
Reviewer #1 
 
While I am not overly enthusiastic about this paper, I believe that it would be suitable for 
publication after the grammar and sentence composition is improved. 
 
Great efforts have been made to improve the grammar and sentence composition (see the 
makeup_revision (os-2016-15-supplement-version1.pdf)). 
 
Reviewer #2  
 
1. The title of the paper makes a clear reference to the Arctic Ocean, however the analysis of the 
instability presented here is not restricted to any specific part of the ocean. In particular, a 
direct quantitative comparison of the theoretical results to the intrusions in the Arctic Ocean is 
not extensive and occupies only a small fraction of the manuscript. I would thus recommend 
focusing one topic: either on application to the Arctic intrusions or on a discovery of a new type 
of fluid dynamical instability. 
 
In view of this remark, we changed the title for “Generation of large-scale intrusions at 
baroclinic fronts: an analytical consideration with a reference to the Arctic Ocean”. The new title 
is focused on the analysis of the instability and, nevertheless, contains a reference to the Arctic 
Ocean. To my mind the reference allows to emphasize that (a) this study was primarily aimed to 
understand the nature of large-scale intrusions observed in the Arctic Ocean, and the aim was 
directly stated in the Introduction, (b) the approximations and simplifications used in the model, 
such as the weak geostrophic currents, the wide baroclinic fronts, the small Burger number, the 
small parameter beta, were fitted to the Arctic Ocean conditions (see Section 2), and (c) the 
theoretical results were compared with the observations of intrusions in the Arctic Ocean (see 
Section 3). 
 
2. The author claims that this manuscript shows for the first time that a diffusion can destabilize 
the geostrophic flow. However, the novelty of the presented findings can be questioned as a 
discussion of the relevant scientific literature on viscous instabilities is not present. In particular, 
the author should discuss the work of McIntire (1970), Baker (1970), and Calman (1976) who 
consider experimentally and analytically the diffusive instability. In addition, a discussion of 
Murno (2010) experiments, which show the importance of viscosity, needs to be present. These 
are just several of the papers that came to mind, I’m sure there is more literature on the visco-
diffusive instabilities of geostrophic flows. 
 
You are absolutely right, drawing attention to a very important and delicate things. For clarity of 
presentation of the work more precise explanations are given now (p.8, lines 9-20; p.11, lines 19-
27 in os-2016-15-manuscript-version3.pdf).  First of all, I added to the manuscript an 
explanation of the differences between the McIntyre instability and instability obtained in this 
work (p.8, lines 9-20). For convenience, I reproduce some of the explanations here. 

In accordance with (11) that was obtained from Eqs (1)-(10) at Bu<<1 (or at Ri>>1) and 
Pr=1, the large-scale disturbances can be unstable. Such instability has to be distinguished from 
the diffusive instability (McIntyre, 1970; Baker, 1970; Calman, 1976). Indeed, instability in the 
model by McIntyre occurs when Ri <(Pr + 1) ** 2 / 4Pr and is absent at Pr = 1. 

The articles mentioned in your list either confirmed experimentally the McIntyre instability 
(Baker, 1970; Calman, 1976; Murno (2010)) or contained some useful additions to the 
McIntyre's theory (Calman, 1976). All of the mentioned articles were added to the References. 

One of the important distinctions between these two models of baroclinic front instability is 
that in the present model the disturbances are allowed to have a nonzero slope in the along-front 
direction while in the model of diffusive instability by McIntyre (1970) the slope is taken zero.  



Therefore, the McIntyre’s model and other models in which the term xp ∂∂ / xp ∂∂ /  in the 
equations of motions is ignored (McIntyre, 1970; Calman, 1996; and others) can be referred as 
the 2D models (See also below the response to Comment No 9). Sometimes such models are 
called the models of symmetric instability. 

From the mathematical point of view, the models that take into account the along-front slope 
of the perturbations, are much more complicated. Indeed, the analysis of the instability in the 2D 
models ultimately reduces to finding the roots of a polynomial depending upon the wave-number 
and growth rate. The models, that take into account the along-front slope of the perturbations, are 
reduced to the differential equations with variable  coefficients, and such problems can be solved 
analytically only in rare cases.  
 
 
3. Writing out the QG equations with the stratification parameter N that depends on y is not 
common. There should be a reference to a book or a paper that presents its proper derivation i.e. 
an asymptotic expansion in Ro number where N=N0+O(Ro). I’m not certain, but there might be 
some terms might be missing in Eq. 7 if N=N(y) – please check and give a reference. 
 
It was said on p.3, lines 18-19 and 27 of os-2016-15-manuscript-version2.pdf that the 
dependence of the Brunt-Vaisala frequency upon the coordinate y is weak, that is, the inequality 
|s|fL << N0 ** 2 is satisfied. For this reason the additional terms in Eq. (7) can be neglected (it 
was pointed out on p. 3, line 27 of os-2016-15-manuscript-version2.pdf). A more detailed 
explanation of the issue is done in the revised manuscript (p.3, lines 25-26 of os-2016-15-
manuscript-version3.pdf). 
 
4. When neglecting the betta effect please provide quantitative estimates of a latitude at which 
betta-effect becomes less important (e.g. at 75 degree latitude beta is 25% of its value at the 
equator – is that beta negligible compared to shear term?). If betta effect from your scaling end 
up being negligible at any latitudes then the instability that you consider should be of a small 
horizontal length scale. 
 
The value of parameter beta in the vicinity of intrusions observation is given on p. 10, lines 21-
22 of the revised MS (os-2016-15-manuscript-version3.pdf).  The comparison of the beta and 
shear terms is done on p.10, lines 27-28 of os-2016-15-manuscript-version3.pdf. 

Of course, the larger the beta (i.e. the lower the latitude) the smaller horizontal length scale 
disturbances remain unaffected by the beta-effect. However, in the Arctic Ocean, near the Pole, 
beta is small, N/f~10, Bu<<1 for large-scale disturbances. The beta-effect term in Eq.(7)  has 
approximately the same order of smallness as the relative vorticity, which is neglected in our 
model: Bu*U*k~beta*Bu/k. For this reason we can consider the large-scale (50-100 km) 
disturbances near the Pole. 

In Section 3 of revised MS the values of all parameters are presented to confirm the 
correctness of our approach.   
 
