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Abstract. Reconstructing surface ocean CO2 from scarce measurements plays an important role in estimating oceanic CO2 

uptake. There are varying degrees of differences among the 14 models included in the Surface Ocean CO2 Mapping (SOCOM) 

inter-comparison initiative, in which five models used neural networks. This investigation evaluates two neural networks used 10 

in SOCOM, self-organization map and feedforward neural network, and introduces a machine learning model called support 

vector machine for ocean CO2 mapping. The technique note provides a practical guide to selecting the models. 

1 Introduction 

The global ocean is a major sink for anthropogenic carbon and therefore an important contributor for slowing down the human-

induced global warming (Stocker et al., 2013). For calculating the oceanic CO2 uptake, various models have been used to 15 

interpolate scarce CO2 measurements in the surface ocean spatially and temporarily to obtain basin-wide (e.g. Zeng et al., 

2002; Lefevre et al., 2005; Chierici et al., 2006; Sarma et al., 2006; Jamet et al., 2007; Friedrich and Oschlies, 2009; Telszewski 

et al., 2009; Takamura et al., 2010; Landschützer et al., 2013; Nakaoka et al., 2013; Iida et al., 2015; Goddijn-Murphy et al, 

2015) and global ocean CO2 maps (Takahashi et al., 2002, 2009 and 2014; Park et al., 2010. Rödenbeck et al., 2013; Sasse et 

al., 2013; Jones et al., 2015; Zeng et al., 2015). The Surface Ocean CO2 Mapping (SOCOM) inter-comparison initiative 20 

revealed varying degrees of differences among 14 models (Rödenbeck et al., 2015), of which 5 used neural networks. They 

include self-organizing maps (SOM) and feedforward neural networks (FNN). The SOM has a long history in CO2 mapping 

(Lefevre et al., 2005; Friedrich and Oschlies, 2009; Telszewski et al., 2009; Nakaoka et al., 2013). Recently, the FNN is gaining 

popularity in this field (Landschützer et al., 2015; Zeng et al., 2014 and 2015). In this investigation we introduce a machine 

learning model called support vector machine (SVM) for ocean CO2 mapping and compare the SVM with the SOM and FNN. 25 

We intend to provide a practical guide for using these machine learning models. 
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2 Model Equations 

The machine learning models included in this study cannot directly model the long-term trend of CO2. Therefore, we express 

the dependence of CO2 fugacity (fCO2) on year (YR), month (MON), latitude (LAT), and longitude (LON) as the sum of a 

nonlinear static component and a linear trend component: 

ଶܱܥ݂ ൌ ,ܶܣܮ௦௧௧ሺܨ ሻܱܰܯ,ܱܰܮ   ௧ௗሺܻܴሻ.     (1) 5ܨ

 

As available observations are scarce with respect to the biogeochemical properties of the surface ocean, we used sea surface 

temperature (SST), sea surface salinity (SSS), chlorophyll-a concentration (CHL), and mixed layer depth (MLD) as the proxy 

variables of space and time. These proxy variables were commonly used by models included in the SOCOM. The model 

equation becomes 10 

ଶܱܥ݂ ൌ ,ܶܣܮ௦௧௧ሺܨ ܵܵܶ, ܵܵܵ, ,ܦܮܯ,ܮܪܥ ݀ܵܵܶሻ   ௧ௗሺܻܴሻ,  (2)ܨ

where dSST denotes the difference between the monthly and annual means of SST. Here we excluded LON and MON. They 

have a circular property and therefore cannot be used directly. For instance, longitude -180 degree is geographically connected 

to longitude 180 degree, but numerically they appear to be two extreme longitude values to the models. Zeng et al. (2014 and 

2015) circumvented this problem by using sine and cosine transformed components. Their approach could unintentionally 15 

enhance the influence of LON and MON on fCO2 as one more derived variable from each of them were added to the model. 

