Aragonite saturation states and pH in western Norway fjords: seasonal cycles and controlling factors, 2005-2009

A. M. Omar1,2, I. Skjelvan1, S.R. Erga3, A. Olsen2

1: Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway.
2: Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway.
3: Department of Biology, University of Bergen, Bergen, Norway.

Abstract:

The uptake of anthropogenic carbon dioxide (CO2) by the ocean leads to a process known as ocean acidification (OA) which lowers the aragonite saturation state (Ω_{Ar}) and pH, and this is poorly documented in coastal environments including fjords due to lack of appropriate observations.

Here we use weekly underway data from Voluntary Observing Ships (VOS) covering the period 2005-2009 combined with data from research cruises to estimate Ω_{Ar} and pH values in several adjacent western Norwegian fjords, and to evaluate how seawater CO2 chemistry drives their variations in response to physical and biological factors.

The OA parameters in the surface waters of the fjords are subject to strong seasonal and spatially coherent variations. These changes are governed by the seasonal changes in temperature, salinity, formation and decay of organic matter, and vertical mixing with deeper, carbon-rich coastal water. Annual mean pH and Ω_{Ar} values were 8.13 and 2.21, respectively. The former varies from minimum values (≈8.05) in late December - early January to maximum values of around 8.2 during early spring (March-April) as a consequence of the phytoplankton spring bloom, which reduces Dissolved Inorganic Carbon (DIC). In the following months, pH decreases in response to warming. This thermodynamic decrease in pH is reinforced by the deepening of the mixed layer, which enables carbon-rich coastal water to reach the surface, and this trend continues until the low winter values of pH are reached again. Ω_{Ar}, on the other hand, reaches its seasonal maximum (>2.5) in mid to late summer (July - Sept), when the spring bloom is over and pH is decreasing. The lowest Ω_{Ar} values (≈1.3-1.6) occur during winter (Jan-Mar), when both pH and Sea Surface Temperature (SST) are low and DIC is highest. Consequently, seasonal Ω_{Ar} variations align with those of SST and salinity normalized DIC (nDIC).
We demonstrate that underway measurements of fugacity of CO2 in seawater (fCO2) and SST from VOS lines combined with high frequency observations of the complete carbonate system at strategically placed fixed stations provide an approach to interpolate OA parameters over large areas in the fjords of western Norway.

1. Introduction:

The continued emissions of carbon dioxide (CO2) (Le Quéré et al., 2015) are of global concern, not only because they are the main driver of anthropogenic global warming, but also because of the changes in the ocean chemistry they cause (Ciais et al., 2013). The increase in the atmospheric CO2 concentration drives a net ocean CO2 uptake, which leads to higher proton (H+) concentration i.e. lower pH, lower concentration of carbonate ion (CO\text{3}\text{-}) and lower saturation state (Ω) for calcium carbonate in seawater. This process is known as ocean acidification (OA) (e.g. Royal Society, 2005), and it has direct and indirect effects on biological activity in the ocean (e.g. Gattuso and Hansson, 2011) including reported inhibition of biogenic calcification by marine organisms which precipitate 0.5–2.0 Gt of carbon as calcium carbonate (CaCO\text{3}) in the global ocean every year (Bach, 2015).

For the open ocean, the rate of OA has been relatively well documented and understood during the last decade. Observations from time series stations and volunteer observing ships in different oceanic regions consistently show systematic changes in surface ocean chemistry that result from OA. Specifically, long-term negative trends of pH and saturation state for aragonite (Ω\text{Ar}) have been observed (e.g. Lauvset et al., 2015; Bates et al., 2014).

For coastal regions observed rates of pH change largely differ from those expected from oceanic CO2 uptake alone, as variations in other biogeochemical processes, related for example to changes in nutrient loading and eutrophication, are important as well (Clargo et al. 2015; Provoost et al., 2010; Wootton et al., 2008).

The Norwegian west coast (Fig. 1) is dominated by fjords, narrow and deep estuaries, carved by glacial processes, with a sill in the mouth where they connect to the coastal North Sea. Apart from being important recreation areas and marine pathways, these fjords are important ecosystems and their physics, marine life, and associated environmental pressures have been relatively well studied (e.g. Matthews and Sands, 1973; Erga and Heimdal, 1984; Asplin et al., 2013; Brattegard et al., 2011; Stigebrandt, 2012; and references therein).
However, only a few studies on the carbon cycle of Norwegian fjords exist and these are only from the high Arctic at Svalbard (Fransson et al., 2014; Omar et al., 2005). Generally, in the Northern Hemisphere, high latitude coastal regions are thought to be sinks for atmospheric CO₂, while low-latitude regions are thought to be CO₂ sources (Borges et al., 2005; Cai et al., 2006; Chavez et al., 2007; Chen and Borges, 2009). The few existing studies of Norwegian fjords confirm the above picture; they act as an annual net sink for atmospheric CO₂ (Fransson et al., 2014; Omar et al., 2005).

The carbon cycle of the northern North Sea, to which the western Norway fjords are connected, has been well studied (Thomas et al., 2004; 2005; 2007; 2008; Bozec et al., 2005; 2006; Omar et al., 2010). However, observation-based OA estimates are still scarce. Recently, Clargo et al. (2015) observed a rapid pH decrease in the North Sea, but after accounting for biological processes, they estimated an ocean acidification rate consistent with concurrent atmospheric and open ocean CO₂ increases over the period they studied, 2001-2011.

Filling the knowledge gap on OA (and generally the carbon cycle) in western Norwegian fjords is important because these areas are spawning grounds for different fish species (Salvanes and Noreide, 1993; Johannessen et al., 2014), production sites for pelagic calcifiers (Berge, 1962; Erga and Heimdal, 1984; Frette et al., 2004), the home for some coral reefs (e.g. Fosså et al., 2002), and significant food sources due to the aquaculture industry which operates there. Observations of the carbon cycle dynamics in the fjord system will not only further our understanding and ability for prediction, but they will also serve as benchmarks against which future changes are compared.

In this study, we present first estimates of OA parameters in surface waters of several adjacent western Norway fjords (Fig. 1), based mainly on weekly underway data from Voluntary Observing Ships (VOS) covering the period 2005-2009. We combine the underway data with available station data from research cruises to facilitate a complete description of the seawater CO₂ chemistry in accordance with the recommendations of OA core principles by McLaughlin et al. (2015). We focus on analyses of Ωₑₐ and pH values and evaluate their variations in response to the physical and biological factors: summer warming and stratification, spring phytoplankton bloom, and deep mixing during fall and winter. First we present the mean distribution across the different fjords (Korsfjord-Langenuen-Hardangerfjord) to understand the spatiotemporal patterns, then we collapse all data into a
monthly time series to analyze the seasonal controls and resolve any interannual or multiyear
temporal patterns.

