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Abstract: 

The prediction of extreme storm surges is a critical task for coastal area protection. This study 10 

examines extreme storm surges in Beibu Bay, a semi-enclosed bay in the South China Sea, and their 

joint probabilities. A method for the advanced prediction of the extreme storm surges is proposed 

using a multivariate extreme statistical method. We further present practical guidelines of the 

proposed multivariate analysis method, including guidelines for simulation. The simulation can be 

extended to multidimensional data to simplify computation, so the proposed approach can be 15 

extended to use more points’ data from the semi-enclosed bay for predicting extreme storm surges 

probabilities. A practical case study illustrates the application of the proposed techniques for 

extreme storm surges prediction. A comparison of the conditional probabilities obtained from 

observations and simulation data show that the proposed method is effective. 

Key Words: Multivariate extreme analysis, Monte Carlo, SCS, Storm Surge 20 

1. Introduction 

The prediction of extreme storm surges due to typhoons is a critical problem for low-lying 

coastal areas. This problem is expected to increase because of climate change (Lowe et al., 2010; 

Weisse et al., 2012; Weisse et al., 2014; Mcinnes et al., 2003; Tebaldi et al., 2012; Arns et al., 2015). 

Inundation caused by storm surges in the Chinese coastal region severely impacts and poses a 25 

continual threat to the activities and safety of the people living there. Between 1990 and 2010, storm 

surge disasters caused economic losses of approximately RMB 10.5 billion and 148 deaths, and 

affected 11.5 million annually. (Gao et al., 2014). Thus, storm surge prediction and rapid disaster 
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information dissemination are vital for facilitating evacuation and disaster mitigation in China.  

This study focuses on extreme storm-surge probability prediction in Beibu Bay in the South 30 

China Sea (SCS) using a multivariate extreme statistical method called multivariate generalized 

Pareto distribution (MGPD). Recently, research on the application of multivariate extreme values 

(EVs) has increased. In these studies, several possible probability distribution functions have been 

used to characterize extreme sea level events: the Copula function (Salvadori et al., 2015; Corbella 

and Stretch, 2012; Michele et al., 2007; Salvadori et al., 2013; Tao et al., 2013), multivariate EV 35 

function (Morton and Bowers, 1996; Coles and Tawn, 1994; Bhunya, et al., 2011), and MGPD 

function (which is a type of multivariate EV function) (Falk et al., 2004; Rootzén and Tajvidi, 2006).  

In fact, multivariate EV analysis requires a reasonable extrapolation from observed states to 

unobserved states. Therefore, in EV analysis, these distribution functions are not only fitted by 

observed states, but they also predict unobserved states by reasonable extrapolation. The 40 

multivariate EV and MGPD functions are derived from EV theory, a branch of probability theory 

(Coles, 2001; Beirlant et al., 2005). However, only the MGPD function is the natural distribution of 

the multivariate peak over threshold (MPOT) sampling method, which retains more extreme 

information from the raw data than the annual maxima method (Zhang et al., 2000; Yap and Zhu, 

2014; Menéndez and Woodworth,2010). The annual maxima method often ignores multiple severe 45 

storm waves that occur in the same year, which may be much larger than the annual largest waves 

in many other years. Consequently, the annual maxima method may underestimate extreme 

variables (You and Yin, 2006). Moreover, the uncertainty of the return level estimation by the peak 

over threshold method is smaller than that by the annual maxima method under different sample 

lengths (Yao et al., 2012).  50 

In this paper, we do not specifically address MGPD theory; its details can be found in (Falk, 

2004; Rootzén and Tajvidi, 2006; Beirlant et al., 2005; Tajvidi, 1996). We instead present our 

developed MGPD procedures and show how the methodology can be exploited for the analysis of 

extreme surges at two adjacent sites. The proposed theory and its statistical methodology are 

presented in Section 2. In MGPD, determining the joint threshold and estimating the joint density 55 

are critical tasks. These aspects are presented via an example in Sections 3 and 4, respectively. 
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Finally, MPOT advantages and application possibilities based on Monte Carlo simulation are 

outlined in the conclusion in Section 5. 

2. Analysis Methodology  

2.1 MGPD Theory 60 

Multivariate EV theory has a broad range of applications (Coles and Tawn, 1994; Beirlant et 

al., 2005; Coles and Tawn, 1991). In this paper, we focus on the MGPD definition of Falk et al. 

