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Abstract:

10 The prediction of extreme storm surges is a critical task for coastal area protection. This study
examines extreme storm surges in Beibu Bay, a semi-enclosed bay in the South China Sea, and their
joint probabilities. A method for the advanced prediction of the extreme storm surges is proposed
using a multivariate extreme statistical method. We further present practical guidelines of the
proposed multivariate analysis method, including guidelines for simulation. The simulation can be

15  extended to multidimensional data to simplify computation, so the proposed approach can be
extended to use more points’ data from the semi-enclosed bay for predicting extreme storm surges
probabilities. A practical case study illustrates the application of the proposed techniques for
extreme storm surges prediction. A comparison of the conditional probabilities obtained from
observations and simulation data show that the proposed method is effective.

20  Key Words: Multivariate extreme analysis, Monte Carlo, SCS, Storm Surge
1. Introduction

The prediction of extreme storm surges due to typhoons is a critical problem for low-lying

coastal areas. This problem is expected to increase because of climate change (Lowe et al., 2010;
Weisse et al., 2012; Weisse et al., 2014; Mcinnes et al., 2003; Tebaldi et al., 2012; Arns et al., 2015).

25  Inundation caused by storm surges in the Chinese coastal region severely impacts and poses a
continual threat to the activities and safety of the people living there. Between 1990 and 2010, storm

surge disasters caused economic losses of approximately RMB 10.5 billion and 148 deaths, and

affected 11.5 million annually. (Gao et al., 2014). Thus, storm surge prediction and rapid disaster
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information dissemination are vital for facilitating evacuation and disaster mitigation in China.

30 This study focuses on extreme storm-surge probability prediction in Beibu Bay in the South
China Sea (SCS) using a multivariate extreme statistical method called multivariate generalized
Pareto distribution (MGPD). Recently, research on the application of multivariate extreme values
(EVs) has increased. In these studies, several possible probability distribution functions have been
used to characterize extreme sea level events: the Copula function (Salvadori et al., 2015; Corbella

35 and Stretch, 2012; Michele et al., 2007; Salvadori et al., 2013; Tao et al., 2013), multivariate EV
function (Morton and Bowers, 1996; Coles and Tawn, 1994; Bhunya, et al., 2011), and MGPD
function (which is a type of multivariate EV function) (Falk et al., 2004; Rootzén and Tajvidi, 2006).

In fact, multivariate EV analysis requires a reasonable extrapolation from observed states to
unobserved states. Therefore, in EV analysis, these distribution functions are not only fitted by

40  observed states, but they also predict unobserved states by reasonable extrapolation. The
multivariate EV and MGPD functions are derived from EV theory, a branch of probability theory
(Coles, 2001; Beirlant et al., 2005). However, only the MGPD function is the natural distribution of
the multivariate peak over threshold (MPOT) sampling method, which retains more extreme
information from the raw data than the annual maxima method (Zhang et al., 2000; Yap and Zhu,

45 2014; Menéndez and Woodworth,2010). The annual maxima method often ignores multiple severe
storm waves that occur in the same year, which may be much larger than the annual largest waves
in many other years. Consequently, the annual maxima method may underestimate extreme
variables (You and Yin, 2006). Moreover, the uncertainty of the return level estimation by the peak
over threshold method is smaller than that by the annual maxima method under different sample

50 lengths (Yao et al., 2012).

In this paper, we do not specifically address MGPD theory; its details can be found in (Falk,
2004; Rootzén and Tajvidi, 2006; Beirlant et al., 2005; Tajvidi, 1996). We instead present our
developed MGPD procedures and show how the methodology can be exploited for the analysis of
extreme surges at two adjacent sites. The proposed theory and its statistical methodology are

55  presented in Section 2. In MGPD, determining the joint threshold and estimating the joint density

are critical tasks. These aspects are presented via an example in Sections 3 and 4, respectively.

2
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Finally, MPOT advantages and application possibilities based on Monte Carlo simulation are

outlined in the conclusion in Section 5.

2. Analysis Methodology

60 2.1 MGPD Theory

Multivariate EV theory has a broad range of applications (Coles and Tawn, 1994; Beirlant et
al., 2005; Coles and Tawn, 1991). In this paper, we focus on the MGPD definition of Falk et al.

