phase speed less than c. For values-of+=100kml > 100km all waves travel
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with speed less than ¢, the reason becomes clear upon examination of Fig. 8a2a which plots the difference
between the magnitudes of the nonlinear and dispersive terms-forCase-A.

The leading waves are slightly more nonlinear than dispersive when +=78-km-1~70 km but
become less so as | approaches 166-km100 km. When e=0-(}=100km}a = 0 (I = 100km) the value of
the nonlinear term is zero and the waves look like a dispersive packet. Since e«=08« > 0 for | >100-km>
100 km, the nonlinear term is again a factor and the waves become a hybrid by +=315kml = 115km,
interchanging back and forth across the length of the wave between being more nonlinear and dispersive.
The waves travel slower than c since the magnitude of the dispersive term is slightly greater than the
nonlinear term.

For Case B with constant sloping bottom and sloping upper layer, we also begin in 206m200m
water with ki =50m-and-h, =150m-—Forh, = 50m,_h, = 150m._In this easeinstance the bottom slope is
again 4/46001/1000 and the interface slope is 1/4000-with-the-restt1 /4000 such that both layers vanish
simultaneously at 200-km—Fhel = 200 km. KdV parameter values ef-the-Kd\-parameters-are shown in
Fig. 9a3a. The magnitude of «« increases from 1=01 = 0 all the way to the shallowest water, unlike Case
A where e« passes through zero, so we expect the internal tide to become nonlinear sooner than for Case
A, and any solitary waves to remain as waves of depression. We do, however, expect the waves to become

unstable;physically unstable, leading to a Kelvin-Helmholtz instability (see e.g. Cushman-Roisin &

Beckers 2011), a result of the increasing magnitude of the nonlinear parameter combined with the
decreasing value of the dispersive parameter. This combination of events will result in the weakly
nonlinear, dispersive KdV becoming invalid at }=95kml = 95 km. Fig. 9b3b is a plot of the internal

tide for Case B at several values of I. The internal tide steepens rapidly and a shock-like wave, followed

20
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by undulations, has evolved from the transforming tide by +=48kml = 40km. The internal tide continues
to steepen and several nonlinear waves have formed by {=55kmil = 55km. These leading nonlinear waves
mature into rank ordered solitary waves by 65km65km. Fig. 9e3c shows that most of the solitary waves
eventually travel atawith phase speed greater than c. The waves are more nonlinear than dispersive and
the increasing value of the nonlinear parameter combined with the diminishing value of the dispersive

parameter leads to the model becoming numerically unstable (O’Driscoll 1999).

A
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The CMO site was located in the Middle Atlantic Bight. CTD profiles were made across the«
continental shelf from shallow water to beyond the continental slope. Boyd et al. (1997) have concluded
that the internal tide at the site is primarily a first mode internal wave, further justifying our choice of a

two-layer model. An upper layer thickness of 25-m25 m is a representative average value for the duration

of the experiment (July and August 1996).-Fheline~EMO—inFig2-shows-thevalues—that-the KdV

Fig. 10ada shows theKdV parameter values ef-the-Ke\/ parameters-as a function of .- Though

undulating, the bottom topography is similar to the constant sloping bottom cases. Recall that we chose

