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Abstract. The cornerstone theories of ocean dynamics proposed by Sverdrup (1947), Stommel 

(1948), and Munk (1950) are based on the assumption of level of no motion. Such an assumption is 10 

the same as the assumption of no meridional geostrophic transport. Ever since Sverdrup (1947) 

however,   verification of the accuracy of the Sverdrup balance theory is based on the comparison 

of the Sverdrup meridional transport with the meridional transport calculated directly from the 

geostrophic currents based on hydrographic data. To overcome the mismatch between theory (no 

meridional geostrophic transport in Sverdrup transport) and verification (comparison of Sverdrup 15 

transport to meridional geostrophic transport), extended Sverdrup-Stommel-Munk transport 

equations are derived in this note with replacing the level of no motion by the ocean bathymetry 

and in consequence one forcing function (surface wind stress) in the classical transport equations 

(with level of no motion assumption) is replaced by five forcing functions: density, surface wind 

stress, bottom meridional current, bottom stresses due to vertical and horizontal viscosities. The 20 

first two forcing functions (density and surface wind stress) are more than an order of magnitude 

stronger than the other three forcing functions using the world ocean bathymetry, climatological 

annual mean hydrographic and surface wind stress data. The extended Sverdrup volume transport 

streamfunctions under wind forcing, density forcing, and combined wind and density forcing are 

presented.  25 
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1. Introduction 

The seminal papers by Sverdrup (1947), Stommel (1948), and Munk (1950) laid the foundation of 

wind-driven ocean circulation.  Sverdrup balance (SB) represents the meridional   volume 30 

transports employing only the local wind-stress in a linear dynamical framework (Wunsch 2011). 

Stommel (1948) and Munk (1950) linear frictional ocean models are used to explain the existence 

of intensive western boundary currents.  Their theories were established on the base of an 

assumption of level of no motion (H).  What is the physics behind this assumption? What happens 

if level of no motion does not exist?   35 

Let the Cartesian coordinates be used with (x, y) the horizontal and z the vertical 

coordinates (upward positive) and (i, j, k) the corresponding unit vectors, and let the horizontal and 

vertical velocities be represented by V = (u, v, w). With low Rossby and Ekman numbers, steady 

state momentum and continuity equations are given by  
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where f =2 sin ,  is the Coriolis parameter,   the Earth rotation rate, and   the latitude; ρ is the 

density; p is the pressure; (Az, Ah) are the vertical and horizontal eddy viscosities;  45 

/ /x y      i j , is the horizontal gradient operator.   Vertical integration of the horizontal 
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momentum equations (1a) and (1b) with respect to z from a depth z = -H(x, y) to the surface leads 

to 
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are the zonal and meridional transports, which satisfy 
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          2 2( , ) [(2 ),  (2 )]x y H H H HQ Q u H u H v H v H             ,          (7c)                     

represent wind stress,  bottom stress due to vertical eddy viscosity, and bottom stress due to 

horizontal viscosity. Here, (u-H, v-H) are the current velocities at depth z = -H; ρ0 (= 1028 kg/m3) is 60 

the characteristic density. 

 If z = -H is a level of no motion, (u-H, v-H) = 0 (also implying no stress at this level, i.e., τ(b) 

= 0 if the drag law is used) and the P function in Sverdrup (1947) 
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exists.  65 

Under the condition (8) (i.e., existence of the P function)  cross differentiation of (3) and (4) 

will make disappearance of the horizontal pressure gradient terms and give the classical Sverdrup 

balance (SB) if no horizontal viscosity (Ah = 0),  

                                      curl( )yM  τ                                                                              (9) 

If  z = -H is not a level of no motion, the P function does not exist. This is because 70 
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This leads to an impossible relationship                              
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Cross differentiation of (3) and (4) without a level of no motion leads to a revised Sverdrup 

transport equation,             75 
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Substitution of the geostrophic balance                             
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into (12) gives 
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where 
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Comparison between (9) and (14) leads to the fact that existence of a level of no motion is the 

same as vanish of meridional geostrophic transport in the system,  

                                                           ( ) 0g
yM  .                                                                 (16) 85 

  However, verification of the accuracy of the SB theory is based on the comparison of the 

Sverdrup meridional transport (i.e., the surface wind stress curl) with the meridional transport 

calculated directly from the geostrophic currents based on hydrographic data (i.e., the meridional 

geostrophic transport). The first was that of Leetmaa et al. [1977], followed by the studies of 

Wunsch and Roemmich [1985], Böning et al. [1991], Schmitz et al. [1992], etc.  Their results have 90 

shown that the Sverdrup meridional transport is generally consistent with the meridional transport 

calculated directly from the geostrophic currents based on hydrographic data in the northeastern 

subtropical North Atlantic Ocean, but is inconsistent with the geostrophic transports in the 

northwestern subtropical North Atlantic Ocean.  Meyers [1980] discussed the meridional transport 

of North Equatorial Countercurrent in the equatorial Pacific and found significant inconsistency 95 

with the Sverdrup theory.  Hautala et al. [1994] estimated the meridional transport of the North 

Pacific subtropical gyre along 24°N and noted that the Sverdrup balance is not valid in the western 

subtropical Pacific Ocean.   Lately, Wunsch [2011] has evaluated the accuracy of the Sverdrup 

theory using an assimilated global ocean dataset.   