1.1 The study area
The study area covers, from north to south, the interconnected Raunefjord (centered around
60.27°N; 5.17°E), the Korsfjord (centered around 60.17°N; 5.21°E), Langenuen, and southern
parts of the Hardangerfjord, which are all situated along the western coast of mainland
Norway (Fig. 1). The area stretches over some 60 km, but the main focus here will be on the
area from the Korsfjord to the Hardangerfjord from which the vast majority of the data has
been acquired.

The bathymetry and hydrographic conditions of the fjords have been described elsewhere
(Helle, 1978; Mathew and Sands, 1973; Bakke and Sands, 1977; Erga and Heimdal, 1984;
Asplin et al., 2014). In the following only a brief account, based on the above studies, is
given.

The Korsfjord is 690 m deep in its main basin and situated about 25 km south of the
Norway’s second largest city, Bergen. To the west, Korsfjord is relatively well connected to
the coastal North Sea through a 250 m deep sill at Marsteinen. To the north it connects with
the Raunefjord through the 100 m deep strait Lerøysundet - between the islands Sotra and
Lerøy. At the eastern end the fjord branches into the smaller and shallower fjords Lysefjord
and Fanafjord, and to the southwest it connects with the coastal North Sea through the
Selbjørnsfjord, which has a sill depth of 180 m at Selbjørn. To the south it connects to the
Hardangerfjord through the 25 km long and 300 m deep strait Langenuen.

The Hardangerfjord is a 179 km long fjord ranking as the fourth longest fjord in the world. It
stretches from the coastal open ocean in the southwest to the mountainous interior of Norway.
Our study includes the southern parts of the fjord. This is bounded by the larger islands Stord
and Tysnesøya in the north, the Haugaland peninsula in the south, and the smaller islands
Fjellbergøya and Halsnøya on the south/east side. This part of the fjord is over 300 m deep in
its basin (around 59.76N; 5.55E) and connects with the smaller fjords Ålfjord and Bjoafjord
in the south.

In the fjord system, run-off from land mixes with salty water originating from the northward
flowing Norwegian Coastal Current (NCC) to produce a typically salinity stratified water
column with a complex circulation, forced both by external and internal factors. In particular,
the coastal winds have a profound influence on the water circulation in western Norwegian
fjords producing episodic renewal of the deep water that follows periods of prolonged northerly winds (Svendsen, 1981; Erga and Heimdal, 1984). Besides wind forcing, the hydrography of the fjords is also influenced by winter cooling, summer warming, and run-off. The fjords also receive freshwater through the NCC, which carries water originating from the Baltic Sea and rivers in the southern North Sea (Skagseth et al., 2011 and references therein). On seasonal time scales, salinity drives stratification during spring-summer and the water column is more homogenous during winter. Additionally, Asplin et al. (2014) reported regular episodes of water exchange between Hardangerfjord and the NCC that homogenized the upper 50 m of the fjord by mixing with coastal water. During these events the water temperature inside the Hardangerfjord regularly becomes identical with that of the adjacent coastal North Sea (Asplin et al., 2014). Water exchange with the NCC is important for the fjord ecosystems as it supplies nutrients and oxygen to the area (Aure and Stigebrandt, 1989). In response, primary production is enhanced in the fjords, which support rich and diverse marine life (Erga and Heimdal, 1984; Erga, 1989; Salvanes and Noreide, 1993).

Erga and Heimdal (1984) studied the dynamics of the spring bloom in the Korsfjord and estimated a total primary production of \(74 \text{ g C m}^{-2} \) during the period February – June. Further, they reported light regime and water column stability to be dominant controls of the onset of the bloom. They also pointed out that changes in the alongshore wind component are important for the bloom dynamics, with persistent northerly winds inducing upwelling of nutrient-rich coastal water that promotes blooming while the opposite situation follows on from persistent southerly winds. During calm periods strong stratification develops, which can ultimately lead to nutrient exhaustion in the upper water column.

The study area, with its adjacent waters, is ecologically and economically important because it covers spawning grounds for a number of different fish species (Lie et al., 1978; Johannessen et al., 2014). Additionally, the largest concentration of coral reefs in western Norway is found in the Langenuen strait (Fosså, 2015). The fjord system also contributes to the important aquaculture production that, with its annual fish production of \(>700 \) tonnes, ranks Norway within the tenth place worldwide. About one fifth of this is produced in the Hordaland County where the fjord system studied here is situated (http://www.diercke.com).

2. Data and methods

2.1 Weekly underway VOS data
Weekly underway measurements of fugacity of CO₂ in seawater (fCO₂) and SST were obtained aboard the containership MS Trans Carrier (operated by Seatrans AS, Norway, www.seatrans.no). During the study period, the ship sailed from Bergen to ports in southwestern Norway on a weekly basis. It passed through several fjords including the Korsfjord and the Hardangerfjord (Fig. 1), then crossed the North Sea mostly along a transect roughly at 5°E longitude to Amsterdam, the Netherlands, and then back on the same route (Omar et al., 2010). The measurement method used aboard MS Trans Carrier was described in Omar et al. (2010). Briefly, the instrument uses a non-dispersive infrared (NDIR) CO₂/H₂O gas analyzer (LI-COR 6262) to determine the CO₂ concentration in a headspace air in equilibrium with a continuous stream of seawater. One analysis was done Every 3 minutes and the instrument was calibrated roughly every six hours with three reference gases, which are traceable to reference standards provided by National Oceanic and Atmospheric Administration / Earth System Research Laboratory (NOAA/ESRL). The instrument automatically shut off when the ship approached ports in Bergen (20-30 km from port ≈ 60.2°N) and Amsterdam, in order to protect the inlet filter from potentially polluted seawater. Between February and December 2006 the VOS line was serviced by a sister ship, MS Norcliff, which was equipped with the same measurement system during that period. The VOS line was in operation in the period September 2005 to September 2009. Data acquired between 59.74°N – 60.16°N and 5.17°E – 5.58°E (The Korsfjord, Langenuen, and southern parts of the Hardangerfjord) are used for the current analyses. This dataset will be referred to as the UW (e.g. UW fCO₂ and UW SST) which stands for underway. The UW data from the years 2005, 2006, and 2007 are available from the SOCAT database (http://www.socat.info/), the 2008 and 2009 UW data has been submitted for the SOCAT Version 4 release.

