
Toulouse, April 13 2016

Dear referees

We acknowledge your careful reading and the comments you made on the manuscript ¨Dissipation of
the energy imparted by mid-latitude storms in the Southern Ocean¨ for publication in Ocean Science.
We have addressed all the comments and have incorporated almost all of your suggestions in the revised
manuscript.

You will find below the detailed reply to both reviews. 

Best regards
Julien Jouanno on behalf of the authors.

#------------------------------------------------------------------------------------------------------------------------#
#                                              Response to anonymous referee #1
#-------------------------------------------------------------------------------------------------------------------------#

This manuscript addresses the fate of energy (mostly near-inertial energy) imparted by Southern Ocean
storms and its effect on the Southern Ocean overturning circulation using a suite of semi-idealized high-
resolution ocean models. The numerical experiments designed by the authors are suitable to address this
important topic. Although the results on near-inertial energy generation, propagation and dissipation are
somewhat expected, its effect on Southern Ocean overturning circulation is new. Furthermore, I haven’t
seen sensitivity studies of near-inertial energy budget to model numerics at such high resolutions before.
Therefore I think this manuscript will make a useful and necessary contribution to this topic. I have
some comments for the authors to consider, but most of my comments are minor in nature. 

1. The manuscript talks about “energy imparted by mid-latitude storms”. Well, it is not strictly correct.
The synoptic winds associated with mid-latitude storms not only generate near-inertial waves via time-
varying wind stress, but also contribute significantly to the time-mean wind stress at mid-latitudes via
the nonlinear dependence of wind stress on the wind. For example, Zhai et al. (JPO, 2012) showed that
when the synoptic winds are included in the stress calculation, the wind power input to the ocean
general circulation can increase by as much as 70%.
 
Indeed, our model setup does not allow to evaluate the response of the ocean to modification of the
time-mean wind stress by the storms : by construction the 10 year average wind stress is the same in the
storms and no-storms simulations. This was a deliberate choice so we were sure that the sensitivity of
the solution was not due at first order to changes in the time-mean wind stress. One another side, our
focus is not only on the near-inertial energy input (as you raised/questioned below, a substantial part of
the storm energy input also feed the balanced circulation). For this reason, we choose to maintain the
initial version of the title. Nevertheless we add the following sentence in the abstract in order to clarify
the scope of our study : ¨The forcing strategy ensures that the time mean wind stress is the same
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between the different simulations so the effect of the storms on the mean wind stress and resulting
impacts on the Southern Ocean dynamics are not considered in this study.¨ 

2. Recently, Rath et al. (JGR, 2013) found that accounting for the ocean-surface velocity dependence of
the wind stress leads to a large reduction of wind-induced near inertial energy of approximately 40% in
their 1/10 degree Southern Ocean model. This relative wind damping effect seems to be a very
important way of dissipating near inertial energy in the ocean. When you force your model directly with
wind stress that knows nothing about the surface ocean currents, this relative wind damping effect is
absent. I think this issue should at least be discussed, given that this manuscript is about energy
dissipation.

The following paragraph has been added to the discussion section (7.2 Energy pathways) : ¨Using a
1/10° model of the Southern Ocean, Rath et al. (2013) found that accounting for the ocean-surface
velocity dependence of the wind-stress decreases the near inertial wind power input by about 20% but
also damps the ML near-inertial motions leading to an overall ~40% decrease of the ML near inertial
energy. Overall, this damping effect is found to be proportional to the inverse of the ocean-surface-
mixed-layer depth. In our set of simulation, we do not include any wind stress dependence on ocean-
surface velocity which remains a debated subject (Renault et al. 2016). Our main motivation for doing
so was to ensure that the mean wind stress remains the same between the different model experiments
that have been performed in this study. Nevertheless, we should keep in mind that we miss a potentially
important dissipative process for the NIWs.¨

3. line 19-20 on page 3. Should be “2000 km long” and “3000 km wide”.
 
Corrected. 

4. line 26 on page 3 and in many other places in the manuscript. It should be “3x104”.
 It has been corrected here and elsewhere. 

5. The last sentence on page 3 needs to be rephrased. It is not clear to me what you want to say here.
 
This sentence has been rephrased as follows : “Our horizontal resolution ≥ 1km and the hydrostatic
approximation used to derive the model primitive equations do not permit the proper representation of
upward radiation and breaking of internal lee waves (Nikurashin et al., 2011). Nevertheless, the deep
flows impinging on bottom irregularities generate fine-scale shear which enhances dissipation and
mixing close to the bottom, as generally observed in the Southern Ocean (Waterman et al. 2013). ”

6. In the model configuration section on page 4, there is no information about the existence of the
background wind forcing without storms at all. It should not be left completely in the appendix.
 
The description of the background windstress has been removed from the appendix and included in
Section 2.1.
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7. line 21 on page 4. Brackets are needed for “2012”.
 
Corrected.

8. page 6. (2) also includes diffusive energy transport in the vertical direction, not just energy
dissipation?
 
The energy transport by diffusion is removed by the vertical integration. 

9. line 12 on page 7. The average KE exceeds......, but the caption of Fig. 6a says “EKE”?
 
This has been corrected in the text.

10. line 1 on page 9. What is WKB stretched CW and CCW? Need to explain it or at least point the
readers to the appendix.

 We now refer to appendix B.

11. line 21-22 on page 9. Why does the storm lead to strengthening of the eastward current?
 
This strengthening is due to the position of the mean eastward current which is not symmetric with
respect to y=1500 km but intensified on the northern portion of the domain (as in Fig. 2 of Abernathey
et al. 2011), so the domain average additional zonal wind work imparted by the storm is nonzero and
positive. This is now mentioned in the manuscript in Section 4.2.
 
12. line 25 on page 9. The Coriolis force is perpendicular to the current, and therefore should not do any
work?

Indeed, the contribution of the Coriolis force to energy budget should be zero. But errors due to the
staggering of the Arakawa C grid turn its contribution to the kinetic energy balance nonzero (but very
weak compared to the other term of energy equation). This is now mentioned in the manuscript (Section
4.2).

13. line 17 on page 10. The authors should check what these papers say before citing them here.

We retained the references to Garrett 2001, Blaker et al. 2012, Komori et al. 2008, but indeed, we found
the references to Zhai et al. 2005 and Zhai et al. 2009 not adequate and we remove them. We also add a
reference to Zhai et al. 2004 (GRL) on advective spreading of NIW that is the one we should have cited
first.
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14. line 21 on page 10. You need to explain how the strength of the storm activity is varied seasonally
here, or at least point the readers to the appendix.
 
We add the following sentence : “The seasonality of the storms is included by seasonally varying the
maximum wind stress of the storms from 0.75 N m-2 in austral summer to 1.5 N m-2 in austral winter (see
details in Appendix A).”

15. line 31 on page 10. Again, why does the mean KE increase in response to the storms?
 
Again, this is because the mean ACC is not centered at y=1500km and not symmetric. 

16. line 7 on page 11. How do you define the mixed layer ?

The mixed-layer depth is computed with a fixed threshold criterion (0.2°C) relative to the temperature
at 10 meters. This is indicated in the caption of Figure 2.

17. line 23 on page 13. The effective frequency should be “f+/2”, according to Kunze (JPO, 1985)?
 
We used the effective frequency as defined in Kunze et al. 1995 that was describing inertial oscillations
from a reference frame rotating with a geostrophic flow with relative vorticity ζ . Since our reference
frame is only rotating with earth you are right : the correct definition of the effective frequency is  f+ζ/2
(Kunze, JPO, 1985). This has been corrected in the text and the figure has been updated.

18. line 12 on page 17. Should be “easy comparison”.

This has been corrected.
 
19. line 22 on page 17. I assume that changes in air-sea fluxes are due to the feedback term in surface
heat flux forcing? If so, need to say it.
 
Yes, the changes in air-sea fluxes are due to the feedback term. This is now mentioned in the manuscript
as follows : “The change in the air-sea fluxes is due to the feedback term that act to restore model SST
toward a SST climatology.”
 
20. lines 13-14 on page 19. It is not clear to me why you conclude that your results are noticeably
different from the previous two studies, since your results also show that the majority of energy
imparted by the storms is dissipated within the top 200 m.

We agree that the overall conclusion is coherent with previous studies. This sentence has been
rephrased as follows : “Our results are in good agreement with these studies: ...”
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21. line 18 on page 19. What is that part of wind work that is not near-inertial wind work? Wind energy
input to the surface Ekman currents?
 
The part of the wind work which is not near-inertial feed the subinertial and mean circulation. 

22.Figure 5. Three different color maps are used. Is this necessary? Why is 17 days after the passage of
the storm is chosen? Is it to give enough time for the near-inertial waves to reach the base of the
anticyclonic eddy?
 
We choose three different colormaps to help distinguish the different fields : horizontal velocities,
vertical velocities, shear. Yes we choose 17 days so it gives enough time to the waves to reach the base
of the anticylonic eddy (as suggested by Figure 8b). This is now mentioned in the figure caption.

23. Figure 8. a) and b) are plotted differently (one on log scale and one not), which makes it hard to
compare them quantitatively. In the caption for c), the symbol “< >” appears messed up on my printed-
out version.

Figure 8a and 8b are now both plotted in log scale. The <>  symbols have been corrected.

#------------------------------------------------------------------------------------------------------------------------#
#                                              Response to anonymous referee #2
#-------------------------------------------------------------------------------------------------------------------------#

The authors set out to examine the dissipation of near inertial energy imparted by mid-latitude storms in
the Southern Ocean. Idealized experiments are designed and utilized that seem well suited for this
examination. The analysis is well designed and leads to conclusions on the generation and fate of near
inertial energy that are not physically surprising. The influence of Southern Ocean storms on the MOC
in models is certainly new. Further, the influence of model parameters is novel and important for other
models of the Southern Ocean to consider. The work in this manuscript is well thought out and will
make an excellent addition to the Southern Ocean literature. My comments, for the most part are minor,
but I offer a few thoughts and possible additions for the authors.

The influence of Southern Ocean storms on MOC are certainly interesting. They seem to be in partial
agreement with the observational results of Hogg et al. (JGR, 2015) who examined the response of EKE
and MOC to increases in southern ocean winds. Given that Figure 7 represents a 10 year average, the
average storm influence is behaving a bit like a somewhat uniform increase in winds. In fact, I wonder
if you may find similar MOC results for an experiment where the wind stress was uniformly increased
everywhere since the storm tracks may average out over the 10 year cycle to a roughly uniform increase
in the domain. Either way, it seems that your results are consistent and you might consider referencing
Hogg et al. On the other side, a recent paper by Gent (2016, Ann. Reviews) suggests that southern ocean
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winds cannot be a primary driver of MOC due to eddy compensation. I think placing your results in the
context of these two types of results would be useful.

By construction the 10 year average wind stress is the same in the storms and no-storms simulations, so
our model setup with storms does not include the response of the ocean to modifications of the time-
mean wind stress by the storms. This was a deliberate choice so we were sure that the sensitivity of the
solution was not due at first order to changes in the time-mean wind stress. 

We agree that it would be interesting to understand whether the average storm influence on the MOC is
behaving like an uniform increase in winds. A new set of simulations would be required to properly
answer this question. But part of the answer is already given in the manuscript : “Although the settings
have differences, an instructive comparison is estimating the change in mean wind stress required to
increase the upper MOC cell (the only one we simulate) by 16% in the sensitivity experiments carried
out by Abernathey et al (2011). Their figure 5 indicates a change from 0.20 N m-2 to ~0.23 N m-2 (+15%)
is needed when interactive air-sea flux are used. This further confirms the importance of synoptic
winds.”

If we would not remove the residual mean signature of the storms, the mean wind profile of our
simulation would be as follows (the inclusion of storms lead to a 1.3% decrease of the domain average
wind stress).

So the residual wind modification is much less than the +15% increase estimated from the results by
Abernathey et al. (2011). This indicates that a simulation forced with this uniform residual wind shall
not increase the MOC as in the experiments with storms. We prefer not to discuss this point in the
manuscript since we do not provide a thorough demonstration. Indeed, it would required some
confirmation by running and analyzing additional experiments (our access to HPC resources is closed).
 
Thanks for the reference to Hogg et al. (2015)  and Gent (2016). They have been added in the
conclusion.   

Expanding on a comment from the other referee, I think the details of your momentum transfer
parameterization are important. In addition to inclusion of the moving ocean, I think the role of wave
generation is important. Some of the momentum input due to storms will go into wave generation and
not directly into the local currents. The waves may break far from the cyclone thus changing the local
dissipation profiles (see for example Suzuki et al 2014, JPO or Curcic 2015, UMiami Dissertation).
Further, wave mean flow interactions (e.g. langmuir cells) may dramatically modify local dissipation.
This result may be difficult to tease out as the wave drift relative to currents will rotate 180 degrees as
the storm passes over (e.g. Sullivan et al 2012, JPO). No further experiments are necessary, but a short
discussion on possible effects would be interesting.
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We would prefer not to risk us to discuss on possible effects of these different processes; it would be too
speculative. Nevertheless we add a general paragraph in the discussion Section 7.2 Energy pathways
that point to these shortcomings:

“ The vertical turbulence model we use does not include an explicit wave description so the surface
wave mixing effect is parameterized and non-local wave breaking, Stokes drift or Langmuir cells are
not considered. These processes modulate the momentum and energy deposited into the ocean as well
as near surface dissipation rates. For example, the analysis of a coupled atmosphere-wave-ocean
model simulating hurricane conditions suggests that the Stokes drift below the storm can contribute up
to 20% to the Lagrangian flow magnitude and change its orientation (Curcic et al. 2016). These
processes certainly impact the near-inertial wind energy input and distribution of its dissipation, and
would deserve further attention, perhaps using a more realistic (regional) setup ”

In a few places in the manuscript the submesoscales are referenced. For example, section 3 seems to
suggest that the submesoscales are for < 60km. This seems incredibly large. The first rossby radius of
deformation computed from a model configuration not unlike that presented here (computed via the
method in Chelton et al 1998, JPO) is 10km near the ACC implying that the submesoscales are even
smaller. Using scalings from Fox-Kemper et al (2008, JPO) submesoscales in the ACC are roughly 2
km, suggesting your 1km results are borderline submesoscale permitting. This suggests that the
shallowing of the mixed layer noted in section 5 is most likely not due to the submesoscales.
 We guess, that the confusion comes from that in our manuscript, we refer to the submesoscale range by
considering the wavelengths (2π/k < 60km, with k the wavenumber) and not the length scale (1/k <
10km). Note that Fox-Kemper et al (2008, JPO) used a model 2-km resolution to study sub-mesoscale
re-stratification effects.  
 
