Response to referee #1

We thank referee#1 for the thoughtful and constructive feedback on the paper. We have
addressed major concerns in the revised manuscript and documented our responses to the
referee’s comments point-by-point as follows.

This Technical note compares the results of three machine learning models for sea surface
CO2 mapping. Two of those, self-organizing-maps (SOM) and feedforward neural networks
(FNN), have already been used and compared (in the Surface Ocean CO2 Mapping inter
comparison initiative, SOCOM) and a new one, the support vector machine (SVM), is
introduced in this paper. The SVM performs best but requires big computer memory. This is
valuable work as with ever increasing computer power SVM will become available to more
users. | have one concern: the resulting model distributions show features that cannot be
explained by the CO2 field data. For example there is a CO2 hotspot east of the African coast
near the equator where no observations (February) or low CO2 observations (July) are shown
in the top panel. In July there is an unexplained hotspot in the Southern Ocean west of South
America where there are no observations. | presume these features are produced by the
correlation of sea surface CO2 with proxy variables such as SST, SSS CHL and MLD? Are these
hotspots known / expected from previous publications? The authors should discuss this
further in the discussion of Figure 3.

Reply: Referee #1 pointed out the CO2 hotspot east of the African coast near the equator and
suggested a further discussion. As the issue cannot be cleared without thorough numerical
comparisons with outputs of other models, it would go beyond the scope of this manuscript,
which is aimed at comparing the three machine learning models. The hotspot CO2 seems quite
high comparing to the nearby measurement made by the one cruise in July 1995. It is very
difficult to judge whether this is an issue because the observed CO2 shown in the figure is
trend removed with a universal rate, which could be another source of uncertainty. Takahashi
et al. (2009) shown that the trend could be quite different in different areas. However, it
difficult to use multiple rates for global mapping.

My final question is: is the dataset produced by SVM available for download somewhere or
can it be retrieved from the authors? Could this be added as a supplement possibly?

Reply: We uploaded the dataset as supplement.
Page 1, line 14: include (Goddijn-Murphy et al, 2015).
Reply: We included the reference.

Page 2, line 13: please explain “circular property” and why it can therefore not be used.
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Reply: In the manuscript we added “For instance, longitude -180 degree is geographically
connected to longitude 180 degree, but numerically they appear to be two extreme longitude
values to the models.”

Page 2, line 14: sine and cosine transformed components of LON and MON? How of MON?
Reply: The transforms are cos(MON*2*pi/12), sin(MON*2*pi/12), cos(Lon*2*pi/360) and
sin(LON*2*pi/360). See Zeng et al. (2015). We didn’t give the transform here because MON

and LON were not used.

Page 2, line 14: “The approach” is meaning “Our approach” or “Zeng et al.’s
approach” ?

Reply: We revised “The approach ...” to “Their approach ...” to explicitly mean Zeng et al.’s
approach.

Page 3, line 4: which two CHL products, calculated from OC3 and OCI algorithms?

Reply: The footnote indicates that the products used the OCl algorithm

Page 3, line 8, refer to Table 1 here

Reply: We revised “The Appendix summarizes...” to “The Appendix and Table 1 summarize...”.
Page 3, line 11: 10% of the measurements randomly chosen?

Reply: Yes, they are randomly chosen. We revised “we used 10% of...” to “we randomly chose
10% of...”

Page 3, line 12: “dependent of” should be “dependent on”.
Reply: We corrected the mistake.
Page 3, line 17: insert “” in “all variables ”; explain all variables (SST, SSS, CHL, MLD, dSST?).

Reply: We revised the sentence to “we scaled all input variables LAT, SST, SSS, CHL, MLD, and
dSST by their minimum and maximum to confine them in the range (0, 1)”.

Page 4, line 2: give references for preliminary studies.
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Reply: We revised “Based on preliminary studies” to “Based on our preliminary correlation
analysis”.

Page4, line 13: replace “to model” with “and modelled”.

Reply We revised the expression accordingly.

Page 4, line 18: modeled and observed CO2 of “all / selected/ non-selected” data points?
Reply: We added “of the selected data points” to the end of the sentence.

Page 5, line 6: random 10%?

Reply: Yes, they were randomly selected. We revised “with 10% of the data” to “with 10% of
randomly selected data points”.

Page 5, line 8: differences are expressed as mean difference standard deviation?
Reply: Yes.

Page 5, line 8: replace “respectively” with “for SOM”.

Reply: We corrected the mistake.

Page 5, line 9: give range of measurement uncertainties, how small is small?

Reply: In the revision we add information for the standard deviation of gridded data for the
discussion.

Page 5, line 15-17, Fig. 3: The panels for both February and July show features in all three
model distributions that are not seen in the field CO2. For example there is a hotspot on the
eastern African coast in the western Indian Ocean that is not seen in the observations (top
panel). Likewise in July there is an unexplained hotspot west of South America in the Southern
Ocean. So, “the models captured the major features of spatial distribution of observed CO2”
plus quite a bit more. Can the authors discuss this further in page 5, line 30 - page 6, line 2?

Reply: See the reply to question 1.
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Page 8, line 8: “prediction” should be “predictions “.

Reply: We corrected the mistake.

Acknowledgements. Include, as suggested on SOCAT’s website: “The Surface Ocean CO2
Atlas (SOCAT) is an international effort, endorsed by the International Ocean Carbon
Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS) and the
Integrated Marine Biogeochemistry and Ecosystem Research program (IMBER), to deliver a
uniformly quality-controlled surface ocean CO2 database. The many researchers and funding
agencies responsible for the collection of data and quality control are thanked for their
contributions to SOCAT.