2.2 Cruise and fixed station data

We augment the VOS data with station data acquired during scientific cruises in the study area in the period 2007-2010 and in 2015, and during regular visits (1-4 times per month) to a fixed station in the Raunefjord in 2007 and 2008. Table 1 summarizes details of these three datasets, which will be referred to as the CS, 2015 and RF datasets, respectively. Five of the cruises were conducted in the Korsfjord and the Raunefjord (Fig. 1, Table 1) onboard RV Hans Brattstrøm as part of the EU FP7 educational project CarboSchools (CS) in 2007-2010. The CS dataset covers mainly the spring and summer seasons reflecting the somewhat opportunistic nature of the sampling campaign. The 2015 cruise took place during
fall (September 24) as part of the Ocean Acidification project funded by the Norwegian Environment Agency, and measurements were taken at three stations in the Korsfjord, Langenuen and southern Hardangerfjord (Fig.1, red squares).

During each of the above cruises water samples were collected for analyses of parameters including DIC, total alkalinity (TA), salinity and temperature at 1-2 stations. The DIC concentrations were determined by the coulometric method (e.g. Johnson et al., 1993) with a precision of ±1.2 µmol kg⁻¹. TA was measured by potentiometric titration with strong acid (HCl), and a precision of ±4.8 µmol kg⁻¹. Accuracy was checked by using Certified Reference Material supplied by A. Dickson (SIO). Once all samples have been corrected with respect to offsets determined from the CRM measurements, the DIC and TA measurements were accurate to within 1.4 times respective measurement precision (above). Only surface data (depth<=4m) from within the geographical rectangle 59.74-60.34°N and 5.17-5.55°E were used in the current study.

The Department of Biology, University of Bergen has acquired CTD (SAIV) data from a fixed station in Raunefjord (RF) during 27 days in 2007 and 35 days in 2008 as part of a monitoring program close to the Marine Biological field station at Espegrend. These data contained temperature and salinity profiles with one meter resolution. Averages of the uppermost five meters have been used in this study and will be referred to as the RF dataset.

2.3 In situ pH sensor data

In January 2012 we carried out an evaluation of two pH sensors of the type Submersible Autonomous Moored Instruments (SAMI_pH, second generation) at the Marine Biological field Station at the eastern shore of the Raunefjord. The sensors were suspended from a wooden frame attached to the floating docks around a raft-house in the fjord –some hundred meters from land. The instruments were submersed at about one meter depth in the fjord and were left for 50 hours starting 24.01.2012 10:00 GMT, recording one measurement each hour. A full description of the measurement method for these instruments is found at http://www.sunburstsensors.com/. In addition to pH, these instruments also recorded the seawater temperature and they have measurement precision and accuracy of <0.001 and +/- 0.003 pH units, respectively. During the test, salinity was also recorded using a Seaguard RCM from Aanderaa Data Instruments. These sensor data were used to assess the uncertainty in our pH values estimated as described in section 3.1.
2.4.1 Complete seawater CO₂ chemistry from SST and fCO₂

We obtained complete description of the seawater CO₂ chemistry from the UW SST and UW fCO₂ data collected onboard MS Trans Carrier through a 3-step procedure as described below. This is similar to the procedure described in Nondal et al. (2009) with the main modification being that in the current study, sea surface salinity (SSS) was determined from empirical relationship with SST.

First, the RF dataset has been used to determine the regional SSS versus SST relationship. The RF data was chosen for this purpose because it covered all seasons well, both in 2007 and 2008. The identified regional SSS-SST relationship allowed us to estimate a SSS value for each UW SST observation from MS Trans Carrier. This step was necessary because the total number of measured SSS values were less than 150 data points, while the available underway SST and fCO₂ data were much more numerous (> 9900 data points), covering most of the study area during the years 2005-2009. The remaining SST and SSS data (CS, and from sensors) were used for evaluation to verify that SST-SSS relationship is valid for the whole study area (section 3.1). Salinity values estimated from SST will be denoted as SSS(sst).

Second, we determined TA from SSS(sst) and SST using an algorithm we identified for the region using the CS dataset. This allows us to estimate a corresponding alkalinity value for each UW fCO₂ observation obtained from MS Trans Carrier. Alkalinity values estimated from measured SSS and SST data will be denoted as TA(sss), whereas TA values estimated from SSS(sst) and SST values will be denoted as TA(sst).

The UW fCO₂ together with TA (sst), UW SST, and SSS(sst) were then used to characterize the full seawater CO₂ chemistry using CO2SYS (Lewis and Wallace, 1998; van Heuven et al., 2011), with K1 and K2 constants from Lueker et al. (2000). The concentration of silicate and phosphate has been put to zero during the calculations, and the errors introduced by this simplification were negligible compared to the uncertainties from other sources (to be described in section 3.1). The CO2SYS calculation also gives DIC, pH, Ω_Ar and all other seawater CO₂ chemistry variables. The data estimated using this three stage procedure will be denoted pH(sst) and Ω_Ar(sst) and are the main focus of this study.

pH and Ω_Ar values based on TA(sss) and fCO₂ will be denoted as pH(sss) and Ω_Ar(sss), whereas values that are either measured or computed from measured TA and DIC will be
denoted as simply pH and Ω_{Ar}. nDIC denotes the DIC values normalized to constant salinity (the mean value) according to Friis et al. (2003) with freshwater end member DIC concentration of 1039 µmol kg$^{-1}$ inferred from the cruise data. An overview of the symbols used for estimated and derived quantities used in this study is given in Table 2.

3. Results and discussion

3.1 Correlations and validations

In this section we present the regression equations identified in this study in addition to validating the various estimation procedures used by comparing the estimated values with those measured/computed. The results of these comparisons are summarized in Table 3. For each comparison, the coefficient of determination (R^2) and the significance level (p-value) are used as metrics for the goodness of the correlation while the associated root-mean-square error (rmse) is benchmarked against the maximum target uncertainties developed by the Global Ocean Acidification Network (GOA-ON) and the California Current Acidification Network (C-CAN) of ±0.2 for Ω_{Ar} (McLaughlin et al., 2015), which corresponds to maximum uncertainties of ±0.02, ±1.25 or ±1.8 in pH, SST, or SSS, respectively.

The regional SST-SSS relationship obtained from the RF dataset is given by Eq. 1 and is depicted in Fig. 2a (filled symbols). Despite a clear covariation between SST and SSS, there is a lot of scatter in the data and the statistics of the regression equation is not particularly strong (Eq. 1). The observed correlation most probably arises from the annual cycles; during summer the study area embodies warm water diluted by runoff, whereas during winter the surface water is colder and saltier due to little or no runoff. The magnitude of these annual variations varies with time and space and this is reflected by the high degree of scatter in the relationship. Consequently, the identified regression model is able to explain only 27% of the salinity variations. Nonetheless, the independent station and sensor data (dots, squares, and stars), which have been acquired from the whole study area in different seasons, falls into a pattern around the relationship described by Eq. 1 with a root-squared-mean error of 0.81. Thus, we assume that Eq. 1 is able to estimate the seasonal SSS variations across the whole study region. To verify this we have compared the monthly averages of RF_SSS data with values obtained using Eq. 1 and monthly RF_SST. As shown in the last row of Table 3, the estimated values were significantly correlated with the monthly RF_SSS ($R^2=0.65$ and $p=0.002$) and the resulting rmse of 0.3 was lower than the benchmark values of ±1.8.
As further verification that the RF SST dataset is spatially representative, we compared it with the chronologically co-located UW SST that have been acquired onboard Trans Carrier across the whole study area. The two datasets were found to be almost identical (Fig. 2b, 3rd row Table 3).