5. A discussion of why mass and momentum diffusivities are assumed to be the same is missing. 
Note, that in a non-turbulent regime, which might be adequate for the deep Arctic, the viscosity 
is an order of magnitude larger than heat diffusivity and three orders larger than salt diffusivity. 
 
If the Eurasian Basin of the Arctic in the depth range of 600–1200 m is characterized by the non-
turbulent regime, the existing models of interleaving will forecast the unstable modes with very 
small vertical length scale, which is obviously contrary to the observations. Merryfield (2002) 
suggested that this depth range is characterized by an intermittent turbulence and introduced a 
notion of differential mixing to parameterize the vertical diffusion terms. As a result, a 
satisfactory agreement between the vertical length scale of unstable modes and the thickness of 



observed intrusions in a purely thermohaline front has been achieved (a 3D model of the 
thermohaline front instability).  

When the differential mixing parameterization was applied to the 2D model of the baroclinic 
front instability, a large difference was found between vertical scales of the unstable disturbances 
and the observed intrusions. A comprehensive discussion on the issue was presented in Kuzmina 
et al. (2014). If a suggestion on non-turbulent diffusivities is used in the 2D model of the 
baroclinic front instability, all unstable modes, including the maximum-growing one, will be of 
no more than several centimeters vertical scale.   

This study suggests a weak turbulent rather than molecular regime in the deep Arctic layer 
under consideration, i.e. the difference between the momentum and mass exchange coefficients 
exists, but it is not high, obeying the condition of  Pr*Bu<<1. 

Much of what is said here, was presented in the previously submitted manuscript, but I still 
made some additions/explanations to the revised manuscript (p.10, lines 29-30 of os-2016-15-
manuscript-version3.pdf). 
 
6. Deriving Eq. 9 from Eq. 8 requires vertical integration since p_z=-g rho and I’m not sure 
what was done with the vertical integral of the term U*p_zzx when U=U(z). Perhaps showing 
more steps would clarify things. 
 
The easiest way to show that Eq. 9 was derived from Eq. 8 correctly, is by differentiating Eq. 9 
with respect to z for W0 = const (see the explanation on p. 4, lines 16-17 of os-2016-15-
manuscript-version3.pdf).  

Also, you can carry out the integration procedure of Eq. 8, applying the rule of integration by 
parts as follows: 
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Here we took into account that xpfv ∂∂= / . 

Second term in the left of Eq. (8*) we can be rewritten using the rule of integration by parts as 
follows:  
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Here we took into account that 2/2szU = . Substituting the latter into Eq. (8*) we can obtain Eq. 
(9), remembering that ρgzp −=∂∂ / and gvfszyv // =∂∂ρ .    
 
I doubt the need to include in the article as a detailed description of the integration procedure – I 
will do that if the Reviewer and the Editor consider it useful. 
 
7. Eqns. 2 and 10 should contain the physical mechanism behind the instability which was not 
explained throughout the paper. The authors take a dry math approach to the instability problem 
by calculating the growth rates; however, omitting the physical mechanism of the instability 
dramatically reduces the understanding of the problem for the readers. Perhaps a schematic 
showing a positive feedback loop would be helpful. Also missing is a discussion of fundamental 
reasons for the existence of this instability. i.e. does it release a potential energy of mean flow, 
does it feed on its kinetic energy or something else? 
 



In some cases, it is very difficult to elaborate the physical mechanism behind the instability. It is 
especially difficult in the case of the oscillatory instability. Remember the case of the instability 
of the critical layer: physicists could not explain it for a long time (only in 1975 Stern (1975) 
presented an interesting simple explanation of the critical layer instability). 

With regard to our case of instability, it is possible to propose the following physical 
reasoning. As we can see from Eq. (16), the phase velocity of unstable disturbances is directed 
along the geostrophic current and exceeds the maximum velocity of the current. In such a case, 
in my opinion, the most likely is the conversion the kinetic energy of the main flow into the 
kinetic energy of disturbances. 

The above-presented physical reasoning was included to the revised MS (p.8, lines 21-26 of 
os-2016-15-manuscript-version3.pdf). 
 
8. In assessing the stability properties of Eq. 11 the author assumes a special case of U(z)_zˆ2 
and present analytical solutions (Eq 15). It is not clear to me how was the growth rates in Eq. 
16a,b calculated from Eq. 15. 
 
It is explained in the revised MS (see p.7, line 2 of os-2016-15-manuscript-version3.pdf). 
 
9. Eq. 11 that determines the stability of the flow does not have any y-derivatives and hence the 
stability properties do not depend on the y-direction wavelength. Thus, it looks like this 
instability is a 2D (in x,z–plane) rather than the 3D instability that the author claims to have 
investigated. 
 
Eq. (7) is a 3D equation, and Eq. (11) which has no y derivatives was derived from Eq. (7) at 
Bu<<1. The absence of the y-derivative in Eq. (11) does not mean that the pressure disturbance 
does not depend on y because the velocity disturbance u is determined by Eq. (2). Moreover, we 
consider a finite width front with the length scale L along latitude (i.e. along the y co-ordinate). 
On the lateral boundaries of the front (y=0, L) the following conditions are met: v(y=0)=0, 
v(y=L)=0 (in accordance with Eq. (7)). For this reason, we have to seek the solution of Eq. (11) 
in the form (12): all decision variables depend of 3 co-ordinates x, y, and z. Thus, in my opinion, 
our model is a special (simplified) case of the 3D model describing the extra-long disturbances.  

Some explanations were added to the revised MS in view of this remark (see p. 6, lines 3-5 of 
os-2016-15-manuscript-version3.pdf). Nevertheless, in order to avoid the 3D-2D confusion, in 
Abstract and Conclusions of the revised MS, the model is no longer directly referred as the 3D 
model. 
 
10. The authors demonstrate that Eq. 11 has unstable solutions for U_zˆ2 but it is not obvious 
that other, more realistic, profiles of U(z) can also lead to an instability. It would be useful to 
solve Eq. 11 via the eigenvalue decomposition in z and show that arbitrary profiles of U (that 
have curvature in z) are indeed unstable. 
 
To my mind, it would not be worth to consider here one more problem, which is much more 
complicated than the present one. The most interesting case is to consider the main flow velocity 
in the form of U = U1 + U2 + U3. Such problem is beyond the scope of this paper, and will be 
considered in the future. Here we draw attention to the importance of considering the parabolic 
shape of the main flow. Note that the effect of linear shear on the perturbation dynamics has not 
been analytically studied before. 
 