A logical way to overcome such a mismatch between SB theory (no meridional geostrophic 100 

transport) and verification (comparison of surface wind stress curl to meridional geostrophic 

transport) is to remove the level of no motion and instead to use a known level. The ocean bottom 

[i.e.,  z = -H(x, y)] is a reasonable choice. Therefore, H is referred to the ocean bottom depth here 
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after. Questions arise:  How do the Sverdrup-Stommel-Munk equations change after H is changed 

from the level of no motion to the ocean bottom depth?  What is new physics behind such a 105 

change? This note will answer these questions. Following the same path as SB from (9) to (14), 

several new volume transport equations (called extended Sverdrup-Stommel-Munk equations) have 

been derived.   The rest of the note is outlined as follows. Section 2 presents extended Sverdrup-

Stommel-Munk transport equations. Section 3 depicts the world ocean climatological annual mean 

forcing functions. Section 4 shows the world ocean climatological annual mean density and wind 110 

driven Sverdrup transport streamfunctions.  Section 5 gives the summary.  

2. Extended Sverdrup-Stommel-Munk Transport Equations 

 2.1. Geostrophic Currents under Boussinesq Approximation 

With the Boussinesq approximation, vertical differentiation of (13) and use of hydrostatic balance 

(1c) leads to the thermal wind relation, 115 
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Vertical integration of (17) from the ocean bottom [z = -H(x, y)] to any depth z leads to the 

calculation of the geostrophic currents from the density ρ,  
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2.2. Volume Transport Equations 

Cross differentiation of (3) and (4) leads to the transport equation for the whole water column,  
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where  is the volume transport streamfunction  
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Vden is the meridional geostrophic transport  
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When the Rayleigh friction is used for the bottom stress (7b), Eq.(20) becomes the extended Munk-

Stommel model,  
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When the Rayleigh friction is used for the bottom stress (7b) and horizontal viscosity vanishes (Ah 

= 0), Eq.(20) becomes the extended Stommel model,  
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When Ah   0, and the drag law is used for the bottom stress due to vertical viscosity, Eq(20) 

reduces to the extended Sverdrup transport equation, 135 
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3. Forcing Functions 

Various transport equations (20), (23), (24), and (25) show that the volume transport is generated 

by density ( denV ), bottom meridional current ( HHv  ), wind stress curl [ 0(curl ) / τ ], bottom 

stress curl due to vertical viscosity [ ( )
0(curl ) /b τ ] and horizontal viscosity 140 

[  / /h y xA Q x Q y     ]. The density forcing function is further calculated by 
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The last three forcing functions depend on the bottom current velocities (u-H, v-H) [see (7b), (7c) 

and (20)], horizontal diffusivity Ah, and the bottom drag coefficient CD. The P-vector inverse 

method (Chu 1995, 2000, Chu et al. 1998a, b) is used to determine (u-H, v-H) from hydrographic 145 

data. The horizontal diffusivity (Ah) is taken the value of 3 2 -11.5 10 m s  by Smargrinsky 

parameterization and the bottom drag coefficient CD is set as 0.0025 (see Chu and Fan, 2007).  

In this study, the five forcing functions are calculated from the three global datasets: (1) 

climatological annual mean hydrographic data downloaded from the NOAA ‘s World Ocean Atlas 

2013 at the website: http://www.nodc.noaa.gov/OC5/woa13/  for computing (Uden, Vden) [see (17)], 150 

(2) the NOAA ’s ETOPO5 from the website: http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML  

for bottom topography H(x, y), and (3)  the Comprehensive Ocean-Atmosphere Data Set (COADS) 

at http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/ for computing 

climatological annual mean surface wind stress ( ,x y  ).   

The climatological annual mean density forcing function denV (Fig. 1) is much stronger 155 

than the wind forcing function 0(curl ) / τ  (Fig. 2).  The root-mean-square (RMS) is 2.81×10-10 

m/s2 for denV  and 6.16×10-11 m/s2 for 0(curl ) / τ . The other three forcing functions are much 

smaller. Fig 3 shows the bottom stress forcing function due to horizontal viscosity         

[  / /h y xA Q x Q y    ] with the RMS of 3.32×10-12 m/s2, which is almost two-orders of 

magnitude smaller than the density forcing.  The computation shows the following relationship, 160 
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Besides, the correlation coefficient between denV  and ( )
0(curl ) /b τ  is 0.0699, which implies the 

independence between the meridional geostrophic transport for the whole water column and the 

surface wind tress curl.  

