

Author Response to referee comments on “Coastal ocean acidification and increasing total alkalinity in the NW Mediterranean Sea” by Kapsenberg et al.

Overall author response: We thank the Editor for his time and the detailed comments for corrections. For the ease of reviewing our response, we have numbered comments from 1 to 18 and refer to these numbers in the Tracked Changes revised document and in our point-by-point response below in blue.

1. L90 these studies cover various periods ... (delete: study ; twice study in this sentence is not necessary). *Deleted “study”.*
2. L146-148 “The site Point B is an historical sampling point, since 1957, regarding several oceanographic parameters.” Is this sentence ok like this? Looks strange to me. *Revised sentence is: “Point B has been an oceanographic station since 1957”.*
3. L150 “predominantly” is definitely more common. *The correction has been made.*
4. L178-182 “Precision of CT and AT was less than 3 $\mu\text{mol kg}^{-1}$, and the average accuracy was 2.6 and 3 $\mu\text{mol kg}^{-1}$, as compared with seawater certified reference material (CRM) provided by A. Dickson” To my understanding, the accuracy must always be less good (i.e., higher absolute number) than the precision, because it is superimposed on the precision. *Accuracy was determined as the mean offset between the measured and reference value of the CRMs. Precision refers to the repeatability of attaining the same value across replicate bottle samples (which includes errors associated with sample collection, preservation, etc.). We have updated the text to use the phrase repeatability instead of precision: “Average accuracy of CT and AT measurements was 2.6 and 3 $\mu\text{mol kg}^{-1}$, respectively, as compared with seawater certified reference material (CRM) provided by A. Dickson (Scripps Institution of Oceanography). Repeatability of replicate samples was better than 3 $\mu\text{mol kg}^{-1}$.*”
5. L276 ... that salinity only increased ... (suggest to add: only). *Done.*
6. L280 trend (instead of: change)? *Done.*
7. L281 greater (instead of: faster)? *Done.*
8. L351-352 ... but still it increased ... (add: it)? *Replaced with “but it did increase”*
9. L366 were (not: was) *Done.*
10. L385-391 This part must be moved to the Materials and Methods section. *The information in this section has been moved to the Methods section.*
11. L447-448 ... which may result from warming due to increased evaporation) (I think it is useful to add this is not just warming but evaporation following warning) *For simplicity, we have removed the statement indicating that the change in salinity could be associated with warming. This sentence is about trends at 50 m depth. Speculation on the source of salinity change should thus not be attributed to a process that would actually be taking place at the surface. While evaporation could be the source of increasing salinity, one*

would have to discuss movement of the water mass at 50 m, and hypothesize that when this water mass was at the surface it was subject to evaporation. As we do not have knowledge on water mass movement, we have removed speculation on the change in salinity at 50 m.

12. L486 ... are still in agreement. (not: agreeable) *The sentence has been re-written as: “While the uncertainty for DYFAMED pH data is large, the trends are comparable to those observed at Point B”.*
13. L488 I would suggest: This probably indicates that ... *Done*.
14. L495 I suggest for clarity: ... that may be occurring in more coastal regions of the Mediterranean. *Done*.
15. L496-499 I don't quite understand this. You write about a contrast between the western and eastern Med, but the acidification trends are very similar. *We have removed this sentence*.
16. L516 outgassing (instead of: off-gassing)? *Revised sentence reads “Summer warming leads to pCO₂ outgassing”.*
17. L589 delete: a. *Done*.
18. Fig. 2g, 3g and 2n, 3n: the symbol on the y-axis is not correct. Also in other figures some symbols were not printed. Please check. *This occurred while converting the Word document to PDF. The high-resolution images do not have this issue.*

1 **Coastal ocean acidification and increasing total alkalinity in the NW Mediterranean Sea**

2

3 Lydia Kapsenberg¹, Samir Alliouane¹, Frédéric Gazeau¹, Laure Mousseau¹, and Jean-Pierre

4 Gattuso^{1,2,§}

5

6 ¹Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS-INSU, Laboratoire

7 d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France

8 ²Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint

9 Guillaume, F-75007 Paris, France

10

11 [§]Corresponding author

12 E-mail: gattuso@obs-vlfr.fr

13 Phone: +33 4 93 76 38 59

14 **Abstract.** Coastal time-series of ocean carbonate chemistry are critical for understanding
15 how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and
16 have low temporal resolution. At the time-series station Point B in the NW Mediterranean
17 Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analyzed for
18 total dissolved inorganic carbon (C_T) and total alkalinity (A_T). Parameters of the carbonate
19 system such as pH (pH_T , total hydrogen ion scale) were calculated and a deconvolution
20 analysis was performed to identify drivers of change. The rate of surface ocean acidification
21 was -0.0028 ± 0.0003 units $pH_T \text{ yr}^{-1}$. This rate is larger than previously identified open-ocean
22 trends due rapid warming that occurred over the study period ($0.072 \pm 0.022 \text{ }^{\circ}\text{C yr}^{-1}$). The
23 total pH_T change over the study period was of similar magnitude as the diel pH_T variability at
24 this site. The acidification trend can be attributed to atmospheric carbon dioxide (CO_2)
25 forcing (59 %, $2.08 \pm 0.01 \text{ ppm CO}_2 \text{ yr}^{-1}$) and warming (41 %). Similar trends were observed
26 at 50 m but rates were generally slower. At 1 m depth, the increase in atmospheric CO_2
27 accounted for approximately 40 % of the observed increase in C_T ($2.97 \pm 0.20 \mu\text{mol kg}^{-1} \text{ yr}^{-1}$).
28 The remaining increase in C_T may have been driven by the same unidentified process that
29 caused an increase in A_T ($2.08 \pm 0.19 \mu\text{mol kg}^{-1} \text{ yr}^{-1}$). Based on the analysis of monthly
30 trends, synchronous increases in C_T and A_T were fastest in the spring-summer transition. The
31 driving process of the interannual increase in A_T has a seasonal and shallow component,
32 which may indicate riverine or groundwater influence. This study exemplifies the importance
33 of understanding changes in coastal carbonate chemistry through the lens of biogeochemical
34 cycling at the land-sea interface. This is the first coastal acidification time-series providing
35 multiyear data at high temporal resolution. The data confirm rapid warming in the
36 Mediterranean Sea and demonstrate coastal acidification with a synchronous increase in total
37 alkalinity.

38

39 **Keywords** – ocean change, ocean acidification, time-series, pH, alkalinity, dissolved

40 inorganic carbon, pCO₂, Mediterranean Sea

41 **1. Introduction**

42 Maintaining time-series of oceanographic data is essential for understanding
43 anthropogenic changes in the ocean (Tanhua et al., 2013). On land, fossil fuel burning,
44 cement production, and land use changes have contributed ~600 Gt carbon to the atmosphere
45 during the period 1750-2015 (Le Quéré et al., 2016). In the recent decade 2006-2015, an
46 estimated 25 % of this anthropogenic carbon has been absorbed by the ocean in the form of
47 carbon dioxide (CO₂; Le Quéré et al., 2016), and is causing global changes to the ocean
48 carbonate system. Absorption of CO₂ by seawater produces carbonic acid, which decreases
49 seawater pH, and is of great concern for biological processes and marine ecosystems (Doney
50 et al., 2009; Gattuso and Hansson, 2011; Pörtner et al., 2014). Since the preindustrial era,
51 global mean ocean pH has declined by 0.1 (Rhein et al., 2013). Due to the declining trend of
52 ocean pH with increasing anthropogenic CO₂, the process is termed ‘ocean acidification’
53 ~~This expression represents a suite of chemical changes, including increases in total dissolved~~
54 inorganic carbon (C_T) and partial pressure of CO₂ (pCO₂) and decrease in calcium carbonate
55 saturation states (Ω, aragonite and calcite; Dickson, 2010). Rates of ocean acidification differ
56 by ocean region and range from -0.0026 (Irminger Sea, North Atlantic) to -0.0013 (South
57 Pacific) units pH yr⁻¹ (Bates et al., 2014). Such time-series remain spatially limited, especially
58 in coastal regions, which provide valuable ecosystem services (Barbier et al., 2011; Costanza
59 et al., 1997) and are under high anthropogenic impact (Halpern et al., 2008). Here, we present
60 the first coastal ocean acidification time-series at high temporal resolution.

61 Compared to the global ocean, marginal seas serve a critical role in anthropogenic
62 CO₂ storage via enhanced CO₂ uptake and export to the ocean interior (Lee et al., 2011). As a
63 marginal sea, the Mediterranean Sea has a naturally high capacity to absorb but also buffer
64 anthropogenic CO₂ (Álvarez et al., 2014; Palmiéri et al., 2015). This is primarily due to the
65 high total alkalinity (A_T) of Mediterranean waters and overturning circulation (Lee et al.,

Deleted: ,

Deleted: but t

68 2011; Palmiéri et al., 2015; Schneider et al., 2010). In the Mediterranean Sea, the salinity- A_T
69 relationship is driven by the addition of river discharge and Black Sea input, which are
70 generally high in A_T (Copin-Montégut, 1993; Schneider et al., 2007). Combined with
71 evaporation, this results in higher A_T and salinity in the Mediterranean Sea compared to the
72 Atlantic Mediterranean source water (Jiang et al., 2014). On average, Mediterranean Sea A_T
73 is 10 % higher than in the global ocean (Palmiéri et al., 2015). The surface ocean
74 acidification rate, estimated at ΔpH_T (total hydrogen ion scale) of -0.08 since 1800, is
75 comparable to that of the global ocean despite a 10 % greater anthropogenic carbon inventory
76 (Palmiéri et al., 2015). Due to its important role in carbon sequestration and ecological
77 sensitivity to anthropogenic change with economic consequences (Lacoue-Labarthe et al.,
78 2016), the Mediterranean Sea could provide insight to global trends (Lejeusne et al., 2010).

79 Over the last few years, numerous studies have estimated ocean acidification rates
80 across the Mediterranean Sea (Table 1). Together, these studies cover various periods with a
81 range of techniques yielding different results. For example, estimates of change in pH of
82 bottom waters since the preindustrial era range between -0.005 to -0.06 (Palmiéri et al., 2015)
83 and as much as -0.14 for full profile estimates (Touratier and Goyet, 2011). Techniques for
84 estimating ocean acidification in the Mediterranean Sea thus far include: (1) hind-casting,
85 using high-resolution regional circulation models (Palmiéri et al., 2015), the TrOCA
86 approach as applied to cruise-based profile data (Krasakopoulou et al., 2011; Touratier and
87 Goyet, 2011; Touratier et al., 2016) and others (Howes et al., 2015), (2) partially
88 reconstructed time-series (Marcellin Yao et al., 2016), (3) comparative study periods
89 (Luchetta et al., 2010; Meier et al., 2014), and (4) sensor-based observations over a short
90 study period (Flecha et al., 2015). Ocean acidification time-series of consistent sampling over
91 many years are lacking for the Mediterranean Sea (The MerMex Group et al., 2011),

Comment [LK1]: #1

Deleted: study

93 particularly along the coast where river discharge influences the carbonate system (Ingrosso
94 et al., 2016).

95 Compared to the open ocean, shallow coastal sites exhibit natural variability in
96 carbonate chemistry over annual timeframes (Hofmann et al., 2011; Kapsenberg and
97 Hofmann, 2016; Kapsenberg et al., 2015), complicating the detection and relevance of open
98 ocean acidification in isolation of other processes (Duarte et al., 2013). In the NW Pacific
99 coast, rapid acidification of surface waters (ΔpH_T -0.058 units yr^{-1}) at Tatoosh Island was
100 documented in the absence of changes in known drivers of local pH variability (e.g.,
101 upwelling, eutrophication, and more; Wootton and Pfister, 2012; Wootton et al., 2008).
102 Further inshore, in the Hood Canal sub-basin of the Puget Sound, only 24-49 % of the
103 estimated pH decline from pre-industrial values could be attributed to anthropogenic CO_2
104 (Feely et al., 2010). The excess decrease in pH was attributed to increased remineralization
105 (Feely et al., 2010). Acidification rates documented along the North Sea Dutch coastline and
106 inlets were highly variable in space, with some exceeding the expected anthropogenic CO_2
107 rate by an order of magnitude while others exhibited an increase in pH (Provoost et al.,
108 2010).