Reply: We revised the acknowledgements as suggested.

Table 1: Add a first column ‘Feature’, e.g., 1-input space mapping, 2-prediction by, 3-
problems, 4-data scaling, 5-results affected by. Then revise the SVM, FNN, SOM columns
accordingly.

Reply: We revised the table as suggested.

Table 1, line 9: ‘closet’ should be ‘closest’.

Reply: We corrected the mistake.

Figure 3: The labels in white font are too small to read.

Reply: We enlarged the labels.



Response to referee #2

We thank referee#2 for the thoughtful comments, especially on the appendix. We have
revised the appendix substantially to address the reviser’s constructive opinions. Here we
documented our responses to the reviewer’s comments point-by-point.

This “technical note” discusses the formation of global maps of surface ocean CO2 from
limited measurements using inferred dependence on (latitude, surface temperature SST,
salinity, chlorophyll concentration, mixed-layer depth, difference between monthly- and
annual-mean SST). The dependence is inferred by three methods: selforganisation map
(SOM), feedforward neural network (FNN) and a new method (support vector machine; SVM).
The results of these three methods, “trained” on a fraction of the data, are compared with
the remaining data. The correlations are not particularly good for any (best at R2 = 0.715 for
SVM) considering there are 6 independent variables aiding the fit. However, the results of all
three methods for global air-sea CO2 flux are very close and the CO2 maps are visually similar.
This similarity extends to a band of high CO2 concentration in February 2005 extending west
from Chile where there are apparently no CO2 measurements. This extrapolation from CO2
observations is presumably via a similar feature in (at least) one of the 6 independent
variables. There should be more discussion: (i) of the quality of the fit to observed data,
especially in relation to the estimates of air-sea flux and the danger that the methods agree
with each other more than with reality; (ii) of the extrapolation feature west of Chile (in
particular - perhaps also a careful examination for whether there are others) and whether it
can be believed in terms of the values of the independent variables — is this set of six values
closely approximated somewhere else where there are CO2 measurements constraining the
CO2 estimate?

Reply: First on the quality of fit. As the three model are unbiased, i,e, the mean difference
between modeled CO2 and observation is statistically zero, we take the quality here means
the correlation and the standard deviation between modeled CO2 and observation. Then
quality is not only determined by the capability of the models, but also the variability of the
data (we added this information in the revised manuscript).

Second on the relation to the estimates of air-sea flux. The models may produce differently
higher than observed CO2 in some areas and lower CO2 in others. The flux could be largely
affect by this and by different wind. That all three models produced similar global fluxes
indicates that the effect is small.

Third on the danger that the methods agree with each other more than with reality. They are
quite different issues. The answer to the quality of fit indicates the models cannot agree with
reality than the variability of the reality. Whereas, the agreement between models is



determined mainly by their similarity. For example, SVM is considered to be a one layer FNN
in some articles; so FNN agrees better with SVM than with SOM.

Fourth on the extrapolation. Yes, the extrapolation approximate unmeasured area with
somewhere that has a similar biogeochemical property and CO2 measurement.

Although the organisation and English are generally good, | think some sections and especially
the Appendix are unclear/obscure, mainly due to inconsistent or missing explanations,
definitions or notation. Most of the following detailed comments are about this aspect.

Reply: We have revise the appendix substantially to address to issue.

Page 2, lines 12 and 18. “dSST denotes the difference between the monthly and annual means
of SST” implies 12 discrete values of dSST; how does this “improve expressing the seasonal
variable continuously”?

Reply: Let’s consider three measurements taken on January 1, January 31, and February 1.
Using month as the seasonal variable, the variable values of the first two measurements are 1
and the last is 2. However, the seasonally the last two are nearly the same. dSST reflects
better the actual change of seawater property caused by season change.

Page 3, Line 13. | think you mean “. . to the range (0, 1) for the SVM . . .”

Reply: We revised the expression accordingly.

Page 3,. Line 21 (i.e. line after (5)). Why between 0.1 and 0.9 not between 0 and 1? “better”
compared with what? Why should scaling the output help?

Reply: For fCO, close to 0 and 1, and a small change in fCO, requires very large adjustment of
model parameters, which slows down the convergence of training. We added this in the
revised manuscript.

Page 4, Lines 1-2. “We used Eq. (4) to scale . . SOM”. There is no mention of this in Appendix
A.1, indeed after (Al) it is stated that the diagonal factors of the scale matrix f are equal to 1.

Reply: In the appendix section for SOM, we added “In our application, the data for each input
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variable were scaled to be unitless by its mean and standard deviation”.

Page 4, Lines 2-3. “Based on preliminary studies, we applied a factor of 2 to .. SST and
CHL..”. What preliminary studies? Is this subjective, i.e. why should SST and CHL be
emphasised?

Reply: SOM is indeed subjective. In our knowledge, other applications scaled the data with
different subjective factors to change the impact of independent variables on the distance
defined by Eq.(A1). In our application, we scaled the data non-subjectively and uses the scale
factors to change the impact, which in our opinion is easier to understand. Because CO2
shows a much higher correlation with SST and CHL than with others, we subjectively used a
factor of 2 for them. There is no theoretical basis for this choice. We revised the manuscript
to address the issue and revised “Based on preliminary studies” to “Based on our preliminary
correlation analysis”

Page 4, Line 7. “prediction for an input” needs explaining. Inputs are supposed to be known,
not “predicted”.