The relationship between TA, SSS and SST obtained from the CS and 2015 datasets is given by Eq. 2 according to:

\[TA = 32.09 \cdot SSS - 4.39 \cdot SST + 1210, \quad R^2=0.90; \quad n=23; \quad \text{rmse}=13.0 \ \mu \text{mol kg}^{-1} \] \hspace{1cm} (2)

Alkalinity is a semi-conservative variable and is normally modelled as linear function of salinity (e.g. Millero et al., 1998; Bellerby et al., 2005; Nondal et al, 2009). However, using a multi-parameter linear regression with SST and SSS as independent parameters improved the regression statistics considerably (R²=0.90; n=23; rmse=13.0 µmolkg⁻¹) compared to a linear regression with only SSS (R²=0.67; n=23; rmse=24.0 µmolkg⁻¹). This is probably because SST acts as an indicator of the effect of nutrient cycling on TA in agreement to what has been reported for the open Atlantic Ocean (Lee et al, 2006).

To estimate a corresponding TA value for each UW fCO₂ observation obtained from MS Trans Carrier, we used salinity values estimated from the UW SST data by using Eq.1. The results (denoted as SSS(sst)) were then inputted into Eq.2 to obtain TA(sst) (see Table 2 for nomenclature). The fact that TA(sst) is based on SSS(sst) rather than measured SSS values introduces an additional error in the estimated pH(sst) and Ωₐ₅(sst). In order to assess this error we compared pH(sst) and Ωₐ₅(sst) with values based on the cruise data, i.e. pH(sss) and Ωₐ₅(sss). First, we computed pH(sss) and Ωₐ₅(sss) by combining all available measured SSS, estimated TA(sss) from Eq. 2, and co-located UW SST and UW fCO₂. Then we repeated the calculations, but this time we replaced the measured SSS with estimated SSS(sst) from Eq. 1 to compute pH(sst) and Ωₐ₅(sst). The very strong linear relationships (R²≈1) between the resulting values in Figs. 2c and 2d (circles) confirms that the estimated pH(sst) and Ωₐ₅(sst) reproduce closely the measurement-based values of pH(sss) and Ωₐ₅(sss) for the whole study area. This is also evident from comparison statistics on rows 1 and 2 in Table 3 which show that measured-based values are well correlated (R²≈1, p<0.001) with those estimated with rmse values of 0.003 and 0.04 for pH(sss) and Ωₐ₅(sss), respectively, which are well within
the aforementioned maximum target uncertainties developed by the C-CAN (last column in Table 3).

To quantify the total error associated with the pH(sst) and Ω_{Ar}(sst) estimates, we considered two main sources for error. First we computed the residuals (estimated – measurement-based) using the data shown in Figs. 2c and 2d (including the sensor data). The mean difference for the whole study area was 0.002 +/- 0.004 and 0.005 +/- 0.08 for pH and Ω_{Ar}, respectively. Thus, the maximum probable error from this source is 0.006 and 0.09 for pH and Ω_{Ar}, respectively. Additionally, we estimated that the computed and/or measured pH values included an error of 0.012 pH units, which under the current conditions (mean TA, fCO2, SST, and SSS) would give an error of 0.038 in Ω_{Ar}. These two error estimates were combined (as the square root of sum of squares) to determine the total error in our estimates, which were found to be ±0.013 and ±0.1 for pH and Ω_{Ar}, respectively. It must be noted that the above total error was derived from all available observational data including the in situ sensor data (shown in Fig. 2c and in described section 2.3), which are the only wintertime measurements used in this study. This is important because the lack of wintertime data in the CS dataset which was used for the identification of AT-SSS/SST relationship (Eq. 2) means that wintertime AT(sst) might be overestimated so that corresponding pH(sst) values would be overestimated. In fact, during the aforementioned comparison between pH(sst) and measured pH we noted that for this particular dataset pH(sst) overestimated the measurements. However, the estimates were consistent with the observations to within the total error of ±0.01 pH units. Thus, by utilizing the above total errors, we also accounted for the effect of this possible caveat of Eq. 2 arising from the lack of wintertime TA measurements.

From the above we conclude that we are able to estimate pH(sst) and Ω_{Ar}(sst) across the whole study area and during all seasons with a total errors of ±0.01 and ±0.1 for pH and Ω_{Ar}, respectively.

3.2 Spatiotemporal variations

In order to present the mean distributions across the different fjords throughout the annual cycle, we condensed the data into one virtual year by projecting it onto non-equidistant rectangular grids using the “weighted-average gridding” method of the Ocean Data View software (Schlitzer, 2015). As evident from Fig. 3, there is a clear seasonality (for the interannual changes see section 3.3) in both pH(sst) and Ω_{Ar}(sst). The former varies between minimum values (8.05) around New Year to typical maximum values of around 8.25, which
occur during the late winter and/or spring (March-April). This increase is due to the reduction of DIC (Fig. 3d), induced by the phytoplankton spring bloom. This clearly counteracts and outweighs the negative effect on pH of warming the water column during this period. However, during April/May, the effect of warming begins to dominate and pH(sst) starts decreasing. By September the SST starts decreasing, while pH continues to drop. This is due to the effect of the fall mixing, which enables carbon-rich coastal water to reach the surface layer, as mentioned in section 1, and is reflected by increasing DIC during this period (Fig. 3d).

The mean distribution of Ω_{Ar}(sst) also shows a significant seasonal variation. There are three factors that drive this: (i) reduced concentrations of DIC by the spring bloom increases the concentration of carbonate ions, (ii) Ω_{Ar}(sst) increases with rising temperature so that warming during the summer actually reinforces the increase of Ω_{Ar} initiated by biological carbon uptake, and (iii) reduced TA due to freshwater input from runoff and mixing of deeper carbon-rich water into surface layer reduce Ω_{Ar}(sst) during fall. Thus, Ω_{Ar}(sst) reaches its maximum (>2.5) in July-September, when the spring bloom is over and pH has already started decreasing (Fig. 3a, c). The lowest Ω_{Ar}(sst) values (≈1.3-1.6) occur during winter (January-March) when both pH and SST are low, despite TA being high due to high SSS values. The decoupling in the seasonal cycles of pH and Ω_{Ar} clearly supports the case that pH alone is not an adequate measure of ocean acidification, in accordance with the C-CAN recommendation that “measurements should facilitate determination of Ω_{Ar} and a complete description of the carbonate system, including pH and pCO$_2$” (McLaughlin et al., 2015).