109 Variability in coastal carbonate chemistry stems from both physical (e.g., upwelling,
110 river discharge; Feely et al., 2008; Vargas et al., 2016) and biological processes (e.g., primary
111 production, respiration, net calcification). Within watersheds, coastal carbonate chemistry is
112 affected by eutrophication (Borges and Gypens, 2010; Cai et al., 2011), groundwater supply
113 (Cai et al., 2003), and land use and rain influence on river alkalinity (Raymond and Cole,
114 2003; Stets et al., 2014). Over longer periods, pH can also be influenced by atmospheric
115 deposition (Omstedt et al., 2015). Through primary production and respiration, coastal
116 ecosystems produce pH fluctuations over hours (e.g., seagrass, kelp) to months (e.g.,
117 phytoplankton blooms; Kapsenberg and Hofmann, 2016). Due to existing pH variability in

118 coastal seas, it is necessary to quantify high-frequency trends in order to interpret the pH
119 changes inferred from lower-frequency sampling.

120 In this study, we present the first complete time-series data quantifying the present-
121 day ocean acidification rate for a coastal site in the Mediterranean Sea, based on weekly
122 measurements of A_T and C_T sampled from 2007 through 2015. For a subset of this time-
123 series, pH variability was documented using a SeaFET™ Ocean pH Sensor in order to assess
124 hourly pH variability. For comparison and consistency with other ocean acidification time-
125 series around the world, we report rates of change based on anomalies (Bates et al., 2014) and
126 identify drivers of change.

127

128 **2. Materials and methods**

129

130 **2.1. Site description**

131 A carbonate chemistry time-series was initiated in 2007 and maintained through 2015
132 in the NW Mediterranean Sea at the entrance of the Bay of Villefranche-sur-Mer, France
133 (Fig. 1): Point B station (43.686° N, 7.316° E, 85 m bottom depth). A second site,
134 Environment Observable Littoral buoy (EOL, 43.682° N, 7.319° E, 80 m bottom depth), was
135 used for pH sensor deployment starting in 2014. These two sites are 435 m apart. Point B ~~has~~
136 been an oceanographic station since 1957. A full site description and research history has
137 been detailed by De Carlo et al. (2013). Briefly, the Bay is a narrow north-south facing inlet
138 with steep bathymetry and estimated volume of 310 million m³. The surrounding region is
139 ~~predominantly~~ composed of limestone with a series of shallow, submarine groundwater karst
140 springs (Gilli, 1995). The North current, a major and structuring counter-clockwise current in
141 the Ligurian Sea, can sometimes flow close to Point B. The Bay can also be, on occasion,
142 influenced by local countercurrents. Both of these hydrodynamics movements have

Comment [LK2]: #2

Deleted: The site

Deleted: is an historical

Deleted: sampling point

Deleted: ,

Deleted: , regarding several oceanographic parameters

Comment [LK3]: #3

Deleted: e

149 signatures of river discharge. Limestone erosion can be observed in the A_T of rivers nearest to
150 Point B (Paillon, due 4 km West; Var due 10 km West; and Roya due 26 km East). River A_T
151 ranges between 1000 to 2000 $\mu\text{mol kg}^{-1}$ (data from *Agence de l'Eau Rhône-Méditerranée-*
152 *Corse*, <http://sierm.eaurmc.fr>), and is lower than seawater A_T . The Paillon River, whose
153 plume on occasion reaches into the Bay (L. Mousseau, pers. obs.), was sampled on 18 August
154 2014 and had a A_T of $1585 \pm 0.1 \mu\text{mol kg}^{-1}$ ($N = 2$, J.-P. Gattuso, unpubl.). Due to low
155 primary productivity, seasonal warming drives the main annual variability in carbonate
156 chemistry at this location (De Carlo et al., 2013).

157

158 **2.2. Point B data collection, processing, and analysis**

159 To document long-term changes in ocean carbonate chemistry at Point B, seawater
160 was sampled weekly from 9 January 2007 to 22 December 2015. Samples were collected at 1
161 and 50 m, using a 12-L Niskin bottle at 9:00 local time. Seawater was transferred from the
162 Niskin bottle to 500 mL borosilicate glass bottles and fixed within an hour via addition of
163 saturated mercuric chloride for preservation of carbonate parameters, following
164 recommendations by Dickson et al. (2007). Duplicate samples were collected for each depth.
165 For each sampling event, CTD casts were performed either with a Seabird 25 or Seabird 25+
166 profiler whose sensors are calibrated at least every two years. Accuracy of conductivity
167 (SBE4 sensor) and temperature (SBE3 sensor) measurements from CTD casts were 0.0003 S
168 m^{-1} and 0.001°C , respectively.

169 Within six months of collection, bottle samples were analyzed for C_T and A_T via
170 potentiometric titration following methods described by Edmond (1970) and DOE (1994), by
171 *Service National d'Analyse des Paramètres Océaniques du CO₂*, at the Université Pierre et
172 Marie Curie in Paris, France. Average accuracy of C_T and A_T measurements was 2.6 and 3
173 $\mu\text{mol kg}^{-1}$, respectively, as compared with seawater certified reference material (CRM)

Comment [LK5]: #4

Deleted: Precision of C_T and A_T

Deleted: was less than 3 $\mu\text{mol kg}^{-1}$, and the average

Deleted: a

177 provided by A. Dickson (Scripps Institution of Oceanography). Repeatability of replicate
178 samples was better than 3 $\mu\text{mol kg}^{-1}$. Only obvious outliers were omitted from the analyses:
179 three C_T values at 1 m ($> 2300 \mu\text{mol kg}^{-1}$), one A_T value at 1 m ($> 2900 \mu\text{mol kg}^{-1}$), and one
180 A_T value at 50 m ($< 2500 \mu\text{mol kg}^{-1}$). The C_T and A_T measurements on replicate bottle
181 samples were averaged for analyses.

182 Calculations of the carbonate system parameters were performed using the R package
183 seacarb version 3.1 with C_T , A_T , *in situ* temperature, and salinity as inputs (Gattuso et al.,
184 2016). Total concentrations of silicate (SiOH_4) and phosphate (PO_4^{3-}) were used when
185 available from Point B (L. Mousseau, unpubl., <http://somlit.epoc.u-bordeaux1.fr/fr/>).
186 Detection limits for nutrients were 0.03 μM for SiOH_4 and 0.003 to 0.02 μM for PO_4^{3-} ;
187 relative precision of these analyses is 5-10 % (Aminot and Kérouel, 2007). Total boron
188 concentration was calculated from salinity using the global ratio determined by Lee et al.
189 (2010). The following constants were used: K_1 and K_2 from Lueker et al. (2000), K_f from
190 Perez and Fraga (1987), and K_s from Dickson (1990). Reported measured parameters are
191 temperature, salinity, A_T , and C_T , and derived parameters are pH_T (total hydrogen ion scale),
192 pH_T normalized to 25 °C (pH_{T25}), pCO_2 , and aragonite (Ω_a) and calcite (Ω_c) saturation states.
193 Salinity-normalized changes in A_T (ΔA_T) and C_T (ΔC_T) were calculated by dividing by *in situ*
194 salinity and multiplying by 38. Except for pH_{T25} , all parameters are reported at *in situ*
195 temperatures.

196 The average uncertainties of the derived carbonate parameters were calculated
197 according to the Gaussian method (Dickson and Riley, 1978) implemented in the “errors”
198 function of the R package seacarb 3.1 (Gattuso et al., 2016). The uncertainties are $\pm 2.7 \times 10^{-10}$
199 mol H^+ (about 0.015 units pH_T), $\pm 15 \mu\text{atm}$ pCO_2 , and ± 0.1 unit of the aragonite and
200 calcite saturation states.

201 To quantify interannual changes in carbonate parameters, the data were detrended for
202 seasonality by subtracting the respective climatological monthly means computed for the
203 period 2009-2015 from the time-series ('monthly means' from hereon). The resulting
204 residuals were analyzed using a linear regression to compute anomaly trends. This approach
205 follows methods from Bates et al. (2014) to allow for comparisons of trends observed at
206 different time-series stations. All analyses were performed in R (R Core Team, 2016).

207

208 **2.3. Deconvolution of pH_T and pCO₂**

209 To identify proportional contributions of various drivers to ocean acidification trends
210 at Point B, deconvolution of time-series pH_T and pCO₂ was performed following methods
211 from García-Ibáñez et al. (2016) for observations at 1 and 50 m. The equation is described
212 below for pH_T, where changes in pH_T are driven by changes in temperature (T), salinity (S),
213 A_T , and C_T , over time (t):

Deleted: , according to the following model

$$214 \frac{dpH_T}{dt} = \frac{\partial pH_T}{\partial T} \frac{dT}{dt} + \frac{\partial pH_T}{\partial S} \frac{dS}{dt} + \frac{\partial pH_T}{\partial A_T} \frac{dA_T}{dt} + \frac{\partial pH_T}{\partial C_T} \frac{dC_T}{dt} \quad (1)$$

215 Here, $\frac{\partial pH_T}{\partial var} \frac{dvar}{dt}$ represents the slope contribution of changing var to the estimated
216 change in pH_T ($\frac{dpH_T}{dt}$), where var is either temperature (T), salinity (S), A_T , or C_T . The
217 sensitivity of pH to var ($\frac{\partial pH_T}{\partial var}$) was estimated by calculating pH_T using the true observations
218 of var and holding the other three variables constant (mean value of the time-series) and
219 regressing it to var . Sensitivity ($\frac{\partial pH_T}{\partial var}$) was then multiplied by the anomaly rate of var (Table
220 2). The calculation was repeated for pCO₂ ($\frac{dpCO_2}{dt}$) in order to compare the rate of increase
221 with that of atmospheric CO₂.

222 As a sub-component of $\frac{\partial pCO_2}{\partial C_T} \frac{dC_T}{dt}$, the rate of anthropogenic CO₂ increase was
223 estimated from atmospheric CO₂ concentrations nearest to Point B (Plateau Rosa, Italy,

225 courtesy of the World Data Center for Greenhouse Gases,
226 <http://ds.data.jma.go.jp/gmd/wdcgg/>). For these data, missing daily values were linearly
227 interpolated, climatological monthly means were calculated and subtracted from the time-
228 series to generate an anomaly time-series. A linear regression was performed on anomalies
229 where the slope represents the rate of anthropogenic CO₂ increase in the atmosphere. Finally,
230 to help identify different processes that might have contributed to the observed trends, linear
231 regressions were performed on changes in A_T and C_T per month (mean value of observations
232 within one month) from 2009 through 2015 and on the salinity- A_T relationship by year.

233

234 **2.4. SeaFET data collection, processing, and analysis**

235 To capture pH variability at higher-than-weekly sampling frequencies, a SeaFET™
236 Ocean pH sensor (Satlantic) was deployed on the EOL buoy (435 m from the Point B
237 sampling site) starting in June 2014, at 2 m depth. Autonomous sampling was hourly and
238 deployment periods averaged 58 ± 25 days with 5 ± 2 calibration samples per deployment.

239 Field calibration samples for pH were collected using a Niskin bottle next to SeaFET
240 within 15 min of measurement. This sampling scheme was sufficient for this site as there is
241 no large high-frequency pH variability. Unlike Point B sampling, SeaFET calibration samples
242 were processed for pH using the spectrophotometric method (Dickson et al., 2007) with
243 purified m-cresol purple (purchased from the Byrne lab, University of South Florida). *In situ*
244 temperature, salinity, and A_T measured at Point B, within 30 min of the SeaFET sampling,
245 were used to calculate *in situ* pH_T of the calibration samples.

246 SeaFET voltage was converted to pH_T using the respective calibration samples for
247 each deployment period, following the methods and code described in Bresnahan et al.
248 (2014) but adapted for use in R. Only 5 % of the data was removed during quality control,
249 due to biofouling in one deployment and battery exhaustion in another, yielding 610 days of

Comment [LK6]: #10

Deleted: ranged between 1 and 3 months. Deployment periods

Moved (insertion) [1]

Deleted: weekly,

Comment [LK7]: #10

253 data. The mean offset between calibration samples and the calibrated SeaFET pH time-series
254 was ± 0.007 , indicating a high-quality pH dataset (data shown in Fig. 7c).

255 The estimated standard uncertainty in SeaFET pH_T is ± 0.01 and was calculated as the
256 square root of the sum of each error squared. The sources of errors are: measurement error of
257 spectrophotometric pH (± 0.004 , $N = 68$ mean SD of 5 replicate measurements per calibration
258 sample for samples collected between 16 July 2014 and 3 May 2016), spatio-temporal
259 mismatch sampling at EOL (± 0.007 , mean offset of pH_T of the calibration samples from
260 calibrated time-series), and variability in purified m-cresol dye batch accuracy as compared
261 to Tris buffer CRM pH (± 0.006 , mean offset of pH_T of the spectrophotometric measurement
262 of Tris buffer from the CRM value).