We excluded LON for the belief that the combination of SST, SSS, CHL, and MLD contains sufficient spatial information, but 

retained LAT for its different seasonal and geophysical meanings in the northern and southern hemispheres. Replacing MON 

by dSST also improves expressing the effect of season geographically. 

3 Data 20 

We extracted monthly fCO2 from the track-gridded database of the Surface Ocean CO2 Atlas (SOCAT) version 3.01 (Pfeil et 

al., 2013; Sabine et al., 2013; Bakker et al. 2013). The database has a 1×1 spatial resolution and includes global measurements 

from 1970 to 2014. Similar to Zeng et al. (2014), we excluded some data points by these criteria: (i) fCO2 values smaller than 

250 µatm or larger than 550 µatm, (ii) ocean depth smaller than 500 m, (iii) salinity smaller than 25.0, and (iv) year before 

1990. A total of 158,052 data points were extracted with these conditions. 25 

 

                                                           

1 http://www.socat.info/ 



3 
 

The monthly SST data of 1990 to 2015 were extracted from the Optimum Interpolation (OI) V2 product2 of NOAA (Reynolds 

et al., 2002). The monthly SSS climatology was extracted from the World Ocean Atlas 2013 (WOA13) product3 (Boyer et al., 

2013), which contains the monthly mean SSS from June 27, 1896 to December 25, 2012. The monthly CHL climatology was 

calculated using the MODIS Aqua and SeaWiFS climatology4, which covers the period of 2012 to 2015. The mean of the two 

CHLs was used as the CHL climatology. The mixed layer data were derived from the Monthly Isopycnal and Mixed-layer 5 

Ocean Climatology5 of NOAA (Schmidtko et al., 2013), which includes the period of 1955 to 2012. 

4 Machine Learning Models 

The Appendix and Table 1 summarize the algorithms of the three models. Here we focus on discussing their usage in CO2 

mapping.  

 10 

The trend in Eq.(2) cannot be modelled directly by the models. One approach to deal with the problem is to normalize the 

measurements to a reference year using a global rate and only model the nonlinear component. Zeng et. al. (2014) presented a 

method to model the linear component in Eq.(2). Instead of repeating the process, we used their annual rate of 1.5 atm to 

remove trend from fCO2 to normalize it to the reference year 2005, i.e., 

ଶܱܥ݂
௭ௗ ൌ ଶܱܥ݂ െ 1.5 ∗ ሺܻܴ െ 2005ሻ (3) 15 

 

Although Takahashi et al (2014) obtained a global mean rate of 1.9 atm yr-1, we used 1.5 atm yr-1 as this rate was obtained 

by using the gridded fCO2 of SOCAT version 2. The normalized fCO2 was used to model the nonlinear component in Eq.(2). 

In later discussions, fCO2 means the normalized fCO2 unless explicitly stated. Similarly, we applied the log transform of Zeng 

et. al. (2014) to CHL prior to data scaling discussed below, i.e., 20 

ܮܪܥ ൌ logଵ	ሺ1.0   ሻ.   (4)ܮܪܥ

4.1 SMV 

For a given dataset, the SVM requires a prior step to find the optimal value for the parameter  in Eq.(A10) and the parameter 

 in Eq.(A11). To shorten the training time, we randomly chose 10% of the measurement data in this step and obtained 0.06 

                                                           

2 http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html 

3 https://www.nodc.noaa.gov/OC5/woa13/  

4 http://oceancolor.gsfc.nasa.gov/cgi/l3 

5 http://www.pmel.noaa.gov/mimoc/ 
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for  and 10 for . Note that these values are dependent on data scaling, which is necessary in this case to avoid overflow 

problem in solving Eq.(A18). We scaled all input variables LAT, SST, SSS, CHL, MLD, and dSST by their minimum and 

maximum to confine them in the range (0, 1), i.e., 

ݒ ൌ
௩	ି	௩

௩ೌೣ	ି	௩
.     (5) 