Reply: We revised “Making prediction for an input” to “Making a CO2 prediction for an input”

Page 4, Lines 8, 9. “map size”. In normal language the map size is the earth’s surface area. Do
you mean resolution, equivalent to the number of CO2 output locations? Please explain / use
correct word.

Reply: We revised “the feature map size” to “the number of neuron cells”

Page 5, Line 8. “respectively” should be “for SOM”

Reply: We corrected the mistake.

Page 5, Lines 11, 15. Please explain “normalized”/“normalization”

Reply: We revised the manuscript and explained “normalized”/“normalization”.

Page 6. To have value, this needs to be understood in its own terms; the reader should not
have to refer to cited references to understand the words used and the overall meaning. Too
many words are not defined or explained. Also, it is too abstract. This is a manuscript about
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“output” CO2, depending on “inputs” LAT, SST, SSS, CHL, MLD, dSST. Presumably this applies
to A.1, A.2 and A.3 —say so and do not use vague terms like “feature space” — at present the
reader has to guess what you mean.

Reply: We have revised the appendix substantially according to address the concern.

(A.1..) Page 6 Line 23. What is “feature space” in oceanographic terms?

Reply: We removed the jargon.

Lines 23-24. “usually represented by grid points in two dimensional space”. Never mind about
“usually”; describe in terms of the problem here.

Reply: We revised the expression to be specific.

Line 24. “weight vector w”. This name is confusing.

Reply: We changed the symbol and revised the descriptions.

page 7, lines 7-8 weights (weight factors) h are defined by (A3). “w” is the result of applying
the weights “h” to combine values of “v” at various locations [presumably to represent “v” at
grid locations rather than original locations, but this is not clear to the reader. If this the case,
then “w”is “gridded v” or “interpolated v”]. See also the comment on page 7 line 21. Line
25. Not “a data vector” which might refer to any vector at all, but “an input data vector” (I

guess).

Rely: We changed the symbol and revised the descriptions.

page 7, Line 30. “best matching cell (BMC)” needs explaining.

Reply: We revised the descriptions.
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page 7, Line 30. “minimizing the distance”. What is varied to do this?

Reply: We revised the descriptions.

Page 7 Line 4. “matched”. Either this is the wrong word or it needs explaining.

Reply: We revised the descriptions.

Line 17. “vector x of input data”. In A.1 the input data were “v”. Use consistent names for
variables.

Reply: We revised the descriptions.

Lines 20-22. You have input data, hidden neurons and output. There should be distinct
variable names for each of these, e.g. v, x, y respectively. Here you have y for the hidden
neurons and for the output, which is confusing.

Reply: We changed the symbols and revised the descriptions.

Line 21. “w is the weight vector”. Indeed this seems correct for its use in (A4) but that is very

different from its use in (A1). Use different terms for different quantities (c.f. comment on
page 6 line 24).

Reply: We changed the symbols and revised the descriptions.

Line 22. “The training updates the offset and weight parameters”. What are the starting
values before updating? Do you mean “weight vector” as in line 21?

Reply: We revised the descriptions. The parameters are initialized randomly between -1 and
1. We added this information in the revised manuscript.
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Line 23. What is “e” or is it defined by (A5)? Please make this clear.

Reply: Yes. It is the “e” defined b (A5).

Line 24. “modelled . . y” is unclear (especially because you use “y” for hidden neurons and
output). Why are two “y” in this line in bold type but not the third or “y” in (A4)?

Reply: We revised the description. Bold font indicate vector or matrix.

Line 24. “w includes both . .” This seems to be defining a vector with more components; it
should have a new name.

Reply: We used a new name.

Line 28. “is the learning rate”. How is its value decided?

Reply: The initial value is about 0.25. It is determined by try-and-error. A small value make
training slow. A large value make a training diverge. We added the information in the revised
manuscript.

Line 30. “derivatives of e by w”. Do you mean “derivatives of e with respect to w”.

Reply: We revised the description.

Page 8, Lines 6-10. “The SVM . . SVM parameters.” Is this relevant?

Reply: We removed this part.

”

Line 14. “independent variables”, “high dimensional space”, “target variable”. Please define
these in terms of the oceanographic problem in question.
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Reply: We removed these jargons.

Line 16. “minimizes” — what is varied to do this?

Reply: We revised the description.

Lines 18-19. “subjecting to the constraint”. (A11) looks like a definition of “e” and is not a
constraint unless “e” is defined in some other way which needs to be stated.

Reply: We revised the description and re-arranged the equation.

Line 27. Can there be an explicit expression for '? Where has “b” in (A9) gone to? Table 1.
SOM column half way down. “closest” not “closet”!

Reply: We corrected the mistake.

Figure 3 caption. Please explain “normalized to 2005”.

Reply: We revised “normalized to 2005” and in the section 4 added that fCO2 means trend-
removed fCO2 unless specified otherwise.






Response to referee #3

We thank referee#3 for many valuable comments. As not all questions could be answered
satisfactorily without extending the short technical note to a full research paper, the
following responses address the referee’s opinions in the scope of the technical note.

General points: More detail of the exact data application steps are required: Did the
application of the methods follow the biogeochemical province-by-province approach of
SOCOM, or was all global data combined together?