(2004). The MGPD cumulative distribution function can be described as
W (X) =1+10g(G(x,,.... X4))

:1+£ixi]D X L, Iog(G(xl,...,xd))>—1 @
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65  where (X,...,X;)=XeU ,where U isaneighborhood of zeros in the negative quadrant (—oo, 0)?,

and G(x,,--+,X,) is a cumulative distribution function of the multivariate generalized EV

distribution. In addition, D is the Pickands dependence function in the unit simplex R, on the

— d
defined domain, i.e., Ry ={x €[0,20)" | >_x =1}.

i-1
Function W(X) can be deduced from G(Xl,-“, Xn) , S0 the dependence relation form of

70 G(Xl, XS Xn) can greatly enrich the expression of W(X) for various dependence relationships (Falk

et al., 2004). Among them, W(X) of the logistic type is widely used in hydrology, finance, and other

fields because of the favorable statistical properties of the following Pickands dependence function:

d-1 d-1 \' n
Dr(tl,...,tdl):[Zt{{l—_ tin : )

which means the MGPD cumulative distribution function can be rewritten as
d b
.
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where r is the correlation parameter of the dependence function and r > 1. Further, X; inthe interval
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(=1, 0) denotes standardized variables. The bivariate logistic generalized Pareto distribution density
function is given by
W%, Y) =0 (- 2)(xy) (X)W T <0,y <0. @
oxoy
80 Correlation parameter r can be evaluated using a step-by-step method, i.e., we first evaluate
two marginal distributions and then evaluate r within MGPD including the marginal distributions.
Alternatively, r can be evaluated using a global method in which r is directly estimated using the
maximum likelihood for density function W . The global method more reliably evaluates the results
because of its final function form; however, its evaluation processes are more complex. The

85 maximume-likelihood function is
L(r) =" In(w, (%, ¥))- (5)

2.2 Simulation method

The Monte Carlo simulation method for a multivariate distribution is complex owing to the

generation of multivariate random vectors. In general, the variables firstly are transformed into

90  independent variables, for which random vectors are generated for each variable. The final random
vectors of the multivariate distribution are obtained by an inverse transformation. The MGPD

simulation method was suggested in Michel (2007).

To more effectively demonstrate the MGPD simulation method, we use Tp to transform
vector (X,,..., X;) into polar coordinates as follows:

Xl Xd—l
XoFot Xy X Hot X

95 T, (X, %) =( X Fe+ X)) =(2,0244,C) (6)

where C=X +---X; and Z=(X/C,---X;,/C) correspond to the radial and angular
components, respectively, called Pickands polar coordinates.

In the Pickands polar coordinate system, W (X ) represents different properties. Assume that
(X,..s Xy) follows MGPD W(X) and the d-th differential of its Pickands dependence

100  function D exists. We define the Pickands density ¢(z,c) as follows (Falk et al., 2004):
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Then ¢ depends only on Z and, therefore, we put ¢(z)=¢(z,c) . Under
'”:.[R ¢(z)dz >0 and constantC, <0 exists and is close to zero, we can prove that ¢ is a

uniform distribution P (C > c) = pc| on (C,,0) . For details see Falk et al. (2004). So MGPD

105  simulation method (details in Michel, 2007): 1) generates random numbers uniformly distributed on
unit simplex Ry, , 2) generates random vector (Zl,'--Zd ) using density function f(z) = % of
7= (Zl, ey del) in Pickands polar coordinates and an acceptance-rejection method, 3) generates

random numbers uniformly distributed on (CO,O) , and 4) calculates vector

d-1 . . . g . .
(czl,-u,czd_l,c—CZ:i:1 Zi), which is a random vector that satisfies the multivariate over

110  threshold distribution. Constant co is the joint threshold in the MGPD method, determined in this

study using the principle proposed in (Coles and Tawn, 1994).

3. Data and Declustering

3.1 Data

The data used in this study were provided by the Joint Archive for Sea Level (JASL) of the

115  University of Hawaii Sea Level Center (http://uhslc.soest.hawaii.edu/home). The data consist of

simultaneous hourly sea-level observations at Beihai and Dongfang stations, which are located on
the Beibu Bay coast in SCS (Fig. 1) and were collected from June 1975 to December 1997. The data
can be used for the analysis of extreme surges because hourly sampling sufficiently captures high
water levels. The missing values for Beihai correspond to only 0.023% of the data, while for
120  Dongfang, 0.173% of the data was eliminated from the sample because of gauge malfunctions or
other issues. 201,578 and 201,275 hourly values for Beihai and Dongfang, respectively, were to be

processed, and the available data was judged sufficient to perform EV analysis of storm surges.