When introducing the sub-mesoscale range, we now precise : ¨(i.e. horizontal scale below 10km)¨.

In your paper you note the importance of resolving mixed layer dynamics (pg 15), yet you never discuss
or test the sensitivity of your results to different mixed layer parameterizations. I would expect that
accurate representation of mixed layer processes will have an impact on your results. For example, the
GLS scheme could be used with different parameters to produce k-w or k-l schemes. Further, to the best
of my knowledge the GLS scheme does not consider non-local processes. While I agree with your
assessment that this will not matter significantly during the storms passage, I would point out that the
non-locality (most active from the prior winter) may change the depth of the mixed layer prior to storm
passage, which in turn may influence your results of NIE fate. While KPP certainly has its own issues,
the inclusion of non-locality may be important. Why did you choose not to consider other vertical
mixing parameterizations except the GLS k-ε form ?

Indeed, we leaved aside the sensitivity of our solutions to the vertical subgrid scale physics. We did this
choice first because of a limited access to HPC resources so we were forced to prioritize our sensitivity
experiments. The range of numerical and physical choices that affect the vertical physics is very large
(closure type, stability function, inclusion of non local effect due to static instabilities, Langmuir Cell
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effect, surface roughness computation, varying wave field, etc...) so long term, 3D, high-resolution
experiments may not be well suited to perform exhaustive series of sensitivity experiments that could
benefit to the community. So we choose the vertical mixing scheme setting available in NEMO that gave
the most satisfactory results at high latitudes (it has been tuned at station PAPA, 50N by Reffray et al.
2015).

Specific Comments

Page 1

–Line 28 – efforts should be effort

Corrected. 

–Line 29 – with should be to, and semi-colon needed after on

Corrected.

Page 4

–Line 13 – NEMO is hydrostatic, so it really doesn’t solve the three-dimensional primitive equations,
correct? I would assume w is diagnosed from integrated divergence. I think you could just leave out that
phrase and say it is discretized on...

Yes, w is diagnosed from integrated divergence. So we removed “three-dimensional”, but we retained
that the model solves the primitive equations. 

– Line 18 – you reference the resolution of layers in the vertical for the 320 m test, but never for the 50
m baseline. It would be nice for a comparison
 
The resolution of layers was already given for both 50-levels and 320-levels configurations, in the
model description configure (Section 2.1) and in the description of the sensitivity tests (Section 5.4),
respectively. 

–Line 19 – is there any sensitivity to the chosen 70-days (during the final year of the simulation) over
which you average?
 
The one-storm simulation has been performed starting with initial conditions typical of the austral
summer. We did not performed sensitivity tests by changing the initial conditions. The aim of the single-
storm experiment is mainly to offer a general/qualitative view of the dynamics and main energy balance
involved in the response of the ocean to the passage of one storm. Since the results shown in this section
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are in full agreement with the analysis of the “multi-storm” experiments in the subsequent sections, we
have not felt necessary to perform additional experiments.   

Page 6

–Line 20 – again, how are you determining that < 60km is submesoscale?

Again, this depends on whether we consider wavelength (<60km) or horizontal scale (<10km).

Page 7

– Paragraph 1 – What is the vertical coordinate treatment in NEMO relative to the bottom? Do you use
terrain following / z with partial bottom cells / z with shaved cells / something else? This feels like an
important point as it will have an impact on how the flow interacts with the bottom topography in the
model.
 
We use partial steps and it is now mentioned in the description of the model. 

– line 8 / 9 – starting at the absence of topographic, I think it should be something like "the absence of a
topographic ridge and narrow passages does not allow us to obtain"
 Corrected.  
Page 10

– line 2 – what is your near bottom resolution in the 50 layer, baseline case? Could this explain the
absence of enhanced bottom dissipation as you probably are not resolving the bottom boundary layer ? 

Bottom resolution in both 50 and 320 level configurations is 175m (this is mentioned in the model
configuration section), so the bottom boundary layer (if we consider this layer as the near field where
internal waves generated at the bottom break) is not well resolved. We think that the main reason that
explain the absence of enhanced bottom dissipation is the one given in the manuscript : “The levels of
near inertial energy below 2500 m depth remain 2 to 3 order of magnitude lower than those found in
the mixed-layer and are not sufficient to significantly increase bottom dissipation.”

Page 11

– line 8 – no comma is needed after fig 6e
 Corrected.

– line 14 – should be – the submesoscale
 Corrected.

Page 12
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– line 2 – the sentence beginning with – At the difference of this general balance – is very confusing to
me, in particular the first two clauses. It also feels like this could be broken into multiple sentences,
perhaps after the second comma.
 
The sentence has been rephrased so we hope it is now less confusing : “The KE balance in both
experiments are very similar, with overall wind work mainly balanced by the work done by bottom
friction (38.9% without storms and 30.5% with storms), pressure work maintaining the system available
potential energy (32.2%, 26.0%) and vertical diffusion (23.4%, 33.1%). At the difference of this general
balance, and in agreement with results for the single-storm experiment described in section 4, t . The
KE balance also indicates that the additional input of energy provided by the storms (+3.64 mW m -2) is
balanced at 90% by dissipation (-2.86 mW m-2 for horizontal and vertical dissipation to which one
should add the Asselin filter contribution) with pressure work and bottom friction being secondary
(respectively -0.18 mW m -2 representing a 5% contribution and -0.07 mW m -2 representing a 2%
contribution). This is in stark contrast with the equilibration of the low-frequency wind work feeding the
balanced circulation.”

 - line 32 – it feels like coherent should be consistent
 
This has been corrected.

 Page 13

– paragraph 1 of section 5.3 – does your analysis here have any dependence on the assumed diameter
and or the threshold deviation from a circular shape? For example, in your vorticity snapshot, many of
the eddies are very elongated.
 
The cyclone/anticyclone composites tend to resemble more and more when decreasing the size of the
selected eddies or when being less restrictive on the shape of the eddies. On the contrary a more
restrictive criteria on both shape and size leads to more contrasted results between cyclones and
anticyclones but turns representative of only a very small fraction of the domain. So we choose a
compromise between both in order 1) to have a total amount of dissipation contained in the composite
that would be significant for the model domain and 2) to be enough selective so compositing allows to
show contrasted dissipation profiles between cyclones and anticyclones. 

Page 14
 
– line 29 - 30 (and other places) (resp. ....) I am unfamiliar with this notation. I think this is
’respectively’, but am unsure. If it is, I don’t think that is necessary. Most often the respectively is
omitted.
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We removed the use of resp. (omitting them or rephrasing) at the exception of page 18 where we think
this notation helps the reader.
 Page 15
 
–Vertical resolution section, did you consider sensitivity to resolution at the mixed layer interface?
Appropriate simulation of entrainment/detrainment should have nonnegligible impacts on your results.
Your 50 vs 320 layer case may have sufficient enough differences in the respective resolutions at the
boundary layer depth to speak to this already.

In the 320 layer case, the resolution increase mainly affect the upper ocean (2m resolution at the
surface instead of 10m in the 50 level configuration) while the size of the cells below 2500 meters are
equal to the 50 level experiment so that the local characteristics of flow-topography interactions are
unchanged. 

Dissipation is altered in the upper levels (see Fig. 14b), but we cannot conclude whether the differences
in terms of dissipation in the interior (from 150 m to 2500meters) are due to sensitivity to resolution at
the ML interface or modification of the NIW propagation well below the mixed layer. So we prefer not
to conclude on the reasons for the modifications in the interior, and keep the comment as follows : 
“The overall dissipation ε is increased in presence of storms in the interior in the configuration with
320 vertical levels (Fig. 13a,b and Fig. 14c-e), indicating that the downward propagation of the NIE is
better resolved in the high vertical resolution experiment with more NIE available at depth. Similar
increase of ε in the upper 100m in the experiments with and without storms (Fig. 14b) suggests that
mixed-layer dynamics are profoundly altered when changing the vertical resolution. ”

–Advection schemes, what resolution was the biharmonic viscosity coefficient used with and was it
scaled with resolution? Was it actually used in other simulations? If it was used and not varied with
resolution, it seems like your high-resolution simulations would be overly diffuse.
 
The explicit biharmonic diffusion has been added to the experiments with 2-km horizontal resolution,
that use 2nd order advection scheme in flux form (CEN2) or vector invariant form (VFORM): 2km-
nostorm_CEN2, 2km-storms_CEN2, 2km-notorm_VFORM, 2km-storms_VFORM (see Table 1). We
used the same biharmonic viscosity coefficient than Levy et al. (Ocean Modelling, 2012) for their 2-km
simulation. The 1-km simulations have been performed here with UP3 scheme only, so diffusion was
implicit.
    
–Advection schemes, Note that when you compute numerical diffusion relative to a even order scheme,
it is a slight over-estimate as these schemes, 2nd order especially are anti-diffusive. It would be nice to
make a quick mention of this in the text.
 
It is not completely clear for us whether we over-estimate or underestimate the dissipation  (in
particular for the 4th order scheme which is not strictly a  4 th order scheme). So we prefer to keep the
following sentence : ¨The 4 th order scheme in NEMO involves a 4 th order interpolation for the evaluation
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of advective fluxes but their divergence is kept at 2nd order, making the scheme not strictly non-diffusive.
Although the estimation of UP3 horizontal diffusion depends on the scheme used as a reference we
verify in section 5 that the sensitivity of domain averaged ε h to the choice of the 2nd or 4th order scheme is
much smaller than that resulting from other parameter changes, e.g., small changes in the
characteristics of the atmospheric forcing.¨
 Page 18
 - line 18 – parenthesis needed around 2011
 
Corrected.

Page 21

– line 11 – The sentence beginning Although the settings have... is very confusing to me. I think it might
be fixed by adding a comma after "differences" and change "consists in" to is
 
Corrected following your suggestion.

 Page 22
 – line 24 – Life time should be The lifetime

Corrected.   

– line 26 – affect should be affects

Corrected.

 – line 26 – each should be every
 
Corrected.

 Figure 2
 
–Can you explain why the MLD bias is so large in what I believe is the restoring region (y > 2600km)?
It seems that if you restore to something resembling observations you shouldn’t have such a large bias.
Or is this related to the comparison to de Boyer Montegut versus some other climatology?
 
The restoring is only for y > 2850km and is quite weak up to 2950 km, so the MLD bias occurring north
of y=2500km is only partly corrected (from y=2850 where it tends to decrease). Achieving a realistic
temperature and mixed-layer depth seasonal cycle has been very challenging. In particular the use of  a
temperature only equation of state complicated the problem. 
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–I would move the clause mentioning how the MLD is calculated up in the description to where the
MLD is introduced (first line)
 
Done.  

Figure 6
 Is the MLD defined as in Figure 2? it should be stated.

Yes. It is now stated in the caption of Figure 6.

 Figure 7
 – The subscripts on the plot labels  in (c) - (f) are very difficult to see, but I think they say "iso"? Could
these be enlarged?
 
The titles of figure 7 have been enlarged. 
 
– do the dotted and dashed lines in (e) - (f) and (c) - (d) respectively represent the same thing
(likelihood of a parcel being at the surface)? The caption only mentions dotted lines. 

In (c,d) the dashed lines corresponds to the cumulative distribution of SST while in (e.f) they correspond
to the cumulative distribution of the MLD. This was not explicit in the caption and now it has been
improved.
 
- I think you should remove the ’and’ following Abernathy et al 2011 and add a comma
 
This has been corrected following your suggestion. 
 
– Do the dotted lines in (e)/(f) correspond at all to modeled mixed layer depths? It would be interesting
to see if all buoyancy classes that don’t exist at least part of the time always reside in the mixed layer or 
not.
 
Yes they represent the average depth of the 10%, 50% and 90% deepest ML, illustrating that
transformations occurs in buoyancy classes well below the mixed-layer, probably achieved by the shear
of the eddies in the case without storms (e.g. see Figure 5d,e) and reinforced by the shear of the NIW
when storms are included (Figure 5i,h)

 Figure 8  
– be consistent between the caption and panel for (d) and (e) you have Ev Eh versus v and h  
 
The titles of panel (d) and (e) have been corrected.
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– the 10 after log10 should be subscript
 
Corrected.
 
– There is an odd symbol after your rms definition, I’m guessing it is <> Figure 10  
 
Corrected.
 
– Why did you choose to separate your analysis at 200 m depth? Is this a rough estimate of the
boundary layer depth? Or some change in the shape profile perhaps?
 
We choose to separate our analysis at 200m depth because the average dissipation profile (e.g. Figure
11a) shows an inflexion at this depth suggesting a change of regime down to this depth.

 Figure 11
 – Should "UBS_C2" be "UBS - C2" instead? Same for "UBS_C4"?
 
This has been corrected. 

 Figure 13
 
– If the horizontal dissipation is due to advective scheme biases, it seems that this dissipation should
reduce (assuming it is the implicit diffusion due to upstream bias) and not increase in panel h. I can’t
seem to find this panel discussed in text, but may have missed it.
 
The horizontal dissipation reduce when storms are removed (this is shown in pannel f). But pannel h
represent the fraction of the total dissipation achieved by vertical processes. The increase of this
fraction,  suggests that the reduction of horizontal dissipation is larger than the reduction of vertical
dissipation. This is discussed in Section 5.4 - ¨Horizontal resolution¨.

  Figure 15
 
– the abbreviation VFORM should be included after "vector form" in the caption.
 