Reply: All global data were combined together to trained the models. We did not model the
biogeochemical provinces of SOCOM for the reason that not all the provinces have sufficient
data for training the models. Dealing with the discontinuity near the borders of provinces are
also problematic in global mapping. Although SOCOM compared models by the province-by-
province approach, most of the models did not follows the province approach. One of the
defined the provinces subjectively, another used SOM to define the provinces, but not of
them discussed the border problem in detail.

General points: A comment regarding the use of a single trend normalization rate would be
welcome. It is known that this is not globally uniform (e.g. Takahashi et al., 2014) and so it
would be good to understand the impact of this choice.

Reply: It’s would be interesting to see the impact of using different rates for different areas.
However, the approach is a challenge itself as it is difficult to determine the applicable areas
for different rates without introducing subjective factors; therefore, it is not realistic for this
study that focus on comparing machine learning models.

Why are the correlations so much poorer than that achieved by the application of the SOM-
FFN approach of Landschutzer et al, 2014)?

Reply: No model can fit data better than the variability of the data. When CO2 data are
subdivided by region or by biogeochemical province, the variability becomes smaller and the
data can be fitted better. Landschutzer et al (2014) subdivided the data, so it’s not a surprise
that their fitting showed better correlations.

Within the model validation section, was the random selection of 50% data carried out only
once or multiple times? What is the effect of this random selection compared to say, using
data clustered around 2005, or only data from regions where pCO2 varies the most, or only



using the most recent data? | would imagine this would be useful information for other
researchers looking to apply the methods themselves, whether to map sea surface pCO2 or
indeed other biogeochemical parameters. As mentioned above, the study would benefit with
comparison with independent dataset e.g. time series at BATS / HOTS. There is very little
coverage on uncertainties. More detail on how these are calculated, especially for regions
where there are no observational data with which to compare (e.g. South Pacific / Southern
Ocean) would be very welcome. This could useful be useful in explaining the anomolous flux
feature currently prevalent in Figure 3 in the South Pacific, which is not mentioned in the text
and does not appear to be supported by observations or previous studies (e.g. the Takahashi
climatology). They are substantial

Reply: The random selection of data was determined by a random number seed. We tested
that using different random seeds did change the results significantly. Regarding selecting
data clustering around 2005 or recent years, we would like to point out that this may be
carried out regionally, but not globally because of scarce measurements. In each month of a
year, there might be one or two cruises or none at all doing measurements for the whole
globe. Applying the machine learning models to BATS/HOTS should be an independent
subject as more data become available the model equation and inputs should be different.
For example, the LAT variable should be removed from the model and the measured SST, SSS,
and CHL should be used.

Figures: - Figure 2 - unity line is not easily seen. Possibly changing the color of data points to
gray could remedy this? - Figure 3 - needs larger labelling as to what they are showing. A
column title would be useful, and a more color-blind friendly colorscale.

Reply: We used gray for data points. This improves the figures’ appearance.

p5 17 - what do the uncertainties represent? Are these the standard error of the fit, standard
deviation of the mean difference between predicted and observed values? How do these
compare to other non neural network methods applied during SOCOM?

Reply: The uncertainty is the standard deviation of the difference between predicted and
observed values. We added this to the manuscript. In our opinion, comparing the uncertainties
of different models is not meaning full. For example, a model in SOCOM used spline fitting.
As we know that spline fitting can fit data perfectly well, but a perfect spline fitting may lead
to over interpolation. Another example is SOM. Given a very large number of neuron cells,
SOM can also produce perfect fittings, but then the prediction for the spatial distribution of
CO2 would be uninterpretable.
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p5 19 - what are the measurement uncertainties?

Reply: The gridded SOCAT includes standard deviation varying from 0.1 patm to 71.2 patm.
We added this information in the revised manuscript.

p5 10 - what is this uncertainty from temperature?

Reply: Yes, it is. This is not relevant anymore. We used measurements uncertainty for the
discussion.

p5 11 - what is the average standard deviation of repeat measurements (should also reference)
Reply: About 12.5 uatm. We added this to the manuscript.

p5 13 - why is only july looked at, what is the uncertainty for the full year? How much of this
is due to the normalization method?

Reply: We thought that the manuscript only showed CO2 maps in July and February, so using
July as an example was sufficient. Now we included the standard deviation for all months. The
effect on the STD by normalization is small. The STD of normalized fCO2 range from 0.1
uatm to 103.1 uatm and the mean is 12.5 uatm; whereas the STD non-normalized fCO2 range
from 0.1 uatm to 107.5 uatm and the mean is 14.6

p5 25 - there seems some agreement with other studies for 2000 but substantial disagreement
with other estimates (Wanninkhof et al., 2013, Rodenbeck et al., 2015) for 2010. This is
surprising given that this is when there are most observational data and so it could be assumed
that this era would be best modelled. Equally it is rather worrying that the same models as used
in the SOCOM study are showing substantially higher estimates for the air-sea CO2 flux for
the same input dataset. Is this related to the choice of wind field or how the mapped pCO2
fields are built? How do the mapped pCO2 fields compare with other methods? Some
comment on this discrepancy would be greatly appreciated. In particular, comment on how
fluxes for years other then 2000 are calculated would be useful as this is not currently
explained. Is the systematic trend of 1.5uatm/year simply reintroduced.