an upper layer depth of 50 m for Case A, whereas here we have chosen h; = 25 m. « starts out negative
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with relatively large magnitude. The magnitude decreases, similar to Case A, changing sign as the bottom
shoals and h1>hz when the value increases rapidly. Values of g, ¢ and the horizontal variability parameter,
Q, are similar to Case A. Figs. £6b4b and ¢ show results for tidal forcing of amplitude 2 m at 180 m water
depth. The internal tide evolves similarly to Case A. -A shock-like front has formed on the back-face of
the internal tide at +=46km! = 40km. Several nonlinear waves have formed by {=60km! = 60km
(mooring location) with the leading 4-54 — 5 waves appearing like solitary waves of depression and the
trailing waves looking more like a dispersive packet. Several more waves have formed by 80km80km
but the number of solitary-like waves seems to have been reduced to the leading two waves. -All of the
trailing waves do appear as a dispersive packet since the magnitude of « has decreased. -More waves
continue to form but by 266-km100 km the packet is neither a pack of waves of elevation nor depression,
not unlike Case A. Beyond +=125km;l = 125km,_ « becomes large-e, the waves reverse polarity and
rapidly develop into mature solitary waves of elevation. The results show that the CMO case and Case
A are similar, though more solitary waves have formed for the CMO case, due to the fact that at the CMO
site the value of e« is initially twice that of Case A. The internal tide becomes unstable beyond
1=136km! = 130km, a result of the increasing value of the nonlinearity parameter combined with the
vanishing dispersion parameter. Fig. £0€4c is a plot of the evolution of the internal tide as it propagates
over the continental shelf, increasing in |. The leading solitary-like waves initially travel with speed very
slightly greater than c, as in Case A. The waves slow down to travel at speed ¢ where +=90kml ~90km
and « is very small. -FheWave speed-of-the-waves then becomes slightly slower than ¢ but faster and

more complicated than Case A, due to the undulating topography.
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The difference in magnitudes of the nonlinear and dispersive terms, sy =
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plotted in Fig. £1-5. The leading 2-3 three waves are initially more nonlinear than dispersive but the
diminishing magnitude of e« leads to the waves becoming more dispersive-like and the waves begin to
slow down. The negligible value of « between 1=100-115kmil = 100 — 115 km results in the waves
behavingacting very much like a dispersive packet and they travel with wave speed slightly less than c.
The increasing value of « after it passes through zero, leads to the nonlinear term becoming almost the
same order of magnitude as the dispersive term before the model becomes numerically unstable shortly

beyond {=130kml = 130 km.

32.2 The extended Korteweg - de Vries (eKdV) model

AHl—ef-theThe model runs discussed in section 32.1 were also made usingwith the extended

Keorteweg-de—Vries—(eKdV} equation. The ratio of the nonlinear parameters, a#em,—aiz

1

hi—h;
hyhy(hy®+hy*+6hyh,

) (see e.g. Ostrovsky & Stepanyants, 1989) is the theoretical maximum amplitude

for the solitary wave solution to the eKdV selutionequation. The ratio of the quadratic to cubic nonlinear

terms in the-eke/this equation depends upon the-displacement height, #7, and is given by e/{ea#)y—For
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For the case of sloping bottom with-horizontal-interface, Case A, the ratio a#eq@assesthreughai
1

passes through zero (hi=h2}h,; = h,) and we expect the cubic nonlinear term to be important. The results
of this model run are shown in Fig. 426. The internal tide evolves similar to the KdV case (Fig. #b1b)
with a shock-type wave followed by several nonlinear oscillations on the back face of the internal tide at
{=56km! = 50km. The internal tide in both frameworks look similar at 70-km70 km where several
nonlinear waves of depression havinghave been formed. The KdV solitary-like waves flip polarity at 200
km100 km due solely to the fact that e« changes sign there.

For the CMO case, comparison of KdV and eKdV edelsresults shows a more significant
difference than for Case A. Fig. 43a7a-c shewsshow the KdV and eKdV model results for a 4m4m
internal tide having propagated 60 km to a water depth of 69 m. The leading KdV model solitary wave
(solid line) arrives at the CMO central mooring =6-1~0.1 tidal period ahead of the leading eKdV model
solitary wave (broken line). The KdV and eKdV models are so different at the CMO site when compared
to Case A because the magnitude of ex¢; is greater at the CMO site. Though the magnitude of &« is less

in Case A, the fact that the magnitude of «, is so small when compared to & means the addition of the

[Formatted: Font: Not Italic, Not Superscript/ Subscript

cubic nonlinear term does little to change the KdV results. This is not true at the -CMO site where the

greater magnitude of ¢y is the reason for the difference between the KdV and eKdV frameworks,
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much greater for Case A, where h, and h, are, respectively, twice and less than that at the CMO site.