Thanks, this has been included, as well as “CEN2”.
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Abstract. The aim of this study is to clarify the role of the Southern Ocean storms on interior mixing and meridional

overturning circulation. A periodic and idealized numerical model has been designed to represent the key physical processes

of a zonal portion of the Southern Ocean located between 70°S and 40°S. It incorporates physical ingredients deemed

essential for Southern Ocean functioning : rough topography, seasonally varying air-sea fluxes, and high-latitude storms with

analytical form. The forcing strategy ensures that the time mean wind stress is the same between the different simulations so

the effect of the storms on the mean wind stress and resulting impacts on the Southern Ocean dynamics are not considered in

this study. Level and distribution of mixing attributableimputable to high frequency winds are quantified and compared to

those generated by eddy-topography interactions and dissipation of the balanced flow. Results suggest that 1) the synoptic

atmospheric variability alone can can alone generate the levels of mid-depth dissipation frequently observed in the Southern

Ocean (10-10 - 10-9 W kg-1) and 2) the storms contribute to strengthen the overturning, primarily through enhanced mixing in

the upper 300m, whereas deeper mixing has a minor effect. The sensitivity of the results to horizontal resolution (20, 5, 2 and

1 km), vertical resolution and numerical choices is evaluated. Challenging issues concerningon how numerical models are

able to represent interior mixing forced by high-frequency winds are exposed and discussed, particularly in the context of the

overturning circulation. Overall, submesoscale-permitting ocean modelling exhibits important delicacies owing to a lack of

convergence of key components of its energetics  even when reaching Δx = 1 km.

1 Introduction

Knowledge gaps pertaining to energy dissipation and mixing distribution in the ocean greatly limit our ability to apprehend

its dynamical and biogeochemical functioning (globally or at smaller scale, e.g., regional) and its role in the climate system

evolution (Naveira-Garabato, 2012). For example, the meridional overturning circulation in low-resolution global coupled
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models is significantly altered by the parameterization for and intensity of vertical mixing (Jayne et al. 2009, Melet et al.

2013).

A great deal of effortefforts is currently deployed to address the issue but the difficulties are immense: dissipation occurs

intermittently, heterogeneously and in relation towith a myriad of processes whose importance varies depending on the

region, depth range, season, proximity to bathymetric features... In this context, establishing an observational truth based on

local estimates involves probing the ocean at cm scale (vertically) with horizontal and temporal resolution requirements that

will need a long time to be met (e.g.,  MacKinnon et al. 2009 or DIMES program, Gille et al. 2012).

In order to make progress other (non-exclusive) approaches are being followed. Well-constrained bulk mixing

requirements for certain water masses can be exploited to infer mixing rates and, in some cases point to (or discard) specific

processes (de Lavergne et al., submitted). Alternatively, in-depth investigations of dissipation and mixing associated with

presumably important processes are carried out (with the subsequent parameterization of the effects in OGCMs being the

ultimate objective, Jayne et al. 2009, Jochum et al. 2009). This study belongs to the latter thread. It is a numerical

contribution to the investigation of dissipation and mixing due to atmospheric synoptic variability (mid-latitude storms) in

the Southern Ocean.

Synoptic or high-frequency winds inject important amounts of energy into the ocean that feed the near inertial wave (NIW)

field. A large part of the near inertial energy (NIE) dissipates locally in the upper ocean, where it deepens the mixed-layer

and potentially has an impact on the air-sea exchanges and global atmospheric circulation (Jochum et al. 2013). Nevertheless

a substantial fraction of the NIE also spreads horizontally and vertically away from its source regions: beta dispersion

propagates the energy toward lower latitudes (Anderson and Gill 1979), advection by the geostrophic circulation

redistributes NIE laterally (Zhai et al. 2005), and the mesoscale eddy field favors the penetration of NIWs into the deep

ocean by shortening their horizontal scales (Danioux et al. 2008, Zhai et al. 2005), or through the ¨inertial chimney¨ effect

(Kunze 1985).

Although the near inertial part of the internal wave spectrum is thought to contain most of the energy and vertical shear

(Garrett 2001), large uncertainties remain on the amount of NIE available at depth for small-scale mixing and whether/where

it is significant compared to other sources of mixing such as the breaking of internal waves generated by tides or the

interaction of the mesoscale flow with rough topography (e.g. Nikurashin et al. 2013). The only present consensus is that

NIE due to atmospheric forcing does not penetrate efficiently enough into the ocean interior to provide the mixing necessary

to close the deep cells of the MOC (Furuichi et al. 2008, Ledwell et al. 2011), below 2000 m.

On the other hand, the vertical flux of NIE at 800 m estimated by Alford et al (2012) at station Papa (in a place of the north

Pacific not particularly affected by storm activity) may have significant implications on mixing of the interior water masses,

depending on the (unknown) depth range where it dissipates. Our regional focus is the  Southern Ocean where intense storm

activity forces NIW (Alford, 2003) that seem to have important consequences, at least above 1500 m depth. Elevated

turbulence in the upper 1000-1500 meters north of Kerguelen plateau has been related to wind-forced downward-propagating

near inertial waves (Waterman et al. 2013); the clear seasonal cycle of diapycnal mixing estimated from over 5000 ARGO
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profiles in regions of the Southern Ocean where topography is smooth points to the role of wind-input in the near-inertial

range (and NIW penetration into the ocean interior; Wu et al, 2011). 

The aim of this study is to i) further clarify the mechanisms implicated in NIW penetration into the ocean interior, ii) more

precisely quantify the resulting NIE dissipation intensity including its vertical distribution, and iii) better understand the

current (and future) OGCM limitations in representing NIE dissipation. (Findings on (ii) will be specific to the Southern

Ocean while we expect those on (i) and (iii) to be more generic.) For that purpose we perform semi-idealized Southern

Ocean simulations for a wide range of model parameters and different numerical schemes covering eddy present to

submesoscale rich regimes.

Importantly, our highest resolution simulations adequately resolve the meso- and submeso-scale turbulent activity deemed

essential in the leakage of NIE out of the surface layers, as found in Danioux et al (2011). In contrast to this and other studies

(Danioux et al, 2008) the realism of the ocean forcing, mean state, and circulation makes it more directly applicable to the

real ocean, provided that numerical robustness and convergence is reasonably achieved.

The paper is organized as follows. The model setup is presented in section 2 and the ocean dynamics and mean state that

are simulated without storms are described in section 3. Section 4 describes the spatial and temporal characteristics and

consequences of the simplified NIW field generated by the passage of a single storm (spin down experiment). In section 5

quasi-equilibrated simulations are analyzed in terms of pathways through which the storm energy is deposited into the

interior ocean and sensitivity of the mixing distribution to storm parameters and numerical choices. In section 6, we

characterize the long term impact of the storms on the (large scale) MOC which turns out to be significant, mainly because

of their effect on and immediately below the ocean surface boundary layer. Section 7 provides some discussion and section 8

concludes.

2 Model

The numerical set up consists of a periodic channel configuration of 2000 km longlength (Lx, zonal direction) and 3000

km widewidth (Ly, meridional direction), that aims to represent a zonal portion of the Southern Ocean located between 70°S

and 40°S (Fig. 1). It is inspired by the experiment described in Abernathey et al. (2011), which is mainly adiabatic in the

interior. We add three ingredients to our reference experiment deemed essential to reach realistic levels of dissipation and

whose consequence is to enhance dissipation and mixing in the model ocean interior.

i) The bathymetry is random and rough. Horizontal scales of the reference bathymetry range between 10 and 100 km and

depths vary between 3000 and 4000 meters. The bottom roughness,  computed as the variance of the bottom height H, is

3x104  3.104 m2, value which can be considered as intermediate between rough and smooth and which is representative of the

roughness of a large portion of the Southern Ocean topography (see map of roughness in Wu et al. 2011). T he inclusion of

bottom topography aims to limit the ACC transport through bottom form stress (Rintoul et al. 2001) and to generate deep and

mid-depth mixing through vertical shear. Our horizontal resolution ≥ 1km and the hydrostatic approximationhypothesis used

to derive the model primitive equations do not permit the proper representation of corrupt the upward radiation and breaking
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of internal lee waves (Nikurashin et al., 2011). Nevertheless, the  but deep flows impinging on bottom irregularities generate

fine-scale shear which enhances dissipation and mixing close to the bottom, as generally observed in the Southern Ocean

(Waterman et al. 2013).  (see section 5).

ii) The surface and lateral forcing vary seasonally. The objective is to reproduce a seasonally varying stratification and

mixed-layer depth. These seasonal variations are known to be important in the formation process of mode waters and

functioning of the overturning, since surface cooling triggers mixed-layer convection. 

iii) The wind forcing includes idealized Southern Ocean storms. These high-frequency winds induce intense near-inertial

energy and mixing into the ocean interior. From the analysis of scatterometer measurements, Patoux et al. (2009) provided

general statistics of the spatial and temporal variability of the Southern Ocean mid-latitude cyclones for the period 1999-

2006 : most of the cyclones occurred between 50ºS and 70ºS, have a radius between 400 and 800 km, and last between 12h

and 5 days. Mesoscale cyclones lasting less than 4 days represent about 75% of all cyclone tracks (Yuan et al. 2009). The

storm forcing design, detailed in Appendix A and adapting the methodology followed by Vincent et al. (2012), is based on

these observations.

2.1 Configuration

The numerical code is the oceanic component of the Nucleus for European Modelling of the Ocean program (NEMO, Madec

2014). It solves the three dimensional primitive equations discretized on a C-grid and fixed vertical levels (z-coordinate).

Horizontal resolution of the reference simulation is 2-km. There are 50 levels in the vertical ( with 10 levels in the upper 100

meters and cells reaching a height of 175 m at the bottom ), with a partial step representation of the topography . Sensitivity

runs to both horizontal and vertical resolutions (Δx between 1 and 20-km, Δx=2-km with 320 vertical levels) are an

important part of this study. The model is run on β-plane with f0=1.10-4 s-1 at the center of the domain and β= 1.10-11 m-1 s-1. A

3rd order upstream biased scheme (UP3) is used for both tracer and momentum advection, with no explicit diffusion. The

vertical diffusion coefficients are given by a Generic Length Scale (GLS) scheme with a k-ε turbulent closure (Reffray et al.

2015). Bottom friction is linear with a bottom drag coefficient of 1.5x105 10-3 m s-1. We use a linear equation of state only

dependent on temperature with linear thermal expansion coefficient α=2.10 -4 K-1. The temporal integration is achieved by a

modified Leap Frog Asselin Filter (Leclair and Madec 2009), with a coefficient of 0.1 and a time step of 150 seconds for the

2-km experiments. Sensitivity to these parameters and numerical choices are also performed. 

Air-sea heat fluxes are built so as to represent the observed seasonal evolution of the zonally averaged sea surface

temperature and mixed-layer depth in the Southern Ocean (Fig. 2a-b). The surface heat flux Q net is as follows : Qnet=Qsolar

+Qnonsolar , with Qsolar the shortwave heat flux and Qnonsolar the non solar heat flux accounting for the effect of longwave, latent,

sensible heat fluxes, and a feedback term g (Tclim -Tmodel). This feedback term depends on a sensitivity term g set to 30 W m -2

K-1 (Barnier et al. 1995) and on the difference between Tclim, a SST climatology which varies seasonally, and T model the model

SST. The seasonal amplitude of Qnet in the center of the domain is 200 W m -2 (Fig. 2h), a value close to the observations (Fig.

2c). Over the northern 150 km of the domain, the temperature is relaxed toward an exponential temperature profile varying
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seasonally in the upper 150 meters. The response of the ocean to this forcing leads to a seasonal cycle of the surface

temperature (Fig. 2f), and a deepening of the mixed-layer from 30 meters in summer to 150 meters in winter (Fig. 2g), in

good agreement with zonally averaged observations of the Southern Ocean (Fig. 2a and 2b). It is worth mentioning that the

direct effect of a storm on the air-sea buoyancy flux (modulation of the radiative, latent and sensible heat fluxes) is not

explicitly accounted for.  

The background mean wind-stress that forces the experiments without storms is purely zonal :

τ b =τ0 sin (πy / Ly ) ,

with τ0=0.15 N m-2  . In order to have exactly the same 10-year mean wind stress between experiments with and without

storms, the averaged residual wind due to the storm passages is removed from τb in the experiment with storms.

Two long reference experiments, one with storms and another without storms, with horizontal resolution 2-km have been

run for 40 years. For these experiments, the model is started from a similar simulation without storms, equilibrated with a

200-year long spin-up at 5-km horizontal resolution. Unless otherwise stated, the last 10 years of the simulations are used for

diagnostics, excluding the northern 150 km band where restoring is applied. Similar long term simulations with horizontal

resolution 20-km and 5-km have also been performed in order to determine meridional overturning modifications with

horizontal resolution (section 7).

An experiment with a single storm traveling eastward through the center of the basin over an equilibrated ocean has also

been performed. Initial conditions are taken from the 2km horizontal resolution simulation (without storm) at day December

31 of year 30 from the 2-km reference experiment without storms. The storm is centered at the meridional position Ly/2 and

has a maximum windstress of 1.5 N m -2. The ocean spin-down response is analyzed for a period of 70 days (the storm is

centered at days 5, starting at day 3 and ending at day 7).

In order to assess the sensitivity of interior mixing to numerics and storms characteristics, additional experiments have

been run over shorter periods of 3 years, starting from year 30 of the 2-km reference experiment without storms. These

experiments are summarized in Table 1 and will be analyzed in section 5. The last two years of these experiments are used

for diagnostics. Although the model is not equilibrated after a period of 3 years, we have verified in section 5 that changes in

terms of energy dissipation and mixing diagnosed over this short period are significant.

The averaged total wind work in the 2-km experiment with storms is 16.8 mW m -2. This value is comparable to the 20 mW

m-2 input rates for the Southern Ocean estimated by Wunch (1998). The contribution from the near-inertial band is computed

from instantaneous 2-hourly model outputs, time-filtered in the band {0.9,1.15}f following Alford et al. (2012)2012. Near

inertial wind work is 1.4 mW m-2 for the entire domain and 2.2 mW m-2 in its central part (1000 km < y < 2000 km). These

values are in  agreement with Southern Ocean estimates from drifters (Elipot and Gilles 2009, ~2 mW m -2), ocean general

circulation models (Rath et al. 2014, ~ 1 mW m-2 ) and slab mixed-layer models (Alford 2003, 1-2 mW m-2). 
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2.2 Energy diagnostics 

Energy diagnostics and precise evaluations of the energy dissipation in the model are essential elements of our study. They

are detailed below. The model kinetic energy (KE) equation can be written as follows :

1
2

ρ0 ∂ t u h
2

⏟
KE

=−ρ0 uh . (uh .∇ h )uh− ρ0 uh . w ∂z uh⏟
ADV

−uh . ∇ h p⏟
PRES

+ ρ0 u h . D h⏟
ε
h

+ ρ0 uh .∂ z (κ v ∂h u h )⏟
ε
v

+D time (1),

where the subscript h denotes a horizontal vector, κv is the vertical viscosity, Dh the contribution of lateral diffusion

processes, and Dtime the dissipation of kinetic energy by the time stepping scheme, which can be easily estimated in our

simulations since it only results from the application of the Asselin time filter. The dissipation of kinetic energy by spatial

diffusive processes is computed as the spatial integral of the diffusive terms εv and εh in equation (1) :  

Ev=∭ ρ0 uh .∂ z (κ v ∂ z uh )⏟
ε
v

dxdydz=∭ ( ρ0 κv

∂ uh

∂ z
.
∂uh

∂ z ) dxdydz+∬ (uh . τ s−uh . τb )dxdy (2),

Eh=∭ ρ0uh . Dh⏟
ε
h

dxdydz (3).