Reply: Yes, the flux estimate is highly dependent on wind products as shown by Wanninkhof
et al. (2013) and Zeng et al. (2014). We added a short comment to the manuscript.

p5 127 - the within-model differences are smaller, but this would be expected as they are
essentially iterations of a similar technique. More disconcerting is the substantial offset of this
group of models with other independent approaches. As mentioned above, more
comment/discussion on this aspect would be useful.

Reply: SOCOM shows that FNN agree well with other models in general. Inter-comparison of
model by different authors is important but beyond the scope of this manuscript.
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Technical note: Evaluation of three machine learning models for
surface ocean CO2 mapping

Jiye Zeng?, Tsuneo Matsunaga!, Nobuko Saigusa®, Tomoko Shirait, Shin-ichiro Nakaoka', Zheng-Hong
Tan?

!National Institute for Environmental Studies, Tsukuba, Japan
2Department of Environmental Science, Hainan University, China

Correspondence to: Jiye Zeng (zeng@nies.go.jp)

Abstract. Reconstructing surface ocean CO, from scarce measurements plays an important role in estimating oceanic CO,
uptake. There are varying degrees of differences among the 14 models included in the Surface Ocean CO, Mapping (SOCOM)
inter-comparison initiative, in which five models used neural networks. This investigation evaluates two neural networks used
in SOCOM, self-organization map and feedforward neural network, and introduces a machine learning model called support

vector machine for ocean CO, mapping. The technique note provides a practical guide to selecting the models.

1 Introduction

The global ocean is a major sink for anthropogenic carbon and therefore an important contributor for slowing down the human-
induced global warming (Stocker et al., 2013). For calculating the oceanic CO, uptake, various models have been used to
interpolate scarce CO, measurements in the surface ocean spatially and temporarily to obtain basin-wide (e.g. Zeng et al.,
2002; Lefevre et al., 2005; Chierici et al., 2006; Sarma et al., 2006; Jamet et al., 2007; Friedrich and Oschlies, 2009; Telszewski
et al., 2009; Takamura et al., 2010; Landschiitzer et al., 2013; Nakaoka et al., 2013; lida et al., 2015; Goddijn-Murphy et al,
2015) and global ocean CO, maps (Takahashi et al., 2002, 2009 and 2014; Park et al., 2010. Rédenbeck et al., 2013; Sasse et
al., 2013; Jones et al., 2015; Zeng et al., 2015). The Surface Ocean CO, Mapping (SOCOM) inter-comparison initiative
revealed varying degrees of differences among 14 models (R6denbeck et al., 2015), of which 5 used neural networks. They
include self-organizing maps (SOM) and feedforward neural networks (FNN). The SOM has a long history in CO, mapping
(Lefevre et al., 2005; Friedrich and Oschlies, 2009; Telszewski et al., 2009; Nakaoka et al., 2013). Recently, the FNN is gaining
popularity in this field (Landschitzer et al., 2015; Zeng et al., 2014 and 2015). In this investigation we introduce a machine
learning model called support vector machine (SVM) for ocean CO, mapping and compare the SVM with the SOM and FNN.

We intend to provide a practical guide for using these machine learning models.
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2 Model Equations

The machine learning models included in this study cannot directly model the long term trend of CO.. Therefore, we express
the dependence of CO, fugacity (fCO,) on year (YR), month (MON), latitude (LAT), and longitude (LON) as the sum of a
nonlinear static component and a linear trend component:

fCO, = Fyapic(LAT, LON,MON) + Fyrona (YR). (1)

As available observations are scarce with respect to the biogeochemical properties of the surface ocean, we used sea surface
temperature (SST), sea surface salinity (SSS), chlorophyll-a concentration (CHL), and mixed layer depth (MLD) as the proxy
variables of space and time. These proxy variables were commonly used by models included in the SOCOM. The model
equation becomes
fCO, = Fyaic(LAT,SST, SSS, CHL, MLD, dSST) + Fyyena(YR), (2)

where dSST denotes the difference between the monthly and annual means of SST. Here we excluded LON and MON. They
have a circular property and therefore cannot be used directly. For instance, longitude -180 degree is geographically connected
to longitude 180 degree, but numerically they appear to be two extreme longitude values to the models. Zeng et al. (2014 and
2015) circumvented this problem by using sine and cosine transformed components. Their approach could unintentionally
enhance the influence of LON and MON on fCO; as one more derived variable from each of them were added to the model.
We excluded LON for the belief that the combination of SST, SSS, CHL, and MLD contains sufficient spatial information, but
retained LAT for its different seasonal and geophysical meanings in the northern and southern hemispheres. Replacing MON
by dSST also improves expressing the seasonal variable continuously, especially for those measurements taken near the start

or end of a month.

3 Data

We extracted monthly fCO, from the track-gridded database of the Surface Ocean CO; Atlas (SOCAT) version 3.0* (Pfeil et
al., 2013; Sabine et al., 2013; Bakker et al. 2013). The database has a 1°x1° spatial resolution and includes global measurements
from 1970 to 2014. Similar to Zeng et al. (2014), we excluded some data points by these criteria: (i) fCO, values smaller than
250 patm or larger than 550 patm, (ii) ocean depth smaller than 500 m, (iii) salinity smaller than 25.0, and (iv) year before
1990. A total of 158,052 data points were extracted with these conditions.