(2004). The MGPD cumulative distribution function can be described as 
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where 1( ,..., )dx x x U  , where U is a neighborhood of zeros in the negative quadrant ( ,0)d , 65 

and 1( , , )nG x x  is a cumulative distribution function of the multivariate generalized EV 

distribution. In addition, D is the Pickands dependence function in the unit simplex 1dR   on the 
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Function W(X) can be deduced from 1( , , )nG x x , so the dependence relation form of 

1( , , )nG x x can greatly enrich the expression of W(X) for various dependence relationships (Falk 70 

et al., 2004). Among them, W(X) of the logistic type is widely used in hydrology, finance, and other 

fields because of the favorable statistical properties of the following Pickands dependence function:
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which means the MGPD cumulative distribution function can be rewritten as 
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where r is the correlation parameter of the dependence function and r > 1. Further, ix  in the interval 

Ocean Sci. Discuss., doi:10.5194/os-2016-94, 2017
Manuscript under review for journal Ocean Sci.
Published: 3 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



 

4 

 

(−1, 0) denotes standardized variables. The bivariate logistic generalized Pareto distribution density 

function is given by 

1 1/ 2( , ) ( 1)( ) [( ) ( ) ] 0, 0r r r r

r

W
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Correlation parameter r can be evaluated using a step-by-step method, i.e., we first evaluate 80 

two marginal distributions and then evaluate r within MGPD including the marginal distributions. 

Alternatively, r can be evaluated using a global method in which r is directly estimated using the 

maximum likelihood for density function w . The global method more reliably evaluates the results 

because of its final function form; however, its evaluation processes are more complex. The 

maximum-likelihood function is 85 

1
( ) ln( ( , ))
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2.2  Simulation method 

The Monte Carlo simulation method for a multivariate distribution is complex owing to the 

generation of multivariate random vectors. In general, the variables firstly are transformed into 

independent variables, for which random vectors are generated for each variable. The final random 90 

vectors of the multivariate distribution are obtained by an inverse transformation. The MGPD 

simulation method was suggested in Michel (2007). 

To more effectively demonstrate the MGPD simulation method, we use pT  to transform 

vector 1( ,..., )dx x  into polar coordinates as follows: 

11
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where 1 dc x x   and 1 1( / , , / )dx c x c Z  correspond to the radial and angular 

components, respectively, called Pickands polar coordinates. 

In the Pickands polar coordinate system, ( )W X represents different properties. Assume that 

1( ,..., )dX X  follows MGPD ( )W X  and the d-th differential of its Pickands dependence 

function D  exists. We define the Pickands density  ,z c  as follows (Falk et al., 2004): 100 
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Then   depends only on z  and, therefore, we put    ,z z c  . Under 
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uniform distribution P (C > c) = µ|c| on 0( ,0)c . For details see Falk et al. (2004). So MGPD 

simulation method (details in Michel, 2007): 1) generates random numbers uniformly distributed on 105 

unit simplex 1dR  , 2) generates random vector  1, dz z  using density function 𝑓(𝑧) =
∅(𝑧)

𝜇
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1 1( , , )dz z z    in Pickands polar coordinates and an acceptance-rejection method, 3) generates 

random numbers uniformly distributed on  0 ,0c , and 4) calculates vector 
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d
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   , which is a random vector that satisfies the multivariate over 

threshold distribution. Constant c0 is the joint threshold in the MGPD method, determined in this 110 

study using the principle proposed in (Coles and Tawn, 1994). 

3. Data and Declustering 

3.1 Data 

The data used in this study were provided by the Joint Archive for Sea Level (JASL) of the 

University of Hawaii Sea Level Center (http://uhslc.soest.hawaii.edu/home). The data consist of 115 

simultaneous hourly sea-level observations at Beihai and Dongfang stations, which are located on 

the Beibu Bay coast in SCS (Fig. 1) and were collected from June 1975 to December 1997. The data 

can be used for the analysis of extreme surges because hourly sampling sufficiently captures high 

water levels. The missing values for Beihai correspond to only 0.023% of the data, while for 

Dongfang, 0.173% of the data was eliminated from the sample because of gauge malfunctions or 120 

other issues. 201,578 and 201,275 hourly values for Beihai and Dongfang, respectively, were to be 

processed, and the available data was judged sufficient to perform EV analysis of storm surges. 