3.2 Data Analysis and Declustering

Beihai City, located in the south of Guangxi province of China, is a beach city on the coast of
5
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125  Beibu Bay, which is a shallow, semi-closed bay. Owing to Beibu Bay’s special geomorphologies,
its typhoon surges are violent and can cause flooding in the city. The surge levels at the site are
defined as the residuals after the astronomically induced tidal components have been removed from
the sea-level observations. The tidal component is cyclical and does not satisfy the basic hypothesis
of a random variable. Godin’s method (Godin, 1972) was used for tidal analysis.

130 The first stage in EV analysis is declustering, specifically, identifying a set of independent
events. Declustering is performed to make adjacent elements of a sample that consists of the maxima
of events independent of each other. s. Our approach is to use a moving window of sufficient width
to ensure that the extremes of each variable from a single 'meteorological event' are certain to fall
within a single window (Coles and Tawn, 1994). Declustering techniques by Morton and Bowers

135  (1996) were used. The features of storms and storm surges differ in each place. In Beibu Bay, the
main meteorological event, can generate extreme wave height, is a typhoon. The declustering of a
sequence of surges is illustrated in Fig. 2. The duration of a typhoon surge in the Beibu Gulf is
approximately 100 h. The components of each vector are the maximum surge at each site over a
100-h event. The peak events for the vectors in the cluster occurred at different times. The peak

140  surges arrived at Dongfang 3-5 h before they arrived at Beihai, as shown in Fig. 2.

The main purpose of this study was to analyze the relationship between the extreme surges at
both sites, and then predict extreme storm surge probabilities at one site. Therefore, the declustering
method was judged to be appropriate because all the main peaks were included in these clusters.
The 100-h cluster interval enabled the surge peaks at both sites from the same typhoon to be in the

145  same cluster. According to the above principles, the total number of independent events N was 2,016.
3.3 Constructing Conditional Probability Functions

Extreme surges in the Beibu Gulf is are predominantly caused by typhoons from lower-latitude
areas in the SCS. Typhoons typically move through the Beibu Gulf from south to north, with a small
number of them moving from east to west. An extreme surge at Dongfang, which is to the south of

150  Beihai, can serve as an early warning signal for Beihai. Multivariate EV analysis can be used to
provide such a warning.

To analyze the joint probability of extreme surges in Beihai and Dongfang, conditional

6
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155 W(x,y)=Pr(X <xY <y) (8),
where x and y represent surges m in Beihai and Dongfang, respectively. Distributions W, (x) and
W, (y) are the marginal distributions of x and y, respectively. The CP distributions are as follows:
Pr(X 2xY2y) 1-W (x)-W (y)+W(xy)
CPL:Pr(X 2x|Y 2>y)= =
Pr(Y >y) 1-W (y)
Pr(X <x,Y>y) W (x)-W(x,y)
CP2:Pr(X <x|Y>y)= =—
Pr(Y > y) 1-W (y)
Pr(X =x,Y <y) W (y)=W(x,Y) ©).
CP3:Pr(X 2 x|Y <y) = oL =¥ U 2/
Pr(y <vy) W, (y)
Pr(X <x,Y < W (x,
CP4:Pr(X <x|Y<y)= r X Y): )
Pr(y <vy) W, (y)
The other four CP distributions (Y conditional on X) can be deduced by swapping two variables.
4. Extreme-value analysis
160 In this section, we focus on problems in extreme surge prediction that can be solved using the
statistical methodologies of EV analysis. These problems include joint threshold analysis, stochastic
simulation, and the statistics of multivariate extreme surges. Finally, the interpretation of the
statistical results for the extreme surges at the two locations is briefly discussed.
4.1 Marginal Transformation and Joint Threshold
165 Generalized Extreme Value Distribution (GEVD) includes EV 1 II1II type distribution and
can describe accurately more EV events than any single component. So we choose that the marginal
distributions of the 2,016 independent events could be described by the following GEVD:
X- .
Fi9=P(x <= {1-640 ], g0 ()
(o
where &, o, and u are three GEVD parameters. They are estimated using maximum likelihood,
170  which was suggested in Coles (2001) and Beirlant et al. (2005). Fig. 3 shows the probability plots

probability (CP) distributions can be used (eq. 9). The value of CP represents the probability of

encounters between extreme surges. The bivariate Pareto distribution function W(x, y) is