[ Formatted: Font: +Body (Times New Roman)

Comparing the leading waves from the eKdV and KdV solutions reveals a fundamental difference in
wave form; the KdV waves are taller and thinner (Fig. 43¢7c). Solitary type solutions to the KdV (sech?)

and to the eKdV (tanh, also known as ‘table-top” waves) are fitted to the leading waves (Fig. +3d7d-e).

The leading wave in the KdV model is very well approximated by a sech? wave. -The lead wave in the
eKdV model is neither well approximated by sech? or tanhtable-top wave, but appears to be a hybrid
between the two. Fits of sech? and tanhtable-top waves were made by subjectively choosing values of

#om, and -v;v, respectively, while using the value of KdV and eKdV parameters for 69m69m water depth.

a
Note that the amplitude of the tarhtable-top wave is limited to a#eqia—; Increasing -vov only serves to
1

make the waves wider once theits value ef-o-is close to one (Fig—te)—TFheamphitudesee e.g. O’Driscoll
1999). Amplitude and width of the leading waves efin the packet are also compared in Fig. 24a8a. The
width is defined as the time it takes the wave to pass a fixed point, as measured at 42%42% of the
amplitude. Results from a range of different tidal amplitudes are also shown. For reference, the dotted
lines represent sech? and tanhtable-top waves for the local values of parameters h, hy, and g4p/p. For
KdV the leading wave of the 2m2m tide always has amplitude greater than the second and the amplitudes
of subsequent waves decrease in a rank ordered fashion. The leading wave is slightly thicker than the
trailing ones which are all approximately equal in width. -For the eKdV the leading wave has larger
amplitude and is thicker than the trailing waves. For the KdV model with 4m4m amplitude tide all the
waves fall on the same spot on the sech? curve. For the eKdV model with 4m4m amplitude tide, the

waves appear on the ‘thick’ side of the sech? curve with the lead wave the most removed from the KdV
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theoretical curve. The same is true for amplitudes of 5m and 6m. The eKdV model waves appear to be
evolving toward the theoretical eKdV 'tanh' curve. Note that the amplitude of many of these waves
exceedsexceed the maximum amplitude of table-top/tanh wavewaves of 9-m9 m as determined by the
local parameters at the CMO site.

To learn more about the evolution of a sine wave to waves with sech?and tarhtable-top form, we
ran the model with constant parameters (flat bottom) using values at the mooring site. The runs were
made with initial tidal amplitudes of 1, 2 and 4 m in both KdV and eKdV frameworks and the width vs.
amplitude for the first and second wave in each packet is plotted at various increments of | (Fig. £4b8b).
The KdV waves grow in amplitude with approximately constant width before turning to hug the
theoretical KdV line. They then decrease in amplitude while increasing slightly in thickness. Though the
KdV model waves continue to evolve, most of them can be well approximated as being ‘sech?” waves
after ~100km-(as-was-previeushy-shown-for-Case-Land-Case-4)-~100km. For the eKdV case, the waves
are initially close to the theoretical sech? KdV curve. The waves move slowly towards the theoretical
eKdV tanh curve, ultimately decreasing in amplitude and increasing in thickness. The last points have
been plotted after the internal tide has propagated ~240km~240km. It appears that these waves are
evolving toward tanhtable-top form, but mature over a relatively long distance. Also, the amplitudes of
the waves are greater than the theoretical eKdV maximum but their magnitudes decrease as the tide
evolves.