3.2 Data Analysis and Declustering 

Beihai City, located in the south of Guangxi province of China, is a beach city on the coast of 
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Beibu Bay, which is a shallow, semi-closed bay. Owing to Beibu Bay’s special geomorphologies, 125 

its typhoon surges are violent and can cause flooding in the city. The surge levels at the site are 

defined as the residuals after the astronomically induced tidal components have been removed from 

the sea-level observations. The tidal component is cyclical and does not satisfy the basic hypothesis 

of a random variable. Godin’s method (Godin, 1972) was used for tidal analysis.  

The first stage in EV analysis is declustering, specifically, identifying a set of independent 130 

events. Declustering is performed to make adjacent elements of a sample that consists of the maxima 

of events independent of each other. s. Our approach is to use a moving window of sufficient width 

to ensure that the extremes of each variable from a single 'meteorological event' are certain to fall 

within a single window (Coles and Tawn, 1994). Declustering techniques by Morton and Bowers 

(1996) were used. The features of storms and storm surges differ in each place. In Beibu Bay, the 135 

main meteorological event, can generate extreme wave height, is a typhoon. The declustering of a 

sequence of surges is illustrated in Fig. 2. The duration of a typhoon surge in the Beibu Gulf is 

approximately 100 h. The components of each vector are the maximum surge at each site over a 

100-h event. The peak events for the vectors in the cluster occurred at different times. The peak 

surges arrived at Dongfang 3-5 h before they arrived at Beihai, as shown in Fig. 2. 140 

The main purpose of this study was to analyze the relationship between the extreme surges at 

both sites, and then predict extreme storm surge probabilities at one site. Therefore, the declustering 

method was judged to be appropriate because all the main peaks were included in these clusters. 

The 100-h cluster interval enabled the surge peaks at both sites from the same typhoon to be in the 

same cluster. According to the above principles, the total number of independent events N was 2,016.  145 

3.3 Constructing Conditional Probability Functions  

Extreme surges in the Beibu Gulf is are predominantly caused by typhoons from lower-latitude 

areas in the SCS. Typhoons typically move through the Beibu Gulf from south to north, with a small 

number of them moving from east to west. An extreme surge at Dongfang, which is to the south of 

Beihai, can serve as an early warning signal for Beihai. Multivariate EV analysis can be used to 150 

provide such a warning. 

To analyze the joint probability of extreme surges in Beihai and Dongfang, conditional 
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probability (CP) distributions can be used (eq. 9). The value of CP represents the probability of 

encounters between extreme surges. The bivariate Pareto distribution function W(x, y) is 

( , ) ( , )W x y Pr X x Y y                (8), 155 

where x and y represent surges m in Beihai and Dongfang, respectively. Distributions 𝑊𝑥(𝑥) and 

𝑊𝑦(𝑦) are the marginal distributions of x and y, respectively. The CP distributions are as follows: 
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              (9). 

The other four CP distributions (Y conditional on X) can be deduced by swapping two variables. 

4. Extreme-value analysis 

In this section, we focus on problems in extreme surge prediction that can be solved using the 160 

statistical methodologies of EV analysis. These problems include joint threshold analysis, stochastic 

simulation, and the statistics of multivariate extreme surges. Finally, the interpretation of the 

statistical results for the extreme surges at the two locations is briefly discussed. 

4.1  Marginal Transformation and Joint Threshold 

Generalized Extreme Value Distribution (GEVD) includes EV ⅠⅡⅢ type distribution and 165 

can describe accurately more EV events than any single component. So we choose that the marginal 

distributions of the 2,016 independent events could be described by the following GEVD:  

1x -
F(x)= P(X < x)= exp -[1- ( )] , 0

 


 
 

 
       (10), 

where ξ, σ, and μ are three GEVD parameters. They are estimated using maximum likelihood, 

which was suggested in Coles (2001) and Beirlant et al. (2005). Fig. 3 shows the probability plots 170 

(including the 95% confidence intervals) of the marginal distributions before MGPD is fit and 
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the estimations of parameters are shown in Tab. 1.  

As described in Section 2.1, the MGPD variables must be close to zero in the negative quadrant. 