As mentioned before, we do not specify explicit horizontal diffusion since it is implicitly treated by the UP3 advection

scheme we use (see numerical details in Madec 2014). So the term Dh is evaluated at each time step as the difference

between horizontal advection momentum tendency computed with UP3 and the advection tendency given by a non diffusive

centered scheme alternative to UP3. Two options are the 2 nd order and 4th order schemes implemented in NEMO. The 2nd

order scheme is non-diffusive but dispersive. The 4 th order scheme in NEMO involves a 4th order interpolation for the

evaluation of advective fluxes but their divergence is kept at 2nd order, making the scheme not strictly non-diffusive.

Although the estimation of UP3 horizontal diffusion depends on the scheme used as a reference we verify in section 5 that

the sensitivity of domain averaged εh to the choice of the 2nd or 4th order scheme is much smaller than that resulting from

other parameter changes, e.g., small changes in the characteristics of the atmospheric forcing.

3. Ocean dynamics under low-frequency forcing

We first examine the dynamics and mean state of the experiment with horizontal resolution 2-km and without storms in order

to review the background oceanic conditions within our zonal jet configuration. A snapshot of surface vorticity field ( Fig. 3)

illustrates the broad range of scale resolved by the 2-km model and the ubiquitous presence of meso- and submesoscale

motions, including eddies and filaments. The slope of the annual mean surface velocity spectrum in the meso- and

submesoscale range is between k -2 and k-3. The spectral slope varies seasonally (Fig. 4b), more noticeably in the

submesoscale range (60km > λ; i.e. horizontal scales below 10 km), between k-3 during summer and k-2 during winter (for the
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meso- and submesoscale range in Fig. 4b, the thin dark red line is superimposed on the thick dark red line). We interpret the

increase of submesoscale energy during winter as a direct consequence of enhanced mixed-layer instabilities in response to a

deep mixed layer (Fox-Kemper, 2008, Sasaki et al. 2014). 

The energy contained at large scale and mesoscale ( k < 5x105.10-5 rad m-1) decreases with depth as indicated by the spectra

at 1000 and 2500 m (Figure 4a). But note that the energy contained in the wavenumber range 5x105.10-5 < k < 6x106.10-4 rad

m-1 (i.e. the range associated with small mesoscale bordering with the submesoscale) is larger at 2500 m compared to 1000m.

This is due to an injection of energy at these scales by the rough topography. As shown by instantaneous velocity sections in

Fig. 5a,b, the horizontal scales of u and v below 2500 m are much shorter than the typical scale of the upper ocean mesoscale

field. They correspond to the scale of the bathymetry, and are responsible for increased horizontal shear in the deep ocean

(Fig. 5e), thereby contributing to the dissipation of the energy imparted by the winds to the mean flow.

Vertical velocity r.m.s. is below 10 m/day over most of the water column except near the bottom  ( i.e., below 2500 m)

where it increases substantially to ~ 100 m/day (Fig. 5c and Fig. 6b). Although flat bottom numerical solutions can also

exhibit similar increases (Danioux et al, 2008) the spatio-temporal scales of w near the bottom (e.g, see Fig. 5c) suggest the

importance of flow-topography interactions.

The average zonal transport in the reference experiment is ~300Sv. Although the rough bathymetry strongly reduces the

transport compared to simulations with flat bottom (that reach ~1000Sv, not shown), the abs ence of any topographic ridge

and narrow passages does not allow us to obtain the typical observed Antarctic Circumpolar Current transport of ~130-150

Sv observed in the Antarctic Circumpolar Current (e.g. Cunningham et a. 2003). As discussed in Abernathey et al. (2011),

much of this elevated transport can be seen as a translation of the system westward that is not expected to affect our

investigation of fine-scale dynamics and its effect on the transverse overturning circulation. The average eddy kinetic energy

(EKEKE) exceed 0.05 m2 s-2 at the surface (Fig. 6a). Such level of energy is typical of ocean storm tracks of the Southern

Ocean (e.g. Morrow et al. 2010).

The clockwise cell of the Eulerian overturning streamfunction ψ (Fig. 7a)1 illustrates the large scale response to the

northward Ekman transport (that acts to overturn the isopycnal) and the irregular return flow in the deep layers due to bottom

topography. This transport is largely compensated by an eddy-induced opposing transport, leading to a residual circulation

(see e.g. Marshall and Radko 2003). This residual MOC can be computed as the streamfunction ψiso from the time- and

zonal-mean transport in isopycnal coordinates (e.g. Abernathey et al. 2011). In the lightest density classes and northern part

of the domain, the counterclockwise cell (negative, driven by surface heat loss) is the signature of a poleward surface flow

and equatorward return interior flow, that can be interpreted in terms of mode and intermediate water formation (see the

bulge formed by the isothermal layer between the 10 and 12°C isotherms in Fig. 7e). The large clockwise (positive) cell in

the center of the domain consists of an upwelling branch along the 1-4ºC isotherms and a return flow along the 8-11ºC

isotherms also contributes to mode water formation. This clockwise cell exhibits a surface protrusion in the temperature

1 Throughout the paper, Eulerian and residual meridional transports obtained from our 2000 km long channel are multiplied
by 10 in order to make them directly comparable to those for the full Southern Ocean whose circumference is ~ 20000 km.
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range 8-14ºC (Fig. 7c) that resembles the upper ocean MOC cell seen in observations (Mazloff et al. 2013) but absent in the

semi-idealized experiments with annual mean surface forcings of Abernathey et al. (2011) and Morisson et al. (2011). In our

experiments, the upper cell undergoes major seasonal changes (not shown) again in agreement with observations by Mazzlof

et al. (2013): clockwise near-surface transport is intensified in boreal summer and fall, when the net heat flux is maximum

and warms the upper ocean, enhancing the transformation of the waters toward lighter density classes. This upper cell is thus

the result of the seasonal cycle of the surface forcing. Our experiments do not account for the high latitude anticlockwise cell

associated with deep water formation because it is of no concern for our purpose. In the 2-km reference case without storms

the transport by the main clockwise cell of the MOC streamfunction results in a realistic overturning rescaled value of 18 Sv

(Table 2). 

4. Single storm effect

As a first step, it is useful to consider a situation in which a single storm disrupts the quasi-equilibrated flow described in the

previous section so that high-frequency forcing effects can be more easily identified. The storm is chosen to travel eastward

through the center of the domain. The experiment is thoroughly described in section 2 and the ocean spin-down response is

analyzed in Figs. 5,8,9 and 10 for a period of 70 days (the storm starts at day 3 and ends at day 7). 

4.1 NIW generation and propagation

After the passage of the storm, the horizontal currents between the surface and 1500 meters exhibit a layered structure with

typical vertical scales of ~ 100-200m (Fig. 5f,g) that contrasts with the homogeneity of the mesoscale currents before the

passage of the storm (Fig. 5a,b). The layering is similar to that observed in a section across a Gulf Stream warm core ring by

Joyce et al. (2013). It is associated with an increase of the horizontal and vertical shear in the ocean interior (Fig. 5i,j).  In

agreement with Danioux et al. (2011), we encounter that the storm intensifies the vertical velocities in the whole water

column (Fig. 5h). In response to the storm, KE in the upper 100 meters is strongly increased during 5 days (Fig. 8a). An

intensification of KE is also observed in the following days at depth below 500 meters , indicative of downward propagation

of the energy. A large part of the additional energy injected by the storm occurs in the near inertial range (Fig. 8b) : the space

time distribution of the near inertial energy (colors) matches rather well the difference of KE between the experiment with

storm and a control experiment without storm starting from exactly the same initial conditions (contours). 

The near-inertial energy propagates downward and its signature can still be observed 60 days after the storm passage with

two weak maxima: one at the surface and another centered near 1500 meters. Over the earlier part of the simulation, we find

downward energy propagation speeds ~ 25 m day -1 in the upper 100 and ~ 90 m day-1 between 100 and 1500 meters. These

values are higher than the 13 m day -1 average propagation speed estimated by Alford et al. (2012) from observations at

station PAPA but are within the 10-100 m day -1 range estimated by Cuypers et al. (2012) for NIW packets forced by tropical
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storms in the Indian Ocean. Vertical velocities are generally intensified in the depth range where stratification is weakest but

the maximum of r.m.s. vertical velocities qualitatively follows a similar behavior as near inertial KE :  it peaks at 2000 m

depth a few days after the storm initiation, and then propagates downward the following weeks (Fig. 8c). 

Rotatory polarization of the near inertial waves is useful to separate the upward and downward-propagating constituents of

the waves. Rotatory spectra (details of the methodology are given in Appendix B) of the stretched profiles of velocity allow

for a separation of the clockwise (CW) and counter-clockwise (CCW) contributions to the energy as a function of time and

vertical wavenumber (Fig. 9a,b). Most of the energy is contained in the CW part of the spectra, i.e. most of the energy

propagates downward. While the energy directed downward and contained in wavelengths between 1000 and 2000 meters

remains strong for about 30 days, the energy at short wavelengths (<500 meters) is rapidly dissipated both for downward and

upward propagating NIWs. The near-inertial KE computed from WKB stretched CW and CCW velocities (see Appendix B

for details) are shown in Fig. 9c,d. Between days 20 and 30, the KE of CCW waves exhibits a maximum centered around

1500-2000 meters. Because the highest topographic features only reach up to 3000 m depth and also because near-inertial

velocities have been WKB scaled we interpret this local maximum as the signature of interior reflection. During the 5 days

following the passage of the storm, we notice a slight increase of both CW and CCW KE below 2500 m depth, suggesting

NIW generation at the bottom in response to storm forcing. Associated energy levels are limited (< 10 -2 m2 s-2) and no sign of

vertical propagation is observed so this process must be of minor importance, compared to other flow-topographic

interactions acting in the same depth range such as lee-wave generation by the balanced circulation (Nikurashin and Ferrari

2010). 

Horizontal velocity frequency spectra computed at each depth and averaged over the entire 70-day period of the

experiment are shown in Fig. 8f. They exhibit energy peaks at f, 2f and to a lesser extent 3f. The near-inertial and super-

inertial peaks are surface intensified but have a signature throughout the water column. Waves with super-inertial frequency

arise after a few inertial oscillations and are exited by non-linear wave-wave interactions (Danioux et al, 2008).

4.2 Dissipation of the NI energy

We now turn to the identification of the processes (either physical or numerical) that dissipate the kinetic energy imparted by

the storm. To this end, the complete energetic balance of the single-storm experiment is compared with that of a control

experiment without storm (Fig. 10). After 65 days, the experiment with storm returns to a horizontal kinetic energy level

identical to that of the control experiment (Fig. 10a). E-folding time scale for the dissipation of vertically integrated (resp.

surface) KE imparted by the storm are ~ 20 days, but it only reaches 5 days for surface KE (resp. 5 days). The surface value

is consistent with estimates from drifter observations at similar latitudes (Park et al. 2009). The different contributions of the

r.h.s. of the kinetic energy equation (Equation 1) that balance the input of energy by the wind work are shown in Fig. 10b.

First we note that the cumulated wind work steadily increases after the storm passage (centered at day 5). This is due to a

slight strengthening of the large scale eastward surface current in response to the storm (not shown). This strengthening is a

consequence of the zonal currents distribution as a function of latitude which is not symmetric with respect to y=1500 km, so
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the domain average additional zonal wind work imparted by the storm is nonzero and positive.  At day 70, 61.4% of the

kinetic energy has been dissipated by diffusive processes in the upper 200m, while 11.1% has been dissipated between 200

and 2000m and 4.3% between 2000m and the bottom (see Table 3). Bottom friction (5.9%) and pressure gradients (5.5%) are

also limited sinks for the energy imparted by the storm. The cumulated contributions of horizontal advection and Coriolis

forces are small compared to the other terms (<1 %). The contribution of the Coriolis force to the energy budget is not

precisely zero  due to the staggered location of u and v points in our Arakawa C grid. Most of the dissipation due to viscous

processes is achieved by vertical processes in the upper 200 meters (80%, Fig. 10c). The maximum contribution of

horizontal dissipation is between 200 and 2000 meters where it is stronger than vertical dissipation (Fig. 10c). 

Further insights on the distribution of viscous dissipation are obtained by examining the temporal evolution of εv and εh at

all depths (Fig. 8d and 8e). It shows that the largest kinetic energy dissipation rates are achieved by εv in the upper 100 m

during the 10 days following the storm (Fig. 8d). Interestingly we note the presence of a maximum of εv between 300 and

500 m depth between days 10 and 40, with value of order 10 -9 W kg-1. This is due to large shear/dissipation values at depth in

and below the core of anticyclonic structures as illustrated in Fig. 5 and confirmed in section 5. At these intermediate depths,

εh and εh are of comparable magnitude. No significant near-bottom increase of εv or εh is found during or after the storm

passage in Fig. 8d,e,  although NIWs are generated at the bottom in response to the passage of the storm (as seen in the

previous section, Fig 9d). The levels of near inertial energy below 2500 m depth remain 2 to 3 order of magnitude lower than

those found in the mixed-layer and are not sufficient to significantly increase bottom dissipation.  

The time filter contributes to dissipate 14% of the energy imparted by the storm, with dissipation well distributed in the

entire water column (Fig. 10d). This dissipation is highly dependent of the time-step used in the simulation (150 seconds)

and “Asselin time filter” coefficient (0.1, the default value used in most of the studies with NEMO). In a similar experiment

with a time step of 30 seconds the contribution of the Asselin time filter falls to 3.4% (see Table 3) and with an Asselin

coefficient of 0.01 it falls to 1.5%. This is coherent with temporal diffusion of the Asselin time filter being proportional to the

product of the Asselin coefficient by the model time step (Soufflet et al., in revision for Ocean Modelling). The temporal

diffusion is divided by 5 when using a time step of 30 seconds instead of 150 seconds, and the temporal diffusion is divided

by 10 when using a coefficient equal to 0.01 instead of 0.1. In  these two sensitivity experiments, the energy that is not

dissipated by the temporal filter is dissipated by lateral and vertical diffusion in the e ntire water column, leading to a vertical

distribution of total dissipation (Asselin+εh+εv) which is similar between experiments (see Table 3).