Another investigation to explore the evolution in the eKdV model (constant parameters) was made
using an initial condition of a sech? wave, the solitary wave solution to the KdV equation. Seeh?sech?

amplitudes of 4m, 7m, 9m, and 13m (Fig. 448c) were chosen. The sech? waves are rapidly transformed
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to tanhtable-top waves, e.g. the 4 examples plotted reach the theoretical eKdV curve after the wave has
propagated about 20-km10 km. A solitary sech? wave evolves much more rapidly to the-tanhtable-top
form (Fig. 24€8c), as opposed to when it is part of a packet of waves (Fig. £4b8b). The reason for this
has not been thoroughly investigated, but provides caution for treating a packet as a group of non-

interacting waves.
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The data to be presented and discussed was collected during the CMO, for location see Fig. 459. The
CMO experimental field program was conducted to increase our understanding of the role of vertical
mixing processes in determining the mid-shelf vertical structure of hydrographic and optical properties.
The field program was conducted on a wide shelf so as to reduce the influences of shelf break and
nearshore processes. The data we discuss was collected from the CMO Central Mooring in July and
August 1996, a time when a strong thermocline is present as a result of large-scale surface heating, Boyd

et al. (1997).

43.1 Observations during the Coastal Mixing and Optics Experiment
The Central Mooring of the CMO experiment was located at 40°29.50’ N 70°30.46> W in water
depth of 69-m69 m. A total of 24 temperature recorders and 5 conductivity sensors were distributed along
the mooring. Currents were measured at 14 depths from an ADCP placed a few metres above the bottom.
Boyd et al. (1997) have calculated the first mode internal wave amplitude from the velocity

time series for the period 29 July to the 31 August 1996 (year day 210 - 245, Fig. £62)-10 i)). The dominant
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barotropic tidal signal in the Middle Atlantic Bight is semi-diurnal, and is strongest over the period day
241-245 during spring tide (Fig. £A-11). A semi-diurnal signal is apparent in the first mode record,
particularly during the spring tide period. A spectrum of the first mode amplitude (Fig. £812) shows
energy peak at both low and high tidal frequencies. Much of the high frequency energy is due to bursts
or pulses of high frequency nonlinear internal waves that occur for a short period during the semi-diurnal
tidal cycle. These nonlinear internal waves propagate shoreward across the continental shelf to the south
of Martha’s Vineyard. -The energy at high frequency is greater over the period day 241-245 during spring
tides (Fig. £812). There is a clear maximum in energy at 2 cpd over this period, and a significant amount
of energy is also contained at 4 cpd. The energy rapidly drops for frequencies greater than 4 cpd but there
is a significant increase in energy at =50-epd~50 cpd and at=98-¢pd~90 cpd. To help interpret these
observations, we compare them with the two-layer eKdV model using the CMO parameters. Since we do
not know where the internal tide is generated or its amplitude, the model was run assuming a sinusoidal
internal tide at distances of 24-km48-km24 km, 48 km and 66-km60 km seaward of the mooring site.
Three initial amplitudes of 2-m—4-m2 m, 4 m and 6-m6 m were used at each distance. Fig. $4¢10 iii)
shows the internal tide as it appears at the CMO mooring site for these nine cases. In all easesinstances,
the leading face of the periodic sinusoidal wave slackens (or flattens) as the internal tide propagates
shoreward. -This is followed by a steepening of the back face which develops into a shock-like front.- The
shock-like front is followed by oscillations which subsequently evolve into a packet of solitary-like
waves.

This same pattern can often be seen in the observed time series of the first internal mode. -Fig.

1913 shows several individual jumps at the CMO mooring. Fig. 39213 i) (top left panel) shows first
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modes which best match the model results of Fig.26¢-10 iii). Some features of the observations compare
well with the model. The slackened leading face of the tide is always followed by a steep - almost shock
like - front followed by several highly nonlinear short period waves. Although not rank ordered, the
largest amplitude wave in the observed packet is always at or near the jump. The model results show that
the amplitude of the jump is greater for larger initial condition, and decreases with distance from the point
of generation. Although nonlinear waves continue to evolve, their amplitudes decrease as they propagate
shoreward from their generation point, and they become ‘thicker’, i.e. they become more tarhtable-top
like. Though the modelled waves have amplitudes less than the theoretical tanh limit for local eKdV

parameters, they nonetheless fit the shape of several observed waves at the CMO site.