(including the 95% confidence intervals) of the marginal distributions before MGPD is fit and
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the estimations of parameters are shown in Tab. 1.
As described in Section 2.1, the MGPD variables must be close to zero in the negative quadrant.
The margins of a bivariate distribution can be transformed into uniform ones as suggested by Michel

175  (2007). To standardize the margins, the marginal MGPD distribution must be a negative exponential
distribution. Using the Taylor expansion, we can transform the data onto (—1, 0) by computing
y =logF(x) =log(d+F(x)-1) ~ F(x)-1 (11),
where F(x;) is the GEVD of index i (i = 1,2), indicating Beihai or Dongfang. In Eq. (11), F(xi) is
close to one because this study focuses on extreme observations.

180 Many dependence models between extreme variables such as logistic, bilogistic, and Dirichlet
models have been suggested. However, the choice of dependence model is not usually critical to the
accuracy of the final model (Morton and Bowers, 1996). Therefore, a simple bivariate logistic
generalized Pareto distribution was selected. The MGPD model of this paper is based on a
multivariate EV distribution. Its joint threshold can be calculated by the method from Coles and

185  Tawn (1994). The joint threshold is co = —0.28, and there are 218 combinations of Beihai and
Dongfang with ¢ > ¢,. Fig. 4(a) shows the samples that are over the threshold value. In the left
subfigure, co= —0.28 is a curve, and all observations on the right side of this curve are greater than
Co. The converted data is shown in the right subfigure, where co= —0.28 is a line.

The correlation parameter r of the dependence function is estimated using maximum likelihood

190 and is r = 2.15. Using the obtained estimates for all parameters, the joint extreme probability
distribution function is illustrated in Fig. 4(b).

4.2 Comparison of Stochastic Simulation Results
Using the simulation method in Section 2.2, we generated a very large sample of bivariate
extreme storm surges. In this section, we compare the CP results obtained by simulation and direct

195 calculation. Fig. 5 shows the results of the stochastic simulation for N = 10,000 and 100,000. The
simulation results are in basic conformity with the observations, which shows that the MGPD
simulation method is effective. The scatter diagrams directly show the simulation result; however,
they require further quantitative analysis to objectively show their differences.

We use two CPs: CPLP(X>x|Y >y)and CP4 P(X <x|Y <y). Here, CP1 is the probability
8
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200 that the surge in Beihai exceeds x conditional on the surge in Dongfang exceeding y, and CP4 is the
probability that the surge in Beihai does not exceed x conditional on the surge in Dongfang not
exceeding y. Fig. 6 shows that the relative difference in value between the simulation and direct
calculation depends on the number of simulations N. The subplots in Fig. 6 clearly show that the
relative difference is reduced as N increases. When N reaches 1.5x108, the maximum relative error

205  between the simulated and calculated results is 8.61%, which we consider satisfactory.

In addition, we conducted runtime experiments in which 1x<10%, 5x10%, 10x10%, 1108, and
1.5x10% random vectors were generated on a desktop PC with an Intel Core i7 3.4 GHz processor.
The runtimes were 3, 24, 82, 9,649, and 22,106 s.

To estimate the M-year surge of Beihai and Dongfang by means of a univariate analysis, the

210  Poisson-Gumbel distribution was used (Quek and Cheong, 1992; Naffa et al., 1991), which can be

described by
F(x)=P(X < x)=e™¢0 (12),
where G(X) is the Gumbel distribution.

Tables 2 and 3 show the values of CP1 and CP4 based on the results from 1.5>10° simulations.
215  The tables list the calculated and stochastic simulation results for five CP1 and CP4 groups for
different combinations of M-year surges at Dongfang and Beihai. The two results are very similar.
For instance, the directly calculated P(X > Xso | Y > y10) is 12.94% and its simulation result is 14.06%.
Their relative error is 8.61%, which is the maximum relative error for CP1. Moreover, the directly
calculated P(X < Xs | Y<yso) is 99.35% and its simulation result is 94.13%. Their relative error is
220  5.25%, which is the maximum relative error for CP4.
4.3 Prediction of Extreme Surges
The relationship between extreme surges at Beihai and Dongfang can be analyzed using the
CP. Because the peak surges at Dongfang occur earlier than those at Beihai, we use CP1: P(X > x |
Y >y) to warn of an extreme surge at Beihai. Tab. 2 shows that, when a 50-year surge appears at
225  Dongfang, the probability of a greater than 50-year surge occurring at Beihai is 94.55%.