In terms of meridional distribution, most of the energy is dissipated below the storm track (Fig. 10e). This questions the

common hypothesis that a significant part of the energy could be radiated away from the generation area toward lower

latitudes (e.g. Garrett 2001, Zhai et al. 20042005, Zhai et al. 2009, Blaker et al. 2012, Komori et al. 2008). In our

configuration it appears that vertical propagation and dissipation act much faster than horizontal propagation.  
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5. Storm effects in quasi-equilibrium

As a reminder, where and through which mechanisms KE is dissipated, and in particular the extra input of KE associated

with storms, is the main focus of our study. The dissipation of the energy imparted by the storms is now investigated in the

context of perpetual seasonally varying storm activity where time-averaging can be used to reach statistical robustness. One

storm is formed every ten days, travels at constant speed along a given latitude (that changes for each new storm) and has a

life-cycle lasting 4 days and composed of 3 phases (mature and linearly growing or de caying). The seasonality of the storms

is included by seasonally varying the maximum wind stress of the storms from 0.75 N m -2   in austral summer to 1.5 N m-2   in

austral winter (see details in Appendix A). We successively focus on different related aspects of the simulations energetics :

the eddy-kinetic energy (EKE) distribution, the total kinetic energy (KE) balance, vertical distribution of KE dissipation, and

the sensitivity of this dissipation to numerics.

5.1 EKE in the 2-km reference experiments

The additional input of energy by the storms modifies the levels of kinetic energy in the flow. In the 2-km case without

storms, the domain averaged 10-year mean KE computed from zonally averaged velocities is 1.14x1014 10-3 m2 s-2 and the

EKE (=1/2(u'2+v'2) where primed velocity anomalies are defined with respect to zonally averaged velocities) is 5. 21x1021

10-3 m2 s-2. When storms are included, both quantities increase (mean KE increases to 1. 21x1021 10-3 m2 s-2 and mean EKE

increases to 5.34x1034 10-3 m2 s-2). Besides this overall EKE increase, EKE is decreased in the upper 300 m (Fig. 6a).  Our

interpretation is that this arises owing to the storm reduction of the stratification (Fig. 6d). In turn, this impacts the structure

of the vertical modes and the inverse energy cascade in a way that favors a less surface intensified distribution of EKE with

storms (Smith and Vallis, 2002). The small enhancement of EKE in the range 1000-2000m in the storm simulation is

consistent with this interpretation. There are other impacts of the storms :  the r.m.s. of the vertical velocity is increased by

one order of magnitude in the whole water column and reaches values of order 10 -3 m s-1 (Fig. 6b); the upper 100 meters of

the ocean get warmer and less stratified (Fig. 6c,d); and the mixed-layer deepens by ~ 30 m (horizontal lines in Fig. 6c).

Obviously, the heat budget is also affected with a +5 W m -2 increase of the downward turbulent heat fluxes (Fig. 6e), and air-

sea heat fluxes (vertical lines in Fig. 6e).

The ability of near-inertial oscillations to propagate into the ocean interior is affected by the mesoscale field (through the

chimney effect, as it will shown in Section 5.3) but is also intimately tied to the shrinking of their horizontal scales so we

expect to see non trivial modifications of the KE wavenumber spectra in the presence of storms. Near the surface the storms

impact is mainly perceptible at the lowest wavenumbers, the storms forcing scale (Fig. 4a and e), or during summer at the

submesoscale (Fig. 4b). This larger influence of the storms during summer compared to winter in the submesoscale range is

explained by a larger impact of the storms on the mixed-layer depth in summer compared to winter (not shown). During

summer, the mixed-layer is shallow (Fig. 2b,g) and sensitive to direct mixing by the storms while during winter the mixed-

layer is deeper and its depth is controlled at first order by convective processes with storm passages having a weaker
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influence. Modifications of the spectral slope (~ 2.5) by the storms are almost insignificant in the meso-/submesoscale range

where surface dynamics energizes the flow, particularly at scales ~ 10 km (wavelength ~ 60 km) and below (Fig. 4a and d).

The effect of storms at such fine scales becomes pronounced below ~ 300 m (Fig. 4c), where the surface mode becomes

attenuated2. 

At 1000 m where the fine-scale energy associated with the NIW is largest (Fig. 4c) the energy spectrum presents a bulge in

the wavenumber range 10-4  < k < 10-3 rad m-1 that attests of the energy input at such scales. This energy input is larger during

winter than during summer (Fig. 4b) in agreement with the storm forcing which is more energetic during winter. Fine-scales

energization by the NIW can be seen down to ~ 2500 m (Fig. 4c) where it is confined to lower wavelength than at 1000 m (k

> 3x103. 10-4 rad m-1). Limited signs of a large-scale energy enhancement by the storms can be found at 1000m and 2500m.

5.2 KE budget and dissipation in the 2-km reference experiments

Let us first examine in detail the KE balance (Table 4) in the two 2-km reference experiments with and without storms. The

KE balance in both experiments are very similar, with overall wind work mainly balanced by the work done by bottom

friction (38.9% without storms and 30.5% with storms), pressure work maintaining the system available potential energy

(32.2%, 26.0%) and vertical diffusion (23.4%, 33.1%). TheAt the difference of this general balance, and in  agreement with

results for the single-storm experiment described in section 4, the KE balance also indicates that the additional input of

energy provided by the storms (+3.64 mW m-2) is balanced at 90% by dissipation (-2.86 mW m -2 for horizontal and vertical

dissipation to which one should add the Asselin filter contribution) with pressure work and bottom friction being secondary

(respectively -0.18 mW m-2 representing a 5% contribution and -0.07 mW m -2 representing a 2% contribution). This is in

stark contrast with the equilibration of the low-frequency wind work feeding the balanced circulation.

Now let us focus on the spatial and seasonal distribution of the horizontal and vertical KE dissipation terms εh and εv. The

vertical distribution of these terms are computed using instantaneous outputs available every 5 days during the last 2-year of

the 2-km runs. This choice of a limited 2-year period is justified given the smallness of the standard deviation of annual

mean ε computed using 20 years of simulation of the experiment with storms (Fig. 11c), e.g., compared to ε differences we

present for different experiments. As stated in section 2, we estimate UP3 intrinsic horizontal diffusivity as the difference

between UP3 momentum tendency and the tendency given by a 4 th order advective scheme. The alternative use of a 2 nd order

advection scheme produces very similar estimates of εh (Fig. 11c). 

Overall energy dissipation (ε=εh+εv) in the reference experiments is increased by one order of magnitude or more over most

of the water column in the presence of storms (Fig. 11a). Exception is found in the lowest 1000 m, where dissipation is

always strong because of the interaction of the mesoscale and large scale field with the topography. Without storms,

2 The typical vertical scale H(k) of the surface mode at a wavenumber k is H(k) ~ f / (N k). Using N= √(2. 10−5 ) (see Fig.
6d) we find H(k=10-4)=225 m.
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dissipation reaches a minimum of 3x103. 10-12 W kg-1 between 1000 and 1500 m depth while the presence of storms

increases the level of dissipation to > 10-10 W kg-1 in this depth range, in agreement with the results for the single-storm

experiment (Fig 8). 

The distribution of the dissipation between horizontal and vertical diffusive processes and their respective sensitivity to the

energy input by the storms reveals some interesting behavior. First, vertical dissipation dominates in the upper 200 m and

(less clearly) below 3000 m, but in between, horizontal processes account for most of the dissipation (Fig. 11b). This is

particularly true for the experiment with storms in which ε v is systematically less than ¼ of εh below 200m. Second, there is

an increase of horizontal dissipation in the interior in response to the storms (Fig. 11b).  This is consistent with enhanced

energy at short wavelengths (λ < 60km, Fig. 4a,c). 

Since the air-sea heat fluxes and the strength of the storms follow a seasonal cycle, we expect some seasonality of both

near surface and interior dissipation. This is examined by comparing ε profile in summer and winter (Fig. 11d). Values of ε in

the upper 300 meters display large differences between summer and winter, in both experiments with or without storms.

Increased upper ocean energy dissipation during winter is explained by mixed-layer convection in response to surface heat

loss. Below 300m, the experiment with storms is the only one that displays seasonal variations of ε, with greatest values

during winter. This is consistentcoherent with observations by Wu et al. (2011) who observed a seasonal cycle of diapycnal

diffusivity (hence of ε) in the Southern Ocean at depths down to 1800 m, although it reaches somewhat deeper (~ 2500m) in

our solutions. 

5.3 How do mesoscale eddies shape KE dissipation ?

Mesoscale activity is known to affect NIW penetration into the ocean interior (Danioux et al. 2011). In order to clarify the

role of mesoscale structures on energy dissipation distribution, an eddy detection method is used to produce composite

averages of dissipation, relative to eddy centers. The identification of the eddies is based on a wavelet decomposition of the

surface vorticity field (e.g. Doglioli et al. 2007). Following Kurian et al. (2011) a shape test with an error criterion of 60% is

used to discard structures with shapes too different from circular. Since the Rossby radius of deformation  varies

meridionally within the model domain, composites are built with eddies located between Ly/3 and 2Ly/3, an d with an area

diameter larger than 400-km2  20-km. The barycenter is taken as the center of the eddies and used as reference point to build the

composites.

The general distribution of εh and εv within composite eddies (Fig. 12) is in agreement with the vertical distribution of

domain averaged ε discussed in the previous section, with increased values of ε h and εv near the surface and the bottom. But

the composites also highlight the impact of eddies on the distribution of εh and εv. As discussed below the distribution of the

kinetic energy dissipation within eddies is very different depending on the presence or absence of storms.

Without storms, the distribution of either εh and εv in the upper 1500 meters shows that the border of the cyclones and

anticyclones are hot spots of dissipation, while the dissipation at the center of the eddies is weaker than outside (Fig. 12a-d).
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This was expected since horizontal strain and vertical shear are largest at the edges of eddies and weak within the eddies.

Near the bottom, dissipation is increased below the cyclones centers (Fig. 12a,b) and decreased below the anticyclones (Fig.

12c,d), owing to increased near-bottom velocities in cyclones compared to anticyclones (not shown). 

In presence of storms (Fig. 12e-h), εv and εh peak at the base of the anticyclones with values higher than 10-9 W kg-1, in

qualitative agreement with various observations of NIW trapping at the base of the anticyclones (Joyce et al., 2013; Kunze et

al 1995). The largest dissipation is bounded by the contour σ =0.95 f with σ = f + ξ/2 the effective frequency. The

compositing highlights the disproportionate importance of anticyclones for NIW dissipation. The total area occupied by the

anticyclones that have been picked up by the eddy detection method represents only 2.6% each of the domain area, but

concentrate the interior KE dissipation at depth. Between 300 and 1500 meters, 5% of ε h and 17% of εv is achieved within

identified anticyclones. Conversely, cyclone which statistically occupy a similar area of the model domain are associated

with only 4% of εh and 1.9% of εv.. The statistical importance of anticyclones is further discussed in the conclusion.

5.4 Sensitivity tests

How dissipation changes when key physical and numerical parameters are varied is examined below.  

Horizontal resolution. Energy dissipation is compared in experiments at 20, 5, 2 and 1 km horizontal r esolution (Fig. 13).

The sensitivity to resolution strongly depends on the considered depth range. Near the surface (0-100m) the dissipation is

almost not sensitive to the resolution (Fig. 13a,b and Fig. 14b). This is coherent with the relatively weak variations of the

wind work from one resolution to another (Fig. 14a). But below (100-400m), experiments with or without storms show a

decrease of ε when increasing resolution (Fig. 13a,b and Fig. 14c). This decrease is not related to modifications of the wind

work (Fig. 14a) and occurs in a depth range affected by upper ocean convection. So it may mostly result from the weakening

of the dissipation due to upper ocean convection when resolution increases, as highlighted by the shallowing of the mixed-

layer depth [with storms and (without storms):  101m (93m) at Δx=20km, 87m (67m) at Δx=5km, 80m (59m) at Δx=2km,

and 68m (53m) at Δx=1km]. This would be in agreement with the re-stratifying effect of the mesoscale and sub-mesoscale

flow which become more efficient when resolution increases (e.g. Fox-Kemper, 2008; Marchesiello et al. 2011).

In the depth range 400-3000m, the sensitivity to resolution is highly dependent on the presence or absence of storms.

Without storms, a major reduction of dissipation with increasing resolution is noticeable (Fig. 13b). This reduction is of a

factor 10 or more in the depth range 400-2000 m, when going from 20 to 1 km resolution (Figs. 13b and 14c,e,f).

Concomitantly, the fraction of dissipation due to vertical shear increases because that corresponding to lateral shear drops

most rapidly (Fig. 13h). At 1km resolution, it is systematically above 20% down to ~ 2000 m and reaches 50% at 1500 m

depth. This contrasts with the run at 20 km where εv is never more than 7% of the total dissipation over the same depth

range.
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The behavior of interior dissipation with storms is strikingly different. Dissipation changes with resolution are much more

modest (in log scale). As mentioned before, dissipation in the upper 100-400 m decreases when going from Δx=20 km to 1

km (Fig. 14c). Between ~ 400 m and 2000 m, increasing resolution tends to increase dissipation (Figs. 13a and 14d,e). At 20

km the mesoscale field is not well resolved and weaker; therefore the mesoscale near- inertial vertical pump is less efficient

in transferring the near inertial energy into the interior. 5 km resolution changes total dissipation significantly ( e.g., from

4x104 10-11 W kg-1 to 1.2x102 10-10 W kg-1 in the depth range 1000-2000m, Fig. 13a and 14f). Changes are modest beyond

Δx=5 km. This is because horizontal dissipation remains nearly unchanged and dominates total dissipation. On the other

hand, vertical dissipation exhibits interesting changes in this resolution range. In particular it keeps increasing and so does its

overall fraction in total dissipation. Also it develops a weak relative maximum around 300-500 m at 1 and 2km. We relate

this maximum to the one seen in dissipation composites for anticyclones (Fig. 12). 