There are also features of the observations that are not found in the model. Fig. £9-(13 i) top left
panel-(f) and (g) differ in that the packet that follows the shock-like front, persists until the end of the
tidal period, and the waves are spread apart from each other. Fig. 1913 i) top left parel-(c) shows two
packets of solitary-like waves propagating past the mooring site over a tidal period. The leading slackened
face is followed by a shock-like front and a packet of solitary waves. The trailing face then slackens to
assume a slope similar to the leading face but a second shock-like front, followed by a packet of solitary
waves, passes before the end of the tidal period. This could be from a second internal tide front coming

from another generation site, there can be overlapping semi-gircles of internal wave fronts from multiple

[ Formatted: Font: +Body (Times New Roman)

generation sites, see for example discussion in Apel et al. (1988). Another possible generation mechanism

is the nonlinear evolution of inertia-gravity waves forming behind internal solitary waves due to rotation,

see further in Grimshaw et al. (2014) and Lamb & Warn-Varnas (2015). It is also possible that multiple
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packets form each tidal period, due to different generation mechanisms such as multiple tidal constituents

or harmonics of a tidal components as found, for example, at the site of the Littoral Optics Experiment

where the 4" harmonic of the semi-diurnal tide was used to successfully simulate the evolution of the

internal tide (O’Driscoll 1999).

Another common observation that is not found in the model results is a ‘drop’ in amplitude
before the jump that occurs at the beginning of the wave packet. Fig. 2913 top left parek(h) shows that
the first internal mode drops between day 243.5 and 243.6 but the slackening slope is restored before
the arrival of the jump and packet of solitary waves. Similar ‘drops’ also occur in Fig. 4913 top left
panek(b) and (e) and {middlepanel-top right (a) and (i). Another phenomenon observed is that the slope
of the leading face of the tide changes sign before the packet in several of the examples in Fig. 19
{middle-panel)-13 top right. In Fig. 19-(middie-panel-13 top right (h) the low frequency slope changes
sign at day 236, and the solitary waves appear as usual ahead of the trailing, low frequency signal. The
signal becomes even more complicated when both a ‘drop’ and low frequency slope change are present,
e.g. Fig. 19-(middle-panel-13 top right (d). In this case, the slope of the leading slackening low
frequency signal changes sign at day 242.5 and is followed by a packet of four solitary waves. The low
frequency signal is restored before the passage of a jump followed by a packet of five large solitary
waves. The trailing face retains the slope of the low frequency signal. Fig. 19-(rightpareh)13 bottom
shows a series of jumps which are more complex than those in the {eft-and-centertop panels, though they

retain the basic structure of the model results over the tidal period.
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To examine the details of the wave packets themselves, the width vs. amplitude was estimated for
each wave from all events during the period day 210-245 (Fig. 2614). These waves are plotted along with
the leading two waves from six of the nine model runs shown in Fig. £6e-10 iii). Also shown are the
theoretical relations for solitary waves for the eKdV and KdV equations using CMO site parameters. The
observed nonlinear waves vary greatly in amplitude and width, generally having amplitudes of between
5-and-255 — 25 metres, and widths of between-200-ard-600200 — 600 seconds. Larger amplitude
observed waves are well approximated by model runs with large initial amplitude, particularly the 4m4m
model. The ém6m model run from 24km24km seaward of the CMO site is also a very good match for
several of the observed waves. A large fraction of observed waves with amplitude less than 15m15m,
and particularly less than $0m10m, are much ‘thinner’ than model waves with similar amplitudes.
However, it seems reasonable to say that the observed waves are a good fit to the model waves.

While some features of the observations are reproduced in the model, there are many
differences. The eKdV model used here is highly idealized. There are many effects that have not been
neludedconsidered, including bottom and internal friction, earth’s rotation and mean shear. Given these

limitations, we conclude that the observations are reasonably well matched by our model.