263

264 **3. Results**

265

266 **3.1. Time-series trends**

267 At Point B from January 2007 to December 2015, more than 400 samples were
268 collected for carbonate chemistry at both 1 and 50 m. Anomaly trends detected at 1 m (Fig. 2)
269 were also significant at 50 m (Fig. 3, Table 2), with the exception that salinity **only** increased
270 at 50 m (0.0063 ± 0.0020 units yr^{-1}). At 1 m, trends were significant for pH_T (-0.0028 units
271 yr^{-1}), A_T ($2.08 \mu\text{mol kg}^{-1} \text{yr}^{-1}$), C_T ($2.97 \mu\text{mol kg}^{-1} \text{yr}^{-1}$), pCO₂ ($3.53 \mu\text{atm yr}^{-1}$), and Ω_a ($-$
272 0.0064 units yr^{-1}). At the same time, temperature anomaly increased ($0.072^\circ\text{C yr}^{-1}$). **Changes**
273 **In** carbonate chemistry parameters were **greater** at 1 m compared to 50 m, with the exception
274 of salinity and temperature. The warming rate at 50 m was slightly greater compared to 1 m,
275 mostly due to increasing summer temperatures since 2007.

276 Strong seasonal cycles of carbonate chemistry parameters were present at Point B at 1
277 m (Fig. 4). Climatological monthly means (2007-2015) are described briefly and listed in

Comment [LK8]: #5

Deleted: , but no significant change in the salinity was detected at 1 m

Deleted: Trends

Comment [LK9]: #6

Comment [LK10]: #7

Deleted: o

Deleted: f

Deleted: faster

284 Table S1. Mean temperature range was 11.2 °C with a maximum at 24.77 ± 1.35 °C in August
285 and minimum of 13.58 ± 0.41 °C in February. The range in A_T was $19 \mu\text{mol kg}^{-1}$ from June to
286 September. The C_T range was $33 \mu\text{mol kg}^{-1}$ with a peak in late winter and minimum values in
287 August and October. Due to summer warming coinciding with the period of peak primary
288 productivity (De Carlo et al. 2013), warming countered the influence of low C_T on pH. As a
289 result, pH_T reached minimum values in summer (8.02 ± 0.03 , July and August) and peaked in
290 late winter (8.14 ± 0.01 , February and March), for an overall annual pH range of 0.12. The
291 corresponding pCO_2 range was $128 \mu\text{atm}$ from February to August. Seasonal cycles were
292 smaller at 50 m compared to 1 m (Table S1).

293

294 **3.2. Deconvolution of pH_T and pCO_2**

295 Deconvolutions of pH and pCO_2 are presented in Table 3 and 4, respectively. The
296 estimated anomaly trends ($\frac{dpH_T}{dt}, \frac{dpCO_2}{dt}$) from the deconvolution fall within the error of the
297 observed anomaly trends (Table 2). The contribution of warming to the pH_T anomaly (-
298 $0.0011 \text{ units yr}^{-1}$, at 1 m) matched the difference between the trends of pH_T and pH_{T25C} (Table
299 2), which verifies that the deconvolution reproduced influences of temperature sensitivity
300 well. Overall, these results indicate that the deconvolution analyses represent the observed
301 trends well.

302 At both depths, the predominant driver of $\frac{dpH_T}{dt}$ and $\frac{dpCO_2}{dt}$ was the increase in C_T .

303 Increasing A_T countered 66-69 and 60 % of the influence of increasing C_T on $\frac{dpH_T}{dt}$ and $\frac{dpCO_2}{dt}$,
304 respectively. At 1 m, warming accounted for 41 and 37 % of $\frac{dpH_T}{dt}$ and $\frac{dpCO_2}{dt}$, respectively.
305 Since warming was slightly greater at 50 m compared to 1 m, warming accounted for a larger
306 proportional influence on $\frac{dpH_T}{dt}$ and $\frac{dpCO_2}{dt}$ at 50 m compared to 1 m. Increasing salinity at 50
307 m contributed slightly to $\frac{dpH_T}{dt}$ (4 %) and $\frac{dpCO_2}{dt}$ (2 %).

308 Atmospheric CO₂ anomaly at Plateau Rosa increased by $2.08 \pm 0.01 \text{ ppm yr}^{-1}$ ($F_{1,3285}$
309 = 4664, $P << 0.001$, $R^2 = 0.93$) during the study period 2007-2015, and represents the
310 anthropogenic CO₂ forcing on seawater pH. To estimate the influence of anthropogenic CO₂
311 forcing at Point B, we assume air-sea CO₂ equilibrium (e.g., increase in atmospheric CO₂
312 causes an equal increase in seawater pCO₂) for the water mass at 1 m. This assumption is
313 based on evidence that Point B is a weak sink for atmospheric CO₂ with near-balanced air-sea
314 CO₂ flux on an annual time-frame (De Carlo et al., 2013). Considering the error associated
315 with deconvolution of pCO₂ at 1 m, atmospheric CO₂ increase can, at most, represent 38-43
316 % of the total C_T contribution ($\frac{\partial pCO_2}{\partial C_T} \frac{dC_T}{dt}$) to $\frac{dpCO_2}{dt}$. This leaves 57-62 % of the total C_T
317 contribution to pCO₂ trends unaccounted for.

318 As A_T is not influenced by addition of anthropogenic CO₂ to seawater, but it did
319 increase, the next question was whether or not the changes in A_T and C_T were process-linked.
320 At 1 m, regressions of annual monthly trends of A_T and C_T revealed similar seasonal cycles
321 for both parameters (Fig. 5, Table S2). The fastest increases in A_T and C_T occurred from May
322 through July. The smallest (non-significant) changes occurred in January. The synchronicity
323 between monthly trends of A_T and C_T was also observed at 50 m, but the rates were slower
324 (analysis not shown).

Deleted: still

Comment [LK11]: #8

Deleted: d

326 3.3. Salinity and A_T relationships

327 Over an annual observation period at 1 m, salinity was a poor predictor of A_T , with the
328 exception of 2007 (Fig. 6). The R^2 value for each annual salinity- A_T relationship at 1 m
329 ranged from 0.00 (in 2013) to 0.87 (in 2007) with y-intercepts (A_{T0} , total alkalinity of the
330 freshwater end-member) ranging between -176 $\mu\text{mol kg}^{-1}$ (in 2007) and 2586 $\mu\text{mol kg}^{-1}$ (in
331 2013). The interannual variability of the salinity- A_T relationship was driven by the variability
332 in A_T observed at salinity < 38.0 that was present from November through July.

335 Changes in salinity (based on monthly means) at Point B were small and ranged from
336 37.64 ± 0.26 to 38.21 ± 0.11 from May to September, following freshwater input in winter
337 and spring and evaporation throughout summer and fall (Fig. 4). Highest (> 38.0) and most
338 stable salinity observations were made in August through October and coincided with the
339 period of maximum A_T (2562 and $2561 \pm 9 \mu\text{mol kg}^{-1}$ in September and October,
340 respectively). Minimum A_T ($2543 \pm 14 \mu\text{mol kg}^{-1}$) was observed in June, one month after
341 minimum salinity. To capture this seasonality without the inter-annual variation of A_T , the
342 salinity- A_T relationship at 1 m was estimated from climatological monthly means (cA_T and
343 cS , $N=12$) where cA_T units are $\mu\text{mol kg}^{-1}$ and error terms are standard errors ($R^2 = 0.74$):

344 $cA_T = 1554.9(\pm 185.9) + 26.3(\pm 4.9) \times cS$ (2)

345 At 50 m, monthly salinity and A_T were less correlated over an annual cycle (analysis not
346 shown). Salinity remained stable at 38.0 from January through September while A_T declined
347 by $13 \mu\text{mol kg}^{-1}$. In general, seasonal changes were damped at 50 m compared to 1 m.

348

349 **3.4. High-frequency pH data**

350 To verify the weekly sampling scheme at Point B, a continuous record of high-
351 frequency pH observations was obtained via SeaFET deployments from June 2014 to April
352 2016 (Fig. 7). Sensor data corroborated the seasonal pH and temperature cycle observed at
353 Point B (Fig. 7a-b). Event-scale effects (e.g., pH_T change ≥ 0.1 for days to weeks, *sensu*
354 Kapsenberg and Hofmann 2016) were absent at this site suggesting that weekly sampling was
355 sufficient to describe seasonal and interannual changes in carbonate chemistry at Point B.

356 The magnitude of diel pH_T variability was small: the 2.5th to 97.5th percentiles ranged
357 between 0.01 and 0.05 units pH_T (Fig. 7d-e). Variability increased from winter to spring with
358 the greatest variations in April, May, and June ($\Delta\text{pH}_T > 0.035$). The magnitude of diel pH

Comment [LK12]: #9

Deleted: as

Comment [LK13]: #10

Deleted: 11 consecutive

Moved up [1]: Deployment periods averaged 58 ± 25 days with 5 ± 2 calibration samples per deployment (Fig. 7). Only 5 % of the data was removed during quality control, due to biofouling in one deployment and battery exhaustion in another, yielding 610 days of data. The mean offset between calibration samples and the calibrated SeaFET pH time-series was ± 0.007 , indicating a high-quality pH dataset (Fig. 7c).

Deleted: (

Deleted: ,

Deleted: Diel pH v

Deleted: tions

Deleted: bility

374 variability was not correlated with temperature or the concentration of chlorophyll-a (data not
375 shown).

376

377 **4. Discussion**

378 High resolution time-series are necessary to document coastal ocean acidification.

379 Based on weekly measurements from 2007 through 2015, near-surface pH_T decreased by

Deleted: At Point B in the NW coastal Mediterranean Sea,

380 0.0028 ± 0.0003 units yr^{-1} at Point B in the NW coastal Mediterranean Sea. Temperature

Deleted: , based on weekly measurements from 2007 through 2015

381 increased by 0.072 ± 0.022 $^{\circ}C$ yr^{-1} . In addition, A_T increased by 2.08 ± 0.19 $\mu\text{mol kg}^{-1}$ yr^{-1} , a
382 change that is unrelated to direct effects of CO_2 absorption by seawater. In less than a decade,
383 the total change in pH at Point B (ΔpH_T : 0.0252, Table 1) was of the same magnitude as the
384 diel pH variability (ΔpH_T : 0.01-0.05) and 1/5th of the magnitude of the seasonal pH cycle
385 (ΔpH_T : 0.12) found at this site.

386 We can identify the drivers of ocean acidification at Point B using the deconvolution

Deleted: for the

387 of pH and pCO_2 trends and by assuming that the increase in A_T was due to increases in its
388 carbon constituents, bicarbonate (HCO_3^-) and carbonate (CO_3^{2-}) ions. This assumption is
389 based on the fact that (1) HCO_3^- and CO_3^{2-} ions together make up 96 % of A_T at Point B, (2)
390 increases in HCO_3^- and CO_3^{2-} would both contribute to A_T and C_T and thereby explain the
391 observed synchronicity of monthly trends in A_T and C_T (Fig. 5). Using the pCO_2

Deleted: trends

392 deconvolution, we can then sum the contributions to pCO_2 from A_T (-3.08 μatm pCO_2 yr^{-1})
393 and C_T (5.14 μatm pCO_2 yr^{-1}) to determine the proportional contribution of ΔC_T to ΔpCO_2
394 that is unrelated to changes in C_T brought on by A_T . This remaining 2.06 μatm pCO_2 yr^{-1}
395 increase due to increasing C_T closely matched the magnitude of atmospheric CO_2 increase
396 during the observation period (2.08 ± 0.01 ppm yr^{-1} at Plateau Rosa, Italy). The closeness of
397 these numbers does not imply causation. However, given that surface waters at Point B
398 exhibit a near-zero air-sea CO_2 flux over annual cycles (De Carlo et al., 2013), the evidence

405 supports the conclusion that the ocean acidification trend at Point B closely follows the rate
406 of atmospheric CO₂ increase. The influence of atmospheric CO₂ can also be observed in the
407 monthly changes in C_T. Monthly C_T trends are positive and statistically significant over more
408 months than A_T trends (8 vs. 3 months), which are more seasonally restricted (Fig. 5).

409 Applying this simple model to pH_T, assuming changes in C_T are due to both
410 increasing A_T (a neutralizing effect) and atmospheric CO₂ forcing, the surface ocean
411 acidification trend at Point B can be attributed primarily to atmospheric CO₂ forcing (59 %)
412 and secondarily to warming (41 %).