Near the bottom important changes also take place when increasing resolution: vertical (resp. horizontal) dissipation

decreases (resp. increases) which leads to a slight decrease in dissipation by interior viscous processes. Instead, dissipation

by bottom friction increases significantly with resolution (Fig. 14d). We are not sure how to interpret these bottom

sensitivities, especially since we do not properly resolve the processes implicated in flow-topography interactions

(Nikurashin and Legg, 2011).

Vertical resolution.  An experiment with 320 vertical levels has been carried out in which vertical shears (and high-order

vertical modes) are better represented than with the reference 50 levels. The vertical thickness of the cells increases from 2

meters at the surface, 5 meters at 500 m depth, 70 meters at 1000 m depth and 180 meters near the bottom. The size of the

cells below 2500 meters are equal to the reference experiment so that the local characteristics of flow-topography

interactions are unchanged. The overall dissipation ε  is increased in presence of storms in the interior in the configuration

with 320 vertical levels  (Fig. 13a,b and Fig. 14c-e), indicating that the downward propagation of the NIE is better resolved

in the high vertical resolution experiment with more NIE available at depth. Similar increase of ε in the upper 100m in the

experiments with and without storms (Fig. 14b) suggests that mixed-layer dynamics are profoundly altered when changing

the vertical resolution.

Advection schemes. The reference experiment relies on an UP3 advection scheme (Webb et al. 1998). It is compared with

three experiments run with three widely used advection scheme : the QUICK scheme which is the default scheme of the

ROMS model (Shchepetkin and McWilliams, 2005) and also includes implicit diffusion; a 2nd order centered scheme with a

horizontal biharmonic viscosity of -1.109 m4 s-2, and a 2nd order centered scheme with the vector invariant form of the

momentum equations (Madec, 2014) with the same horizontal biharmonic viscosity. The implicit dissipation of UP3 and

QUICK take the form of a biharmonic operator with an eddy coefficient proportional to the velocity (A h = - |u| Δx3 / 12  with

UP3 and Ah = - |u| Δx3 / 16 with QUICK). Although QUICK is by construction less dissipative compared to UP3, ε in both

experiments are very similar (Fig. 15a). With or without storms, the 2nd order scheme in flux form (CEN2) or vector invariant
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form (VFORM) lead to increased ε in the ocean interior with the increase being largest at the bottom (the energy dissipation

profiles for the 2nd order and the vector form scheme are so closed that they are superimposed in Fig. 15a). Such distribution

of the dissipation changes is obviously related to the choice of a biharmonic coefficient of -1.109 m4 s-2:   characteristic

velocities of 1.5 m/s and 2 m/s are required for UP3 and QUICK schemes to match a biharmonic diffusion coefficient of

-1.109 m4 s-2. So near the surface where currents are strong the explicit diffusion in the simulations with 2 nd order schemes is

of same order than the implicit diffusion in QUICK/UP3 simulations, while at depth an explicit biharmonic operator with

coefficient -1.109 m4 s-2 overestimates the diffusion compared to UP3/QUICK implicit diffusion. We also note a dissipation

increase in the depth range 1000-2000 m when using these schemes in the presence of storms. Sensitivity closer to the

surface is much more limited.

Maximum wind speed. Stronger winds increase the energy dissipation in the interior (Fig. 15c). Changes in dissipation levels

take place from the near-surface down to 2500-3000m which again highlights that near-inertial energy is able to propagate

down to such depths. Dissipation changes induced by modifications of the flow-topography interactions would also yield

changes in dissipation near the bottom which is not the case, particularly when comparing the 1 N m -2 and 1.5 N m-2

experiments. 

Storm speed. The storm speed of the reference experiment was taken as Cs=15 m s -1, a value close to the 12 m s-1 inferred by

Berbery and Vera (1996) in some parts of the Southern Ocean. But this speed is expected to vary from storm to storm and

impact the amount of energy deposited into the near-inertial range as several studies have shown in particular in the context

of hurricanes (Price 1981, Greatbatch 1983, 1984). The response of the ocean to storms traveling at 20, 15, 10, 5 and 0 m s -1

is compared in Fig. 15b with other storm characteristics (including trajectory) remaining unchanged. The storms travel

exactly at the same latitude and for the same duration as in the reference experiment with Cs=15 m s -1. Above 3000 m depth,

energy dissipation increases with storm displacement speed until reaching the threshold of 15m s -1 beyond which it reduces

slightly. These results are consistent with those of Greatbatch (1984) and in particular NIE is maximized for a storm time

scale L/Cs ~ (2 * 500 km) / 15 m s -1 ~ 18 hours close to the inertial time scale (2π/f), with L the scale of the storm. Bottom

dissipation is slightly enhanced (from 2x102 10-9 W kg-1 to 3x103 10-9 W kg-1) when storm speed decreases, presumably as a

result of more energy being injected in the balanced circulation when storms move slowly.

More importantly we note that major relative changes in energy dissipation levels occur in the ocean interior as U varies,

with one order of magnitude difference or more for storms traveling at 5 m s -1 or 0 m s-1 compared to storm traveling at 15 m

s-1 in the depth range 400-2000m. Important changes are also found for U=10 m s -1 which further confirms the subtlety of the

ocean ringing and its consequences. In particular, note that a 30% increase or reduction of the storm displacement speed has

more effect than a 30% reduction in storm strength. It also suggests another possible modus operandi for low-frequency

variability in the atmosphere to impact the functioning of the ocean interior through a modification of the storm

characteristics such as displacement speed.
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6. Impact of the storms on the Southern Ocean MOC

KE dissipation and mixing are related in subtle ways. Given the profound modifications of KE dissipation by high frequency

winds presented in the previous sections we now assess the influence of the storms on the water mass transformations by

examining the MOC sensitivity (Fig. 7). Storms increase the clockwise cell intensity by 3 Sv that is a 16% increase

compared to the experiment without storms. This shows that in our experiment the storms contribute efficiently to the

strength of the MOC. It is worth mentioning that there are almost no changes in the mean Ekman drift as suggested by the

very similar Eulerian overturning streamfunction in the cases with and without storms (Fig. 7a,b).

Both the MOC and the response of the MOC to the storms are sensitive to model horizontal resolution (Table 2). Without

storms, the maximum (and scaled) value of the MOC decreases from 20.4 Sv at 20-km to 18.0 Sv at 2-km. This is well

related to the decrease of interior (below 100 meters) kinetic energy dissipation with resolution increase in the experiments

without storms (Fig. 13b). But when storms are included, the MOC increases with an amplitude that depends on the

resolution (+0.3 Sv at 20-km, +1.5 Sv at 5-km, +3.0 Sv at 2-km), leading to transports that are relatively similar between

experiments (20.7 Sv at 20km, 20.9 Sv at 5-km and 21.0 Sv at 2-km). Again this is in agreement with the sensitivity of the

kinetic energy dissipation to model resolution : the presence of storms increases the levels of energy dissipation in the

interior to a level which remains broadly constant at the different resolutions (Fig. 13a, Fig 14).

The processes that dominate the changes of water mass transformation in the experiments with and without storms can be

identified by means of an analysis following Walin (1982), Badin and Williams (2010) and other. Water mass transformation

rate G is defined as : 

G ( ρ )= 1
Δρ

∫ Dair−sea dA−
∂ Ddiff

∂ ρ
,

with Ddiff the diffusive density flux and Dair-sea the surface density flux given by 

Dair−sea=− α
C p

Qnet ,

with Qnet the net surface heat flux, C p the heat capacity of the sea water, α the thermal expansion coefficient of sea water,

and Δρ the density integration interval. The diapycnal volume flux is directed from light to dense waters when G is positive.

The computation of the different terms is achieved following the technical details provided in Marshall et al. (1999) with

density bin Δρ of 0.1 kg m-3. For easyease comparison with previous results, the diagnostics are performed in temperature

space. As for momentum diffusion, the horizontal diffusion of temperature is computed as the difference between UP3

temperature tendency and the tendency given by a 4 th order centered scheme. 

In the 2-km experiments without storms, the transformation by air-sea fluxes is mainly from dense to light waters and

peaks at -13 Sv near 6ºC (Fig. 16b, again the values here are scaled to the full Southern Ocean). At this temperature, the

transformation by diffusive processes only reaches a modest -1 Sv (Figure 16c) and the total transformation rate (~ -14 Sv) is

consistent with the 14.5 Sv of meridionally averaged MOC transport centered at 6ºC (not shown). The transformation by
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diffusive fluxes has two extrema near 4ºC and 12ºC, which correspond to temperatures where convection is more active as

suggested by the isolines of cumulative distribution of mixed-layer depth in Fig. 7f o r by the seasonal cycle of the mixed-

layer depth in Fig. 2b. 

Overall, storms increase both the transformation by air-sea fluxes (~+3Sv or +25% at 6ºC) and diffusive fluxes (~+2Sv or

+130% at 4ºC), leading to a ~+3 Sv total increase of water mass transformation is the isotherm range 4-8ºC (Figure 16a) that

is consistent with the +3 Sv strengthening of the main clockwise cell of the MOC. The change in the air-sea fluxes is due to

the feedback term that acts to restore model SST toward its prescribed SST climatology. In presence of storms, the

contributions from lateral and vertical diffusion are almost equal (Fig. 16d), while without storms lateral diffusion dominates

the water mass transformation (Fig. 16c). The fraction of transformation achieved below 300 m depth is very weak

indicating that most of the diffusive transformation process takes place in the near surface (Fig. 16c,d). On the other hand, an

important caveat is that only ~ 20% of the energy dissipated below 300 m is properly connected to mixing (through the k-

epsilon submodel).

7. Discussion

7.1 Model realism and limitations

The realism of model dissipation is difficult to evaluate against observations of dissipation rates because of spatial variability

and temporal intermittency in nature (see for example the longitude dependence of the dissipation rate found by Wu et al.

(2011) in the Southern Ocean; variability at finer scale is also important). With storms, mean interior dissipation values at the

highest resolution are in the range 1-10x1010 10-10 W kg-1 depending on exact depth above 2000 m and season. Such values

are consistent with estimates from microstructure measurements (Waterman et al. 2013, Sheen et al. 2013) or from release

and tracking of dye at mid-depth (Ledwell et al. 2011). However they are on the lower end of the ARGO estimates of Wu et

al (2011).

A source of uncertainty in comparing our simulations to observations is that we lack internal gravity waves generation by

tides and we also misrepresent the interaction between the geostrophic flow and bottom topography. Both of these processes

should significantly contribute to near-bottom dissipation enhancement and their consequences around mid-depth may not be

negligible. Cabbeling and thermobaricity are other indirect sources of mixing that are not taken into account in our study.

Assuming that Wu et al. (2011) estimates in regions with smooth bathymetry primarily reflect dissipation of wind-input

energy we can nonetheless make two important quantitative remarks. The vertical structure of storm energy dissipation in

our simulations is qualitatively consistent with their observations: we find a factor 5-6 reduction in dissipation from 400 m to

1800 m depth as they approximately do (their figure 3). Model seasonal variations in ε also agree (note that we infer seasonal

changes of ε in Wu et al. (2011)2011 from changes in diapycnal diffusivity, assuming that subsurface stratification does not

vary between seasons). Model (resp. observations from Wu et al, 2011) winter to summer ε ratios decrease from ~ 2 (resp., ~

1.8) in the depth range 300-600 m to 1.6 (resp., ~ 1.4) in the depth range 1300-1600 m. These numbers agree within the error
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bars associated with Wu et al's observations. On the other hand, it is plausible that the slightly weaker seasonal cycle

systematically found in the observations arises from dissipative contributions due to processes other than wind. The

respective roles of wind-input and that of a distinct non-seasonally variable process on dissipation could in principle be

separated but model uncertainties and limitations should also be kept in mind. 

Near the bottom our simulations generate dissipation at levels that are essentially unaffected by synoptic wind activity

(although this is less true when storms travel slowly). ε reaches ~ 5x105. 10-9 W kg-1, a value which is not overly affected by

numerical resolution and turns out to be close to the values measured or inferred near rough topography (Waterman et al.

2013, Sheen et al. 2013). This being said, important reorganizations in the bottom 500 m from vertical to horizontal

dissipation as horizontal resolution increases suggest cautiousness. So does the unrealistic representation of internal lee-wave

processes.  

7.2 Energy pathways

Results by Nikurashin et al. (2013) suggest that the bulk of the large scale wind power input in the Southern Ocean is

dissipated at the bottom by the interaction of the mesoscale eddy field with rough (small scale) topography. Our simulations

also show high energy dissipation at the bottom, but instead of as in the rough experiment described in Nikurashin et al.

(2013), for which most of the energy imparted by the wind is balanced by interior viscous dissipation, the wind input in our

2-km experiment without storms is balanced by bottom friction (38.9% associated with unresolved turbulence in the bottom

boundary layer), pressure work (32.2%) and interior viscous dissipation (23.4%). This points out that we are not exactly in

the same regime than the one described in Nikurashin et al. (2013). This is probably related to low roughness of our

experiments compared to the rough experiment in Nikurashin et al. (2013). 

Using a global high-resolution model, Furuichi et al. (2008) estimate that 75-85% of the global wind energy input to

surface near inertial motions is dissipated in the upper 150 m. Similarly, Zhai et al. (2009) analysing a global 1/12 ° model

found that nearly 70% of the wind-induced near-inertial energy at the sea surface is lost to turbulent mixing within the top 200

m. Our results are in qualitative agreement with these studiesnoticeably different: in our high-resolution simulations only

~65-70% of the overall energy imparted by the storm is dissipated in the upper 200m (65% in the one storm experiment, see

Table 4; 70% in the multiple storm experiment, not shown). Note though that, in contrasts to Furuichi et al. (2008) who base

their estimate on the near-inertial response of the wind energy input, we do not separate the balanced and unbalanced

response to the storms. A substantial part of the additional wind work imparted by the storms is not near-inertial, as revealed

by the 1.4 mW m-2 near-inertial wind work in the experiment with storms, which is only a fraction of the +3.6 mW m -2 total

wind work increase compared to the experiment without storms. Since the balanced response to the storms does not follow

the same pathway toward dissipation (see below), such differences between our results and Furuichi et al. (2008) are not

unexpected.
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Using a 1/10° model of the Southern Ocean, Rath et al. (2013) found that accounting for the ocean-surface velocity

dependence of the wind-stress decreases the near inertial wind power input by about 20% but also damps the ML near-

inertial motions leading to an overall ~40% decrease of the ML near inertial energy. Overall, this damping effect is found to

be proportional to the inverse of the ocean-surface-mixed-layer depth. In our set of simulation, we do not include any wind

stress dependence on ocean-surface velocity which remains a debated subject (Renault et al. 2016). Our main motivation for

doing so was to ensure that the mean wind stress remains the same between the different model experiments that have been

performed in this study. Nevertheless, we should keep in mind that we miss a potentially important dissipative process for

the NIWs. The vertical turbulence model we use does not include an explicit wave description so the surface wave mixing

effect is parameterized and non-local wave breaking, Stokes drift or Langmuir cells are not considered. These processes

modulate the momentum and energy deposited into the ocean as well as near surface dissipation rates. For example, the

analysis of a coupled atmosphere-wave-ocean model simulating hurricane conditions suggests that the Stokes drift below the

storm can contribute up to 20% to the Lagrangian flow magnitude and change its orientation (Curcic et al. 2016). These

processes certainly impact the near-inertial wind energy input and distribution of its dissipation, and would deserve further

attention, perhaps using a more realistic (regional) setup. 