39:4.  Summary and conclusions “«
Observations of highly nonlinear internal waves contained in the first mode time series on the mid-
continental shelf and in current meter records in shallow water have led us to investigate the transformation
of the shoaling internal tide. Observations were made in the mid-continental shelf at the site of the Coastal

Mixing and Optics Experiment (CMO). An existing model based on generalized KdV and eKdV equations
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has been simplified for use in a two-layer ocean, which is representative of realistic stratification. The model
accounts for weakly nonlinear and dispersive properties of the internal tide. Earth’s rotation, internal
dissipation, bottom friction, and internal shear are not included. The internal tide was forced with a periodic
sinusoidal boundary condition and allowed to propagate shoreward.

The model was first run within a KdV framework with realistic continental shelf, constant sloping

bottom with flat and sloping interface, and CMO shelf parameters. The internal tide steepens on its back

face as it propagates shoreward,~which-is a direct result of the much greater magnitude of the nonlinear
term in comparison with the dispersive term. Nonlinear waves evolve from the internal tide after the back
face forms a shock-like front. The waves_can appear as a rank ordered packet with the leading waves
traveling fastest, since they are the most nonlinear. The leading waves_of depression usually travel faster

than the linear wave speed, ¢, and nearly fit solitary wave form for local KdV parameters (“sech?”). Fhe

a 2””3“95 and are Felati’ ‘elf‘

more-dispersive-than-the-leadingWaves of elevation also develop into sech? waves.
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Allof theThe model runs made within the KdV framework were also made within the eKdV

framework which includes a cubic nonlinearity term scaled by a1. The results may or may not be similar,

a

depending upon the ratio of the two nonlinear terms, . If this ratio is large (much greater than one)

11
the cubic nonlinear term is not important and the KdV and eKdV results are similar. If the ratio is of order

one or less the eKdV may evolve differently from the KdV. For mest-ef-the_constant bottom slope

simulations the model results were similar in both frameworks. However, there are some significant
differences to the waves that cross the shelf using CMO parameters. The modeled leading waves at the
CMO mooring site were much ‘thicker’ than sech? waves with local KdV parameters, but they had not
quite developed into solitary wave solutions of the eKdV equation (‘tanh’ or table-top waves).

To better understand the evolution of waves toward tarhtable-top form in an eKdV framework, without
the complications of varying parameters, model runs were made using constant eKdV parameters
representative of the CMO site. Upon formation, the leading waves of the packet are similar to sech? waves.
The waves become ‘thicker’ and tend toward the tanhtable-top form upon further propagation, but never
reach the theoretical tanh curve in our limited domain. To help understand why the evolution of waves from
being close to sech? waves to being close to tanh waves was so slow, the internal tide was forced with a
sech? wave. The evolving sech? rapidly moves to the theoretical tanh curve for all amplitudes. We conclude
that the interaction between the solitary like-waves in a packet slows them from evolving into exact solitary

‘sech?’ or ‘tanh’ waves.
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Model runs with varying initial amplitudes and generation regions were made to help interpret the
observations made at the CMO site. Some features of the observations compare well with the model. The
leading face of the internal tide steepens to form a shock like front. Nonlinear high frequency waves evolve
shortly after the appearance of the jump. Although not rank ordered, the wave of maximum amplitude is
always close to the jump. Some features of the observations are not found in the model. Nonlinear waves
can be very widely spaced and persist over a tidal period. The amplitude of the observed waves often
decreases before the arrival of the jump, while the leading face may change slope before the jump arrives.

Individual observed waves were examined and the details compared to model results. The observed
nonlinear waves vary greatly in amplitude and width, generally having amplitudes of between 5 and 25
metres, and widths of between 200 and 600 seconds. Larger amplitude waves are well approximated by
waves evolving from large amplitude model waves. A large fraction of smaller amplitude observed waves,
particularly less than 10 m, are thinner than model waves of similar amplitude. We conclude that the
observed waves are a good match to modeled waves given the highly idealized eKdV model used, and the