The above described seasonal variations in pH(sst) and Ω_{Ar}(sst) are spatially more or less coherent within the whole study area, except for the slight south-north gradient during May-September, with highest values south of 60°N (see Fig. 3a,c). All in all, during summertime the study area embodied warm surface water with high Ω_{Ar}(sst) and intermediate pH(sst) values. During winter, the surface water is cold with low Ω_{Ar}(sst) and pH(sst) values.

3.3 Controls of seasonal variability and trends

To investigate the seasonal variability more thoroughly, we computed monthly averages of pH(sst), SST, Ω_{Ar} (sst), and nDIC(sst) for one composite year. Then we quantified the effect of DIC, TA, SST and SSS on the monthly changes of pH(sst) and Ω_{Ar} (sst) in order to gain more insight into the processes governing the seasonal variations and their relative importance (Fig. 4).
For pH(sst) we used the decomposition method described in Lauvset et al. (2015) to quantify
the importance of different parameters. This method estimates the monthly pH changes
expected from corresponding changes observed in SST, SSS, DIC, and TA as well as their
sum. The results are shown on Fig. 4 (a-e) where it can be seen that DIC is the most important
driver followed by SST and TA, whereas SSS had a negligible effect (not shown) on the
seasonal pH variations. We also note that the effects of SST and TA combined are nearly
equal to, but opposite to that of DIC (Fig. 4c,d,e). As a result, the sum of all effects is <0.06
pH units, and compares well to the observed amplitudes (Fig. 4a), meaning that the
decomposition model is able to account for the observed seasonal changes. Note also the TA
control is identical to that of SST (Fig. 4c,e). The reason for this is that TA values used here
are obtained from SSS(sst) and SST using Eq. 2, which in effect means that they are based on
SST. This emphasizes the need for measured SSS and TA values when the objective is to
analyze the controls of pH and Ω_{Ar}(sst) variations.

For Ω_{Ar}(sst) we investigated the importance of different controls (DIC, TA, SST, SSS) by
varying them independently over their observed range, while holding all other drivers
constant, and re-computing Ω_{Ar}(sst). The magnitude of the standard deviation of the results is
indicative of the importance of the varying drivers. The result of this exercise is shown on
Fig. 4f-i. Evidently, the variations of SST and SSS are the least important drivers for Ω_{Ar}(sst)
seasonal changes, since varying these parameters induces changes that are about an order of
magnitude less than the observed seasonal amplitude in Ω_{Ar}(sst). On the other hand, changing
DIC and TA (Fig. 4h,i) induces changes that are comparable to the seasonal amplitude
observed in Ω_{Ar}(sst) (Fig. 4a). We therefore conclude that seasonal changes in DIC and TA
are the most important driver for changes in Ω_{Ar}(sst).

From the above we conclude that the main drivers of Ω_{Ar}(sst) are DIC and TA, whereas for
pH(sst), SST also has a significant impact. This means that the formation and destruction of
organic matter together with upwelling of carbon-rich coastal water, seasonal warming and
cooling, and runoff inputs, are the processes that govern most of the seasonal variability of
OA parameters within the study area. It then follows that interannual variability in the above
processes would lead to corresponding variations in pH(sst) and Ω_{Ar}(sst). Such interannual
changes are evident from the monthly time series (Fig. S1), where the rate of seasonal change
differs between the years, both for SST and DIC normalized to the mean salinity (nDIC)
according to Friis et al. (2003). Additionally, for SST, the extreme values also change
between years. These changes are in turn reflected in the pH(sst) and Ω_{Ar}(sst) for which the
amplitude of the interannual variability (IAV), calculated as the temporal standard deviation, is presented in Table 4. For pH, IAV was normally much lower than the seasonal changes and ranged between 0.01 and 0.02 although higher changes were observed during the months April (0.04), and July and October (0.03). Similarly, for $\Omega_{Ar}(sst)$, the IAV was typically 0.1 which is much lower than the seasonal changes (section 3.2). Higher IAVs were observed for June (0.2) whereas November and December showed the lowest IAVs (<0.05).

Quantitatively, the above IAVs are probably lower limits due to the use of constant empirical relationships for the estimation of SSS and AT (Eqs. 1 and 2). That is, there may be interannual changes in the relationship between SST and SSS (Eq. 1) and/or between SSS/SST and TA (Eq. 2). Thus, the use of a constant relationship over the years may have led to underestimation of the resulting IAV. Consequently, a comprehensive analysis of the drivers of the IAV was not carried out in this study. However, sensitivity computations we performed showed that year-to-year differences in pH were related to those in fCO2 rather than SST changes, whereas year-to-year differences in $\Omega_{Ar}(sst)$ were more related to those in SST than fCO2. In any case, the observed year-to-year differences were not systematic, and no multiyear temporal trend was apparent from the 4-year time series analyzed in this study.

3.4 Inference of OA parameters from VOS underway data

Changes in the oceanic CO2-system variables are related through ratios called Buffer Factors. Specifically, changes in Ω_{Ar} and pH in response to aqueous CO2 ([CO2(aq)] = [CO2] + H2CO3), henceforth denoted as CO2) variations can be quantified by partial derivatives (\(\gamma_{DIC} = (\partial \ln CO2 / \partial DIC)^{-1}, \beta_{DIC} = (\partial H^+ / \partial DIC)^{-1}, \) and \(\omega_{DIC} = (\partial \ln \Omega / \partial DIC)^{-1} \)), which have been defined by Egleston et al. (2010, their table 1), and the slope of these relationships can be expressed mathematically by:

\[
\frac{\partial \ln \Omega}{\partial \ln CO2} = \gamma_{DIC} / \omega_{DIC} = \frac{DIC - Alk_C^2 / S}{DIC - Alk_C P / HCO_3^-}
\]

\[
\frac{\partial \ln H^+}{\partial \ln CO2} = \gamma_{DIC} / \beta_{DIC} = \frac{(DIC - Alk_C^2) / S}{(DICS - Alk_C^2) / Alk_C}
\]