11. The meaning of discussion of limits at z=+-inf is not clear and needs to be organized better. 
In particular at z=+-inf U->inf which is unrealistic for the ocean and for the theory which 
assumes U to be small in a QG sense. Why not using finite domain size z-=[0 H] and a 
corresponding no flux boundary conditions? 
 



For the analysis of differential equations with variable coefficients it is necessary to use standard 
mathematical methods, which have been presented in this paper. However, to construct the 
solutions that are useful for applications it is needed to consider a layer of finite thickness - it 
was stated in the previous version of manuscript (see p.5, lines 22-31; p.7, lines 8-31of os-2016-
15-manuscript-version2.pdf). In the revised MS, the additional explanations are presented (see 
p.7, lines 9-24, 29-30; p.8, lines 1-6 of os-2016-15-manuscript-version3.pdf).  
 
12. It is not physical to have a growth rate that grows with increasing wavenumber as it implies 
that any kind of small scale noise would be preferentially amplified. The author motivates the 
paper with the idea that the size of intrusions in the arctic ocean might be explained by an 
instability. However, there seems to be no preferential wavelength at which the instability occurs 
and hence one cannot expect the appearance of intrusions of particular height. In addition, the 
theory breaks down at a particular length scale which the authors choose as the scale of 
intrusions and use it to calculate the growth rates. It is questionable to use these estimates since 
the theory technically does not apply at this marginal scales (i.e. the neglected terms need to be 
included). 
 
The disadvantage of the model is its inability to forecast the characterictics of the most unstable 
mode – in the manuscript this issue has been discussed in detail (see p. 9, lines 11-17 of os-2016-
15-manuscript-version2.pdf). However, it seems normal that the primary aim of the new 
instability problems is the proof of the potential for instability. For example, the pioneering work 
by Stern (1967), the first model of the DD interleaving, did not contain any estimate of the 
fastest growing mode because, like the present model, the growth rate increased unlimitedly with 
the wavenumber (it was discussed in os-2016-15-manuscript-version2.pdf too – see p.9, lines 11-
17). On the other hand, in the studies of geophysical flow instabilities, some methods are used 
(e.g. the Rayleigh method) that can provide some conclusion about the possibility of instability, 
but cannot give the form of the unstable solutions and characteristics of the most unstable mode 
(remember e.g. the well-known work by J. Pedlosky(1964)).    

The characteristics of the most unstable mode can be obtained by means of numerical 
integration of Eq. (7). Such a study being outside the scope of this paper is under way. However, 
the analytical considerations presented here showed that the unstable modes (not the fastest 
growing ones!) can occur at relatively large vertical wavelength of several tens of meters 
offering the principal possibility for explanation of the large-scale intrusions. Note that in all 
previous models of the baroclinic front interleaving, all unstable modes have had much smaller 
vertical wavelength.  
  
13. Because there is no high wavenumber cutoff it is questionable whether the numerical model 
results shown in Fig. 1 are realistic; the step formation shown in Fig. 1a might be at the size of 
the numerical grid and hence their dynamics is not adequately resolved. 
 
I’m sorry for the confusion - the small steps seen in Figs. 1 and 3 are an artefact caused by bad 
choice of the output data format used to store the results of numerical calculations. In the revised 
manuscript this annoying drawback has been corrected (see new Figs. 1 and 3).   
 
14. A discussion of Orr-Sommerfeld equations seems unnecessary as it only makes a 
mathematical connection with insufficient improvement of our physical understanding of the 
problem; thus, it only makes the paper harder to understand. 
 
I cannot withdraw fully the mentioning of the Orr-Sommerfeld equation because of the need to 
acquaint the reader with the important work by Miles (Miles, 1965). 

Moreover, the analogies are often useful and can contribute to understanding the physics of 
the processes. Eq. (11) is a model (partial case) for the Orr-Sommerfeld equation.  Also it is 



necessary to underline that the growing with time solutions are not relevant to the critical layer 
instability. 

However, in accordance with this comment I cut the paragraphs devoted to the discussion of 
the O-S equation in the revised MS (see p.11, lines 23-35; p.12, lines 1-3 of the makeup revision 
(os-2016-15-supplement-version1.pdf)). 

There are only a few sentences about the critical layer instability left in the revised MS (see 
p.8, lines 21-24 of os-2016-15-manuscript-version3.pdf). 
 
15. Application to the Arctic Ocean can be questioned because i) there is no preferential length 
of instability that can be compared with the size of intrusions and ii) the growth rates are of the 
order of years are too large because the mean currents will most likely significantly change on 
the long time and very small spatial scales of the instability. 
 
Strictly speaking, there are no models of baroclinic front instability that could fully describe the 
formation of large-scale intrusions in the Arctic Ocean at the stable-stable stratification (see 
Introduction where the issue is discussed in detail). In other words, the use of all existing 
theories can be questioned. 

It is worth remembering that in this paper only a hypothesis on possible mechanisms of the 
large-scale intrusions generation in the Arctic Ocean is suggested. 

It is important, that the new modes of instability have vertical scale that can reach tens of 
meters. However, the model is so complex that much more efforts are needed to obtain the 
exhaustive results of modelling which may be fully comparable with the empirical data. This 
paper is just the first step of the studies. 

As to the growth time estimate of the order of years – I do not think it is too large. Contrary, it 
is in accordance with the results by Merryfield (2000, 2002) who resulted in the estimate of the 
time of formation of intrusions and the time scale of variability of the mean currents in the deep 
Arctic Ocean as several years.  
 
16. I’d suggest working on the brushing up the grammar and logical presentation of the paper. 
Many paragraphs do not contribute well to the clarity of the paper and can be outright deleted. 
The title can be clearer as well: e.g. Generation of large-scale intrusions via diffusive 
instabilities. 
 