The margins of a bivariate distribution can be transformed into uniform ones as suggested by Michel 

(2007). To standardize the margins, the marginal MGPD distribution must be a negative exponential 175 

distribution. Using the Taylor expansion, we can transform the data onto (−1, 0) by computing 

( ) (1 ( ) 1) ( ) 1i i iy logF x log F x F x               (11), 

where F(xi) is the GEVD of index i (i = 1,2), indicating Beihai or Dongfang. In Eq. (11), F(xi) is 

close to one because this study focuses on extreme observations. 

Many dependence models between extreme variables such as logistic, bilogistic, and Dirichlet 180 

models have been suggested. However, the choice of dependence model is not usually critical to the 

accuracy of the final model (Morton and Bowers, 1996). Therefore, a simple bivariate logistic 

generalized Pareto distribution was selected. The MGPD model of this paper is based on a 

multivariate EV distribution. Its joint threshold can be calculated by the method from Coles and 

Tawn (1994). The joint threshold is c0 = −0.28, and there are 218 combinations of Beihai and 185 

Dongfang with 𝑐 > 𝑐0. Fig. 4(a) shows the samples that are over the threshold value. In the left 

subfigure, c0 = −0.28 is a curve, and all observations on the right side of this curve are greater than 

c0. The converted data is shown in the right subfigure, where c0 = −0.28 is a line.  

The correlation parameter r of the dependence function is estimated using maximum likelihood 

and is r = 2.15. Using the obtained estimates for all parameters, the joint extreme probability 190 

distribution function is illustrated in Fig. 4(b). 

4.2 Comparison of Stochastic Simulation Results  

Using the simulation method in Section 2.2, we generated a very large sample of bivariate 

extreme storm surges. In this section, we compare the CP results obtained by simulation and direct 

calculation. Fig. 5 shows the results of the stochastic simulation for N = 10,000 and 100,000. The 195 

simulation results are in basic conformity with the observations, which shows that the MGPD 

simulation method is effective. The scatter diagrams directly show the simulation result; however, 

they require further quantitative analysis to objectively show their differences. 

We use two CPs: CP1 P(X > x | Y > y) and CP4 P(X < x | Y < y). Here, CP1 is the probability 
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that the surge in Beihai exceeds x conditional on the surge in Dongfang exceeding y, and CP4 is the 200 

probability that the surge in Beihai does not exceed x conditional on the surge in Dongfang not 

exceeding y. Fig. 6 shows that the relative difference in value between the simulation and direct 

calculation depends on the number of simulations N. The subplots in Fig. 6 clearly show that the 

relative difference is reduced as N increases. When N reaches 1.5×106, the maximum relative error 

between the simulated and calculated results is 8.61%, which we consider satisfactory.  205 

In addition, we conducted runtime experiments in which 1×104, 5×104, 10×104, 1×106, and 

1.5×106 random vectors were generated on a desktop PC with an Intel Core i7 3.4 GHz processor. 

The runtimes were 3, 24, 82, 9,649, and 22,106 s. 

To estimate the M-year surge of Beihai and Dongfang by means of a univariate analysis, the 

Poisson-Gumbel distribution was used (Quek and Cheong, 1992; Naffa et al., 1991), which can be 210 

described by 

[1 ( )]G xF(x)= P(X < x)= e  
           (12), 

where ( )G x  is the Gumbel distribution. 

Tables 2 and 3 show the values of CP1 and CP4 based on the results from 1.5×106 simulations. 

The tables list the calculated and stochastic simulation results for five CP1 and CP4 groups for 215 

different combinations of M-year surges at Dongfang and Beihai. The two results are very similar. 

For instance, the directly calculated P(X > x50 | Y > y10) is 12.94% and its simulation result is 14.06%. 

Their relative error is 8.61%, which is the maximum relative error for CP1. Moreover, the directly 

calculated P(X < x5 | Y<y50) is 99.35% and its simulation result is 94.13%. Their relative error is 

5.25%, which is the maximum relative error for CP4.  220 

4.3  Prediction of Extreme Surges 

The relationship between extreme surges at Beihai and Dongfang can be analyzed using the 

CP. Because the peak surges at Dongfang occur earlier than those at Beihai, we use CP1: P(X > x | 

Y > y) to warn of an extreme surge at Beihai. Tab. 2 shows that, when a 50-year surge appears at 

Dongfang, the probability of a greater than 50-year surge occurring at Beihai is 94.55%.  225 