where expressions for the carbonate alkalinity Alk_C and the parameters P and S are defined in Egleston et al. (2010). We have evaluated the right hand sides of Eqs. 3 and 4, using the CS cruise data, and the results showed that these quantities change only a few per cents (1.3 and 3.4 %, respectively) due to seasonal changes in the various variables. The ratio $\gamma_{DIC} / \omega_{DIC}$
changed by 1-6 % and ranged from -1.08 to -0.980, while $\gamma_{\text{DIC}}/\beta_{\text{DIC}}$ changed by 0.5-3 % and ranged from 0.84 to 0.88. This, together with the fact that equations 3 and 4 can be defined in terms of $\ln(f\text{CO}_2)$ instead of $\ln(CO_2)$ (Egleston et al., 2010; Takahashi et al., 1993), suggests that in situations where underway surface $f\text{CO}_2$ and SST are frequently measured, while the CO$_2$ system is fully determined only occasionally, an easy way of interpolating the seasonality in pH and Ω_{Ar} is to predict them from $f\text{CO}_2$. We have implemented this alternative way of estimating pH and Ω_{Ar} using the CS cruise data. For the estimation of Ω_{Ar} we used $f\text{CO}_2@\text{meanSST}$, which is $f\text{CO}_2$ adjusted to constant temperature (i.e. at mean SST), because this normalization improved the regression significantly. Since we were interested in pH and Ω_{Ar}, we plotted these parameters directly against $\ln(f\text{CO}_2)$ or $\ln(f\text{CO}_2@\text{meanSST})$. The results are shown in Fig. 5 and conform to tight relationships between computed pH and $ln(f\text{CO}_2)$ values (Fig. 5a), and between computed Ω_{Ar} and $ln(f\text{CO}_2@\text{meanSST})$ (Fig. 5b). Further, by using linear curve fitting we determined the relationships according to:

$$pH = -0.389\ln f\text{CO}_2 + 10.354 , R^2=0.99; n=28; \text{rmse}=0.005.$$

(5)

$$\Omega_{\text{Ar}} = \exp(-0.6741\ln f\text{CO}_2@\text{meanSST} + 4.6422) , R^2=0.94; n=28; \text{rmse}=0.07.$$

(6)

The magnitude of the residuals (computed – estimated) associated with pH and Ω_{Ar} values obtained from the above relationships were 0.000 +/- 0.005 and 0.01 +/- 0.06, respectively, which is comparable to the residuals associated with pH(sst) and $\Omega_{\text{Ar}}(\text{sst})$ (Table 3). An advantage of this procedure, however, is that it utilizes much tighter empirical relationships, involves fewer computational steps, and is based on UW data, which are much more numerous than station data from oceanography cruises. Thus, it minimizes errors introduced by intermediate results such as the TA-SSS/SST regression in Eq. 2 and/or seasonal data coverage. Furthermore, a direct comparison revealed that values obtained from Eqs. 5 and 6 were almost identical to those of pH(sst) and $\Omega_{\text{Ar}}(\text{sst})$ (Fig. S2) with values for R^2, p-value, and rmse of 1, 0, and 0.003 for pH; and 1, 0, and 0.02 for Ω_{Ar}. However, it is important to realize that for the above procedure too, a representative full description of the carbonate system is necessary for up-to-date determinations of Eqs. 5 and 6. Further, this calibration data ideally should include high frequency time series observations, since the slopes (i.e. Eqs. 3 and 4) change slightly with the carbonate system variables (e.g. DIC and TA, see Eqs. 3 and 4), which vary on multiple time scales (hours-days-years). Furthermore, the procedure is based on measurements of only one of the four master parameters constituting the carbonate
system (i.e. fCO₂). Therefore, it only provides a way to interpolate pH and Ω_{Ar} values, but cannot support the analyses of controls that have been provided in the proceeding section.

From Fig. 5b we note that lowest Ω_{Ar} values are associated with the highest fCO₂@meanSST values, which occur during late fall and winter. Monitoring of these extreme values are of special interest because: (i) during late fall and early winter the upwelling of carbon-rich water occurs and surface water also reflects the properties of the deeper water, and (ii) the rate of change at this point (lowest Ω_{Ar}, highest fCO₂@meanSST) indicates the time when undersaturation of calcium carbonate can be expected in these waters. To estimate this for the current data we used Eq. 5 and the observation that the slope (i.e. Eq. 3) and intercept decreased by about 0.0008 and 0.004 for every 1 μatm increase in mean fCO₂@meanSST. We also took into account an uncertainty of ±0.2 in the Ω_{Ar} estimates and found that Ω_{Ar} becomes undersaturated (<1) when mean annual fCO₂@meanSST is about 310±70 μatm higher than its present value (310 μatm). For business as usual emission scenario (RCP 8.5), this is equivalent to about year 2070±10 if we assume that the development in the ocean follows that of the atmosphere (i.e. constant disequilibrium between ocean and atmosphere).

4. Summary and conclusions

We have been able to determine, for the first time, the seasonal changes and drivers of pH and Ω_{Ar} across western Norwegian fjords (59.74°N – 60.23°N and 5.16°E – 5.6°E), based on underway fCO2 and sea surface temperature (SST) data combined with sporadic data from research cruises and empirical relationship.

During summertime the study area embodied warm surface water with high Ω_{Ar} (<2.5) and intermediate pH values (8.12-8.17). During winter, the surface water was cold with low Ω_{Ar} and pH values, 1.3-1.6 and 8.05-8.07, respectively. Maximum pH of 8.25 was encountered during the phytoplankton spring bloom (March-April). Seasonal changes in DIC, TA and SST were the most important drivers of pH and Ω_{Ar} changes, although the SST influence on Ω_{Ar} was only weak.

Measurement errors together with seasonal and spatial gaps in the data used to identify the empirical relationships are considered as two main sources for uncertainties, and the computed total errors associated with the estimated values (±0.01 and ±0.1 for pH and Ω_{Ar}) are about 50% of the maximum target uncertainties developed by the Global Ocean Acidification Network.
We have shown that the strong correlations of pH and ΩAr with fCO2 and fCO2@meanSST (fCO2 adjusted to the mean temperature), respectively, provide an approach to interpolate pH and ΩAr values both seasonally and spatially. Furthermore, the ΩAr - fCO2@meanSST relationship, and the rate of change of its slope and intercept with DIC, have been used to estimate that under-saturation of the aragonite mineral can occur in the study area by the year 2070±10, if we assume business as usual emission scenario (RCP 8.5) and constant CO2 disequilibrium between ocean and atmosphere.

5. Acknowledgements

We are grateful for financial support by the Research Council of Norway (RCN) through the project FME SUCCESS, and by the Norwegian Environment Agency through the project Havforsuring. The data collection has been financed by the EU IP CARBOOCEAN (Contract no. 511176-2). This work would not have been possible without the generosity and help of the liner company SeaTrans AS and the captains and crew of MS Trans Carrier. We are grateful for the technical assistance provided by Tor de Lange, Kristin Jackson and Tomas Sørlie, and for encouraging and constructive comments from the reviewers (M. Ribas Ribas and E. M. Jones) and the topic editor Dr. Mario Hoppema that have improved the manuscript.