413 Using this same approach for observations at 50 m, the C_T contribution to pCO₂
414 trends that was unrelated to A_T change was 1.41 $\mu\text{atm pCO}_2 \text{ yr}^{-1}$, which is 68 % of the rate of
415 atmospheric CO₂ increase in contrast to 99 % at 1 m. Changes in pH_T can then be attributed
416 to atmospheric CO₂ forcing (42 %), warming (54 %), and increasing salinity (3%). Due to
417 slightly enhanced warming and reduced CO₂ penetration observed at 50 m, warming had a
418 greater effect on the ocean acidification trend than atmospheric CO₂ forcing at depth
419 compared to the surface.

420 The acidification rate at Point B (-0.0028 units pH_T yr⁻¹) is larger than those reported
421 for other ocean time-series sites (-0.0026 to -0.0013 units pH yr⁻¹, Bates et al., 2014), likely
422 due to differences in warming rates. The observed warming from 2007 through 2015 (0.72 to
423 0.88 \pm 0.2 °C decade⁻¹) is extremely rapid relative to global trends in the upper 75 m from
424 1971 to 2010 (0.11 °C decade⁻¹, Rhein et al., 2013). The coastal region of Point B has
425 warmed steadily since 1980 and with periods of rapid warming (Parravicini et al., 2015).
426 Exacerbated warming may be related to the positive phases of the Atlantic Multi-decadal
427 Oscillation (AMO) and North Atlantic Oscillation (NAO), both of which are associated with
428 episodic warming of the Mediterranean Sea (Lejeusne et al., 2010). The AMO has been

Comment [LK14]: #11

Deleted: , which may result from warming

430 positive since the 1990s¹ and positive NAO phases were prevalent during the second half of
431 our study².

432 Nearest to Point B, the acidification rate at DYFAMED, an open-sea site about 50 km
433 offshore from Point B (Fig. 1), was estimated at -0.003 ± 0.001 units pH_{sw} yr⁻¹ from 1995 to
434 2011 (Marcellin Yao et al., 2016). At DYFAMED, warming contributed approximately 30 %
435 to the acidification rate and the remaining 70 % was attributed to anthropogenic CO₂
436 (Marcellin Yao et al., 2016). ~~While the uncertainty for DYFAMED pH data is large, the~~
437 ~~trends are comparable to those observed at Point B.~~ However, A_T at the DYFAMED did not
438 change significantly from 2007 through 2014 ($F_{1,51} = 3.204$, $P = 0.0794$, $R^2 = 0.08$, data from
439 Coppola et al., 2016). This ~~probably~~ indicates that the processes driving changes in A_T at
440 Point B are unique to the coastal environment.

Comment [LK15]: #12

Deleted: The

Deleted: and makes direct comparison with Point B unreliable but

Deleted: results

Deleted: agreeable

Comment [LK16]: #13

Deleted: may

441 Similar changes in coastal carbonate chemistry were observed elsewhere in the near-
442 shore Mediterranean Sea. In the Northern Adriatic Sea, Luchetta et al. (2010) determined an
443 acidification rate of -0.0025 units pH_T yr⁻¹ and an increase in A_T of $2.98 \mu\text{mol kg}^{-1} \text{yr}^{-1}$ at
444 depths shallower than 75 m, by comparing cruise data between the winters of 1983 and 2008.

Deleted: in pH_T

445 Point B and Adriatic Sea observations are independent but reflect changes in seawater
446 chemistry that may be occurring ~~in more~~ coastal regions of the Mediterranean. Additional
447 time-series would help resolve the spatial extent of the ~~se~~ observations.

Deleted: across a wider

Comment [LK17]: #15

Deleted: ed trend

Deleted: Specifically, the Eastern Mediterranean Sea would offer an important contrast, as pH of eastern waters is expected to be more sensitive to atmospheric CO₂ addition due to their ability to absorb more anthropogenic CO₂ than either the western Mediterranean or Atlantic waters (Álvarez et al., 2014).

Deleted: increase

448 While the trends in atmospheric CO₂ forcing and temperature account for the ocean
449 acidification trend ~~at Point B~~, the increase in A_T and C_T beyond what can be attributed to
450 changes in atmospheric CO₂ was unexpected. The fastest increases in A_T and C_T occurred
451 from May through July (Fig. 5), when the thermal stratification settles. In the NW
452 Mediterranean, the main processes governing seasonal variability in A_T are evaporation

¹ <http://www.cgd.ucar.edu/cas/catalog/climind/AMO.html>

² http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/month_nao_index.shtml

469 increasing A_T in summer (i.e., June through September at Point B) and, to a lesser extent,
470 phytoplankton uptake of nitrate (NO_3^-) and phosphate (PO_4^{3-}) increasing A_T from January
471 through March (Cossarini et al., 2015). During the transition of these processes, salinity
472 decreases to a minimum in May, reflecting freshwater input that dilutes A_T to minimum
473 values at the start of summer. For C_T , peak values occur in winter when the water column is
474 fully mixed. For reference, at DYFAMED, mixing occurs down to more than 2000 m depth
475 and C_T is up to 100 $\mu\text{mol kg}^{-1}$ higher in deep waters (Copin-Montégut and Bégothic, 2002).
476 Notably, monthly trends of C_T at Point B were not statistically significant from November
477 through January for the period 2007-2015. Following winter, C_T declines due to a
478 combination of phytoplankton bloom carbon uptake and freshwater dilution (assuming river
479 $C_T <$ seawater C_T), until the onset of summer stratification. Summer warming leads to pCO_2
480 ~~outgassing~~ (De Carlo et al., 2013), thereby further decreasing C_T . In addition, the increases in
481 A_T and C_T from 2007 through 2015 were more pronounced at 1 m compared to 50 m. Thus,
482 the process driving A_T and C_T trends are stronger at the surface and affect carbonate
483 chemistry primarily during the spring-summer transition from May through July.

484 ~~Identifying the process causing an~~ increase in A_T and C_T beyond what can be
485 attributed to changes in atmospheric CO_2 requires some speculation. Some biogeochemical
486 processes can be ruled out as drivers. For example, changes in benthic processes are very
487 unlikely. Reduced calcium carbonate (CaCO_3) precipitation rates would increase A_T but
488 would increase C_T . Even so, the dominant ecosystem in the Bay of Villefranche-sur-Mer is
489 seagrass meadows, which harbor relatively few calcifying organisms. Dissolution of calcium
490 carbonate sediment would contribute to A_T and C_T increase in the water column. However, as
491 the water was supersaturated with respect to both aragonite and calcite, this could only be
492 mediated by biological processes. Carbonate dissolution following CO_2 production via oxic
493 degradation of organic matter releases A_T and C_T in a 1:1 ratio (Moulin et al., 1985).

Comment [LK18]: #16

Deleted: off-

Deleted: to the atmosphere

Deleted: T

Deleted: This indicates that

Deleted: While the drivers of ocean acidification trends are identified and quantified above,

Deleted: the

Deleted: increase in

502 Likewise, anaerobic remineralization produces alkalinity (Cai et al., 2011). In the sediment of
503 the Bay of Villefranche, sulfate reduction coupled with precipitation of sulfide minerals is the
504 dominant anoxic mineralization pathway (Gaillard et al., 1989). An increase in these
505 processes would explain the observed increase in A_T and C_T , but as trends were slower at 50
506 m compared to 1 m, this would suggest the dominance of a process taking place in surface
507 waters.

508 In the upper water column at Point B, changes in biological processes are unlikely to
509 explain the observed trends in A_T and C_T . For example, the concentration of chlorophyll-a, a
510 proxy of primary production, has decreased since 1995, nutrients increased, and
511 phytoplankton blooms have shifted towards earlier dates in the year (Irisson et al., 2012).
512 While a decrease in net primary production could drive C_T trends, the observed increase in
513 NO_3^- and PO_4^{3-} would cause a small decrease in A_T (Wolf-Gladrow et al., 2007). Stimulated
514 community respiration could result from warming waters but enhanced remineralization
515 would cause a decrease in A_T (Wolf-Gladrow et al., 2007).

516 The lack of salinity change at the surface excludes additional processes as drivers of
517 A_T and C_T increase at Point B. For example, increased summertime evaporation
518 (concentration effect) and reduced freshwater input (decreased dilution effect) would both be
519 expected to cause an increase in salinity, which was not observed. Increased input of Eastern
520 Mediterranean Sea waters could increase A_T , but this is unlikely as this water mass flows
521 much deeper than Point B (Millot and Taupier-Letage, 2005).

522 Instead, the observed changes in A_T and C_T could be due to increased limestone
523 weathering which would increase the input of A_T from land to the sea via rivers and
524 groundwater. Rivers contribute both A_T and C_T to the Mediterranean Sea (Copin-Montégut,
525 1993; Tamše et al., 2015). River A_T originates from erosion and is correlated with bedrock
526 composition (e.g., McGrath et al., 2016). Positive trends in river A_T have been documented in

527 North America and occur via a number of processes including: (1) the interplay of rainfall
528 and land-use (Raymond and Cole, 2003), (2) anthropogenic limestone addition ~~used to~~ Deleted: (a.k.a., liming)
529 enhance agriculture soil pH (Oh and Raymond, 2006; Stets et al., 2014) and freshwater pH
530 (Clair and Hindar, 2005), and (3) potentially indirect effects of anthropogenic CO₂ on
531 groundwater CO₂-acidification and weathering (Macpherson et al., 2008). Such, and other,
532 processes were hypothesized to have driven A_T changes in the Baltic Sea (Müller et al.,
533 2016). There, an increase in A_T of 3.4 $\mu\text{mol kg}^{-1} \text{ yr}^{-1}$ was observed from 1995 to 2014 (mean
534 salinity = 7). In contrast to Point B, the increase in Baltic Sea A_T was not noticeable at
535 salinity > 30 (Müller et al., 2016).

536 Given the above speculations, the simplest plausible mechanisms causing the
537 unexpected A_T and C_T trends would be through increasing A_T of the freshwater end-member
538 of Point B. Local precipitation, however, did not have an influential effect and was not
539 correlated with salinity or A_T (Fig. S1). While submarine groundwater springs can be a
540 significant source of nutrients, A_T , and C_T to the ocean (Cai et al., 2003; Slomp and Van
541 Cappellen, 2004), carbonate chemistry contributions of local submarine springs are currently
542 unknown (Gilli, 1995). Signatures of limestone erosion can be observed in A_T of nearby
543 rivers (Var, Paillon, and Roya) but detailed time-series are not available. Likewise, riverine
544 influence at Point B has not been quantified. If river runoff exerts a dominant control on
545 Point B carbonate chemistry, there is a lag effect, as freshwater influence peaked in May but
546 A_T and C_T increased fastest from May through July. Consequently, this hypothesis needs
547 further investigation. Until the source of A_T increase is properly identified, use of this
548 observation in modeling should be implemented with caution.

549

550 **5. Conclusion**

552 Predictions of coastal ocean acidification remain challenging due the complexity of
553 biogeochemical processes occurring at the ocean-land boundary. At the Point B coastal
554 ~~oceanographic~~ station in the NW Mediterranean Sea, surface ocean acidification was due to
555 atmospheric CO₂ forcing and rapid warming over the observation period 2007-2015.
556 However, additional trends in A_T and C_T were observed and remain unexplained, but these
557 trends could relate to riverine and groundwater input. The influence of ~~coastal boundary~~
558 processes influencing seawater A_T and C_T presents a potentially major difference between
559 coastal and offshore changes in ocean chemistry. This study highlights the importance of
560 considering other anthropogenic influences in the greater land-sea region that may contribute
561 to coastal biogeochemical cycles (*sensu* Duarte et al. 2013) and alter projections of
562 anthropogenic change in near-shore waters.

Deleted: monitoring

Comment [LK19]: #17

Deleted: a

563
564 **Data availability** – Time-series data from Point B are available at Pangaea[®] (doi:
565 10.1594/PANGAEA.727120)

566
567 **Author contribution** – JPG initiated the study, LM supervised data collection, SA
568 performed SeaFET deployments and calibration, JPG and LK designed and JPG conducted
569 statistical analyses, and LK prepared the manuscript with contributions from all authors.

570
571 **Competing interests** - The authors declare that they have no conflict of interest.