Great efforts have been made to improve the grammar and logical presentation (see the makeup 
revision (os-2016-15-supplement-version1.pdf)). 
Some paragraphs were outright deleted (see p.9, lines 10-21; p.10, lines 25-29; p.11, lines 13-16; 
p.11, lines 23-35; p.12, lines 1-3 of the makeup revision (os-2016-15-supplement-version1.pdf)).  
The title has been changed. 
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Abstract. Some aAnalytical solutions are found for the problem of three-dimensional instability of a weak geostrophic flow with 

linear velocity shear taking into accounting for vertical diffusion of buoyancy. The analysis is based on the potential vorticity 10 

equation in a long-wave approximation when the horizontal scale of disturbances is taken to beconsidered much larger than the 

local baroclinic Rossby radius. It is hypothesized that the solutions found can be applied to describe stable and unstable 

disturbances of the on a planetary scale with respect, especially, to the Arctic OceanBasin, where weak baroclinic fronts with 

typical temporal variability periods of the order of several years or more are have been observed and the β beta-effect is 

negligible. Stable (decaying with time) solutions describe disturbances that, in contrast to the Rossby waves, can propagate to 15 

both the west and east, depending on the sign of the linear shear of geostrophic velocity. The unstable (growing with time) 

solutions are applied to explain the formation of describe large-scale intrusions at baroclinic fronts under the stable–stable 

thermohaline stratification observed in the upper layer of the Polar Deep Water in the Eurasian Basin. The proposed suggested 

mechanism of formation of intrusions description of intrusive layering can be considered as a possible alternative to the 

mechanism of interleaving at the baroclinic fronts due to the differential mixing.  20 

1   Introduction 

The Sstudy of intrusions in oceanic frontal zones is required to understand necessary to analyse the mechanisms of ventilation 

and mixing in the ocean interior (see, for example, Zhurbas et al., 1983, 1987; Rudels et al., 1999, 2009; Kuzmina and Zhurbas, 

2000; Walsh and Ruddick, 2000; Merryfield, 2000; Radko, 2003; Richards and Edwards, 2003; Kuzmina et al., 2005, 2011; 

Smyth and Ruddick, 2010). Intrusive layering, as a rule, results from the instability of oceanic fronts. One of the major 25 

mechanisms responsible for the instability of both thermohaline and baroclinic fronts is related to the double diffusion (Stern, 

1967; Ruddick and Turner, 1979;  Toole and Georgi, 1981; McDougall, 1985a, 1985b; Niino, 1986; Yoshida et al., 1989; 

Richards, 1991; Kuzmina and Rodionov, 1992; May and Kelley, 1997; Kuzmina, 2000). However, in the Eurasian Basin of the 

Arctic Ocean there are baroclinic and thermohaline fronts within the upper layer of the Polar Deep Water (PDW) populated with 

intrusive layers of vertical length scale as large as 30 m and with horizontal scale reaching up to more than 100 km (Rudels et al., 30 

1999, 2009; Kuzmina et al., 2011) observed at the stable–stable stratification (i.e., when for the mean salinity increasing es with 

depth while the mean temperature decreasinges with depth). It can be suggested that the thermohaline intrusions within the upper 

layer of PDW are driven by differential mixing. Merryfield (2002) was the first to show satisfactory agreement between 

calculations of unstable modes from a 3D interleaving model that , taking into accounted for the differential mixing at a non- 

baroclinicity front and observations of intrusive layering at a pure thermohaline front in the PDW. Merryfield’s (2002) findings 35 
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were confirmed by Kuzmina et al. (2014). However, the 2D model of interleaving driven by differential mixing at the baroclinic 

front failed to simultaneously fit did not show a satisfactory fit simultaneously between the three modelled parameters, namely 

the vertical scale, the growth time and the slope of the fastest growing mode with , and observations of intrusions in a frontal 

zone with a substantial baroclinicity in the upper PDW layer (Kuzmina et al., 2014). In particular, it was found that the vertical 

scale of the most unstable mode was about is two to three times smaller than the vertical scale of intrusions observed in the 5 

baroclinic front. Furthermore, it is worth noting that the 2D models of double-diffusive interleaving, as applied to typical 

baroclinic fronts in the ocean, are able to forecast intrusive layers with vertical length scale of no more than 10 m vertical length 

scale (Kuzmina and Rodionov, 1992; May and Kelley, 1997, 2001; Kuzmina and Zhurbas, 2000; Kuzmina and Lee, 2005; 

Kuzmina et al., 2005). Therefore, despite the fact that there are proven-by-simulation hypothesis of intrusions es of a merger of 

small vertical scale intrusions merging into larger structures (Radko, 2007), new approaches to the mathematical description of 10 

the formation of large intrusions in the areas of baroclinic fronts become appear relevant.  

We suggest that the interleaving at a baroclinic fronts may be considered as a result of 3D instability of weak geostrophic 

current due to the combined effects of vertical shear and diffusion of density (buoyancy).   

The effect of vertical diffusion of buoyancy on the baroclinic instability of geostrophic zonal wind has been was studied 

theoretically by Miles (Miles, 1965). Proceeding from the Based on an analogy between the equations describing the dynamics 15 

of large-scale atmospheric perturbations and the Orr–Sommerfeld equation (Lin, 1955; Stern, 1965), Miles (1965) analyzsed the 

instability of the critical layer (a the very thin layer in which the phase velocity of a disturbance is equals to the velocity of zonal 

flow). He resulted in As a result, Miles built an analytical asymptotic solution taking into accounting for a the  very small, 

though but finite, vertical diffusion of buoyancy. Based on the analysis, Miles (1965) concluded that the effect influence of 

vertical diffusion of buoyancy on the destabilisation of in destabilising the zonal wind is negligible not essential in comparison 20 

with the  baroclinic instability (the generation of cyclones and anticyclones) for typical atmospheric geostrophic winds. One 

could can assume, however, that other conditions situations can occur be observed in the deep ocean. Indeed, in the Polar zones, 

for example, in the Eurasian Basin of the Arctic, very weak geostrophic currents have been are observed in at deep layers 

(Aagaard, 1981). These currents can have a large horizontal (transverse) scale and large time scale of variability, the latter being 

estimated to exceed at much more than one year (Aagaard, 1981). Taking into account, that the influence of the β -effect on the 25 

dynamics of large-scale disturbances is negligible in the Polar Ocean, it seems reasonable to suggest, that the contribution role of 

diffusion of buoyancy to in the destabilization of weak geostrophic currents can be important. Therefore, in such circumstances 

one would expect the formation of intrusions, rather than vortices. 

The present work is devoted to seeking the search for analytical unstable (increasing with time) and stable (decreasing with 

time) solutions based on the potential vorticity equation describing the 3D dynamics of a weak baroclinic front, with the vertical 30 

diffusion of buoyancy included. Hopefully tThe results, hopefully, will provide an opportunity make it possible to obtain some 

new insight into conceptions about the causes of the formation of large intrusions, particularly in the regions of the Arctic Ocean 

Basin with the stable–stable stratification. 