4. Density and Wind Driven Sverdrup Transport Streamfunctions  165 

The extended Sverdrup Transport equation due to density and wind forcing [vanish of other three 

forcing functions in (25)] is given by  

                         
0

curl 
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x
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
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 


τ
.                                                 (28) 

If wind forcing vanishes, the density driven Sverdrup transport streamfunction is calculated by   

                                                 den
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x


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
                                                                   (29) 170 

If density forcing vanishes, the wind driven Sverdrup transport streamfunction is determined by   

                                              
0

curl w

x








τ
                                                                (30) 

which is the classical Sverdrup dynamics but the volume transport is for the whole water column 

rather than above a level of no motion. It is noted that in calculating the density forcing function 

denV  in (28) and (29), the latitude ϕ is set as 15oN for the zonal region of 0o-15oN, and as 15oS for 175 

the zonal region of 0o-15oS [see (26)].  With the climatological annual mean density and wind 

forcing functions calculated in Scetion 3, the three Sverdrup transport euqations (28)-(30) are 

solved using the traditional method with Ψ = 0 at the east boudary and integrating westward to get 

the climatological annual mean density driven Sverdrup transport Ψden (Fig. 4), wind driven 

Sverdrup transport Ψw (Fig. 5), and density-wind driven Sverdrup transport Ψ (Fig. 6). 180 

Since the purpose of this note is to present the extended transport equations after removing 

level of no-motion rather than to simulate the volume transports, only major features on (Ψden, Ψw, 

Ocean Sci. Discuss., doi:10.5194/os-2016-81, 2016
Manuscript under review for journal Ocean Sci.
Published: 1 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



 10

Ψ) are discussed. Although the density and wind forcing functions are very different (Fig. 1 and 

Fig. 2) with low correlation coefficient (0.0699), the three Sverdrup transport streamfunctions 

(Ψden, Ψw, Ψ) show similar patterns in both hemispheres, i.e., subpolar gyre, subtropical gyre, 185 

equatorial current, and equatorial counter current. The volume transport driven by density (Ψden ) is 

stronger  than driven by wind (Ψw). The correlation coefficient is 0.185 between Ψden and Ψw, 0.716 

between Ψden and Ψ, and 0.698 between Ψw and Ψ.  

 5. Summary 

The seminal theories by Sverdrup (1947), Stommel (1948), and Munk (1950) are established on the 190 

assumption of level of no motion. This note shows that this assumption is equivalent to the 

assumption of no meridional geostrophic transport. To remove the level of no motion and instead to 

use bottom topography, extended Sverdrup-Stommel-Munk transport equations are derived in this 

note with adding  four more forcing functions in addition to the surface wind stress: density, 

bottom meridional current, bottom stresses due to vertical and horizontal viscosities. The density 195 

and wind forcing functions are dominant using the world ocean bathymetry, climatological annual 

mean hydrographic and surface wind stress data. The density and wind forcing functions are 

independent with very low correlation coefficient (0.0699). However, the Sverdrup transport 

streamfunctions under density, wind, and both forcing show similar patterns in both hemispheres, 

i.e., subpolar gyre, subtropical gyre, equatorial current, and equatorial counter current. The 200 

correlation coefficient is 0.185 between density and wind forced Sverdrup transports; 0.716 

between density and density-wind forced Sverdrup transports; and 0.698 between wind and 

density-wind forced Sverdrup transports. 
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Fig. 1. Climatological annual mean density forcing  denV  (unit: m/s2) calculated from the 

NOAA/NCEI WOA13 data.  
 260 

 
Fig. 2. . Climatological annual mean surface wind forcing [ 0(curl ) / τ ] (unit: m/s2) calculated 

using the COADS data 
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Fig. 3. Climatological annual mean bottom stress forcing due to horizontal viscosity         
[  / /h y xA Q x Q y     ] (unit: m/s2) calculated from the NOAA/NCEI WOA13 data using the P-270 

vector method and NOAA ETOPO5 data.  
 

 
Fig. 4. Climatological annual mean density driven Sverdrup transport streamfunction (unit: SV = 
106 m3/s). It is noted that in calculating the density forcing function denV ,         the latitude ϕ is set 275 

as 15oN for the zonal region of 0o-15oN, and as 15oS for the zonal region of 0o-15oS. 

Ocean Sci. Discuss., doi:10.5194/os-2016-81, 2016
Manuscript under review for journal Ocean Sci.
Published: 1 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



 15

 
 
Fig.5. Climatological annual mean wind driven Sverdrup transport streamfunction (unit: SV = 106 
m3/s). 280 
 
 
   
 

 285 
 
Fig. 6. Climatological annual mean density and wind driven Sverdrup transport streamfunction 
(unit: SV = 106 m3/s). It is noted that in calculating the density forcing function denV ,  the latitude 

ϕ is set as 15oN for the zonal region of 0o-15oN, and as 15oS for the zonal region of 0o-15oS.   
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