572
573 **Acknowledgements** – Thanks are due to the Service d'Observation Rade de Villefranche
574 (SO-Rade) of the Observatoire Océanologique and the Service d'Observation en Milieu
575 Littoral (SOMLIT/CNRS-INSU) for their kind permission to use the Point B data. Discrete
576 samples were analyzed for C_T and A_T by the *Service National d'Analyse des Paramètres*

579 *Océaniques du CO₂*. The authors thank Jean-Yves Carval, Anne-Marie Corre, Maïa
580 Durozier, Ornella Passafiume and Frank Petit for sampling assistance, to Steeve Comeau and
581 Alice Webb for help with data analysis, and to Bernard Gentili for producing Fig. 1.
582 Atmospheric CO₂ data from Plateau Rosa was collected by Ricerca sul Sistema Energetico
583 (RSE S.p.A.); we are grateful for their contribution. We acknowledge L. Coppola for
584 providing DYFAMED data (Coppola et al., 2016) and Météo-France for supplying the
585 meteorological data and the HyMeX database teams (ESPRI/IPSL and SEDOO/Observatoire
586 Midi-Pyrénées) for their help in accessing them. The *Agence de l'Eau Rhône-Méditerranée-*
587 *Corse* kindly provided data on the chemistry of local rivers. Alexandre Dano, Gilles Dandec
588 and Dominique Chassagne provided the high-resolution bathymetric data for the volume
589 estimate of the Bay. We are grateful for helpful comments from Nicolas Metzl on the
590 manuscript and those from two anonymous reviewers. This work is a contribution to the
591 European Project on Ocean Acidification (EPOCA; contract # 211384) and the MedSeA
592 project (contract # 265103), which received funding from the European Community's
593 Seventh Framework Programme, and to the United States National Science Foundation
594 Ocean Sciences Postdoctoral Research Fellowship (OCE-1521597) awarded to LK.
595

596 **References**

597 Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L., Luchetta, A., Cantoni, C.,
598 Schroeder, K., and Civitarese, G.: The CO₂ system in the Mediterranean Sea: a basin
599 wide perspective, *Ocean Sci.*, 10, 69–92, 10.5194/os-10-69-2014, 2014.
600 Aminot, A., and Kérouel, R.: Dosage automatique des nutriments dans les eaux marines:
601 méthodes d'analyse en milieu marin, edited by: Ifremer, 188 pp., 2007.

602 Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R.:
603 The value of estuarine and coastal ecosystem services, *Ecol. Monogr.*, 81, 169-193,
604 10.1890/10-1510.1, 2011.

605 Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M.,
606 Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M.: A time-series
607 view of changing ocean chemistry due to ocean uptake of anthropogenic CO₂ and ocean
608 acidification, *Oceanography*, 27, 126-141, 2014.

609 Borges, A. V., and Gypens, N.: Carbonate chemistry in the coastal zone responds more
610 strongly to eutrophication than ocean acidification, *Limnol. Oceanogr.*, 55, 346-353,
611 10.4319/lo.2010.55.1.0346, 2010.

612 Bresnahan, P. J., Martz, T. R., Takeshita, Y., Johnson, K. S., and LaShomb, M.: Best
613 practices for autonomous measurement of seawater pH with the Honeywell Durafet,
614 *Methods Oceangr.*, 9, 44-60, 2014.

615 Cai, W.-J., Wang, Y., Krest, J., and Moore, W. S.: The geochemistry of dissolved inorganic
616 carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon
617 fluxes to the coastal ocean, *Geochim. Cosmochim. Acta*, 67, 631-639, 10.1016/S0016-
618 7037(02)01167-5, 2003.

619 Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C.,
620 Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and
621 Gong, G.-C.: Acidification of subsurface coastal waters enhanced by eutrophication, *Nat.*
622 *Geosci.*, 4, 766-770, 10.1038/ngeo1297, 2011.

623 Clair, T. A., and Hindar, A.: Liming for the mitigation of acid rain effects in freshwaters: a
624 review of recent results, *Environ. Rev.*, 13, 91-128, 10.1139/a05-009, 2005.

625 Copin-Montégut, C.: Alkalinity and carbon budgets in the Mediterranean Sea, *Global*
626 *Biogeochem. Cycles*, 7, 915-925, 10.1029/93GB01826, 1993.

627 Copin-Montégut, C., and Bégovic, M.: Distributions of carbonate properties and oxygen
628 along the water column (0–2000 m) in the central part of the NW Mediterranean Sea
629 (Dyfamed site): influence of winter vertical mixing on air–sea CO₂ and O₂ exchanges,
630 Deep-Sea Res. II, 49, 2049–2066, 10.1016/S0967-0645(02)00027-9, 2002.

631 Coppola, L., Diamond Riquier, E., and Carval, T.: Dyfamed observatory data, SEANOE,
632 10.17882/43749, 2016.

633 Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of alkalinity in the
634 Mediterranean Sea, Biogeosciences, 12, 1647–1658, 10.5194/bg-12-1647-2015, 2015.

635 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K.,
636 Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., and van den Belt, M.:
637 The value of the world's ecosystem services and natural capital, Nature, 387, 253–260,
638 1997.

639 De Carlo, E. H., Mousseau, L., Passafiume, O., Drupp, P. S., and Gattuso, J.-P.: Carbonate
640 chemistry and air–sea CO₂ flux in a NW Mediterranean bay over a four-year period:
641 2007–2011, Aquatic Geochemistry, 19, 399–442, 10.1007/s10498-013-9217-4, 2013.

642 Dickson, A.: The carbon dioxide system in seawater: equilibrium chemistry and
643 measurements, in: Guide to best practices for ocean acidification research and data
644 reporting, edited by: Fabry, V. J., Hansson, L., and Gattuso, J.-P., Luxembourg:
645 Publications Office of the European Union, 17–40, 2010.

646 Dickson, A. G., and Riley, J. P.: The effect of analytical error on the evaluation of the
647 components of the aquatic carbon-dioxide system, Mar. Chem., 6, 77–85, 10.1016/0304-
648 4203(78)90008-7, 1978.

649 Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 1/2 H₂(g) = Ag(s) + HCl(aq),
650 and the standard acidity constant of the ion HSO₄[–] in synthetic sea water from 273.15

651 to 318.15 K, *The Journal of Chemical Thermodynamics*, 22, 113-127, 10.1016/0021-
652 9614(90)90074-Z, 1990.

653 Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO₂
654 measurements, *PICES Special Publication*, 3, 191 pp., 2007.

655 DOE: Handbook of methods for the analysis of the various parameters of the carbon dioxide
656 system in sea water, Carbon Dioxide Information Analysis Center, Oak Ridge National
657 Laboratory, 1994.

658 Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean acidification: the other
659 CO₂ problem, *Ann. Rev. Mar. Sci.*, 1, 169-192, 10.1146/annurev.marine.010908.163834,
660 2009.

661 Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L.,
662 Carstensen, J., Trotter, J. A., and McCulloch, M.: Is ocean acidification an open-ocean
663 syndrome? Understanding anthropogenic impacts on seawater pH, *Estuaries and Coasts*,
664 36, 221-236, 10.1007/s12237-013-9594-3, 2013.

665 Edmond, J. M.: High precision determination of titration alkalinity and total carbon dioxide
666 content of sea water by potentiometric titration, *Deep-Sea Research*, 17, 737-750,
667 10.1016/0011-7471(70)90038-0, 1970.

668 Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.: Evidence for
669 upwelling of corrosive "acidified" water onto the continental shelf, *Science*, 320, 1490-
670 1492, 10.1126/science.1155676, 2008.

671 Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., Krembs, C., and
672 Maloy, C.: The combined effects of ocean acidification, mixing, and respiration on pH
673 and carbonate saturation in an urbanized estuary, *Estuar. Coast. Shelf Sci.*, 88,
674 10.1016/j.ecss.2010.05.004, 2010.

675 Flecha, S., Pérez, F. F., García-Lafuente, J., Sammartino, S., Ríos, A. F., and Huertas, I. E.:
676 Trends of pH decrease in the Mediterranean Sea through high frequency observational
677 data: indication of ocean acidification in the basin, *Sci. Rep.*, 5, 16770,
678 10.1038/srep16770, 2015.

679 Gaillard, J.-F., Pauwels, H., and Michard, G.: Chemical diagenesis in coastal marine
680 sediments, *Oceanol. Acta*, 12, 175-187, 1989.

681 García-Ibáñez, M. I., Zunino, P., Fröb, F., Carracedo, L. I., Ríos, A. F., Mercier, H., Olsen,
682 A., and Pérez, F. F.: Ocean acidification in the subpolar North Atlantic: rates and
683 mechanisms controlling pH changes, *Biogeosciences*, 13, 3701-3715, 10.5194/bg-13-
684 3701-2016, 2016.

685 Gattuso, J.-P., Epitalon, J.-M., and Lavigne, H.: seacarb: Seawater Carbonate Chemistry. R
686 package version 3.1.1 <https://cran.r-project.org/package=seacarb>, 2016.

687 Gattuso, J. P., and Hansson, L.: Ocean acidification, Oxford University Press, Oxford, 2011.

688 Gilli, E.: Etude des sources karstiques sous-marines et littorales des Alpes Maritimes entre
689 Menton et Nice, 41, 1995.

690 Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., Bruno,
691 J. F., Casey, K. S., Ebert, C., and Fox, H. E.: A global map of human impact on marine
692 ecosystems, *Science*, 319, 948-952, 2008.

693 Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A.,
694 Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J.,
695 Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R.: High-frequency
696 dynamics of ocean pH: a multi-ecosystem comparison, *PLoS One*, 6, e28983,
697 10.1371/journal.pone.0028983, 2011.

698 Howes, E. L., Stemmann, L., Assailly, C., Irisson, J. O., Dima, M., Bijma, J., and Gattuso, J.
699 P.: Pteropod time series from the North Western Mediterranean (1967-2003): impacts of
700 pH and climate variability, *Mar. Ecol. Prog. Ser.*, 531, 193-206, 2015.

701 Ingrosso, G., Giani, M., Comici, C., Kralj, M., Piacentino, S., De Vittor, C., and Del Negro,
702 P.: Drivers of the carbonate system seasonal variations in a Mediterranean gulf, *Estuar.
703 Coast. Shelf Sci.*, 168, 58-70, 10.1016/j.ecss.2015.11.001, 2016.

704 Irisson, J.-O., Webb, A., Passafiume, O., and Mousseau, L.: Detecting hydrologic variations
705 in a long term monitoring time series, Europole Mer Gordon-like conference "Time-series
706 analysis in marine science and application for industry", Brest, France, 17-21 Sept 2012,
707 2012.

708 Jiang, Z.-P., Tyrrell, T., Hydes, D. J., Dai, M., and Hartman, S. E.: Variability of alkalinity
709 and the alkalinity-salinity relationship in the tropical and subtropical surface ocean,
710 *Global Biogeochem. Cycles*, 28, 729-742, 10.1002/2013GB004678, 2014.

711 Kapsenberg, L., Kelley, A. L., Shaw, E. C., Martz, T. R., and Hofmann, G. E.: Near-shore
712 Antarctic pH variability has implications for biological adaptation to ocean acidification,
713 *Sci. Rep.*, 5, 9638, 10.1038/srep09638, 2015.

714 Kapsenberg, L., and Hofmann, G. E.: Ocean pH time-series and drivers of variability along
715 the northern Channel Islands, California, USA, *Limnol. Oceanogr.*, 61, 953-968,
716 10.1002/lno.10264, 2016.

717 Krasakopoulou, E., Souvermezoglou, E., and Goyet, C.: Anthropogenic CO₂ fluxes in the
718 Otranto Strait (E. Mediterranean) in February 1995, *Deep-Sea Res. I*, 58, 1103-1114,
719 10.1016/j.dsr.2011.08.008, 2011.

720 Lacoue-Labarthe, T., Nunes, P. A. L. D., Ziveri, P., Cinar, M., Gazeau, F., Hall-Spencer, J.
721 M., Hilmi, N., Moschella, P., Safa, A., Sauzade, D., and Turley, C.: Impacts of ocean

722 acidification in a warming Mediterranean Sea: An overview, *Regional Studies in Marine*
723 *Science*, 5, 1-11, 10.1016/j.rsma.2015.12.005, 2016.

724 Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P.,
725 Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S.,
726 Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P.,
727 Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J.,
728 Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A.,
729 Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R.,
730 Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.
731 I., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C.,
732 Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D.,
733 Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der
734 Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.: *Global Carbon*
735 *Budget 2016*, *Earth Syst. Sci. Data*, 8, 605-649, 10.5194/essd-8-605-2016, 2016.

736 Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M.: The universal
737 ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, *Geochim.*
738 *Cosmochim. Acta*, 74, 1801-1811, 10.1016/j.gca.2009.12.027, 2010.

739 Lee, K., Sabine, C. L., Tanhua, T., Kim, T.-W., Feely, R. A., and Kim, H.-C.: Roles of
740 marginal seas in absorbing and storing fossil fuel CO₂, *Energy & Environmental Science*,
741 4, 1133-1146, 10.1039/C0EE00663G, 2011.