2   Problem formulation, derivation of basic equation, and solution search 

Let us consider the problem of the 3D instability of a the baroclinic front based on the basis of the linearized equations of motion 35 

in quasi-geostrophic approximation (see, for example, Pedlosky, 1979; Cushman-Roisin, 1994): 
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where U and V  are zonal and meridional components of the geostrophic velocity, P  and ρ  are the mean pressure and density 5 

both divided by the reference density, N, f and g are the buoyancy frequency, Coriolis parameter and gravity acceleration, ,u  v  

and w are velocity fluctuations along the x, y and z axes, respectively, p  and ρ  are the pressure and density fluctuations both 

divided by the reference density, yf ∂∂= /β , 2222 // yx ∂∂+∂∂=∆ , and the x, y and z axes are directed eastward, northward and 

upward, respectively. The Vvertical friction with a constant coefficient K~  is considered in the vorticity equation Eq. (3). The 

density balance equation Eq. (4) takes into account, apart from the advection terms, advection Eq. (4) accounts for only the 10 

vertical diffusion with a constant coefficient K . The constant coefficients K~  and K  are treated as the average values over the 

in an ocean layer under investigation. 

Let us take the distribution of mean density, divided by the reference density, normalized to the reference density, as follows: 

1/~/),(
2

0 +−+= z
g

Ngysfgfsyzyzρ ,         (5) 

where 00 >= constN  is a characteristic value of the buoyancy frequency in the frontal zone, and s~  and s  are dimensional 15 

constants, either positive or negative, that characterize the cross-front gradients of density and the vertical shear of the basic 

geostrophic flow. 

The first term on the right of Eq. (5) has not been taken into account in the interleaving models describing both the 2D (see, 

for example, Kuzmina, Rodionov, 1992; May, Kelley, 1997; Kuzmina, Zhurbas, 2000) and 3D (Eady, 1949; Miles, 1965; Smyth, 

2008) instabilities of the oceanic baroclinic fronts. Meanwhile, However, the oceanic fronts can be characterized by not only the 20 

cross-front gradient of density, but also by the cross-front gradient of the buoyancy frequency. This is the case described by Eq. 

(5): the squared buoyancy frequency, dzgdN /2 ρ−= , is a linear function of y. This dependence is assumed to be weak: 

2
0NfLs << , where L is the characteristic lateral length scale (width) of the frontal zone ( Ly ≤≤0 ). However, even a weak 

lateral change in the buoyancy frequency indicates the existence of a quadratic dependence of geostrophic velocity on the 

vertical coordinate z. Indeed, if the mean density distribution is expressed by Eq. (5), the geostrophic current velocity will be 25 

321 UUUU ++= , 2/2
1 szU = , zsU ~

2 = , constU =3 ,        (6) 
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where 1U  and, 2U  are the constituents of geostrophic velocity with linear ( 1U ) and constant ( 2U ) vertical shear: szdzdU =/1 , 

sdzdU ~/2 =  and; 3U  is the barotropic (constant) velocity addition. 

The equation of evolution of potential vorticity, derived from on the basis of Eqs. (1)–(4) under the assumptions of 

1// 2
0

2
0 <<≤ NfsLNfsy  and 1/ <<fLU , is 
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Equation (7) was derived under the abovementioned assumption of 1/ 2
0 <<NfsL . Note that in the differentiation of Eq. (4) 

with respect to z, cancels out the terms such members as )/()/( xzU ∂∂⋅∂∂ ρ  and )/()/( yzv ∂∂⋅∂∂ ρ  are reduced, since according 

to Eqs. (1) and (2) they are equal in magnitude and opposite in sign, in accordance with Eqs. (1) and (2). 

As it can be seen from Eq. (7), the last term on the left can strengthen or weaken, depending on the sign of s , the impact of 

the β -effect on the dynamics of disturbances. 10 

We will consider at KK ~
≈  the long-wave disturbances (i.e. perturbations of the on a planetary scale) of weak geostrophic 

current ( )()()()( 332211 zFBzFBzFBzF ++= ) which satisfy the following relationship between the vertical and horizontal 

length scales (H and L~ , respectively): RLL >>
~ , where fHNLR /0=  is the baroclinic Rossby radius of deformation. If we 

apply Eqs. (1–4) to describe the motion in the Arctic Basin, the β -effect term can be ignored because 0≈β  in the vicinity of the 

North Pole.  15 

Taking into account the abovementioned conditions, we may use the method of series expansion at small 

parameter BufLHN == )~/( 2222
0

2δ , where Bu is the Burger number (see e.g., for example, Cushman-Roisin, 1994). ForAt 

432 1010~ −− −δ ( 54 1010~~
−L m, 10020 << H  m, 3

0 10~ −N s 1− , 410~ −f s 1− ), it is reasonable to consider only the first term 

of the series. In this case, we can rewrite the potential vorticity equation in the simplified form: 
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The introduced by the procedure relative error committed in of the solution by so doing is expected to be of the order of 2δ , 

and the smaller 2δ , the smaller the error. 

According to In accordance with our approximation, Eq. (8) corresponds to the density balance advection equation Eq. (4) 

forat constww == 0 : 
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The correspondence between Eqs. (8) and (9) can be checked by differentiating Eq. (9) with respect to z and taking into 

account that ρgzp −=∂∂ / . 

Thus, the vorticity equation Eq. (3) drops out of consideration. Indeed, given that the diffusivity of mass, K, in the oceanic 

interior (particularly in the deep water of the Arctic Ocean) probably does not exceed the value of 1×10-5 m2s-1 and the vertical 
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length scale of the intrusions, H, to which this theory is applied to, is approximately equal to 10020−≈H  m, the ratio of LU ~/  

is estimated as 810~/ −≤LU 8103~/ −⋅<LU  s-1. Based on the latter estimate, one can suggest that the vertical circulation caused 

by the frictional force and temporal change of vorticity,  and frictional force will not significantly affect the dynamics of large-

scale disturbances. This hypothesis will be tested a posteriori by analysing the solutions obtained. For further discussion it is 

important to underline that the geostrophic Richardson number 222
0

~/UHNRi = , where U~  is the characteristic scale of 5 

geostrophic velocity, is much larger than unity for very slow currents. 