Finally, our experiments provide an interesting perspective on the dissipation of the energy associated with the slow versus

NIW part of the flow. The ways the energy imparted to the ocean by high and low frequency winds are balanced differ

markedly as one may have expected. Wind work imparted by the storms is mainly balanced by viscous dissipation (> 80%),

mainly in the upper ocean and to a lesser extent in the interior. Bottom friction (~ 5%) and pressure work (~5 %) play a

minor role while these two terms are key in the equilibration of the low-frequency part of the circulation (note that the loss

term associated with pressure gradient forces represents the potential energy source due to Ekman pumping). Perhaps more

surprisingly, total interior dissipation in the simulation with and without storms present distinct sensitivities with respect to

resolution. As horizontal/vertical resolution increases storm energy dissipation tends to diminish within a few hundred

meters below the mixed layer base but increases farther down. Conversely, dissipation of the balanced circulation sharply

decreases with increasing resolution over a broad range of depth in the ocean interior, from below the mixed layer down to

3000 m depth. It is also the situation where convergence is least clear in the range of resolutions that we explore. Even

Δx=1km resolution may still be insufficient to adequately resolve fine-scale dissipative processes affecting the balanced flow

(Vanneste 2013). In any event and far from topographic features, dissipation of the balanced flow which is robustly 1 to 2

order of magnitude smaller than dissipation of the NIE below 300 m depth is unlikely to have a substantial effect on

diapycnal mixing in the Southern Ocean interior. 

8. Conclusions

Kinetic Energy (KE) dissipation and its effect on ocean mixing are a subject of intense research. The aim of this study is to

investigate the fate and the overall impact of the energy imparted by the storms in the Southern Ocean. The set of semi-
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idealized numerical simulations we use to this end allow us to explore and to identify the limitations faced by the

general/regional ocean modelling community in the numerical representation of these processes. We also provide an

additional perspective on the MOC sensitivities (to high frequency winds) in a semi-idealized representation of the Southern

Ocean that shares important characteristics with the ones used in Abernathey et al. (2011), Morrison and Hogg (2013; MOC

sensitivity to the mean wind stress) or Morrison et al. (2011; sensitivity to surface buoyancy forcing).

The main oceanic response to storm forcing involves the generation and downward propagation of NIWs. While ~60% of

the energy imparted by the storms is dissipated in the upper 200 meters, a substantial part propagates and dissipates at deeper

depths (~ 20-30%). The NIWs that penetrate downward have short horizontal wavelengths (λ < 60km), high vertical shear

and horizontal strain variance, contributing to their dissipation before they reach the bottom. 

In our simplified simulations near-inertial oscillations are the dominant source of mixing down to 2000-2500 m depth. Our

model results also confirms the conclusions of several previous numerical and observational studies: atmospheric synoptic

variability and its associated internal energy wave activity generation  is required to explain the levels of mixing observed in

the interior ocean away from rough bathymetric features. This additional input of energy becomes critically important as the

resolution increases and viscous dissipation of the balanced circulation vanishes  (without storms a two order of magnitude

reduction of interior dissipation is found when going from Δx=20 km to Δx=1km). The inclusion of storms lead to

comparatively minor sensitivities of interior dissipation to model resolution. This has profound consequences on the MOC

sensitivity to model horizontal resolution : while without storms the strength of the clockwise cell of the MOC decreases

when resolution increase (also observed in Morrison and Hogg  2013), the introduction of storms tends to level off the

differences between resolution and to produce a slight increase of the MOC with increasing resolution (Table 2). 

We have shown that anticyclones play a disproportionate role as a conduit to the interior ocean dissipation. This could

certainly be anticipated from the several studies describing the presence and dissipative fate of NIW packets in anticyclonic

structures. We are able to characterize this statistically. We found that between 300 and 1500 meters, 17% of the dissipation

achieved by vertical processes occurs within identified anticyclones (versus 2% within identified cyclones). This estimate is

a conservative figure because we use a stringent eddy identification procedure. 

Even with the storms included, dissipation below 200-300 m is too modest to substantially influence water mass

transformation (section 5). This result should however be considered cautiously. Increased resolution (particularly

horizontal) beyond the range we explored may lead to further enhancements of dissipation in the depth range 200-500m.

More importantly perhaps, horizontal dissipation (which results from implicit numerical diffusion in the advection of

momentum) is dominant below the mixed layer and its effects on diapycnal mixing may not be adequately represented.

Indeed, it does not contribute to the calculation of vertical mixing of temperature and its connection with horizontal mixing

(also resulting from implicit numerical diffusion) is unknown3. The relation between energy dissipation and mixing is a

subject of intense research. Ground-truth exists from Direct Numerical Simulations (DNS) or lab experiments (Shih et al,

3 Note that in the case where diffusion and viscosity operators and coefficients are explicitly prescribed no consistency
between KE dissipation and horizontal mixing of temperature is enforced either. 
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2005, Ivey et al, 2008) but their utilization is not straightforward here because of the large scale gap with our simulations in

terms of resolved length scales (our ~ 1km horizontal resolution places us several orders of magnitude away from the

isotropic regime).

The effect of storms is obviously most significant in the upper ocean. A Walin analysis highlights this role and the

consequences on large scale ocean dynamics. In our simulations storms significantly modify the vertical buoyancy flux, air-

sea heat fluxes (which are interactive) and MOC intensity (+16%). Although the settings have differences , an instructive

comparison consists in estimating the change in mean wind stress required to increase the upper MOC cell (the only one we

simulate) by 16% in the sensitivity experiments carried out by Abernathey et al (2011). Their figure 5 indicates a change

from 0.20 N m-2 to ~0.23 N m-2 (+15%) is needed when interactive air-sea flux are used. This further confirms the

importance of synoptic winds. The effect of storms expressed in terms of change in net air-sea heat fluxes is less dramatic

(+5 W m-2) and well within uncertainties (Wainer et al, 2003). On the other hand, the fluctuations of heat fluxes due to

storms have not been considered in our study and their impact should be further investigated.

Important conclusions of this study also concern the numerical and physical sensitivities of the NIE fate. Our analyses and

sensitivity runs highlight the effect of the Asselin filtering, of the numerical scheme employed for advection, of numerical

resolution, horizontal and to a lesser extent vertical. Although ε changes with horizontal resolution tend to level off when

approaching Δx=1 km, a more subtle lack of convergence is patent. Most importantly, the respective contributions of

horizontal and vertical dissipations to ε still exhibit major changes between Δx=2 km and to Δx=1 km, mainly in the depth

range 200-500 m. The reason why this may be of concern is that vertical and lateral dissipation have a priori very different

consequences in the model, in ways that are difficult to reconcile with the isotropy of microscale turbulence measured in the

real ocean. In the model, vertical dissipation is an essential component of the vertical turbulent closure and modulates

diapycnal mixing. Although lateral dissipation may also be accompanied by diapycnal mixing (near fronts), existing ocean

models have not been widely evaluated or tuned in this regard. Ongoing efforts are aimed at reducing lateral diapycnal

diffusion in OGCMs but it is unclear down to which level this should be pursued. The tendency found over the range of Δx

explored in this study suggests a robust εv increase to the detriment of εh at depths between 200 and 500 m. The strength of

the diapycnal mixing that takes place in this ocean range is important as demonstrated by the MOC sensitivity analysis in

section 6. Further efforts to approach convergence and diminish grid anisotropy for problems resembling to the one studied

here would be needed.

The modifications of the Southern Ocean atmospheric circulation have motivated many studies on the response of the ACC

and Southern Ocean overturning to increase in mean wind stress (e.g. Abernathey et al. 2011, Hogg et al. 2016), the general

conclusion being that the eddies strongly limit the sensitivity of the ACC transport and Southern Ocean MOC to wind

increase (e.g. see the review by Gent 2016) . But besides zonal wind strengthening, changes are also observed in the storm

track activity (see the review by Ulbrich et al. 2009). The evolution during the last 50 years consists in a concomitant

decrease of the overall number of Southern Ocean cyclones and increase of their strength. This tendency is expected to

continue under warming climate. Alford (2003) estimated a 25% increase from the 1950's of global power input to inertial
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motions. The subtleties of interior mixing forced by high-frequency winds, as highlighted by our study, add to the list of

challenges awaiting eddy-permitting/eddy resolving climate models.
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Appendix A : Wind forcing strategy

The Southern Ocean storms are represented as cyclonic Rankine vortices :

τθ =τ max
r
R

if 0 ≤  r < R

τθ =τ max
R
r

if R ≤  r 

with τmax the maximum wind stress, R the radius of the vortex core (300 km). τ θ is set to zero for r > 900 km. τmax is

modulated by a sinusoidal seasonal cycle so it varies from τ max0/2 during austral summer and τmax0 during austral winter, with

τmax0 = 1.5 N m-2. Each vortex forms and vanishes at the same latitude (no meridional displacement) but the latitude of

formation varies following a Gamma distribution similar to the meridional distribution inferred from cyclones tracks in

Patoux et al. (2009), with most of the cyclones located between 50ºS and 70ºS. The distribution follows a cycle which

repeats each 10 years. The lifetimeLife time of the storms is computed such that one cyclone travel the 2000 km zonal

extension of the domain with full strength (~ 2 days). This strategy leads the storm to wrap around itself during its decaying

phase, but note that this only affectsaffect a limited portion of the domain. One storm is formed everyeach ten-days. The

cyclones form and vanish linearly in one day, and travel eastward at a speed Cs of 15 m s -1 in the reference experiment.

Cyclone position and associated winds are recomputed at each time step. 

The wind-stress in the experiments without storms is purely zonal :
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with τ0=0.15 N m-2. In order to have exactly the same 10-year mean wind stress between experiments with and without

storms, the averaged residual wind due to the storm passages is removed to the background wind stress in the experiment

with storms.

Appendix B : Rotatory spectra

The computation of rotatory spectra follow the methodology described in Leaman and Sanford (1975) and other (e.g., Alford

et al, 2012). First the near inertial part of the velocities u niw are obtained by filtering the velocity components in the near-

inertial band {0.9,1.15}f. These velocities are then normalized at each depth as follows :

un
niw ( z )=uniw ( z )/√N ( z ) /N 0 ,  

where un(z) is the normalized velocity, u(z) is the band-pass filtered velocity, N(z) is the Brunt-Väisälä frequency and N 0 is

the vertical average of N(z). The velocity are then Wentzel–Kramers–Brillouin (WKB) stretched according to dz' = N(z)/N 0

dz with z' the stretched and z the unstretched coordinates.
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Name Δx Nb

vert.

levels

Dt (Asselin

coefficient)

Horiz. adv scheme Storms Storm speed (m/s) Τmax  (N m-2)

Sensitivity to horizontal and vertical resolution

20-km-nostorm 20km 50 1200s (0.1) UP3 no

20-km-storms 20km '' 1200s (0.1) '' yes 15 1.5

5-km-nostorm 5km '' 300s (0.1) '' no

5-km-storms 5km '' 300s (0.1) '' yes '' ''

2-km-nostorm 2km '' 150s (0.1) '' no

2-km-storms 2km '' 150s (0.1) '' yes '' ''

1-km-nostorm 1km '' 60s (0.1) '' no

1-km-storms 1km '' 60s (0.1) '' yes '' ''

2-km-nostorm_Z320 2km 320 50s (0.1) '' no

2-km-storms_Z320 '' 320 50s (0.1) '' yes '' ''

Sensitivity to horizontal advection scheme

2-km-

nostorm_QUICK

'' 50 150s (0.1) QUICK no

2-km-storms_QUICK '' '' 150s (0.1) QUICK yes '' ''

2-km-nostorm_CEN2 '' '' 100s (0.1) CEN2 no

2-km-storms_CEN2 '' '' 100s (0.1) CEN2 yes '' ''

2-km-

nostorm_VFORM

'' '' 100s (0.1) VFORM no

2-km-storms_VFORM '' '' 100s (0.1) VFORM yes '' ''

Sensitivity to storm characteristics

2-km-storms_C0 '' '' 150s (0.1) UP3 yes 0 ''

2-km-storms_C5 '' '' '' '' yes 5 ''

2-km-storms_C10 '' '' '' '' yes 10 ''

2-km-storms_C15 '' '' '' '' yes 15 ''

2-km-storms_C20 '' '' '' '' yes 20 ''

2-km-storms_TAU-1 '' '' '' '' yes 15 1

2-km-storms_TAU-1.5 '' '' '' '' yes 15 1.5

2-km-storms_TAU-3 '' '' '' '' yes 15 3

One storm experiments

2-km-onestorm_A '' '' 150s (0.1) '' yes 15 1.5

2-km-onestorm_B '' '' 30s (0.1) '' yes 15 1.5

2-km-onestorm_C '' '' 150 (0.01) '' yes 15 1.5

Table 1. Summary of numerical experiments.
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20-km 5-km 2-km

No storm 20.4 Sv 19.4 Sv 18.0 Sv

Storms 20.7 Sv 20.9 Sv 21.0 Sv

Table 2. Maximum of the clockwise cell (as in the context of Figure 7) of the overturning streamfunction Ψiso (Sv) averaged

between y=2000km and y=2500km. The streamfunctions have been computed using ten years of 5-day average outputs from

equilibrated experiments. Model transports have been multiplied by 10 in order to scale them to the full Southern Ocean.
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Δt 150s / Asselin 0.1

(horiz.,vert.)