6. References

Bates N. R., Asto, Y., Church, M., Currie, K., Dore, J., González-Dávila, M., Lorenzoni, L.,
Muller-Karger, F., Olafsson, J., and Santana-Casiano, J.: A time-series view of changing
ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification,
Borges AV.: Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal
Bozec, Y., Thomas, H., Elkalay, K., de Baar, H.J.W.: The continental shelf pump for CO2 in
Bozec, Y., Thomas, H., Schiettecatte, L.-S., Borges, A.V., Elkalay, K., de Baar, H.J.W.:
Assessment of the processes controlling the seasonal variations of dissolved inorganic
Brattegard, T., T. Høisæter, K. Sjøtun, T. Fenchel & F. Uiblein.: Norwegian fjords: From
natural history to ecosystem ecology and beyond, Marine Biology Research 7(5), 421-424,
Cai, W-J., Dai M, Wang Y.: Air-sea exchange of carbon dioxide in ocean margins: a
2006.
Chavez, F. P., T. Takahashi, W. J. Cai, G. Friederich, B. Hales, R. Wanninkhof, and R. A.
Feely: Coastal Oceans, in The First State of the Carbon Cycle Report (SOCCR), edited by
Chen, C-TA., Borges AV.: Reconciling opposing views on carbon cycling in the coastal
ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric
Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J.
Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao and P. Thornton,
2013: Carbon and Other Biogeochemical Cycles. In: Climate Change: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M.
Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].

the surface ocean CO2 system in the northern North Atlantic using data from voluntary

Ice brine formation in Storfjorden: Implications for the Arctic wintertime air—sea CO2
Series 158 American Geophysical Union, 2005.

Seasonal and long-term changes in pH in the Dutch coastal zone, Biogeosciences, 7, 3869-

Royal Society: Ocean acidification due to increasing atmospheric carbon dioxide. The Royal

Salvanes, A.G.V., and J.T. Noreide: Dominating sublittoral fish species in a west Norwegian

Stigebrandt, A.: Hydrodynamics and Circulation of Fjords. Encyclopedia of Lakes and

Svendsen.H.: Wind-induced variations of circulation and water level in coupled fjord-coast

Thomas, H., Bozec, Y., Elkalay, K., De Baar, H.J.W., Borges, A.V. and Schiettecatte, L.-S.:
Controls of the surface water partial pressure of CO2 in the North Sea. Biogeosciences, 2,

Thomas, H., Bozec, Y., Elkalay, K. and De Baar, H.: Enhanced open ocean storage of CO2

Thomas, H., Prowe, A.E.F, Van Heuven, S., Bozec, Y., De Baar, H.J.W, Schiettecatte, L.-S.,
Suykens, K., Koné, M., Borges, A.V., Lima, I.D. and Doney, S.C.: Rapid decline of the
CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean,

Thomas, H., Schiettecatte, L.-S., Suykens, K., Kone, Y.J.M., Shadwick, E.H., Prowe, A.E.F.,
Bozec, Y., De Baar, H.J.W and Borges, A.V.: Enhanced ocean carbon storage from
van Heuven, S., D. Pierrot, J.W.B. Rae, E. Lewis and D.W.R. Wallace: MATLAB Program
Developed for CO2 System Calculations. ORNL/CDIAC-105b. CDIAC, Oak Ridge
National Laboratory, Department of Energy, Oak Ridge, Tennessee, U.S.A,

Wootton, J. T., Pfister, C. A., and Forester, J. D: Dynamic patterns and ecological impacts of
declining ocean pH in a high-resolution multi-year dataset, PNAS, 105, 18848–18853,
2008.
Tables:

Table 1: Details of the CarboSchools (CS) and Raunefjord (RF) cruise datasets. The plus signs denote the parameters for which sampling/measurement were carried out. For the RF dataset, each data point represents the average of five measurements acquired in the upper five meters.

<table>
<thead>
<tr>
<th>Dataset; area</th>
<th>Date(m/d/y)</th>
<th>Lon (E)</th>
<th>Lat (N)</th>
<th>Depth (m)</th>
<th>DIC</th>
<th>TA</th>
<th>SST</th>
<th>SSS</th>
<th>Reference/originator</th>
</tr>
</thead>
<tbody>
<tr>
<td>CarboSchools (CS); Korsfjord/Raunefjord</td>
<td>04/13/2007</td>
<td>5.19</td>
<td>60.34</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I. Skjelven</td>
</tr>
<tr>
<td></td>
<td>04/13/2007</td>
<td>5.18</td>
<td>60.17</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04/25/2007</td>
<td>5.19</td>
<td>60.34</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04/25/2007</td>
<td>5.17</td>
<td>60.17</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09/04/2008</td>
<td>5.18</td>
<td>60.33</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/12/2009</td>
<td>5.17</td>
<td>60.15</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/12/2009</td>
<td>5.18</td>
<td>60.32</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/12/2009</td>
<td>5.17</td>
<td>60.17</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/12/2009</td>
<td>5.18</td>
<td>60.33</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/25/2009</td>
<td>5.17</td>
<td>60.17</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/24/2009</td>
<td>5.18</td>
<td>60.16</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/24/2009</td>
<td>5.18</td>
<td>60.16</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/24/2009</td>
<td>5.19</td>
<td>60.34</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/25/2009</td>
<td>5.19</td>
<td>60.34</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/25/2009</td>
<td>5.2</td>
<td>60.34</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/25/2009</td>
<td>5.19</td>
<td>60.33</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/27/2009</td>
<td>5.19</td>
<td>60.33</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/27/2009</td>
<td>5.19</td>
<td>60.33</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/27/2009</td>
<td>5.18</td>
<td>60.17</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/27/2009</td>
<td>5.18</td>
<td>60.17</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/27/2009</td>
<td>5.2</td>
<td>60.33</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09/08/2010</td>
<td>5.2</td>
<td>60.33</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2015; Korsfjord</td>
<td>09/29/2015</td>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I. Skjelven / A. Omar</td>
<td></td>
</tr>
<tr>
<td>2015; Langenuen</td>
<td>09/29/2015</td>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I. Skjelven / A. Omar</td>
<td></td>
</tr>
<tr>
<td>2015; Hardangerfjord</td>
<td>09/29/2015</td>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>I. Skjelven / A. Omar</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Dataset; area</th>
<th>Date(m/d/y)</th>
<th>Lon_E</th>
<th>Lat_N</th>
<th>Depth (m)</th>
<th>DIC</th>
<th>TA</th>
<th>SST</th>
<th>SSS</th>
<th>Reference/originator</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF; Raunefjord</td>
<td>01/03/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. R. Erga / J. Egge</td>
</tr>
<tr>
<td></td>
<td>01/23/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02/13/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02/27/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/07/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/13/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/27/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04/10/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04/17/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04/23/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05/08/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05/19/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06/05/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06/12/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06/19/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08/31/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09/04/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09/11/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09/18/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09/26/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/02/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/09/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/18/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/31/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/27/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/11/2007</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01/02/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02/05/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02/21/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/05/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/11/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/25/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03/31/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04/08/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04/22/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04/29/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05/06/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05/13/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05/20/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05/27/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06/04/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06/11/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06/17/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06/24/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07/01/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07/08/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07/16/2008</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Overview of the symbols used for quantities estimated and/or derived from the measurement-based variables SSS, SST, TA, pH, DIC, fCO₂, and Ωₘ₁.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA(sss)</td>
<td>TA values estimated from measured SSS and SST using Eq. 2.</td>
</tr>
<tr>
<td>pH(sss), Ωₘ₁(sss)</td>
<td>pH, and Ωₘ₁ values estimated by combining TA (sss) and fCO₂.</td>
</tr>
<tr>
<td>SSS(sst)</td>
<td>SSS values estimated from SST using Eq. 1.</td>
</tr>
<tr>
<td>TA(sst)</td>
<td>TA values determined from estimated SSS(sst) and SST using Eq. 2.</td>
</tr>
<tr>
<td>pH(sst), Ωₘ₁(sst), DIC(sst)</td>
<td>Values of pH, Ωₘ₁, and DIC that have been obtained by combining TA (sst), fCO₂ and ancillary variables.</td>
</tr>
<tr>
<td>fCO₂₉₅</td>
<td>fCO₂ at the mean temperature</td>
</tr>
<tr>
<td>fCO₂₉₅ₛ</td>
<td>fCO₂ at the mean temperature and salinity</td>
</tr>
<tr>
<td>nDIC</td>
<td>DIC normalized to the mean salinity</td>
</tr>
</tbody>
</table>