Given that constw =0 , we can take put 00 =w  in Eq. (9), and therefore rewrite it Eq. (9) as 

ρρρ 2
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∂ .           (10) 

Based on the reasoning above, we can conclude that the slow extra-large-scale disturbances of weak geostrophic flow are 

described by the quasi-stationary system of Eqs. (2) and (10). 10 

Let us now pay attention to an important issue. Namely, if we suppose that 0)( =zU  in Eq. (10) and consider salt fingering 

instead of diffusion of buoyancy, then, in addition to Eq. (2), it will be necessary to write the following two equations instead of 

Eq. (10): 

2

2~)1(
z
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t S ∂
∂

−=
∂
∂ βγρ ,   2
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z
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y
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t
S

S ∂
∂

=
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+
∂
∂ ,      (10´) 

where S  and S are the salinity disturbance and mean, SK  and 1~/~ <= ST FF βαγ  are the vertical diffusivity of salinity and the 15 

flux ratio for salt finger convection, TF  and TF  are the vertical fluxes of temperature and salinity, α~  and β~  are the temperature 

expansion and salinity contraction coefficients, respectively. 

Equations. (10´) along with (2) constitute the system of equations that was used by Stern (1967) to obtain the polynomial 

dependence between the growth rate of unstable perturbations, wave numbers and hydrological parameters [see Eq. (4) of (Stern, 

1967)]. Therefore, the proposed model, which consists of Eqs. (2) and (10), can in a certain sense be regarded as an analogue of 20 

the model by Stern (1967) for investigating the interleaving on a large horizontal scale. However, the derivation of the model 

equations, which we have done above, is useful to understand the limits of the model’s applicability. 

From the point of view of the author of this workpaper, a simple quasi-stationary (geostrophic) system of equations 

accurately describes the large scale movement especially in the Arctic Ocean, where the influence of the beta β -effect is not 

significant, the baroclinic fronts of large width in the ocean interior are often not intense (Kuzmina et al., 2011), and the 25 

baroclinic radius of deformation, fHN / , at 100~H  m, does not exceed 2–5 km (see also Section 3). 

To analyse the instability of the geostrophic flow in the frame of Eqs. (2) and (10), let us take consider a layer with thea 

vertical scale of 02H , move the z-axis origin to the middle of the layer, and place the co-ordinate system on the middle line of 

the layer. For the analysis of the instability in the frame of Eqs. (2) and (10), we will consider a symmetric relative to the midline 

of the layer geostrophic flow with quadratic z-dependence of velocity: 30 

3
2

31 2/ UszUUU +=+= 31 UUU += , 2/2
1 szU = , 2/)sign( 2

03 sHsU ⋅−= . 
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A parabolic z-dependence of the geostrophic flow velocity upon the vertical co-ordinate can be observed in the rotary flow of 

the intra-pycnocline vortices, as well as in many other ocean flows. In any case, as mentioned above, in the oceanic frontal zones 

it is not unlikely to observe changes of the buoyancy frequency in the cross-front direction indicating the presence, which 

indicate the existence of linear shear of geostrophic velocity. The Cconsideration of the instability of geostrophic flow instability 

with the velocity profile of 321 UUUU ++=  is also possible on the basis of by analytical methods, but this issue falls out of the 5 

scope of the present study. and we will consider the related issues below. 

Let us discuss the conditions on the boundaries of the layer in relation to the ocean. Keeping in mind the Eady problem 

(Eady, 1949), one has to set require the vanishing of vertical velocity vanishing at the layer boundaries. In accordance with oOur 

approximation meets, this condition is satisfied. 

Due to the fact that theour model takes into accountaccounting for the vertical diffusion, it appears reasonable to accept is 10 

logical to take the conditions of zero buoyancy flux (for density perturbations) at the layer boundaries: 0=zzp  at 0Hz ±=  (the 

type 1 boundary conditions). It is reasonable to consider another type of condition too, namely, the slippery boundary conditions 

or equivalent conditions of the vanishing of density disturbances vanishing at the boundaries: 0// === ρdzdudzdv  at 

0Hz ±=  (the type 2 boundary conditions). Under the type 2 boundary conditions, it is necessary to set up require the absence of 

convergence or divergence of buoyancy flux within the layer: )()( 00 HzpHzp zzzz −=== . This condition requirement is 15 

necessary, because the convergence or divergence of the buoyancy flux within the layer may increase or, conversely, decrease 

the stability of the layer. 

Using Eq. (2), we rewrite Eq. (10) as: 
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where 31 UUU += . 20 

To analyse the instability of geostrophic flow, we will seek the solution of Eqs. (2) and (11) Eq. (11) at LL ~
= for the lateral 

boundary conditions of 0|| 0 == == Lyy vv , accordingly to Eq. (7),  in the form 

{ })/sin()(Re )( LyezFp ctxik p−= ,          (12) 

where k is the wave number along the x axis and с is the growth rate. The Ddisturbances of the horizontal velocities will be 

expressed as Lfpu /p−=  and fpikv /= . The solution will be unstable, i.e., increasing with time, if the For the positive 25 

imaginary part of c is positive:, 0)Im( >c , the solution will be unstable, i.e. increasing with time. 

The substitution of Eq.Substituting (12) into Eq. (11) yields the following equation: 

( ) 0)()()(
3

3

31 =−−





−+ zF

dz
dKikszzF

dz
zdFcUUik .        (13) 

We are interested in finding an answer to the following question: is it possible to make certain judgements about the 

possibility of instability of geostrophic flow in a finite vertical layer, based on the analytical solutions of Eq. (13) at some values 30 

of parameter c ? 

It is easy to verify that the following functions are the partial solutions of Eq. (13): 
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2/
1

2
)( azezF −= , DazzF += 2

2 )( ,        (14) 

where Kiksa 2/2 = , sUcaD /)(2 3−−= , 321 5)( ikUKaiccikikc +⋅=+= , cc Re1 = , cc Im2 = , and 0Re31 ≠−+ cUU  atfor an 

arbitrary point 0zz =  lying inside in the layer domain. 

To test partial solutions Eq. (14), one has to substitute )(1 zF  and )(2 zF  from Eq. (14) into Eq. (13), reduce the latter to a 

cubic polynomial 0
0

1
1

2
2

3
3)( zAzAzAzAzP +++=  and evaluate the coefficients 0A , 1A , 2A , and 3A . It is easy to make sure, 5 

obtain that this polynomial is identically zero (i.e., 00 ≡A , 01 ≡A , 02 ≡A , and 03 ≡A ). 