! http://www.socat.info/
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The monthly SST data of 1990 to 2015 were extracted from the Optimum Interpolation (OI) V2 product? of NOAA (Reynolds
et al., 2002). The monthly SSS climatology was extracted from the World Ocean Atlas 2013 (WOA13) product® (Boyer et al.,
2013), which contains the monthly mean SSS from June 27, 1896 to December 25, 2012. The monthly CHL climatology was
calculated using the MODIS Aqua and SeaWiFS climatology*, which covers the period of 2012 to 2015. The mean of the two
CHLs was used as the CHL climatology. The mixed layer data were derived from the Monthly Isopycnal and Mixed-layer
Ocean Climatology® of NOAA (Schmidtko et al., 2013), which includes the period of 1955 to 2012.

4 Machine Learning Models

The Appendix and Table 1 summarize the algorithms of the three models. Here we focus on discussing their usage in CO;

mapping.

Zeng et. al. (2014) presented a method to model the linear component in Eq.(2). Instead of repeating the process, we used their
annual rate of 1.5 patm to remove trend from fCO- to normalize it to the reference year 2005, i.e.,

fcopormalized = £c(0, — 1.5 = (YR — 2005) (3)
Although Takahashi et al (2014) obtained a global mean rate of 1.9 uatm yr?, we used 1.5 patm yr? as this rate was obtained
by using the gridded fCO, of SOCAT version 2. The normalized fCO, was used to model the nonlinear component in Eq.(2).
In later discussions, fCO, means the normalized fCO, unless explicitly stated. Similarly, we applied the log transform of Zeng
et. al. (2014) to CHL prior to data scaling discussed below, i.e.,

CHL =log;,(1.0 + CHL). @)

For a given dataset, the SVM requires a prior step to find the optimal value for the parameter yin Eq.(A10) and the parameter
oin Eq.(A15). To shorten the training time, we randomly chose 10% of the measurement data in this step and obtained 10 for
yand 0.06 for o Note that these values are dependent on data scaling, which is necessary in this case to avoid overflow problem
in solving Eq.(A12). We scaled all input variables LAT, SST, SSS, CHL, MLD, and dSST by their minimum and maximum
to confine them in the range (0, 1), i.e.,

VY~ Umin
v=——"N"0 5
Ymax ~ Ymin ( )

2 http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html

3 https://www.nodc.noaa.qov/OC5/woal3/

4 http://oceancolor.gsfc.nasa.gov/cgi/l3

5 http://www.pmel.noaa.gov/mimoc/
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Data scaling is not necessary for the FNN, but can improve its performance. Following Zeng et al. (2014), we scaled the input

variables by their mean and standard deviation as

v=v—f7. (6)

N

The output variable fCO, is scaled by
v=01+08—"2n_ @)

Ymax ~ Ymin

This confines the scaled fCO, between 0.1 and 0.9 for better response to changes of input variables. The kernel function
Eq.(A4) has the property that for any input in (-o0,+o0), the output varies between 0 and 1. For fCO, close to 0 or 1, a small

change in fCO; requires very large adjustment of model parameters, which slows down the convergence of training.

We used 64 hidden neurons for the FNN as Zeng et al. (2014) did. The learning rate in Eq.(A6) was set to 0.25 by try-and-
error. A small value makes training slow; whereas a large value may make a training diverge. The constant in Eq.(A8) was
determine dynamically in each iterative training loop. It was taken as 10 times the mean of absolute differences between

modelled and observed fCO,. We experienced that this method improves the performance of training.

Data scaling is critical for the SOM, as the distance defined by Eq.(A1) would be affected by variable units. We used Eq.(6)
to scale input variables in training the SOM. Based on our preliminary correlation analysis, we applied a factor of 2 to enhance
the influence of SST and CHL on the distance. Using such a subjective factor is the only way to make the correlations between

the output and the input variables more in line with observed correlations.

From the labelling procedure of SOM described in the Appendix, it is not difficult to see that the number of neuron cells in
SOM affects the labelling and hence the prediction. Unfortunately, there is no guideline for choosing the size. Based on
previous studies (Telszewski et al., 2009 and Nakaoka et al. 2013), we used 20,000 neuron cells, roughly one neuron cell for

one 1x1 grid cell of sampled areas.

5 Model Validation

We examined the goodness of fitting by randomly selecting 10% to 50% of the data points to train the FNN and SVM, and to

label the SOM; and then calculated the correlation coefficient between modelled and observed CO; of the selected data points.

The SOM vyields the best correlation in the case of 10% of randomly selected data points and the correlation decreases with

the number of data points (Fig.1). The reason is that for a given number of neuron cells, the fewer the data points, the less
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possible a neuron cell will be labelled by multiple measurements and the more likely that the prediction will find the same CO;

value used for labelling. Therefore, the goodness of fit does not necessary mean good SOM modelling.

The correlations obtained by the SVM and FNN do not vary much with the number of data points. While the SVM’s correlation
decreases monotonically, even though by only a little, with the number of data points, the FNN’s correlation obtained with
75000 data points is larger than that with 60000 data points. The FNN is known for not being able to find the global optimum
in training. This case could be an indication of an imperfect training. The FNN appears inferior to SVM in all case. However,
imperfect training does not account for all the differences. If we use the number of model parameters to be determined by the
training as the indicator of the dimension of the model space, the FNN’s dimension is far smaller than that of the SVM. The
former is determined by the number of hidden neurons and input variables, whereas the latter is determined by the number of
training data. For 6 input variables, 15000 training data, and 64 hidden neurons, the number of parameters is 509 for the FNN
and 15001 for the SVM.