Table 3: Results of the comparisons between measurement-based and estimated values for pH, Ωₘ₁, SST (°C), and SSS. For the first three parameters, the statistics of the linear relationships depicted on Fig 2b-2d are listed. For SSS, monthly averaged data are compared to estimates obtained with Eq. 1 using monthly SST. For SST, the comparison is carried out to verify that measurements from Raunefjord are representative for the whole study area (i.e. UW_SST can be estimated by RF_SST), which is implicitly assumed by the use of Eq. 1. R² is the coefficient of determination, and “rmse” denotes the root-mean-square error. The latter is compared against benchmarks derived from maximum target uncertainties (Max. uncertainty) developed by Ocean Acidification Networks (section 3.1). The p-value is the probability of no linear relation between the estimated and measurement-based values.

<table>
<thead>
<tr>
<th>Compared variables</th>
<th>Comparison statistics</th>
<th>Benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R²</td>
<td>p-value</td>
</tr>
<tr>
<td>pH_meas/comp. and pH(sst)</td>
<td>1.00</td>
<td><0.001</td>
</tr>
<tr>
<td>Ωₘ₁_computed and Ωₛₘ₁(sst)</td>
<td>0.98</td>
<td><0.001</td>
</tr>
<tr>
<td>UW_SST and RF_SST</td>
<td>0.95</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Table 4: Monthly mean values for pH(sst) and Ω_{Ar}(sst) and associated interannual variability (IAV), computed as standard deviations, in the study area for the period 2005-2009.

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH(sst)</td>
<td>Mean</td>
<td>8.08</td>
<td>8.10</td>
<td>8.16</td>
<td>8.19</td>
<td>8.18</td>
<td>8.15</td>
<td>8.17</td>
<td>8.14</td>
<td>8.11</td>
<td>8.10</td>
<td>8.08</td>
</tr>
<tr>
<td>Ω_{Ar}(sst)</td>
<td>Mean</td>
<td>1.7</td>
<td>1.7</td>
<td>1.9</td>
<td>2.1</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
<td>2.7</td>
<td>2.4</td>
<td>2.2</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Figure texts:

Fig. 1: An overview map of western Norway with a detailed map of the study area showing the positions from where cruise and underway data have been acquired. The thick grey arrow indicates the approximate position of the Norwegian Coastal Current (NCC).

Fig. 2: A) RF SSS as a function of SST (filled symbols) with the regression line described by Eq.1. Sampling month is indicated by the color of the data points. The CS (dots), 2015 (squares), and sensor (stars) datasets are also shown for comparison with the regression line. B) Compares RF SST with chronologically co-located UW SST acquired from the whole study area during 2008 (blue) and 2007 (red). C) Compares pH(sst) with pH values that have been measured or computed from TA and DIC. Symbols are as in Fig. 1. D) Compares Ω_{Ar}(sst) with Ω_{Ar} values that have been computed from measured TA and DIC or from measured pH and UW fCO2. Symbols are as in Fig. 1. In the legend, “reg.” means regression line.

Fig. 3: A) Estimated pH(sst), B) UW SST, C) estimated Ω_{Ar}(sst), and D) estimated DIC which have been normalized to the mean salinity of 30.5 as a function of latitude and time of the year. All data from 2005-2009 have been condensed into one virtual year to resolve the spatial and seasonal variations.

Fig. 4: left panel: Monthly pH changes (ΔpH) as observed (A) and expected due to: sum of all derivers (B), SST changes (C), DIC changes (D) and by TA changes (E). right panel: Standard deviations in monthly mean Ω_{Ar} as a result of variations in all parameters (F) or only in SST (G) in DIC (H) in TA (I).

Fig. 5: A) and B) pH and Ω_{Ar} from CS (dots) and 2015 (red squares) cruises plotted as a function of ln(fCO2) and ln(fCO2@meanSST), respectively.
A

- SST (°C)
- SSS

B

- UW SST (°C)
- RF SST (°C)
- $y = 0.99x + 0.57$
- $r^2 = 0.95$

C

- pH meas./comp.
- pH (sst)
- $y = 0.96x + 0.34$
- $r^2 = 1$

D

- Ω_{Ar} meas./comp.
- Ω_{Ar} (sst)
- $y = 0.93x + 0.14$
- $r^2 = 0.98$

Legend:
- reg.
- RF/UW 2007
- RF/UW 2008
- 2015
- sensor
- CS
Standard deviation in monthly ΔpH (10⁻³ month⁻¹)

- **A**: "observed"
- **B**: sum
- **C**: SST
- **D**: DIC
- **E**: TA

Standard deviation in monthly Ω

- **F**: "observed"
- **G**: SST
- **H**: DIC
- **I**: TA