 Based onProceeding from the theory of ordinary differential equations (see, for example, Polyanin and Zaitsev, 2001), due to 

the linearly independent and taking into account that the functions )(1 zF  and )(2 zF are linearly independent, we can express 

write the general solution of Eq. (13) for 35 ikUKaikc +⋅=  in the form: 

2
1221

12213

332211

)/)()(/)()(()(

)()()()()()()(

)()()()(

−⋅−⋅=

⋅−⋅=

++=

∫ ∫
dzzdFzFdzzdFzFz

dzzzFzFdzzzFzFzF

zFBzFBzFBzF

ϕ

ϕϕ ,        (15) 10 

where 1B , 2B , 3B  are arbitrary constants. It is important to note two facts. Firstly, the functions )(1 zF  and )(2 zF  are even 

functions, while )(3 zF  is an odd function. Secondly, despite the singularity at 0=z  in the of integrands of in Eq. (15) at 0=z , 

the function )(3 zF  is differentiable at this point. (The latter becomes evident from the asymptotic analysis last can be seen by 

analysing the behaviour of function )(3 zF  when for 0→z .) 

Let us now consider the unstable and stable solutions Eq. (15). 15 

2.1   Unstable solutions 

According to the expression for parameter c (see Eq. (14)), 321 5)( ikUKaiccikikc +⋅=+= , Ssolution Eq. (15) can be unstable 

for both 0>s  and 0<s . The real and imaginary parts of kc  for the unstable (i.e. growing with time) solutions growing with 

time (unstable) are 

31 5.2 kUkKskc +⋅= , kKskc ⋅= 5.22  atfor 0<s ,       (16 a) 20 

31 5.2 kUskKkc +−= , skKkc ⋅= 5.22  atfor 0>s .        (16 b) 

Formulas Eqs. (16) demonstrate that the condition 0Re31 ≠−+ cUU  is satisfied for ),( +∞−∞∈z . 

According to Eqs. (16), the growth rate increases with the increase in s  and K, which implies that not only double diffusion, 

but the diffusion of buoyancy can cause instability of the geostrophic flow. However, the unstable solution is realized at for 

0Re <a , and hence, for any finite wave number k , the function )(1 zF  and all its derivatives increase infinitely, if dramatically 25 

when ±∞→z . On the other hand, the function )(3 zF  and all its derivatives decrease when vanish, if ±∞→z . (This It can be 

seen by analysing the from asymptotic analysis behaviour of the integrals that define  defining function )(3 zF , if  when 

±∞→z .) Therefore, to prove the instability in a finite layer, it is necessary to show that )(zF  at for 0Re <a  is an 
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eigenfunction of the proper eigenvalue problem with the boundary conditions of type 1 or 2 introduced above. To construct 

physically correct solutions we will consider the following two cases. Case 1, when where the vertical scale of the layer 

corresponds to our approximation: NfLHH /~2 0 << . Case 2, when where the vertical scale of the layer significantly exceeds 

the vertical scales of the disturbances for which our approximation holds true: 02HH << . 

To satisfy the boundary conditions of type 1 and 2 (either type 1 or type 2) in case 1, we have to take 03 =B , because )(3 zF  5 

is an odd function. The type 1 boundary conditions are reduced to the following conditions for )(zF : 0=zzF  at for 0Hz ±= . 

Thus, the following equality should be satisfied met: 

0/2)1( 12
2

0
2/2

0 =++−− BBaHe aH .          (17) 

Given that 12 /2 BB  can have different values, the instability in the framework of solution Eq. (15) does exist, because in a 

wide range of typical ocean values of 0H , s , and K , there is a the wave number )2( 000 HNfk <<  at for which Eq. (17) is 10 

satisfied. 

The type 2 boundary conditions are reduced to 0=zF  at 0Hz ±= . Under such conditions, the requirement of the absence of 

the buoyancy flux convergence/divergence within the layer is satisfiedmet: in the case of parity of )(zF  for 03 =B  and for the 

flow symmetry a flow that is symmetric relative to the midline of the layer and the parity of function (15), the values of 

buoyancy flux at the boundaries are of the same magnitude and direction (sign). Under the type 2 boundary conditions the 15 

following equality should be satisfiedmet: 

0/2 12
2/2

0 =−− BBe aH .           (18) 

Obviously, in this case, as in the case of Eq. (17), there is a wave number )2/( 000 HNfk <<  at for which Eq. (18) is 

satisfied. 

Figure 1 presents For case 1, graphic images of the unstable solutions in the form of density disturbances corresponding to 20 

the disturbances of density ρρ ~)/Re(Re == dzdF  for different boundary conditions for the case 1. are presented in Fig. 1. 

When building the solutions, typical values of hydrological parameters in relation to the Arctic Basin were used (see Subsection 

2.3 and Section 3). 

In the case 2, we have to take 01 =B , 02 =B , and consider )(3 zF as the solution of the eigenvalue problem. Indeed, )(3 zF  

and all its derivatives sharply decrease, if when ±∞→z , and, consequently, on the boundaries of the large vertical scale layer 25 

the function )(3 zF  and all its derivatives should be infinitesimally small. Therefore, that is, the boundary conditions of type 1 

and 2 are satisfied. Indeed, the characteristic vertical scale of the decrease of )(3 zF  at ±∞→z  can be evaluated as 

4/1)/(~ −Kksh . If  0H  is n times as large as h , the value of |)(| 3 zF  at 0|| Hz =  will be 
2ne times (!) as small as the maximum 

value of |)(| 3 zF . Note, that the maximum value of geostrophic velocity maxU  increases with 0H . However, maxU should satisfy 

the condition of 1/max <<fkU , which can be rewritten as 1/)( 22/12 <<fksKn . It is easy to see that this condition is met in a 30 

wide range of k , s  and K  for =n 5–10.  
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A plot of the disturbances of density )/Re(~
3 dzdF=ρ  corresponding to unstable solutions is presented in Fig. 2. It is worth 

noting that the function dzdF /3=ρ  is differentiable at 0=z  likewise the function )(3 zF . In this case, it is relatively simply to 

construct an analytical solution for a more complicated form of geostrophic current such as 321 UUUU ++= . To make it, we 

have to seek solutions of (13) (preliminarily rewriting this equation for 321 UUUU ++= ) in the form: 

)2/exp()(~ 2
*1 azzF −= , DazzF += 2

*2 )(~ , sszz /~
* += , sssUcaD /)2/~(2 2

3 +−−= . 5 

The function )(~
3 zF  is constructed similarly to previous considerations (see formula (15)). This function will have an 

additional oscillating component in comparison with function )(3 zF .  