A better indicator for the performance of the models would be the goodness of prediction. To emulate the situation that the
sampled area was only a small portion of the global ocean, we evaluated the goodness of prediction by training FNN and SVM
and labelling SOM with 10% of randomly selected data to make prediction for the rest of the data. Fig.2 shows that the SVM
yielded the best correlation (R?=0.72), the FNN fell behind (R?=0.67), and the SOM performed the worst (R?=0.54). The
differences between predicted and observed fCO, are 0.1+17.4 patm for SVM, 0.1+18.9 patm for FNN, and 0.2+23.3 patm
for SOM. Comparing to the variation of fCO, measurements, these differences are small and their uncertainties are in the same
order of magnitude as the variation of measurements. Let’s examine the standard deviation (STD) of fCO; in those grids having
at least 3 data points. The track-gridded fCO, in SOCAT version 3.0 includes STD ranging from 0.1 patm to 71.2 patm and
the mean is 5.2 patm. Calculating the STD of normalized fCO; in the same grids and in the same months of all years yielded
a mean of 12.5 uatm in the range of 0.1 patm to 103.1 patm. The normalization had little effect on the STD as the calculation

for none normalized fCO- gives a mean STD of 14.6 patm in the range of 0.1 patm to 107.5 patm.

6 Differences

Figure 3 shows fCO, maps in February and July, 2005, which is the reference year for normalization. In the mapping, we
randomly selected 50% of the data to train the FNN and SVM and to label the SOM. All models captured the major features
of observed fCO; distribution. The SOM exhibits obvious discontinuity because of its discrete characteristics of picking up
fCO; values from the labelled SOM. For year 2005, the mean fCO, difference is -0.05+12.73 patm for FNN-SVM and -
0.6+18.80 for SOM-SVM. The uncertainty is the standard deviation of the mean difference between predicted and observed
values. The statistics indicates that FNN agrees better with SVM than SOM does.
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Although the differences among models might be on the order of 10 to 20 patm, the effect on the global ocean CO; flux
estimate is small (Fig.4). The fluxes are calculated using the wind speed from ECMWF’s interim product (Deea et al., 2011).
Our estimate for the oceanic uptake is on the higher end among those in Wanninkhof et al. (2013) and Le Quéré et al. (2015).
For example, Wanninkhof et al. (2013) reported that the median sea-air anthropogenic CO; fluxes centered on year 2000
ranged from 1.9 to 2.5 PgC yrtamong the seven models. In comparison, our estimates by the three models are about 2.4 PgC
yr. The mean difference of CO, flux is 0.02 PgC yr* between the FNN and the SVM (FNN-SVM) and 0.06 PgC yr* between
the SOM and the SVM (SOM-SVM). They are small in comparison with those differences among the models in Wanninkhof
et al. (2013) and Le Quéré et al. (2015). Note that the flux estimate is highly dependent on wind products as shown by
Wanninkhof et al. (2013) and Zeng et al. (2014).

On the spatial scale of tens of degrees, the three models show good mutual agreement for modelled fCO, distributions among
them. However, each model shows distinguished fine structures, which are determined by the biogeochemical processes in the
ocean, by model parameters obtained from training, and by the characteristics of the models. We believe that the modelled

monthly fCO, distributions are true to the degree given by the model validations.

7 Summary

The main features of the three machine models are listed in Table 1. The SVM is recommended when the computer has enough
memory to store the matrix in Eq.(A12), which is proportional to the square of the number of training data. The SVM performs
the best, but the training time could become very long when the number of training data is too large to be handled by a computer
without using virtual memory. For any given dataset, using the SVM requires a prior step to find the optimal value for the

parameter yin Eq.(A10) and the parameter o in Eq.(A15).

The FNN model does not perform as well as the SVM, but the number of training data does not affect its training as much as
the SVM’s. The training time can become long when a large number of hidden neurons are used and many iterations are needed
to achieve convergence. It takes longer time to train the FNN than the SVM for a small number of data points. However, the

FNN is simpler to use as it requires no prior step.

The SOM is recommended only when the other two models have over fitting or over interpolation problems. The SOM
performs the worst and is not as straightforward as the others as its result depends too much on data scaling and the number of
neurons. An advantage of the SOM is that once trained, re-labelling the SOM with new CO, measurements and making a new
prediction is fast. Although the SOM does not have the over interpolation problem of the other two, it may produce nonsense

predictions due to its strong dependence on data scaling.
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Appendix
A.1 Self-Organization Map

A self-organizing map (SOM) is a type of artificial neural network that is trained using unsupervised learning (Kohonen,
1984). The SOM in our application comprises grid points on a two dimensional plane. Each grid point, also called neuron
cell, has the same number of parameters as the input variables, which include LAT, SST, SSS, CHL, MLD, and dSST in our
case. Training the SOM is to use samples of input variables to adjust the parameters to make neighbourhood neuron cells

having similar parameter values that reflect certain biogeochemical features of the surface ocean.

We used the batch learning algorithm (Abe et al., 2002) to train the SOM as the result does not depend on the sequential
order of training samples. The parameters were initialized randomly in the range (-1,1). In each iterative training loop, each
training sample is associated with a neuron cell to which the distance defined as follow is the smallest than to other neuron
cells:

d=|f(p—x)|, (A)
where p denotes the vector of neuron cell parameters, x the vector of input variables, and f the scale matrix that we
introduced to change the influence of certain variables on the distance. The components of f are all zero except for those on
the diagonal, which are set to 1 by default. In our application, the data for each input variable were scaled to be unitless by

its mean and standard deviation to eliminate the effect of units on the distance.

