
Comment from Referee#1: 1 General comments 

The manuscript investigates application of a hybrid variational-ensemble approach to a limited area 

model with sub-mesoscale resolution. So far constraining sub-mesoscale features remains largely out 

of reach of contemporary ocean forecasting with the standard set of remote and in-situ observations. 

This study investigates sub-mesoscale forecasting in situation with dense in-situ observations in a 

relatively calm region. The hybrid approaches become popular in atmospheric and ocean forecasting 

due to increasingly clear understanding of limitations of 4D-Var systems due to lack of mechanisms to 

carry information forward from previous cycles. In my view, the hybrid approaches, while succeeding 

in adding some degree of flow dependence to the background covariance, still remain largely empirical 

and lack consistent formulation. As a consequence, to the best of my knowledge, there still no published 

experiments with small models that would convincingly demonstrate advantages of hybrid systems over 

much more simple and consistent EnKF systems. Below I will list some major and minor issues I see 

with the manuscript and give recommendation in the conclusion. 

Author's response: 

We thanks Dr. P Sakov for carefully reading our manuscript and the useful comments he provided. We 

completely agree on the major challenges we try to address that Dr. Sakov has correctly identified, as 

well as strengthens and weakness of the proposed approach. In particular, we agree that part of the 

methodology is somehow empirical, although largely adopted, and we will better specify this point in 

the revised version of the manuscript. 

 

Comment from Referee: 2 Major Issues 

1. Equations (6), (7) and (8). 

One problem with mixing covariance matrices is that there is no good way to incorporate it in a 

consistent way into the optimisation problem. In particular, the claim that linear mixing (6) can be 

consistent with the cost function (8) is generally wrong. The framework (6-8) assumes 

(𝐱𝒄+𝐱𝒆)𝑻[𝛼𝑩𝒄 + (𝟏 − 𝛼)𝑩𝒆 ]−𝟏(𝐱𝒄+𝐱𝒆) = (𝐱𝒄)𝑻(𝛼𝑩𝒄)−1𝐱𝒄 + (𝐱𝒆)𝑻[(𝟏 − 𝛼)𝑩𝒆 ]−𝟏𝐱𝒆  

This implies xc ⊥ xe, Bc ⊥ Be; which is generally not true and difficult (or even impossible) to impose 

in practice. (The same applies to Eqs. 4-6 in Wang et al. 2007.) If the above is true, then the manuscript 

must be modified accordingly. 

Author's response: 

We thank Dr. Sokov for this comment, but we only partially agree. The equality written by the reviewer 

does require the orthogonality. On the other hand, in order to use eq.8 instead of eq.6, it is only 

necessary that the cost function in eq.8 reaches the minimum for the same values of δx as the one in 

eq.6 and the ensemble generated by the analysis using eq.8 estimates the same covariance matrix as 

the one using eq.6. To demonstrate it we only need to assume that in eq.8 xc and xe, may be perturbed 

independently and that B contains the true background-error covariances, i.e. the background errors 

are well specified. These assumptions are much weaker than imposing the orthogonality on both the xc, 



xe and Bc, Be.  We think that the independency between xc and xe is a reasonable assumption since the 

two variables separately sample historical events and current forecast, while the suitability of B 

implicitly relies on the quality of the ensemble and climatological error estimates. We will add the 

following Appendix in the manuscript with the full derivation of eq.8. 

Author's changes in manuscript: 

APPENDIX 

We start from the cost function: 

J(δ𝒙) =
1

2
δ𝒙T𝐁−1δ𝒙 +

1

2
(𝐇δ𝒙 − 𝐝)T𝐑−1(𝐇δ𝒙 − 𝐝)      (A.1) 

To define our hybrid assimilation schemes we compute B as a linear combination of the “static” 

covariance operator, Bc, and the flow-dependent operator, Be: 

𝐁 = α𝐁c + (1 − α)𝐁e          (A.2) 

where 𝛼 is the relative weight. Substituting A.2 in A.1 we obtain the new hybrid cost function: 

J(δ𝒙) =
1

2
δ𝒙T(α𝐁c + (1 − α)𝐁e)−1δ𝒙 +

1

2
(𝐇δ𝒙 − 𝐝)T𝐑−1(𝐇δ𝒙 − 𝐝)    (A.3) 

We define now the increment as a weighted sum of parts corresponding to static and flow-dependent 

covariance matrices:  

δ𝒙 = δ𝒙𝐜 + δ𝒙𝐞.  