 5 

4.2 FNN 

Data scaling is not necessary for the FNN, but can improve its performance. Following Zeng et al. (2014), we scaled the input 

variables by their mean and standard deviation as 

ݒ ൌ
௩	ି	௩ത

௦
.    (6) 

The output variable fCO2 is scaled by 10 

ݒ  ൌ 0.1  0.8
௩	ି	௩

௩ೌೣ	ି	௩
.   (7) 

 

This confines the scaled fCO2 between 0.1 and 0.9 for better response to changes of input variables. The kernel function 

Eq.(A4) has the property that for any input in (-,+), the output varies between 0 and 1. For fCO2 close to 0 or 1, a small 

change in fCO2 requires very large adjustment of model parameters, which slows down the convergence of training.  15 

 

We used 64 hidden neurons for the FNN as Zeng et al. (2014) did. The learning rate in Eq.(A6) was set to 0.25 by trial-and-

error. A small value makes training slow; whereas a large value may make a training diverge. The constant in Eq.(A8) was 

determined dynamically in each iterative training loop. It was taken as 10 times the mean of absolute differences between 

modelled and observed fCO2. We experienced that this method improves the performance of training.  20 

 

4.3 SOM 

Data scaling is critical for the SOM, as the distance defined by Eq.(A1) would be affected by variable units. We used Eq.(6) 

to scale input variables in training the SOM. Based on our preliminary correlation analysis, we applied a factor of 2 to enhance 

the influence of SST and CHL on the distance. Using such a subjective factor is the only way to make the correlations between 25 

the output and the input variables more in line with observed correlations.  

 

From the labelling procedure of SOM described in the Appendix, it is not difficult to see that the number of neuron cells in 

SOM affects the labelling and hence the prediction. Unfortunately, there is no guideline for choosing the size. Based on 

previous studies (Telszewski et al., 2009 and Nakaoka et al. 2013), we used 20,000 neuron cells, roughly one neuron cell for 30 

one 1x1 grid cell of sampled areas. 
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5 Model Validation 

We examined the goodness of fit by randomly selecting 10% to 50% of the data points to train the FNN and SVM, and to label 

the SOM; and then calculated the correlation coefficient between modelled and observed CO2 of the selected data points. 

 

The SOM yields the best correlation in the case of 10% of randomly selected data points and the correlation decreases with 5 

the number of data points (Fig.1). The reason is that for a given number of neuron cells, the fewer the data points, the less 

possible a neuron cell will be labelled by multiple measurements and the more likely that the prediction will find the same CO2 

value used for labelling. Therefore, the goodness of fit does not necessary mean good SOM modelling. 

 

The correlations obtained by the SVM and FNN do not vary much with the number of data points. While the SVM’s correlation 10 

decreases monotonically, even though by only a little, with the number of data points, the FNN’s correlation obtained with 

75000 data points is larger than that with 60000 data points. The FNN is known for not being able to find the global optimum 

in training. This case could be an indication of an imperfect training. The FNN appears inferior to SVM in all case. However, 

imperfect training does not account for all the differences. If we use the number of model parameters to be determined by the 

training as the indicator of the dimension of the model space, the FNN’s dimension is far smaller than that of the SVM. The 15 

former is determined by the number of hidden neurons and input variables, whereas the latter is determined by the number of 

training data. For 6 input variables, 15000 training data, and 64 hidden neurons, the number of parameters is 509 for the FNN 

and 15001 for the SVM. 