742 Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F., and Pérez, T.:
743 Climate change effects on a miniature ocean: the highly diverse, highly impacted
744 Mediterranean Sea, *Trends Ecol. Evol.*, 25, 250-260,
745 <http://dx.doi.org/10.1016/j.tree.2009.10.009>, 2010.

746 Luchetta, A., Cantoni, C., and Catalano, G.: New observations of CO₂-induced acidification
747 in the northern Adriatic Sea over the last quarter century, *Chem. Ecol.*, 26, 1-17,
748 10.1080/02757541003627688, 2010.

749 Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean *p*CO₂ calculated from dissolved
750 inorganic carbon, alkalinity, and equations for *K*₁ and *K*₂: validation based on laboratory
751 measurements of CO₂ in gas and seawater at equilibrium, *Mar. Chem.*, 70, 105-119,
752 10.1016/S0304-4203(00)00022-0, 2000.

753 Macpherson, G. L., Roberts, J. A., Blair, J. M., Townsend, M. A., Fowle, D. A., and Beisner,
754 K. R.: Increasing shallow groundwater CO₂ and limestone weathering, Konza Prairie,
755 USA, *Geochim. Cosmochim. Acta*, 72, 5581-5599, 10.1016/j.gca.2008.09.004, 2008.

756 Marcellin Yao, K., Marcou, O., Goyet, C., Guglielmi, V., Touratier, F., and Savy, J.-P.: Time
757 variability of the north-western Mediterranean Sea pH over 1995–2011, *Mar. Environ.
758 Res.*, 116, 51-60, 10.1016/j.marenvres.2016.02.016, 2016.

759 McGrath, T., McGovern, E., Cave, R. R., and Kivimäe, C.: The inorganic carbon chemistry
760 in coastal and shelf waters around Ireland, *Estuaries and Coasts*, 39, 27-39,
761 10.1007/s12237-015-9950-6, 2016.

762 Meier, K. J. S., Beaufort, L., Heussner, S., and Ziveri, P.: The role of ocean acidification in
763 *Emiliania huxleyi* coccolith thinning in the Mediterranean Sea, *Biogeosciences*, 11, 2857-
764 2869, 10.5194/bg-11-2857-2014, 2014.

765 The MerMex Group, Durrieu de Madron, X., Guieu, C., Sempéré, R., Conan, P., Cossa, D.,
766 D'Ortenzio, F., Estournel, C., Gazeau, F., Rabouille, C., Stemmann, L., Bonnet, S., Diaz,
767 F., Koubbi, P., Radakovitch, O., Babin, M., Baklouti, M., Bancon-Montigny, C., Belviso,
768 S., Bensoussan, N., Bonsang, B., Bouloubassi, I., Brunet, C., Cadiou, J. F., Carlotti, F.,
769 Chami, M., Charmasson, S., Charrière, B., Dachs, J., Doxaran, D., Dutay, J. C., Elbaz-
770 Poulichet, F., Eléaume, M., Eyrolles, F., Fernandez, C., Fowler, S., Francour, P.,

771 Gaertner, J. C., Galzin, R., Gasparini, S., Ghiglione, J. F., Gonzalez, J. L., Goyet, C.,
772 Guidi, L., Guizien, K., Heimbürger, L. E., Jacquet, S. H. M., Jeffrey, W. H., Joux, F., Le
773 Hir, P., Leblanc, K., Lefèvre, D., Lejeusne, C., Lemé, R., Loë-Pilot, M. D., Mallet, M.,
774 Méjanelle, L., Mélin, F., Mellon, C., Mérigot, B., Merle, P. L., Migon, C., Miller, W. L.,
775 Mortier, L., Mostajir, B., Mousseau, L., Moutin, T., Para, J., Pérez, T., Petrenko, A.,
776 Poggiale, J. C., Prieur, L., Pujo-Pay, M., Pulido, V., Raimbault, P., Rees, A. P., Ridame,
777 C., Rontani, J. F., Ruiz Pino, D., Sicre, M. A., Taillandier, V., Tamburini, C., Tanaka, T.,
778 Taupier-Letage, I., Tedetti, M., Testor, P., Thébault, H., Thouvenin, B., Touratier, F.,
779 Tronczynski, J., Ulses, C., Van Wambeke, F., Vantrepotte, V., Vaz, S., and Verney, R.:
780 Marine ecosystems' responses to climatic and anthropogenic forcings in the
781 Mediterranean, *Prog. Oceanogr.*, 91, 97-166, 10.1016/j.pocean.2011.02.003, 2011.
782 Millot, C., and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: *The
783 Mediterranean Sea*, edited by: Saliot, A., Springer Berlin Heidelberg, Berlin, Heidelberg,
784 29-66, 2005.
785 Moulin, E., Jordens, A., and Wollast, R.: Influence of the aerobic bacterial respiration on the
786 early dissolution of carbonates in coastal sediments, in: *Progress in Belgian
787 Oceanographic Research: Proceedings of a Symposium Held at the Palace of Academies
788 Brussels*, edited by: Van Grieken, R., and Wollast, R., Brussels, 196-208, 1985.
789 Müller, J. D., Schneider, B., and Rehder, G.: Long-term alkalinity trends in the Baltic Sea
790 and their implications for CO₂-induced acidification, *Limnol. Oceanogr.*,
791 10.1002/lno.10349, 2016.
792 Oh, N.-H., and Raymond, P. A.: Contribution of agricultural liming to riverine bicarbonate
793 export and CO₂ sequestration in the Ohio River basin, *Global Biogeochem. Cycles*, 20,
794 GB3012, 10.1029/2005GB002565, 2006.

795 Omstedt, A., Edman, M., Claremar, B., and Rutgersson, A.: Modelling the contributions to
796 marine acidification from deposited SO_x, NO_x, and NH_x in the Baltic Sea: Past and
797 present situations, *Cont. Shelf Res.*, 111, Part B, 234-249, 10.1016/j.csr.2015.08.024,
798 2015.

799 Palmiéri, J., Orr, J., Dutay, J., Béranger, K., Schneider, A., Beuvier, J., and Somot, S.:
800 Simulated anthropogenic CO₂ storage and acidification of the Mediterranean Sea,
801 *Biogeosciences*, 12, 781-802, 2015.

802 Parravicini, V., Mangialajo, L., Mousseau, L., Peirano, A., Morri, C., Montefalcone, M.,
803 Francour, P., Kulbicki, M., and Bianchi, C. N.: Climate change and warm-water species
804 at the north-western boundary of the Mediterranean Sea, *Mar. Ecol.*, 36, 897-909,
805 10.1111/maec.12277, 2015.

806 Perez, F. F., and Fraga, F.: The pH measurements in seawater on the NBS scale, *Mar. Chem.*,
807 21, 315-327, 10.1016/0304-4203(87)90054-5, 1987.

808 Pörtner, H.-O., Karl, D., Boyd, P. W., Cheung, W., Lluch-Cota, S. E., Nojiri, Y., Schmidt, D.
809 N., and Zavialov, P.: Ocean systems, in: *Climate Change 2014: Impacts, Adaptation, and*
810 *Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to*
811 *the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, edited
812 by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T.
813 E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S.,
814 Levy, A. N., MacCracken, S., Mastrandrea, P. R., and L.L. White, Cambridge University
815 Press, Cambridge, United Kingdom and New York, NY, USA, 411-484, 2014.

816 Provoost, P., van Heuven, S., Soetaert, K., Laane, R. W. P. M., and Middelburg, J. J.:
817 Seasonal and long-term changes in pH in the Dutch coastal zone, *Biogeosciences*, 7,
818 3869-3878, 10.5194/bg-7-3869-2010, 2010.

819 Raymond, P. A., and Cole, J. J.: Increase in the export of alkalinity from North America's
820 largest river, *Science*, 301, 88-91, 2003.

821 Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S.,
822 Johnson, G. C., Josey, S. A., A. Kostianoy, Mauritzen, C., Roemmich, D., Talley, L. D.,
823 and Wang, F.: Observations: Ocean, in: *Climate Change 2013: The Physical Science*
824 Basis. Contribution of Working Group I to the Fifth Assessment Report of the
825 Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner,
826 G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
827 P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY,
828 USA., 2013.

829 Schneider, A., Wallace, D. W. R., and Körtzinger, A.: Alkalinity of the Mediterranean Sea,
830 *Geophys. Res. Lett.*, 34, L15608, 10.1029/2006GL028842, 2007.

831 Schneider, A., Tanhua, T., Körtzinger, A., and Wallace, D. W. R.: High anthropogenic
832 carbon content in the eastern Mediterranean, *J. Geophys. Res.*, 115, C12050,
833 10.1029/2010JC006171, 2010.

834 Slomp, C. P., and Van Cappellen, P.: Nutrient inputs to the coastal ocean through submarine
835 groundwater discharge: controls and potential impact, *Journal of Hydrology*, 295, 64-86,
836 10.1016/j.jhydrol.2004.02.018, 2004.

837 Stets, E. G., Kelly, V. J., and Crawford, C. G.: Long-term trends in alkalinity in large rivers
838 of the conterminous US in relation to acidification, agriculture, and hydrologic
839 modification, *Sci. Total Environ.*, 488-489, 280-289, 10.1016/j.scitotenv.2014.04.054,
840 2014.

841 Tamše, S., Ogrinc, N., Walter, L. M., Turk, D., and Faganeli, J.: River sources of dissolved
842 inorganic carbon in the Gulf of Trieste (N Adriatic): stable carbon isotope evidence,
843 *Estuaries and Coasts*, 38, 151-164, 10.1007/s12237-014-9812-7, 2015.

844 Tanhua, T., Bates, N. R., and Körtzinger, A.: The marine carbon cycle and ocean
845 anthropogenic CO₂ inventories, in: Ocean Circulation and Climate: A 21st Century
846 Perspective. 2nd Ed, edited by: Siedler, G., Griffies, S., Gould, J., and Church, J., 103,
847 Academic Press, 787-816, 2013.

848 Team, R. C.: R: A language and environment for statistical computing. R Foundation for
849 Statistical Computing, Vienna, Austria. <https://www.r-project.org/>, 2016.

850 Touratier, F., and Goyet, C.: Impact of the Eastern Mediterranean Transient on the
851 distribution of anthropogenic CO₂ and first estimate of acidification for the Mediterranean
852 Sea, Deep-Sea Res. I, 58, 1-15, 10.1016/j.dsr.2010.10.002, 2011.

853 Touratier, F., Goyet, C., Houpert, L., de Madron, X. D., Lefèvre, D., Stabholz, M., and
854 Guglielmi, V.: Role of deep convection on anthropogenic CO₂ sequestration in the Gulf
855 of Lions (northwestern Mediterranean Sea), Deep-Sea Res. I, 113, 33-48,
856 10.1016/j.dsr.2016.04.003, 2016.

857 Vargas, C. A., Contreras, P. Y., Pérez, C. A., Sobarzo, M., Saldías, G. S., and Salisbury, J.:
858 Influences of riverine and upwelling waters on the coastal carbonate system off Central
859 Chile and their ocean acidification implications, Journal of Geophysical Research:
860 Biogeosciences, 121, 1468-1483, 10.1002/2015JG003213, 2016.

861 Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G.: Total
862 alkalinity: The explicit conservative expression and its application to biogeochemical
863 processes, Mar. Chem., 106, 287-300, 10.1016/j.marchem.2007.01.006, 2007.

864 Wootton, J. T., Pfister, C. A., and Forester, J. D.: Dynamic patterns and ecological impacts of
865 declining ocean pH in a high-resolution multi-year dataset, Proc. Natl. Acad. Sci., 105,
866 18848-18853, 2008.

867 Wootton, J. T., and Pfister, C. A.: Carbon system measurements and potential climatic
868 drivers at a site of rapidly declining ocean pH, PLoS One, 7, e53396, 2012.

869 **Table 1.** Previous estimates or documentation of pH change (ΔpH) in the Mediterranean Sea.

870 ‘Total’ indicates estimates made for the whole Mediterranean Sea. TrOCA is the ‘Tracer

871 combining Oxygen, inorganic Carbon, and total Alkalinity’ method, NR means ‘not

872 reported’, and PI is ‘pre-industrial era’. *indicates studies where the reported pH change was

873 assumed to be at *in situ* temperatures.