We want to demonstrate that: 

J(δ𝒙) =
1

2
δ𝒙𝐜

T
(α𝐁c)−1δ𝒙𝐜 +

1

2
δ𝒙𝐞

T((1 − α)𝐁e)−1δ𝒙𝐞 +
1

2
(𝐇δ𝒙 − 𝐝)T𝐑−1(𝐇δ𝒙 − 𝐝) (A.4) 

has the minimum for the same value of 𝛿𝒙 as A.3. 

To minimize A.4, 𝛿𝑥𝑐 and 𝛿𝑥𝑒must satisfy 
𝜕𝐽(𝛿𝑥)

𝜕𝑥𝑐
= 0 and 

𝜕𝐽(𝛿𝑥)

𝜕𝑥𝑒
= 0 which gives: 

(α𝐁c)−1δ𝒙c +
∂

∂xc
(

1

2
δ𝒙𝐞

T((1 − α)𝐁e)−1δ𝒙𝐞) +
1

2

∂Jo

∂xc
= 0     (A.5) 

[(1 − α)𝐁e]−1δ𝒙𝐞 +
∂

∂xe
(

1

2
δ𝒙𝐜

T
(α𝐁c)−1δ𝒙𝐜) +

1

2

∂Jo

∂xe
= 0     (A.6) 

where Jo is the observational term. Assuming that 𝛿𝑥𝑐 and 𝛿𝑥𝑒 can be perturbed independently, both 

the second terms on the left hand side of A.5 and A.6 are null:  

∂

∂xc
(

1

2
δ𝒙𝐞

T((1 − α)𝐁e)−1δ𝒙𝐞) = 0,           (A.7) 

∂

∂xe
(

1

2
δ𝒙𝐜

T
(α𝐁c)−1δ𝒙𝐜) = 0        (A.8) 

and 

 
∂Jo

∂x
=

∂Jo

∂xe
=

∂Jo

∂xc
= 2𝐇𝑇𝐑−1(𝐇δ𝒙 − 𝐝) .       (A.9)  

This is a reasonable assumption, because the two random values are sampled from different Gaussians. 

Although they are defined over the same space, one is sampled from historical states, and the other 



from current forecasts. Premultiplying A.5 by 𝛼𝑩𝑐 and A.6 by (1 − 𝛼)𝑩𝑒, removing the null terms, 

summing the two subsequent equations and applying A.9 yields:  

0 = (𝛿𝒙𝒄+𝛿𝒙𝒆) +
1

2
[α𝐁c + (1 − α)𝐁e)] 

∂Jo

∂x
      (A.10) 

Multiplying A.10 by the inverse of the hybrid covariance: 

0 = [α𝐁c + (1 − α)𝐁e)]−1(𝛿𝒙𝒄+𝛿𝒙𝒆) + 𝐇𝑇𝐑−1[𝐇(𝛿𝒙𝒄+𝛿𝒙𝒆) − 𝐝]    (A.11) 

This is also the minimum of A.3 that we wanted as a proof. 

Furthermore, defining the background and analysis perturbations around the true state 𝒙𝒕 as: 

𝛿𝒙𝒃 = 𝒙𝒃 − 𝒙𝒕 

and 

𝛿𝒙𝒂 = 𝒙𝒂 − 𝒙𝒕, 

by adding and subtracting the true state A.11 becomes: 

0 = [α𝐁c + (1 − α)𝐁e)]−1(𝒙𝒂 − 𝒙𝒃 − 𝒙𝒕 + 𝒙𝒕) + 𝐇𝑇𝐑−1[𝐇(𝒙𝒂 − 𝒙𝒃 − 𝒙𝒕 + 𝒙𝒕) − (𝒚 − 𝑯𝒙𝒃)] 

or: 