 

A better indicator for the performance of the models would be the goodness of prediction. To emulate the situation that the 20 

sampled area was only a small portion of the global ocean, we evaluated the goodness of prediction by training FNN and SVM 

and labelling SOM with 10% of randomly selected data to make prediction for the rest of the data. Fig.2 shows that the SVM 

yielded the best correlation (R2=0.72), the FNN fell behind (R2=0.67), and the SOM performed the worst (R2=0.54). The 

differences between predicted and observed fCO2 are 0.117.4 atm for SVM, 0.118.9 atm for FNN, and 0.223.3 atm 

for SOM. Comparing to the variation of fCO2 measurements, these differences are small and their uncertainties are in the same 25 

order of magnitude as the variation of measurements. Let’s examine the standard deviation (STD) of fCO2 in those grids having 

at least 3 data points. The track-gridded fCO2 in SOCAT version 3.0 includes STD ranging from 0.1 atm to 71.2 atm and 

the mean is 5.2 atm. Calculating the STD of normalized fCO2 in the same grids and in the same months of all years yielded 

a mean of 12.5 atm in the range of 0.1 atm to 103.1 atm. The normalization had little effect on the STD as the calculation 

for non-normalized fCO2 gives a mean STD of 14.6 atm in the range of 0.1 atm to 107.5 atm. 30 

 

From the algorithm of SOM in the Appendix, it is not difficult to see that the SOM does not make extrapolation – the model 

always approximates new inputs by the measurements used for training and approximates fCO2 by the measurements used for 
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labelling; therefore, the predicted fCO2 values are within the observed fCO2 range (Figure 2a). Figure 2c shows that the 

extrapolated fCO2 by the SVM, if any, did not exceed the observed range. To investigate the extrapolation risk, we used  

200,000 data points randomly generated for SST, dSST, SSS, MLD, and CHL in the range of (0 C, 40 C), (-20 C, 20 C), 

(20, 50), (1 m, 1500 m), and (0 log(mg m-3), 2 log(mg m-3)) respectively. These ranges are larger than the corresponding 

observed ranges of (0 C, 34 C), (-13 C, 16 C), (24, 40), (1 m, 1000 m), and (0 log(mg m-3),1.2 log(mg m-3)). The SVM and 5 

FNN produced fCO2 in the range of (267 atm, 468 atm) and (199 atm, 596 atm) respectively for the simulated samples. 

Comparing to the observed fCO2 range of (240 atm, 560 atm), the experiment indicates that the over-extrapolation risk of 

the SVM is low.    

6 Differences 

Figure 3 shows fCO2 maps in February and July, 2005, which is the reference year for normalization. In the mapping, we 10 

randomly selected 50% of the data to train the FNN and SVM and to label the SOM. All models captured the major features 

of observed fCO2 distribution. The SOM exhibits obvious discontinuity because of its discrete characteristics of picking up 

fCO2 values from the labelled SOM. For year 2005, the mean fCO2 difference is -0.0512.73 atm for FNN-SVM and -

0.618.80 for SOM-SVM. The uncertainty is the standard deviation of the mean difference between predicted and observed 

values. The statistics indicates that FNN agrees better with SVM than SOM does. 15 

 

Although the differences among models might be on the order of 10 to 20 atm, the effect on the global ocean CO2 flux 

estimate is small (Fig.4). The fluxes are calculated using the wind speed from ECMWF’s interim product (Dee et al., 2011). 

Our estimate for the oceanic uptake is on the higher end among those in Wanninkhof et al. (2013) and Le Quéré et al. (2015). 

For example, Wanninkhof et al. (2013) reported that the median sea–air anthropogenic CO2 fluxes centered on year 2000 20 

ranged from 1.9 to 2.5 PgC yr-1 among the seven models. In comparison, our estimates by the three models are about 2.4 PgC 

yr-1. The mean difference of CO2 flux is 0.02 PgC yr-1 between the FNN and the SVM (FNN-SVM) and 0.06 PgC yr-1 between 

the SOM and the SVM (SOM-SVM). They are small in comparison with those differences among the models in Wanninkhof 

et al. (2013) and Le Quéré et al. (2015). Note that the flux estimate is highly dependent on wind products as shown by 

Wanninkhof et al. (2013) and Zeng et al. (2014). 25 

 

On the spatial scale of tens of degrees, the three models show good mutual agreement for modelled fCO2 distributions among 

them. However, each model shows distinguished fine structures, which are determined by the biogeochemical processes in the 

ocean, by model parameters obtained from training, and by the characteristics of the models. We believe that the modelled 

monthly fCO2 distributions are true to the degree given by the model validations. 30 
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7 Summary 

The main features of the three machine models are listed in Table 1. The SVM is recommended when the computer has enough 

memory to store the matrix in Eq.(A18), which is proportional to the square of the number of training data. The SVM performs 

the best, but the training time could become very long when the number of training data is too large to be handled by a computer 

without using virtual memory. For any given dataset, using the SVM requires a prior step to find the optimal value for the 5 

parameter  in Eq.(A10) and the parameter  in Eq.(A11). 