Region	Site	Method	Study period	pH scale	°C	$\Delta\text{pH yr}^{-1} \pm \text{SE}$	Total ΔpH	Reference
NW	Point B, 1 m	time-series, anomaly	2007-2015	total	<i>in situ</i>	-0.0028 \pm 0.0003	-0.0252	This study
NW	Point B, 1 m	time-series, anomaly	2007-2015	total	25	-0.0017 \pm 0.0002	-0.0153	This study
NW	Point B	model	1967-2003	total	<i>in situ</i>	-0.0014	-0.05	Howes et al. (2015)
NW	DYFAMED	time-series, observed	1995-2011	seawater	<i>in situ</i>	-0.003 \pm 0.001	-0.051	Marcellin Yao et al. (2016)
NW	DYFAMED	time-series	1998-2000, 2003-2005	seawater	<i>in situ</i> *	-	-0.02	Meier et al. (2014)
NW	Gulf of Lion	TrOCA	PI-2011	NR	<i>in situ</i> *	-	-0.15 to -0.11	Touratier et al. (2016)
East	N Adriatic Sea	cruise comparison	1983, 2008	total	25	-0.0025	-0.063	Luchetta et al. (2010)
East	Otranto Strait	TrOCA	PI-1995	seawater	25	-	<-0.1 to -0.05, ± 0.014	Krasakopoulou et al. (2011)
Total	Full profile	TrOCA	PI-2001	NR	<i>in situ</i> *	-	-0.14 to -0.05	Touratier and Goyet (2011)
Total	Bottom waters	model	1800-2001	total	<i>in situ</i> *	-	-0.06 to -0.005	Palmiéri et al. (2015)
Total	Surface waters	model	1800-2001	total	<i>in situ</i> *	-	-0.084 \pm 0.001	Palmiéri et al. (2015)
Gibraltar Strait	Espartel sill	pH, pCO_2 sensors	2012-2015	total	25	-0.0044 \pm 0.00006	-	Flecha et al. (2015)

874

875

876 **Table 2.** Time-series anomaly regression analyses on seawater carbonate chemistry at Point
 877 B for salinity (S), temperature (T), dissolved inorganic carbon (C_T), total alkalinity (A_T), pH_T,
 878 pH_T normalized to 25 °C (pH_{T25}), pCO₂, calcite (Ω_c) and aragonite (Ω_a) saturation state, and
 879 salinity-normalized A_T (n A_T) and C_T (n C_T), at 1 and 50 m. Slopes represent the change in the
 880 variable unit per year. $P << 0.001$ indicates p -values far smaller than 0.001.

<i>Depth (m)</i>	<i>Variable</i>	<i>Slope ± SE</i>	<i>Intercept ± SE</i>	<i>N</i>	<i>F</i>	<i>df</i>	<i>Slope P</i>	<i>R</i> ²
1	S	-0.0017 ± 0.0044	3.38 ± 8.82	417	0.147	1,415	0.702	0
	T (°C)	0.072 ± 0.022	-145 ± 44	413	10.999	1,411	0.001	0.026
	C_T (μmol kg ⁻¹)	2.97 ± 0.20	-5965 ± 400	416	221.87	1,414	<<0.001	0.349
	A_T (μmol kg ⁻¹)	2.08 ± 0.19	-4189 ± 379	417	122.429	1,415	<<0.001	0.228
	pH _T	-0.0028 ± 0.0003	5.72 ± 0.66	412	74.205	1,410	<<0.001	0.153
	pH _{T25}	-0.0017 ± 0.0002	3.46 ± 0.43	412	64.204	1,410	<<0.001	0.1354
	pCO ₂ (μatm)	3.53 ± 0.39	-7105 ± 776	412	83.927	1,410	<<0.001	0.17
	Ω_c	-0.0109 ± 0.0022	22.0 ± 4.5	412	24.08	1,410	<<0.001	0.055
	Ω_a	-0.0064 ± 0.0015	12.9 ± 3.1	412	17.33	1,410	<<0.001	0.041
	n A_T (μmol kg ⁻¹)	2.20 ± 0.28	-4425 ± 560	412	62.34	1,410	<<0.001	0.132
50	n C_T (μmol kg ⁻¹)	3.12 ± 0.29	-6275 ± 579	412	117.486	1,410	<<0.001	0.223
	S	0.0063 ± 0.0020	-12.8 ± 4.1	412	9.858	1,410	0.002	0.0235
	T (°C)	0.088 ± 0.019	-177 ± 38	408	21.927	1,406	<<0.001	0.0512
	C_T (μmol kg ⁻¹)	2.16 ± 0.21	-4344 ± 418	411	108.105	1,409	<<0.001	0.2091
	A_T (μmol kg ⁻¹)	1.59 ± 0.15	-3192 ± 309	412	106.947	1,410	<<0.001	0.2069
	pH _T	-0.0026 ± 0.0002	5.28 ± 0.50	407	112.111	1,405	<<0.001	0.2168
	pH _{T25}	-0.0013 ± 0.0003	2.55 ± 0.54	407	21.863	1,405	<<0.001	0.0512
	pCO ₂ (μatm)	2.79 ± 0.25	-5603 ± 501	407	125.1	1,405	<<0.001	0.236
	Ω_c	-0.0070 ± 0.0027	14.0 ± 5.4	407	6.648	1,405	0.01	0.0162
	Ω_a	-0.0038 ± 0.0019	7.6 ± 3.7	407	4.155	1,405	0.042	0.0102
881	n A_T (μmol kg ⁻¹)	1.15 ± 0.13	-2309 ± 254	407	82.309	1,405	<<0.001	0.1689
	n C_T (μmol kg ⁻¹)	1.82 ± 0.19	-3661 ± 376	407	94.98	1,405	<<0.001	0.19
882								

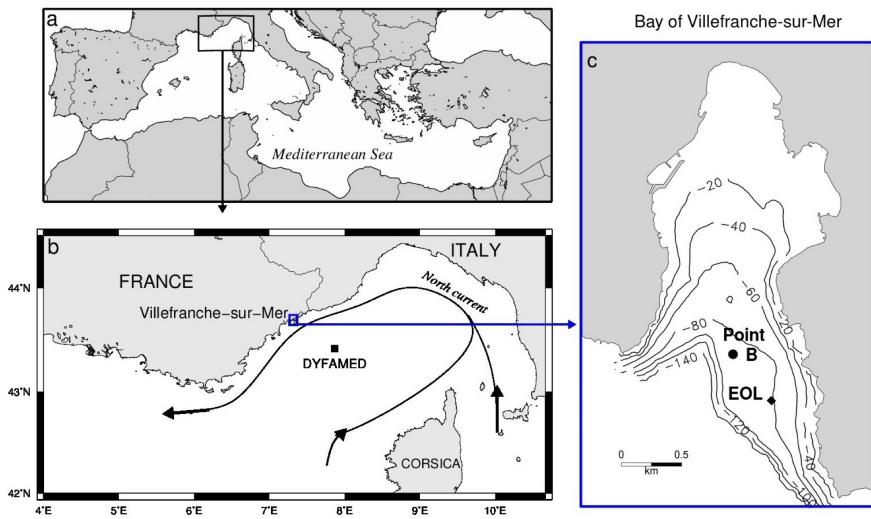
883 **Table 3.** Deconvolution of pH_T anomalies ($\frac{dpH_T}{dt}$, units pH_T yr⁻¹) at 1 and 50 m.

884 Sensitivity of pH_T with respect to variables ($\frac{\partial pH_T}{\partial var}$), where the variable *var* is either
885 temperature (T), salinity (S), total alkalinity (*A_T*), or dissolved inorganic carbon (*C_T*), was
886 multiplied by the anomaly of *var* ($\frac{dvar}{dt}$, Table 2). SE is standard error and RMSE is root-
887 mean-squared error. Rounding was performed at the end of the calculations, prior to
888 estimating percent contributions.

<i>Depth</i> (m)	<i>var</i>	$\frac{\partial pH_T}{\partial var} \pm SE$	$\frac{\partial pH_T}{\partial var} \frac{dvar}{dt} \pm RMSE$	<i>Contribution</i> (%)	$\frac{dpH_T}{dt} \pm RMSE$
1	T (°C)	-0.0153 ± <0.0001	-0.0011 ± 0.0003	41	
	S	-0.0117 ± <0.0001	<0.0001 ± 0.0001	0	-0.0027 ± 0.0005
	<i>A_T</i> (μmol kg ⁻¹)	0.0015 ± <0.0001	0.0031 ± 0.0003	-115	
	<i>C_T</i> (μmol kg ⁻¹)	-0.0016 ± <0.0001	-0.0047 ± 0.0003	174	
50	T (°C)	-0.0154 ± <0.0001	-0.0014 ± 0.0003	54	
	S	-0.0116 ± <0.0001	-0.0001 ± <0.0001	4	-0.0026 ± 0.0005
	<i>A_T</i> (μmol kg ⁻¹)	0.0015 ± <0.0001	0.0024 ± 0.0002	-92	
	<i>C_T</i> (μmol kg ⁻¹)	-0.0016 ± <0.0001	-0.0035 ± 0.0003	135	

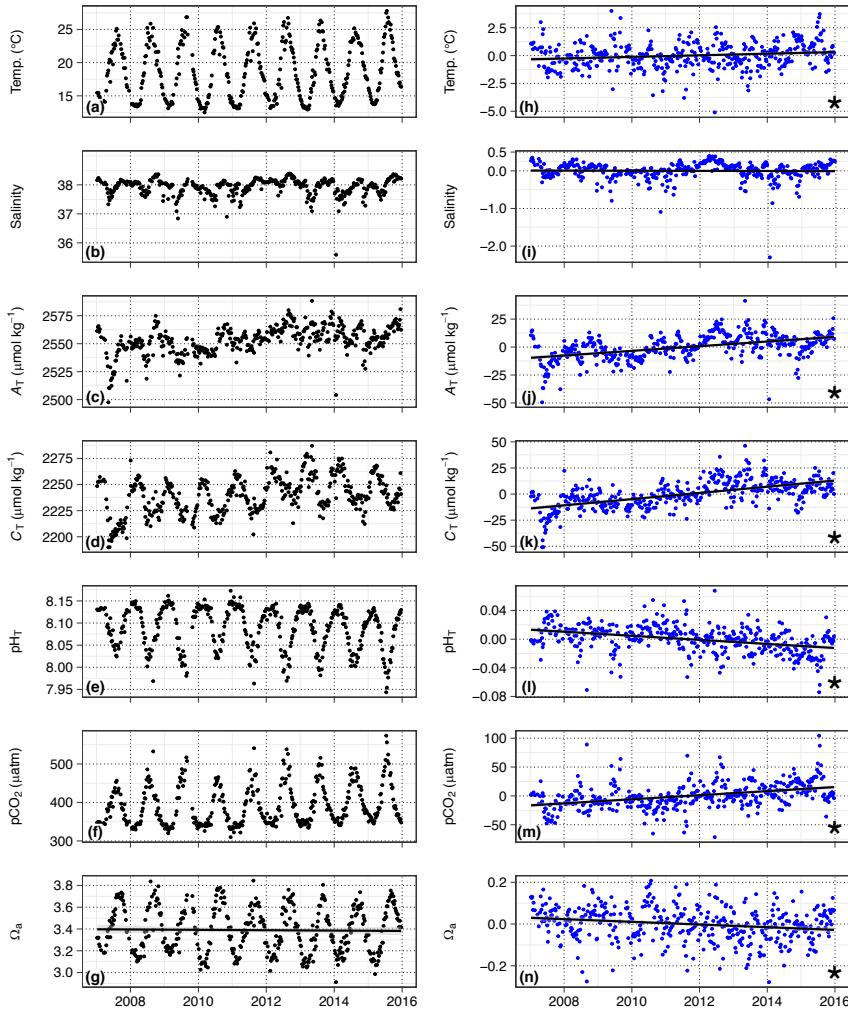
889

890 **Table 4.** Deconvolution of pCO₂ anomalies ($\frac{dpCO_2}{dt}$, $\mu\text{atm yr}^{-1}$) at 1 and 50 m. Details are the