Δt 3 0 s / A s s e l i n 0 . 1

(horiz.,vert.)

Δt 150s / Asselin 0.01

(horiz.,vert.)

Ɛh+Ɛv 0-200m 61.4% (3.1%, 58.3%) 63.7% (4.3%, 59.4%) 64.4% (4.6%, 59.8%)

Ɛh+Ɛv 200-2000m 11.1% (9.3%, 1.8%) 14.9% (12.6%, 2.3%) 15.6% (13.2, 2.4%)

Ɛh+Ɛv 2000-4000m 4.3%  (2.9%, 1.4%) 5.8% (3.9%, 1.9%) 5.9% (4.1%, 1.8%)

Bottom friction 5.9% 6.6% 6.7%

Coriolis - 0.1% - 0.2% 0.2%

Advection - 0.7% - 0.6% -0.6%

Pressure 5.5% 5.2% 5.2%

Asselin time filter 14% 3.4% 1.5%

DKE/Dt -1.4% 1.2% 1.1%

Residual 0.% 0.% 0.%

Total dissipation (Ɛh+Ɛv+Asselin)

Full water column 90.9% 87.3% 88.0%

0-200m 65.4% 64.7% 64.5%

200-2000m 19.5% 16.5% 17.1%

2000-4000m 6% 6.1% 6.4%

Table 3. Cumulated energy dissipation at day 70 (see Fig. 10) relative to a reference experiment without storm, for three

single-storm experiments with different time step and Asselin time filter coefficient. Results for the reference experiment

described in Fig. 5,8-10 are shown in the first column.
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2-km [mW m-2] 2-km + STORMS [mW m-2] Differences [mW m-2]

DKE/Dt -0.1 0.02

Wind work 12.43 16.08                   / +3.65

Vertical dissipation -2.90 (23.4%) -5.32 (33.1%)     -2.42 (66.3%)

Horizontal dissipation -0.65 (5.2%) -1.09 (6.8%)      -0.44 (12.0%)

Pressure work -4 (32.2%) -4.18 (26.0%)    -0.18 (5%)

Bottom friction -4.84 (38.9%) -4.91 (30.5)       -0.07 (2%)

Advection -0.03 (0.2%) 0.01 (0.1%) -0.02 (0.5%)

Coriolis -0.08 (0.6%) -0.06 (0.4%) -0.02 (0.5%)

Asselin time filter -0.01 (0.1%) -0.45 (2.8%)        -0.44 (12%)

Residual 0 0 0

Table 4. Two-year mean KE balance (mW m-2) averaged over the entire domain for the 2-km reference experiments with

(left) and without storm (right). The percentages give the fraction of total wind-work that is balanced by the terms of the KE

equation. The second series of numbers and percentages in the storm column refers to the storm - no storm differences.
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Fig. 1 3D representation of instantaneous temperature (rectangular box, color scale ranges from 0 to 20 °C) and zonal
velocity (vertical section) for the reference simulation at 2-km after 30 years. The domain is a 2000 km long - 3000 km
wide reentrant channel. The configuration represents the Southern Ocean between 40ºS and 70ºS. Average ocean depth
is 3500m with irregular bottom topography, which limits the ACC transport and tends to enhance deep mixing. At the
surface, synoptic storms are includedinclude in the forcing. They generate NIWs whose signature is visible in the
velocity section, as a layering of the mesoscale structures.   
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Fig. 2. Seasonal cycle of zonally averaged SST (a-f, ºC), mixed-layer depth (b-g, meters)  computed in both model and
observations with a fixed threshold criterion of 0.2°C relative to the temperature at 10 meters , net air-sea heat flux (c-h,
W m-2), and the solar (d-i, W m-2) and non solar (e-j, W m-2) components of the air-sea heat flux. Climatological
seasonal cycles are built from observations (left column) and model outputs and forcing. Observations include OAFlux
products (Yu et al. 2007) for the period 1984-2007 and de Boyer Montégut (2004) mixed-layer depth climatology.
Model data are from the last 10 years of the 2-km reference simulation without storms. In both model and observations,
the mixed-layer depth is computed with a fixed threshold criterion (0.2°C) relative to the temperature at 10 meters.  
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Fig. 3. Surface vorticity snapshot (s-1) over the entire model domain at day December 31th of year 39 from the 2-km
horizontal resolution experiment without storms.
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Fig. 4. Horizontal velocity variance in the 2-km reference experiments with and without storms. (a) Kinetic energy
power spectra as a function of wavenumber (rad m -1) at 0, 1000 and 2500 m depth. (b) Seasonal (summer is defined as
December-January-February and winter as June-July-August) kinetic energy p ower spectra at 0 and 1000 m depth.
Spectra are built using instantaneous velocity taken each 5 days of the last 2 years of the 2-km simulations. Kinetic
energy contained in the wavelength ranges λ < 60km (c),  60km < λ < 600km (d), and λ > 600km (e) as a function of
depth. In (b) and for wavenumber above 5x105. 10-5 rad m-1, the winter surface spectra with and without storms (dark
red thin and thick lines) are superimposed, as well as the summer and winter 1000-m spectra without storms (light and
dark green thin lines). 
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Fig. 5. Model snapshots of a 2-km simulation at a mesoscale eddy location 2  days before (top) and 17 days after
(bottom) the passage of a storm : (a,f) zonal velocity (m s-1), (b,g) meridional velocity (m s-1)  (c,h) vertical velocity (m s-

1), (d,i) vertical shear (s-2) and (e,j) horizontal strain (s-2). Snapshots after the passage of the storm (e-h) are taken 50 km
eastward in order to account for the advection of the core of an anticyclonic mesoscale eddy. Isotherm are shown in the
left panels with contour intervals of 1.25°C from 2.5 to 10°C. Before the passage of the storm the simulation has been
equilibrated without high-frequency forcing, so the solution at day -2 is free of wind-forced NIWs. The snapshots
shown here correspond to day 2 and 22 in the time axis of Fig. 8. We choose day 22 to leave enough time for the NIWs
to reach the base of the anticyclonic eddy.
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Fig 6. Vertical profile of the 2-km experiments with and without storms averaged over a period of 10 years and between
Ly/3 a 2Ly/3 with Ly the meridional length of the domain : (a) eddy kinetic energy (m2 s-2), (b) r.m.s of the vertical
velocity (m s-1), (c) temperature (ºC), (d) stratification (s -2) and (e) vertical turbulent heat flux (W m-2). The eddy kinetic
energy is computed from anomalies to the zonal mean. Dashed lines are for the experiment without storms. In (c) the
horizontal lines indicate the mean position of the mixed-layer base (computed with a fixed threshold criterion of 0.2°C
relative to the temperature at 10 meters as in Figure 2), and in (e) the vertical lines show the average net air-sea heat
flux (W m-2). 
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Fig. 7.  Eulerian mean streamfunction ψ (a,b), MOC streamfunction diagnosed in isopycnal coordinates (c,d) and 
projected back to depth coordinates (e,f), from 10-years long 2-km equilibrated simulations with (right) and without 
storms (left). Units are Sv and the contour interval is 0.25 Sv. Temperature contours corresponding to 2, 4, 6, 8, 10, 12 
and 14ºC are indicated in (c,d). Positive cells are clockwise. The dashed lines in (c,d) represent the 10%, 50%, and 90% 
isolines of the cumulative probability density function for surface temperature (following Abernathey et al. 2011) which
indicate how likely a particular water mass is to be found at the surface exposed to diabatic transformation ). Dotted 
lines in (e,f) represent (from top to bottom) the 90%, 50%, and 10% isolines of the cumulative probability density 
function for mixed-layer depth. The vertical dashed line at y=2850km represents the limit of the northern boundary 
damping area. Model transports have been multiplied by 10 in order to scale them to the full Southern Ocean.
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Fig. 8. Response of the ocean to the passage of a single storm : (a) horizontal kinetic energy (log 10m2 s-2), (b) horizontal
kinetic energy in the NIW band (colors, log10 m2 s-2) and difference of horizontal kinetic energy between the simulation
with storms and a reference simulation without storms (iso-contours), (c) r.m.s. of the vertical velocity (10 -4 m s-1)

defined as √〈w2〉 where τθ =τmax
R
r

is the horizontal average operator, (d) εv energy dissipation due to vertical

diffusion (W kg-1) and (e) εh the energy dissipation due to horizontal diffusion (W kg -1). These diagnostics are spatially
averaged between Ly/3 and 2Ly/3. The spatially averaged power spectra of the meridional velocity (log 10 m2 s-2 day-1) is
shown in (f) and has been computed using hourly data from day 0 to day 70. The storm starts at day 3 and ends at day 7.
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Fig. 9. Temporal evolution of clockwise (CW) and counterclockwise (CCW) spectra as a function of vertical
wavelength, computed from WKB stretched near inertial velocities (a,b) for the single-storm experiment. Units are m 2 s-

2 cpm-1. Near inertial KE computed as a function of time and depth from CW and CCW stretched velocities are shown
in (c) and (d). Units are m2 s-2.  
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Fig. 10. Domain averaged response of the ocean
to the passage of a storm from the same
experiment already described in Fig. 5, 8 and 9.
In order to isolate the response of the storm, we
show here the differences with a reference
experiment without storm and starting from
exactly the same initial conditions. (a) Horizontal
kinetic energy (m2 s-2) computed directly from
model velocity (bold black) and indirectly from
the time integral of kinetic energy tendency
computed online before (red) and after (dotted
red) Asselin time filtering. (b) Cumulated
contribution of the different terms of the KE
equation (DIFF represent the sum of both
horizontal and vertical dissipations). (c)
Cumulated lateral (Eh) and vertical (Ev) energy
dissipation integrated in different depth ranges.
(d) Cumulated dissipation of energy by the
Asselin time filter integrated in different depth
ranges. (e) Meridional distribution of cumulative
wind work, viscous dissipation, bottom friction,
horizontal pressure gradients, and Asselin energy
dissipation at day 70.
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Fig. 11. Kinetic energy dissipation (ε; W kg-1) as a function of depth in experiments at 2-km with storms (continuous
lines) and without storms (dashed lines) : total energy dissipation ε with and without storms (a), dissipation due to
vertical processes εv and dissipation due to horizontal processes εh (b), εh computed from a 2nd order (UBS-C2) or 4th

order (UBS-C4) centered scheme (see text for details) together with a 20 years mean and standard deviation of ε for the
2-km reference experiment (c), and summer (December, January, February) and winter (June-July-August) ε. Profiles
are computed using 5-day snapshots of the entire domain for a 2 years period. Position, strength and duration of the
storms remain strictly equal in the different experiments.
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Fig 12. εh and εv (W kg-1) distribution within composite cyclones (top) and anticyclones (bottom) identified in the 2-km
experiments without storms (left) and with storms (right). The black iso-contours are isotherms from 2 to 8 ºC and σ/f
iso-contours are shown in white (0.9, 0.95 and 0.98 σ/f), with σ = f + ξ/2 the effective frequency and ζ the relative
vorticity. Composites are built using 10 years of 5-day averaged model outputs, between Ly/3 and 2Ly/3. A total of
8167 cyclone and 8878 anticyclone snapshots have been identified in the experiment witho ut storms and 7306 cyclone
and 8037 anticyclone snapshots in the experiment with storms.
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Fig. 13. Kinetic energy dissipation (ε; W kg-1) as a function of depth in experiments at 20-km, 5-km, 2-km and 1-km
horizontal resolution, with storms (continuous lines) and without storms (dashed lines) : total energy dissipation ε with
storms (a) and without storms (b), dissipation due to vertical processes ε v with storms (c) and without storms (d),
dissipation due to horizontal processes εh with storms (e) and without storms (f), and the fraction of the total dissipation
due to vertical processes (εv /ε in %) (g and h). As in Figure 11, profiles are computed using 5-day snapshots of the
entire domain for a 2 years period. Position, strength and duration of the storms remain strictly equal in the different
experiments. The experiment z320 has an horizontal resolution of 2-km but 320 vertical levels, ranging from 1 meter at
the surface to 250 meters at the bottom (below 2500 m depth the vertical size of the cells is the same as in the 2-km
reference experiment).
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Fig. 14. Kinetic energy dissipation (ε) and wind work as a function of model resolution, in experiments with
(continuous lines) and without storms (dashed lines) : (a) wind work and energy dissipation integrated from surface to
bottom (mW m-2), (d) energy dissipation integrated from surface to bottom (decomposed into contributions from ε,
bottom friction and Asselin time filter; mW m -2) and total dissipation  ε (W kg-1) averaged in the depth ranges 0-100m
(b), 100-400m (c), 400-1000m (d) and 1000-2000m (e). Values are computed using 5-day snapshots of the entire
domain for a 2 years period as in Fig. 9. Isolated dots represent ε  for the 2-km experiment with 320 vertical levels.
Wind work (a) and energy dissipation contributions (d) have only been computed for the 20, 5 and 2-km experiments. 
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Fig. 15. Sensitivity of energy dissipation (ε) profiles to numerics (a), storm speed (b) and storm strength (c).
Experiments with (without) storms are shown with continuous (dashed) lines. The advective schemes tested in (a) are
UP3 (reference), QUICK, flux form 2nd order centered advection scheme  (CEN2), and a vector form advection scheme
(VFORM). The profiles of the latter two (blue and green colors) are confounded in panel (a). Dissipation induced by
storms traveling at different speeds is tested in (c) for propagation speeds of 0, 5, 10, 15 and 20 m s -1. In these
experiments the duration and the power of the storms are the same as in the reference experiment (for which the storm
propagation speed is 15 m s-1). In (d), the sensitivity to the storm strength is tested by comparing experiments with
maximum wind stress values equal to 1, 1.5 (reference) and 3 N m -2.  All the sensitivity experiments are run at 2-km
horizontal resolution. They start from the same initial condition equilibrated without storms, and they are run for three
years. Profile are built using 5-day snapshots of the entire domain for the last two years of the simulations.
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Fig. 16. Transformation rate (in Sv) : total (a), contribution of air-sea fluxes (b) and diffuse fluxes across isotherms for 
the 2-km simulations without storms (c) and with storms (d). The diffuse fluxes are separated into vertical (light gray) 
and lateral (black) contributions. The dashed lines in (c) and (d) correspond to transformation by diffuses fluxes below 
300 m depth. Model transports have been multiplied by 10 in order to scale them to the full Southern Ocean.
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