 

The FNN model does not perform as well as the SVM, but the number of training data does not affect its training as much as 

the SVM’s. The training time can become long when a large number of hidden neurons are used and many iterations are needed 

to achieve convergence. It takes longer time to train the FNN than the SVM for a small number of data points. However, the 10 

FNN is simpler to use as it requires no prior step. However, it may have the risk of over-extrapolation. 

 

The SOM is recommended only when the other two models have over-fitting or over-interpolation problems. The SOM 

performs the worst and is not as straightforward as the others as its result depends too much on data scaling and the number of 

neurons. An advantage of the SOM is that once trained, re-labelling the SOM with new CO2 measurements and making a new 15 

prediction is fast. Although the SOM does not have the over-extrapolation problem of the FNN, it may produce nonsense 

predictions due to its strong dependence on data scaling. 

 

In areas where there was no measurement on a large scale, predictions made by the models must be treated conservatively, as 

SVM and FNN may produce extrapolated results and SOM may extract CO2 from unexpected provinces. Figure 3 shows that 20 

the modelled CO2 east of the African coast near the equator in July 2005 (Figure 3) appeared much higher than the nearby 

measurements, which were made in July 1995 and adjusted to 2005 using the global rate of 1.5 atm yr-1. However, considering 

the large variations of the rate from region to region (Takahashi et al., 2014) and of the repeated measurements discussed in 

section 5, the measurements were not sufficient to support rejecting the modelled CO2. Similar CO2 hotspots occurred in the 

Southern Ocean west of South America in February 2005, around the latitudinal zone of 50S. The modelled CO2 distributions 25 

by Takahashi et al. (2014) also showed CO2 hotspots around the latitudinal zone of 30S in the same month and region. Their 

model used a completely different interpolation scheme based on a diffusion–advection transport model for surface waters. In 

principle, these hotspot CO2 were produced by our models using measurements somewhere else where the biogeochemical 

properties were similar to those in the hotspot areas. As the SOM does not make extrapolation, the SVM has low possibility 

of over-extrapolation, and the hotspots appeared in all models, the risk of accepting them would not be high.      30 
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Appendix 

A.1 Self-Organization Map 

A self-organizing map (SOM) is a type of artificial neural network that is trained using unsupervised learning (Kohonen, 

1984). The SOM in our application comprises grid points on a two dimensional plane. Each grid point, also called neuron 

cell, has the same number of parameters as the input variables, which include LAT, SST, SSS, CHL, MLD, and dSST in our 5 

case. Training the SOM is to use samples of input variables to adjust the parameters to make neighbourhood neuron cells 

having similar parameter values that reflect certain biogeochemical features of the surface ocean. 

 

We used the batch learning algorithm (Abe et al., 2002) to train the SOM as the result does not depend on the sequential 

order of training samples. The parameters were initialized randomly in the range (-1,1). In each iterative training loop, each 10 

training sample is associated with a neuron cell to which the distance defined as follow is smaller than to other neuron cells: 

݀ ൌ ܘሺ| െ  ሻ|,   (A1)ܠ

where p denotes the vector of neuron cell parameters, x the vector of input variables, and f the scale matrix that we 

introduced to change the influence of certain variables on the distance. The components of f are all zero except for those on 

the diagonal, which are set to 1 by default. In our application, the data for each input variable were scaled to be unitless by 15 

its mean and standard deviation to eliminate the effect of units on the distance.  