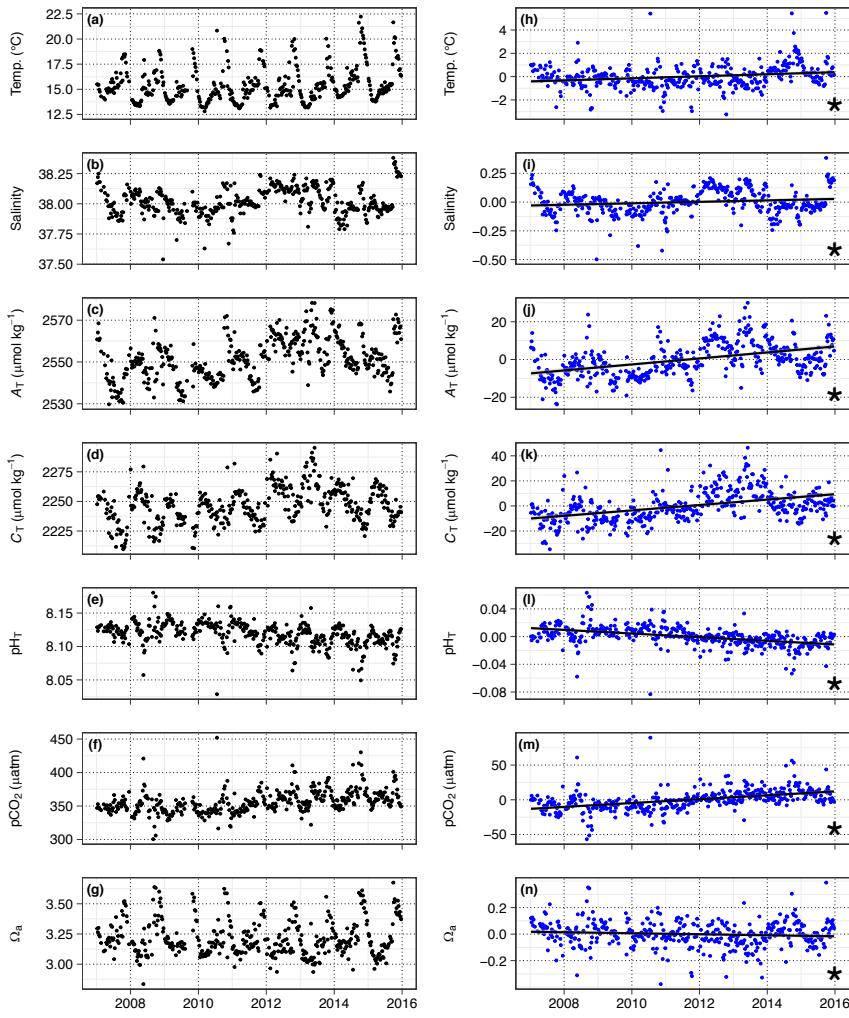

891 same as in Table 3.

<i>Depth</i> (m)	<i>var</i>	$\frac{\partial pCO_2}{\partial var} \pm SE$	$\frac{\partial pCO_2}{\partial var} \frac{dvar}{dt} \pm RMSE$	<i>Contribution</i> (%)	$\frac{dpCO_2}{dt} \pm RMSE$
1	T (°C)	16.49 ± 0.05	1.19 ± 0.36	37	
	S	10.14 ± <0.01	-0.02 ± 0.05	-1	
	<i>A_T</i> (μmol kg ⁻¹)	-1.478 ± 0.005	-3.08 ± 0.28	-95	3.23 ± 0.57
	<i>C_T</i> (μmol kg ⁻¹)	1.735 ± 0.006	5.14 ± 0.35	159	
50	T (°C)	15.55 ± 0.03	1.37 ± 0.29	48	
	S	9.355 ± <0.001	0.06 ± 0.02	2	
	<i>A_T</i> (μmol kg ⁻¹)	-1.327 ± 0.002	-2.11 ± 0.20	-74	2.84 ± 0.49
	<i>C_T</i> (μmol kg ⁻¹)	1.629 ± 0.005	3.52 ± 0.34	124	

892

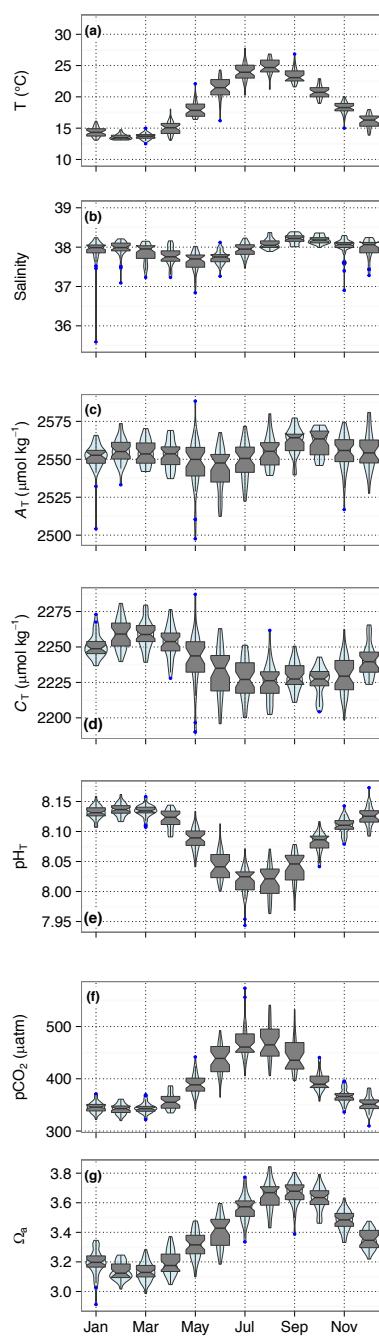

893 **Figure 1.** Map of study region in the NW Mediterranean Sea (a), along the North current (b)
894 in the Bay of Villefranche-sur-Mer, France (c). Point B, EOL buoy, and the offshore time-
895 series station DYFAMED are marked. Bathymetric line units are m (c).

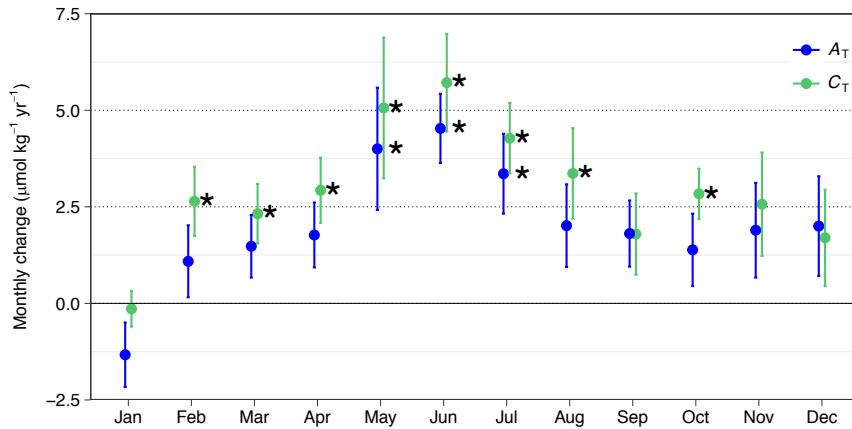
Deleted: station


896

898 **Figure 2.** Time-series observations (a-g) and anomaly trends (h-n) for temperature, salinity,
 899 and seawater carbonate chemistry at Point B, 1 m. Regression slopes are drawn \pm SE (in
 900 grey) and noted with a star for significance at $\alpha = 0.05$. Variable abbreviations are the same
 901 as in Table 2.

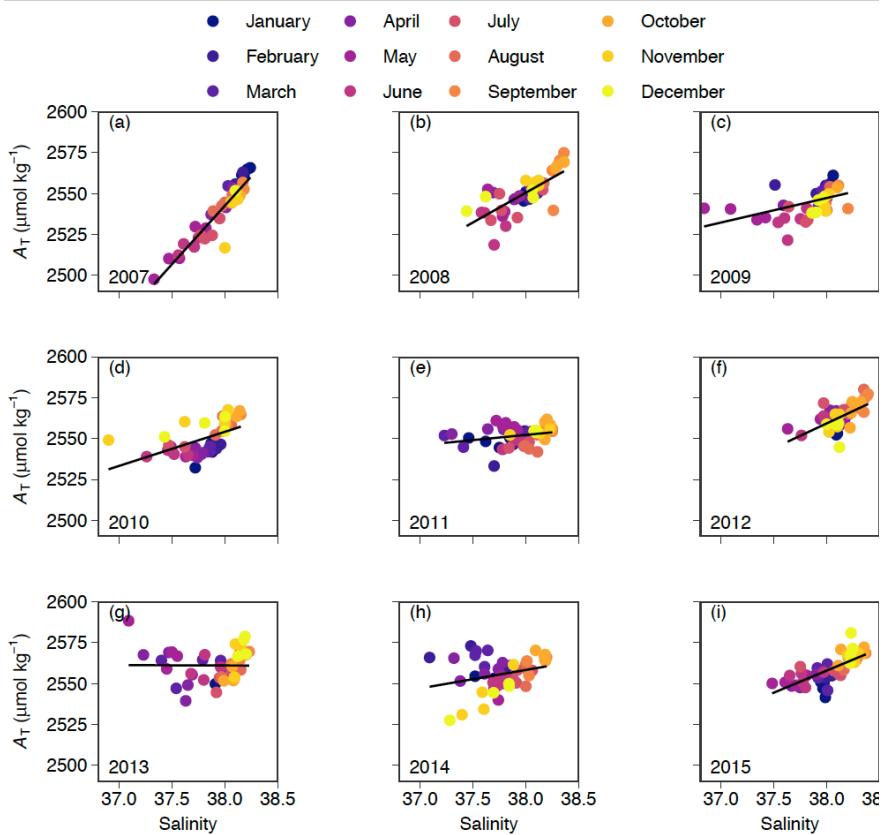
902


903 **Figure 3.** Time-series observations (a-g) and anomaly trends (h-n) for temperature, salinity,
 904 and seawater carbonate chemistry at Point B, 50 m. Regression slopes are drawn \pm SE (in
 905 grey) and noted with a star for significance at $\alpha = 0.05$. Variable abbreviations are the same
 906 as in Table 2.


Deleted: -

907

909 **Figure 4.** Monthly distribution of seawater
910 carbonate chemistry at Point B, 1 m, using a
911 combination of a violin plot showing the relative
912 frequency of the observations (shaded blue area)
913 and a boxplot showing the median, first and third
914 quartiles, as well as outliers (blue).
915



916 **Figure 5.** Monthly trends of total alkalinity (A_T , blue) and dissolved inorganic carbon (C_T ,
917 green) for the period 2007-2015. Errors bars are \pm SE of the slope estimate and significance
918 is noted (*) at $\alpha=0.05$.

919

920 **Figure 6.** Salinity and total alkalinity (A_T) relationships at Point B for the period 2007-2015,
921 by year, at 1 m. Data points are colored for month.

922

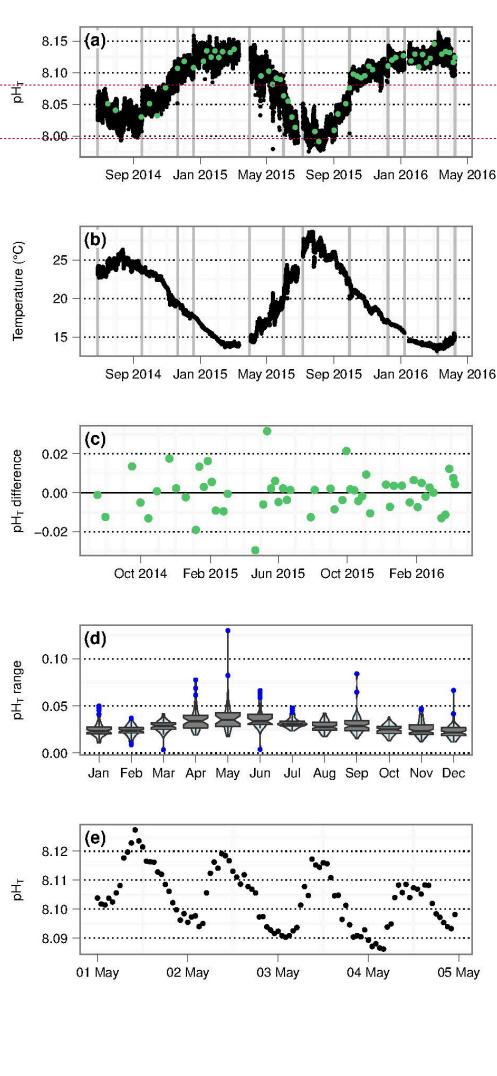
923 **Figure 7.** Time-series pH_T (a) and
924 temperature (b) from SeaFET pH
925 sensor deployments at EOL, 2 m.

926 Discrete calibration samples are noted

927 in green, and grey vertical lines

928 bracket deployment periods (a).

929 Calibration sample offsets from


930 processed pH time-series are shown in

931 panel (c). Violin and boxplots (see

932 Fig. 4) show diel pH range by month

933 (d), and an example of this pH

934 variability is shown for May 2015 (e).