fact that we have neglected friction, rotation and mean shear.
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amplitude of the internal mode for two-layer fluid at 60-km60 km in 69-m69 m depth water (CMO
mooring site). (a) Comparison of KdV (solid line) and eKdV (broken line) solutions. (b) Close up of
(@). (c) Leading KdV model waves (solid line) with superimposed eKdV model waves (broken line)
shifted forward in time (s) so that the leading waves coincide. (d) and (e). The leading wave of depression
(solid line) plotted with an individual sech?wave (dot-dash line) and with an individual tanh wave (dashed
line) for KdV model (d), and eKdV model (e).
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Fig. 34(a)8 Width vs. amplitude of the leading waves of the KdV and eKdV solutions at the CMO
mooring site (hi—=-25-mh=44mh, = 25m,h, = 44m) at 66-km60 km from the boundary in 69
m69 m depth water. Results for initial tidal amplitudes of 2, 4, 5, and 6 m are shown. The theoretical
values for sech? and tanh waves using local parameters are also shown (dotted lines). The width is
calculated at 42% of the total amplitude. (b) Evolution of the width vs. amplitude of the two leading
waves of the KdV and eKdV solutions for flat bottom (h: = 25 m, h2 = 44 m) with same parameters as at
the CMO site. Results for initial tidal amplitudes of 1, 2, and 4 m are shown. A value is plotted every 10
km for the 1 m tide beginning at 160 km and the lines run from 160 km to 260 km. A value is plotted
every 20 km for the 2 m tide beginning at 80 km and the lines run from 80 km to 200 km. A value is
plotted every 20 km for the 4 m tide beginning at 40 km and the lines run from 40 km to 100 km. The
theoretical width vs. amplitude for sech? and tanh waves is also shown (dotted lines), and the width is
calculated at 42% of the total amplitude. () Evolution of the width vs. amplitude of four solitary sech?
waves of the eKdV solutions for flat bottom (h: = 25 m, h2 = 44 m) with same parameters as at the CMO

site. Results are shown for sech? amplitudes of 4, 7, 9 and 13 m. A value is plotted every 1 km up to a
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maximum distance of 15 km. The theoretical width vs. amplitude for sech?and tanh waves is also shown
(dotted lines). The width is calculated at 42% of the total amplitude.
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Fig. 16(a)yLeftpanel-Amplitudel0. Top left, i), amplitude of the first internal mode calculated from the
current meter record at the CMO mooring site over the period day 210-245 of 1996. {b)-Centerpanel:Top

right, ii), Same as left-paneli) except for the period day 241-245. (e} Rightpanek—TFhreeBottom, iii), three

sinusoids of amplitude 2 m, 4 m and 6 m, respectively, and with tidal period, as they appear at the CMO

mooring site in the eKdV framework. -The sinusoids have propagated shoreward from boundaries at 60

km, 48 km and 24 km offshore, respectively.
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Fig. £711. Pressure (tidal) record at the CMO mooring site {tep)-everincluding for the period day 210 —

245 1996 (from Boyd et al., 1997).
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Fig. 4913. Observations at the CMO Mooring site over a semi-diurnal period. =eft=FheseTop left, i)
sections of the record were-chesen-sinee-they-are-similar to events observed over a tidal period in the
model runs of Fig. 16e-Center-Samel0 iii). Top right, ii), same as efti) except the record is a little bit

more complicated over a tidal period. Right-SameBottom, iii), same as Centerii).
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Fig. 2014. Wave amplitude vs. wave width at the CMO mooring for waves from all events during the

period day 210 - 245. Also plotted are the two leading waves from six of the nine model runs shown in

Fig. £610 (diamonds).
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Supplementary Figure

200

200
Fig. Tables
Case |[hi | R | el | B |—a @28y
1 |50 |350 |—02 | 4250 |-—0145 628
2 |40 |e57 |—02 | 5; |-0124 —362
3 |80 |938 |-—0021 |1250 |-.0016 2041
4 | 651 |115% |01 | 4250 |-—0076 1227
Table 1 KdV parameter values for Cases 1 4.

S1. Quadratic nonlinear parameter, «, divided by the cubic nonlinear parameter, @4, as a function of the«—

depth of the upper layer, h,, and lower layer, h,. Values for sloping bottom (Cases A and B) and realistic

slope and stratification at the CMO site are shown by the broken lines.
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