 

The associated neuron cell is called the best matching cell (BMC). After the BMC for all training samples are found, the 

parameters are updated by 

 ൌ
∑ ೖ୶ೖೖ

∑ ೖೖ
,   (A2) 20 

where i and k denote indexes of neuron cells and training samples, respectively. The neighbourhood function that determines 

the weight factor h is defined as 

݄ ൌ exp	ሺെ
|ೖܚ|


ሻ,  (A3) 

where |ܚ| denotes the geographic distance between the ith neuron cell and the BMC of the kth training sample and q is a 

factor that decreases linearly with iteration loop. In other words, the procedure adjusts the parameters of neuron cells toward 25 

those training samples whose BMC are close to them and the amount of adjustment decreases exponentially with the 

geographic distance between neuron cells and linearly with the training loop. 

 

The trained SOM needs to be labelled by fCO2 for making prediction. The values of fCO2 measurements are assigned to their 

BMC. Predicting fCO2 for a set of input variables is realized by finding the BMC labelled with fCO2 and extract its mean 30 

fCO2 value. 
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A.2 Feedforward Neural Network 

A feedforward neural network (FNN) is an artificial neural network that is trained using supervised learning. Our FNN 

comprises three layers (Zeng et al., 2014): An input layer, a hidden layer, and an output layer. The number of neurons in the 

input layers is determined by the number of input variables, i.e., LAT, SST, SSS, CHL, MLD, and dSST in our case. The 

output layer has only one neuron for fCO2. Each neuron in the hidden layer uses the following kernel function to transform 5 

all input variables: 

ݕ ൌ
ଵ

ଵାୣ୶୮	൫ିሺାܟܠሻ൯
 ,  (A4) 

where w denotes the vector of weight parameters and b the offset parameter. The yh of all hidden neurons become the inputs 

of the output neuron, which uses the same kernel function to transform yh to produce fCO2.  

 10 

The training updates the offset and weight parameters, which are initialized randomly in the range (-1,1), by minimizing the 

cost function 

݂ሺܟ′ሻ ൌ
ଵ

ଶ
܍்܍ ൌ

ଵ

ଶ
ܡ| െ  |ଶ. (A5)ܡ

where w′ is the extended vector that include b and w; ym and yo stand for the vectors of modelled and observed fCO2, 

respectively. In the gradient descent training algorithm, updating w′ at the training iteration t can be expressed as 15 

ሺtሻ′ܟ ൌ ݐሺ′ܟ െ 1ሻ െ α  (A6) 

where  is the learning rate (a positive number smaller than 1), and g the first-order derivative of the cost function: 

 ൌ ሻ′ܟሺ݂ ൌ ۸܍,  (A7) 

where J is the Jacobian matrix whose components are derivatives of e with respect to w’ using back propagation method. We 

used the efficient Levenberg-Marquardt algorithm (Wilamowski et al., 2010), which derives the gradient as 20 

 ൌ ሺ۸்۸   (A8)  ,܍	۷ሻିଵ۸்ߤ

where  is a constant. 

A.3 Support Vector Machine 

A support vector machine (SVM) is a supervised learning model that was conceptualized in the 1960s for classification 

problems and later extended to regression analysis (Basak et al., 2007). We used the so called least-square support vector 25 

machine for regression (Pelckmans et al., 2002) which, similar to FNN, seeks to minimize the error between model outputs 

and measurements. The SVM models the dependence of fCO2 on LAT, SST, SSS, CHL, MLD, and dSST as 

ݕ ൌ ሻܠሺ்࣐܋  ܾ  (A9) 

where x stands for a set of measurements of the input variables, c the vector of coefficients, b the offset parameter, and  the 

kernel function. In this investigation, we used the radial basis kernel function, i.e., 30 
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൯ܠ൫࣐ሻ்ܠሺ࣐ ൌ exp ቆെ
หܠିܠೕห

మ

ଶఙమ
ቇ 	,  (A10) 

where  is a parameter whose optimal value depends on the data used for training. The subscription of x indicates a sample of 

input variables.      