0 = [α𝐁c + (1 − α)𝐁e)]−1(δ𝒙𝐚 − δ𝒙𝐛) + 𝐇𝑇𝐑−1[𝐇δ𝒙𝐚 − (𝒚 − 𝑯𝒙𝒕)] 

that can be written also as: 

{[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}𝛿𝒙𝒂 = [α𝐁c + (1 − α)𝐁e)]−1𝛿𝒙𝒃+𝐇𝑇𝐑−1[𝒚 − 𝐇𝒙𝒕].A.12 

Multiplying each side of A.12 by its transpose, taking the expectation, assuming that observational 

errors are independent of background errors: 

{[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}𝑨{[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}𝑇 =  [α𝐁c +

(1 − α)𝐁e)]−1𝐸{𝛿𝒙𝒃(𝛿𝒙𝒃)T}[α𝐁c + (1 − α)𝐁e)]−T + 𝐇𝑇𝐑−1𝐑𝐑−1𝐇.   A.13 

Assuming the B contains the true background error covariances, i.e. the background errors are well 

specified, and using A.2: 

𝐸{𝛿𝒙𝒃(𝛿𝒙𝒃)T} = α𝐁c + (1 − α)𝐁e 

thus: 

{[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}𝑨{[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}𝑇 =  [α𝐁c +
(1 − α)𝐁e)]−1[α𝐁c + (1 − α)𝐁e)][α𝐁c + (1 − α)𝐁e)]−T + 𝐇𝑇𝐑−1𝐑𝐑−1𝐇.  A.14 

or : 

{[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}𝑨{[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}𝑇

= [α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇. 

Dividing by {[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}: 

𝑨 = {[α𝐁c + (1 − α)𝐁e)]−1 + 𝐇𝑇𝐑−1𝐇}−1      A.15 

where  𝑨 = 𝐸{𝛿𝒙𝒂(𝛿𝒙𝒂)T} is the analysis error covariance matrix. A.15 demonstrates that independent 

forecasts updates in each ensemble member by using A.4 give the same optimal estimate of updated 

covariances as A.3.  



 

Comment from Referee: 2. Equation (14). 

It seems to me that it writes “innovation = innovation error”, which is wrong. 

Author's response: 

We thank the reviewer for this comment. We think our formulation is correct as the following is valid. 

Our eq.14 in the manuscript is: 

𝑑 = [𝑦 − 𝐻(𝑥𝑏)] = 𝜀𝑜 − (𝜀𝑟 + 𝜀𝑠)  

where 𝑑 is the misfit, 𝜀𝑜 is the observational error, 𝜀𝑟  is the background random error and 𝜀𝑠  is the 

background systematic error. 

Introducing the true state of the ocean 𝑥𝑡, (14) can be written also as: 

𝑑 = [𝑦 − 𝐻(𝑥𝑏)] = 𝑦 − 𝐻(𝑥𝑡) + 𝐻(𝑥𝑡) − 𝐻(𝑥𝑏) =  𝜀𝑜 − 𝐻(𝜀𝑟 + 𝜀𝑠)  

where the errors are defined as departures from the true state. If the observation network is dense, H ~ 

I, reducing to Eq. (14). 

Author's changes in manuscript: 

We will modify eq.14 in the manuscript including the intermediate equivalence to clarify. 

 

Comment from Referee: 3. Ensemble update. 

Due to the lack of rigorous formulation most hybrid methods employ empirical approaches for 

maintaining the ensemble spread. It seems that the manuscript does not tell explicitly how the ensemble 

members are updated. This is important for understanding the method and should be described. Further, 

on p. 10, l. 12-23 it is stated that the ensemble maintains spread due to observations and otherwise 

collapses due to the deterministic model forcing. This is somewhat contrary to what might be expected. 

It seems to me that increasing the number of observations in a consistent DA system should always 

reduce state error, that is always reduce the ensemble spread. Concerning the model forcing, in the 

context of a mainly stable forcing-driven model it is probably a pre-requisite to perturb forcing for 

ensemble members to match the corresponding uncertainty. 