Using long-term surge records, we can determine the relationship between extreme surges at 
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Beihai and Dongfang. Additionally, because of the special geographical relationship between the 

two locations, a peak surge at Dongfang is a signal that predicts a peak surge at Beihai. We can 

therefore predict the probability of different surges at Beihai and then take preemptive measures to 

reduce or eliminate the associated damages. 230 

5. Conclusion and Discussion 

5.1  Conclusion 

The primary aim of this study is to illustrate how recent MGPD developments can be applied 

to marine disaster prediction. We not only developed a process for determining a joint threshold and 

simulation, but we conducted an analysis for extreme surge warnings using MGPD. MGPD is the 235 

natural distribution of the MPOT method, which can cull extreme information from raw data. A 

model based on multivariate EV theory and the intrinsic properties of EVs were also considered.  

A Monte Carlo MGPD simulation was used to determine the conditional probability of two extreme 

surges, and the proposed approach was judged to give satisfactory results by comparing the relative 

differences in conditional probabilities obtained from observations and simulation data.  240 

5.2  New Possibilities Based on Monte Carlo Simulation  

Extreme surge warnings would be more reliable if the relationships of extreme surges at three 

or more sites could be established. Using more related (affected by the same typhoon) sites’ storm 

surge real time data for storm surge warnings of Beihai city, the forecast result may be 

more believable by the statistical method presented in the paper. In this paper, the theory of MGPD 245 

and its simulation was derived for multidimensional variables. The methodology could be 

extrapolated to higher dimensional space. Thus, difficulty of solving a procedure for MGPD cannot 

be exacerbated by the high dimensionality of the variables. A potentially more effective warning 

approach could be based on a Monte Carlo simulation. Once long-term (e.g., thousands of years) 

sea state data has been simulated, several ocean environmental factors can be quickly assessed by 250 

the law of large numbers. 
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Fig. 1 Location of the two stations in Beibu Bay, SCS 
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Fig. 2 Declustered surges 
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Fig. 3 Fitness testing of the marginal distribution 
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Fig. 4 (a) Dongfang and Beihai observations over the threshold value and (b) joint distribution of EVs for 

Dongfang and Beihai  
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Fig. 5 Values over the threshold and stochastic simulation data 
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Fig. 6 Variance of the relative error under different numbers of simulation N for CP1. The conditional 

probabilities for each subplot are shown in Tables 2 
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Table1 Parameters of the marginal distribution 

 ξ σ μ 

Beihai 0.3376 0.1187 −0.0465 

Dongfang 0.1933 0.0890 −0.0720 

 

 

 

 355 

Table 2 Comparison of the results for CP1 (%) 

with the results from 1.5×106 simulations 

RP (year) 5 10 20 50 100 

RP 

D(m)    

B(m) 

0.57 0.77 0.84 0.93 0.99 

c s c s c s c s c s 

5 0.87 62.52 62.59 99.33 99.54 99.89 99.79 99.99 100.00 100.00 100.00 

10 1.13 5.20 5.34 81.00 82.52 96.67 97.44 99.76 100.00 99.97 100.00 

20 1.22 1.70 1.74 49.38 50.71 88.05 88.70 99.13 100.00 99.89 100.00 

50 1.34 0.34 0.37 12.94 14.06 47.95 49.68 94.55 95.12 99.29 100.00 

100 1.42 0.11 0.11 4.29 4.47 19.09 19.40 80.75 82.93 97.37 100.00 

RP: return period, a: analytic solution, s: simulation results, D: Dongfang, B: Beihai. (the same below) 
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Table 3 Comparison of the results for CP4 (%) 

with the results from 1.5×106 simulations 370 

RP (year) 5 10 20 50 100 

RP 

D(m)    

B(m) 

0.57 0.77 0.84 0.93 0.99 

c s c s c s c s c s 

5 0.87 99.75 97.61 99.36 94.26 99.35 94.15 99.35 94.13 99.35 94.12 

10 1.13 100.0 99.99 99.98 99.81 99.97 99.72 99.97 99.69 99.97 99.69 

20 1.22 100.0 100.0 100.0 99.97 99.99 99.93 99.99 99.90 99.99 99.90 

50 1.34 100.0 100.0 100.0 100.0 100.0 99.99 100.0 99.98 100.0 99.98 

100 1.42 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.99 
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