Using long-term surge records, we can determine the relationship between extreme surges at
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Beihai and Dongfang. Additionally, because of the special geographical relationship between the
two locations, a peak surge at Dongfang is a signal that predicts a peak surge at Beihai. We can
therefore predict the probability of different surges at Beihai and then take preemptive measures to

230  reduce or eliminate the associated damages.

5. Conclusion and Discussion

5.1 Conclusion

The primary aim of this study is to illustrate how recent MGPD developments can be applied
to marine disaster prediction. We not only developed a process for determining a joint threshold and
235  simulation, but we conducted an analysis for extreme surge warnings using MGPD. MGPD is the
natural distribution of the MPOT method, which can cull extreme information from raw data. A
model based on multivariate EV theory and the intrinsic properties of EVs were also considered.
A Monte Carlo MGPD simulation was used to determine the conditional probability of two extreme
surges, and the proposed approach was judged to give satisfactory results by comparing the relative
240  differences in conditional probabilities obtained from observations and simulation data.
5.2 New Possibilities Based on Monte Carlo Simulation
Extreme surge warnings would be more reliable if the relationships of extreme surges at three
or more sites could be established. Using more related (affected by the same typhoon) sites’ storm
surge real time data for storm surge warnings of Beihai city, the forecast result may be
245 more believable by the statistical method presented in the paper. In this paper, the theory of MGPD
and its simulation was derived for multidimensional variables. The methodology could be
extrapolated to higher dimensional space. Thus, difficulty of solving a procedure for MGPD cannot
be exacerbated by the high dimensionality of the variables. A potentially more effective warning
approach could be based on a Monte Carlo simulation. Once long-term (e.g., thousands of years)
250  sea state data has been simulated, several ocean environmental factors can be quickly assessed by

the law of large numbers.

10
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Tablel Parameters of the marginal distribution

g c M

Beihai  0.3376 0.1187  —0.0465

Dongfang 0.1933 0.0890 -0.0720

355
Table 2 Comparison of the results for CP1 (%)
with the results from 1.5x10° simulations
RP (year) 5 10 20 50 100
D(m) 0.57 0.77 0.84 0.93 0.99
RP | B(m) c s c s c s c s c s
5 0.87 62.52 | 6259 [ 99.33 | 99.54 [ 99.89 99.79 | 99.99 [ 100.00 100.00 100.00
10 1.13 5.20 5.34 81.00 | 82.52 | 96.67 97.44 | 99.76 | 100.00 99.97 100.00
20 1.22 1.70 1.74 49.38 | 50.71 | 88.05 88.70 | 99.13 | 100.00 99.89 100.00
50 1.34 0.34 0.37 1294 | 14.06 | 47.95 49.68 | 9455 | 95.12 99.29 100.00
100 1.42 0.11 0.11 4.29 4.47 19.09 19.40 | 80.75 | 82.93 97.37 100.00
RP: return period, a: analytic solution, s: simulation results, D: Dongfang, B: Beihai. (the same below)
360
365
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Table 3 Comparison of the results for CP4 (%)

Ocean Science

370 with the results from 1.5x10° simulations
RP (year) 5 10 20 50 100
(m) 0.57 0.77 0.84 0.93 0.99
RP | B(m) c s c s c s c s c s
5 0.87 99.75 | 97.61 | 99.36 | 94.26 | 99.35 | 94.15 | 99.35 | 94.13 | 99.35 | 94.12
10 1.13 100.0 | 99.99 | 99.98 | 99.81 | 99.97 | 99.72 [ 99.97 | 99.69 | 99.97 | 99.69
20 1.22 100.0 | 100.0 | 100.0 | 99.97 | 99.99 [ 99.93 [ 99.99 [ 99.90 | 99.99 | 99.90
50 1.34 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.99 | 100.0 | 99.98 | 100.0 | 99.98
100 1.42 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 [ 99.99
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