Author's response: 

We fully agree that in a classical DA system increasing the number of observations should reduce the 

ensemble spread. This is due to the ensemble members’ generation procedure that usually involve 

perturbation in the initialization, surface and lateral open boundary conditions and in model physics 

(e.g. unresolved scales) as well. 

In our experiment, differences between the ensemble members are generated perturbing only the 

observations, as explained in the manuscript p. 8 line 29 to page 9 line 13. 

For the time being initialization, atmospheric forcing and lateral open boundary condition are 

unperturbed, the ensemble generation method spans the uncertainty linked with the observational 

sampling and assimilation formulation, implicitly acting on the background ensemble spread. This 

approach implicitly relies on a perfect model assumption, and it is likely to under-estimate the ensemble 



covariances, implying that when no observations are assimilated, the spread equals 0 by construction, 

unlike most ensemble systems with full perturbations. By not perturbing the surface and lateral 

boundary conditions, we assume that the flow-dependent component of B is associated with the small-

scale error fluctuations. Thus the deterministic large-scale forcing acts as an attractor for the ensemble 

perturbations, especially at the sea surface and in proximity of the boundaries. We plan in the future to 

relax this assumption and introduce of full set of perturbations spanning most of the uncertainties in 

the system. 

During the experiment we have assimilated a total of 3139 temperature and salinity vertical profiles 

deriving from gliders and CTD stations (255 CTD and 2884 Gliders vertical profiles). The perturbation 

of the observations, which is one the empirical aspects mentioned by the reviewer in his general 

comment of the manuscript, produces sensible differences in the observations and through differences 

in the solution of the minimization propagates in the model background of the following assimilation 

cycle. Each of the 14 ensemble members is an independent simulation with its own perturbation function 

and associated horizontal correlation radius, every assimilation cycle the observations differ but also 

the background of the individuals members are different, this produces the ensemble spread discussed 

and illustrated in Fig.4 and Fig.5. This method clearly strongly connects the growth of the ensemble 

spread to the perturbation function used and simultaneously link the ensemble spread to observations 

availability being otherwise forced by the same deterministic conditions (lateral and surface open 

boundaries). 

Author's changes in manuscript: 

We will include and mention more explicitly these issues in the revised version of the manuscript. 

 

Comment from Referee: 3 Minor Issues 

1. P. 2, l. 1: suggest replacing “not feasible to sample” by “not feasible to observe”.  

2. P. 2, l. 24: suggest replacing “EnKF” by “traditional EnKF”. 

3. P. 6, l. 19: suggest replacing “model bias error” by “model bias”. 

4. P. 7, l. 3: suggest replacing “background error covariances” by “background errors”. 

Author's response: 

We thank the reviewer for these suggestions. 

Author's changes in manuscript: 

The revised version of the manuscript will be modified accordingly. 

 

Comment from Referee: 4 Conclusion and recommendations 

The manuscript addresses a difficult and interesting ocean forecasting problem. Some of the statements 

and approaches can be viewed as arguable (or, in regard to the EnKF, outdated), but this is what 

scientific literature is for. The methods used are in my view largely empirical, and again there is nothing 

wrong with that, as long this is clearly stated up-front. Concerning the results of the DA experiment 



described, they probably leave a lot of space for improvement, and this itself is one of the important 

outcomes of the manuscript. One line of statements that I tend to disagree with is that “it is difficult to 

run full EnKF with a large number of members” (p. 3, l. 14-17). Not in the year 2016, and definitely 

not with a 240 x 240 x 90 model. Overall, I believe that the manuscript will be interesting and useful 

for the ocean modelling and ocean forecasting communities. I recommend publishing it in Ocean 

Science after fixing the major issues listed above, which probably amounts to a major revision. 

Author's response: 

We thank the Reviewer for the general positive comments on the manuscript. In the revised version we 

tried to address all the major comments provided. Concerning the statements of p3. Line 14-17, this is 

written in the introduction and it is not explicitly linked to our experiment but rather to operational 

oceanography applications, however we will rephrase the sentence. 

Author's changes in manuscript: 

p3. Line 14-17 “Furthermore present computational resources limit the number of ensemble members 

accounted in operational EnKF.” 
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