 

Given a set of training samples ሼܠ, ሽୀଵݕ
ே , the goal of training SVM is to minimizes the cost function  5 

ሻ܋ሺܨ ൌ
ଵ

ଶ
ሺ܋்܋   ሻ  (A11)܍்܍ߛ

where 

݁ ൌ ݕ െ ሻܠሺ்࣐܋ െ ܾ  (A12) 

and  is a constant whose optimal value depends on the data used for training. The Lagrangian solution for the optimization 

problem of Eq.(A11) is given by  10 

,ሺܿܮ ݁, ܾ, ሻߙ ൌ
ଵ

ଶ
ሺ܋்܋  ሻ|ࢋ|ߛ െ ∑ ሻܠሺ்࣐܋ሼߙ  ܾ  ݁ െ ሽݕ

ே
 ,  (A13) 

where k is a Lagrangian multiplier. The optimal conditions of Eq.(A13) are: 

డ

డೖ
ൌ 0		 → 				 ܿ ൌ  ሻ,  (A14)ܠ߮ሺߙ

డ

డ
ൌ 0		 → 				∑ ߙ

ே
 ൌ 0,   (A15) 

డ

డೖ
ൌ 0		 → 			 ߙ ൌ  ,   (A16) 15	݁ߛ

డ

డఈೖ
ൌ 0, → 				 ܿ߮ሺܠሻ  ܾ  ݁ െ ݕ ൌ 0, (A17) 

 

After eliminating c and e from the above conditions, the following equation is obtained: 

0 ்ܝ

ܝ ષ  ଵ۷ିߛ
൨ ቂܾ
હ
ቃ ൌ 

0
 ൨,  (A18)ܡ

where u is a vector with all components being 1, and the components of  are 20 

Ω ൌ  ൯.  (A19)ܠ൫࣐ሻ்ܠሺ࣐

 

Once Eq.(A18) is solved, making a prediction is done by 

ሻݔሺݕ ൌ ∑ ሻܠሺ࣐ሻ்ܠሺ࣐ߙ  ܾே
   (A20) 

 25 
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Table 1 Feature comparison of the three machine learning models.  

Feature SVM FNN SOM 

Input space projection Projects the input variable 

space to a high dimensional 

space that is proportional to 

the number training samples.

Projects the input space to a 

high dimensional space that 

is proportional to the number 

of hidden neurons and input 

variables. 

Projects the input space to a 

feature space whose size is 

determined by the number of 

neurons. 

Prediction by Continuous interpolation. Continuous interpolation. Picking up labelling samples 

that have the closest feature 

to the input. 

Problems May over-fit and over-

interpolate. 

May over-fit and over-

interpolate. 

Discrete interpolation leads 

to spatial discontinuity. 

Data scaling Helps solving the linear 

equation, but has no effect on 

the result. 

Helps the convergence of 

training, but has insignificant 

effect on the result. 

Significant effect on the 

result. 

Results affected by The parameter values for 

regularization and kernel 

function. 

The number of hidden 

neurons. 

The number of neurons and 

data scaling. 
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Figure 1: Correlation coefficient between modelled and observed fCO2 (uatm). The sample size is the number of data points 

randomly selected to train FFN and SVM and to label SOM. 
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(A) (B) 

 

(C) 

Figure 2: Predicted vs observed fCO2 (atm). Ten percent of data points was selected randomly to train FNN and SVM and to 5 

label SOM, and the rest was used for validation. 
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Figure 3: Distributions of modelled and observed fCO2. The composite map for observations includes fCO2 in 1990-2014. Half 5 

of randomly selected data points were used to train FNN and SVM and to label SOM to make prediction. The left panels 

show February and the right panels show July. 
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Figure 4: Modelled global CO2 fluxes. A negative value indicates oceanic uptake. 

 