The associated neuron cell is called the best matching cell (BMC). After the BMC for all training samples are found, the

parameters are updated by

— ZkhieXk
S G (A2)

where i and k denote indexes of neuron cells and training samples, respectively. The neighbourhood function that determines
the weight factor h is defined as

hu = exp(— "D, (A3)

where |r;; | denotes the geographic distance between the ith neuron cell and the BMC of the kth training sample and q is a
factor that decreases linearly with iteration loop. In another words, the procedure adjusts the parameters of neuron cells
toward those training samples whose BMC are close to them and the amount of adjustment decreases exponentially with the

geographic distance between neuron cells and linearly with the training loop.

The trained SOM needs to be labelled by fCO, for making prediction. The values of fCO, measurements are assigned to their
BMC. Predicting fCO, for a set of input variables is realized by finding the BMC labelled with fCO2 and extract its mean
fCO; value.
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A.2 Feedforward Neural Network

A feedforward neural network (FNN) is an artificial neural network that is trained using supervised learning. Our FNN
comprises three layers (Zeng et al., 2014): An input layer, a hidden layer, and an output layer. The number of neurons in the
input layers is determined by the number of input variables, i.e., LAT, SST, SSS, CHL, MLD, and dSST in our case. The
output layer has only one neuron for fCO,. Each neuron in the hidden layer uses the following kernel function to transform

all input variables:

1
T 1texp(—(b+wx)) '’

Yh (A4)

where w denotes the vector of weight parameters and b the offset parameter. The yy of all hidden neurons become the inputs

of the output neuron, which uses the same kernel function to transform y, to produce fCO».

The training updates the offset and weight parameters, which are initialized randomly in the range (-1,1), by minimizing the
cost function

fW)=>e-e=Zlyn—Yol. (A5

where W’ is the extended vector that include b and w; ym and y, stand for the vectors of modelled and observed fCO2,

respectively. In the gradient descent training algorithm, updating w’ at the training iteration t can be expressed as
wi)=w(t—-1)—ag (A6)

where «a is the learning rate (a positive number smaller than 1), and g the first-order derivative of the cost function:
g=Vf(w)=]"e, (A7)

where J is the Jacobian matrix whose components are derivatives of e with respect to w’ using back propagation method. We

used the efficient Levenberg-Marquardt algorithm (Wilamowski et al., 2010), which derives the gradient as
g=0"-1+uD" e, (A8)

where g is a constant.

A.3 Support Vector Machine

A support vector machine (SVM) is a supervised learning model that was conceptualized in the in 1960s for classification
problems and later extended to regression analysis (Basak et al., 2007). We used the so called least-square support vector
machine for regression (Pelckmans et al., 2002 ) which, similar to FNN, seeks to minimize the error between model outputs
and measurements. The SVM maodels the dependence of fCO, on LAT, SST, SSS, CHL, MLD, and dSST as

y&x) =c'p(x) +b (A9)
where vy is the vector of outputs, x the vector of inputs, ¢ the vector of coefficients, b the offset parameter, and ¢ the kernel

function. The goal of training SVM is to minimizes the cost function

F(c) =5 (c"c+ylel) (A10)

8
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where
e=yx) —c'px)-b (A11)
and yis a constant whose optimal value depends on the data used for training. By applying the Lagrangian multiplier, the

optimization problem eventually becomes solving the linear equation of

0 u’[b]_ [0]
u Q] [a] ~lyl (AL2)
where u is a vector with all components being 1, and the components of Q are
Qi = ox)To(x;). (A13)
Once Eq.(al12) is solved, making a prediction is done by
Vi = 27,'1 aj‘P(Xi)T(P(Xj) (A14)
In this investigation, we used the radial basis kernel function, i.e.,
2
p(x)To(x;) = exp (— HLZT’"> (A15)

where o is a parameter whose optimal value depends on the data used for training.
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Table 1 Feature comparison of the three machine learning models.

Feature

SVM

FNN

SOM

Input space projection

Prediction by

Problems

Data scaling

Results affected by

Projects the input variable
space to a high dimensional
space that is proportional to

the number training samples.

Continuous interpolation.

May over fit and over
interpolate.

Helps solving the linear
equation, but has no effect on
the result.

The parameter values for
regularization and kernel

function.

Projects the input space to a
high dimensional space that
is proportional to the number
of hidden neurons and input
variables.

Continuous interpolation.

May over fit and over
interpolate.

Helps the convergence of
training, but has insignificant
effect on the result.

The number of hidden

neurons.

Projects the input space to a
feature space whose size is
determined by the number of

neurons.

Picking up labelling samples
that have the closest feature
to the input.

Discrete interpolation leads
to spatial discontinuity.
Significant effect on the

result.

The number of neurons and

data scaling.
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Figure 1: Correlation coefficient between modelled and observed fCO, (uatm). The sample size is the number of data points
randomly selected to train FFN and SVM and to label SOM.
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5 Figure 2: Predicted vs observed fCO, (uatm). Ten percent of data points was selected randomly to train FNN and SVM and to
label SOM, and the rest was used for validation.
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5 Figure 3: Distributions of modelled and observed fCO,. The composite map for observations includes fCO; in 1990-2014. Half
of randomly selected data points were used to train FNN and SVM and to label SOM to make prediction. The left panels
show February and the right panels show July.
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Figure 4: Modelled global CO; fluxes. A negative value indicates oceanic uptake.
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