For case 2, a plot of the unstable solutions corresponding to the disturbances of density )/Re(~
3 dzdF=ρ  is presented in Fig. 

2. It is worth noting that the function dzdF /3=ρ  is differentiable at 0=z  as well as the function )(3 zF . 

Thus, if the vertical diffusion of buoyancy plays a role in the dynamics of ocean processes, the long-wave perturbations of the 10 

weak baroclinic front with linear shear can be unstable (time-increasing). Note that in the case of no baroclinicity, instability due 

to the diffusion of buoyancy cannot arise. Indeed, when 0=U , Eq. (13) becomes the diffusion equation, and its general solution 

for the density perturbation (12) at 0≠c  has the form (see, for example, Niino, 1986): 

mznz
z QePezF +== )(' ϕ , 

where P and Q are integration constants, while n and m are expressed as )/(22 Kikcmn −== , 5.0)/( Kikcn −+= , 15 

5.0)/( Kikcm −−= . 

With regard to the boundary conditions, the problem is reduced to an eigenvalue problem. Here, we briefly discuss only the 

evaluation of the growth rate 2c . It can be easily shown that the solution )(zϕ  will satisfy the abovementioned boundary 

conditions only if 104 =nHe . This equality can be satisfied if n is zero or an imaginary number. The imaginary value of n 

indicates that the value of the growth rate 2c  is negative for all values of the wave number k . In this case, the disturbance is 20 

described by trigonometric functions that decrease with time. 

Thus, in accordance with Eq. (11) that was obtained from Eqs. (1)-(10) for 1Bu << , 1Ri >>  and 1Pr = , the large-scale 

disturbances can be unstable. Such instability has to be distinguished from the diffusive instability (McIntyre, 1970; Baker, 1970; 

Calman, 1976) which occurs when Pr4/)1(PrRi 2+<  and is absent at 1Pr = . One of the important distinctions between these 

two models of baroclinic front instability is that in the present model the disturbances are allowed to have a nonzero slope in the 25 

along-front direction while in the model of diffusive instability by McIntyre (1970) the slope is taken to be zero.  Therefore, the 

McIntyre’s model and other models in which the term  xp ∂∂ / , where x is the along-front co-ordinate, in the equations of 

motions is ignored (McIntyre, 1970; Baker, 1971; Calman, 1977; Munro et al., 2010), can be referred to as the 2D models. 

From the mathematical point of view, the models that take into account the along-front slope of disturbances, are much more 

complicated. Indeed, the analysis of instability in the 2D models ultimately reduces to finding the roots of a polynomial 30 

depending upon the wave-numbers and growth rate. The models, that take into account the along-front slope of disturbances, are 

reduced to the differential equations with variable, z-dependent  coefficients, and such problems can be solved analytically only 

in rare cases.  
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Also, it is worth to note that the instability described by Eq. (11) is not the critical layer instability analyzed by Miles (Miles, 

1965) for a geostrophic current with constant vertical shear based on similarity between the equation of potential vorticity and 

the Orr-Sommerfeld equation. Indeed, the phase velocity of the unstable disturbances in our model satisfies the inequality 

0Re31 ≠−+ cUU  for any value of the vertical coordinate z. As we can see from Eq. (16), the phase velocity of unstable 

disturbances is directed along the geostrophic current and exceeds the maximum velocity of the current. In such a case, in the 5 

author's opinion, the most likely is the conversion of the kinetic energy of the main flow into the kinetic energy of disturbances. 

2.2   Stable solutions 

Stable solutions of Eq. (13) are realized at for 0Re >a . In this case )(1 zF  and all its derivatives vanish at for ±∞→z , but 

)(3 zF  and all its derivatives increase infinitely for at ±∞→z . To construct our own functions of the eigenvalue problem for the 

case 1 ( NfLHH /~2 0 << ), we have to take 03 =B . 10 

 The solutions describe slow time-decaying, long waves that can move, in contrast to the Rossby waves, not only to the west 

but also to the east depending on according to the sign of s  (see Eq. (7)). Moreover, if 22
0 /|| fNs β>  (which is quite possible 

especially in polar regions), the long-wave dynamics in the β -plane approximation is determined by the linear shear of 

geostrophic flow rather than the β -effect. 

The real and imaginary parts of the growth rate of stable perturbations are 15 

31 5.2 kUkKskc +⋅−= , kKskc ⋅−= 5.22  at for  0<s ,       (19 a) 

31 5.2 kUskKkc +=  skKkc ⋅−= 5.22  at for 0>s .       (19 b) 

According to Eq. In accordance with (19), the condition 0Re31 ≠−+ cUU  is satisfied, if 2//5.2 2
0HskkKs > . 

Comparing Eqs. (16) and (19), we can conclude, that the phase velocity has different sign for of the stable and unstable 

disturbances has a different sign. That is, stable and unstable perturbations described by solutions Eq. (15) will move in opposite 20 

different directions with respect to the flow and a fixed observer. 

For the case 1and type 2 boundary conditions, a plot of the density disturbances stable solutions corresponding to the 

disturbances of density ρρ ~)/Re(Re == dzdF  corresponding to the stable solutions is presented in Fig. 3. 

2.3   Obtained solutions: some commentsdiscussion 

Our own functions, obtained in the previous subsections, have the vertical structure of the unstable perturbations, which differs 25 

significantly from those of the classical 3D and 2D interleaving models for double diffusive interleaving at the oceanic front 

(Stern, 1967; Toole and Georgi, 1981; McDougall, 1985a, 1985b; Niino, 1986; Yoshida et al., 1989; Kuzmina and Rodionov, 

1992; May and Kelley, 1997; Kuzmina, 2000; Kuzmina and Zhurbas, 2000). Given that the intrusions in the oceanic fronts have 

different forms, the present results may be useful for interpreting empirical data. However, the simplicity of o 

Our model does not allow us to determine the maximum growth rate. Here again we can see an analogy with the work by Stern 30 

(1967). Indeed, in a well-known paper by Stern (1967), which was the first study of the double diffusion instability of the infinite 

thermohaline front, the magnitude of the fastest growing mode was not found. The reason is that the growth rate in Stern’s model 
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could indefinitely increase with the horizontal wave number due to the neglected of vertical friction. A similar feature is typical  

for our model. of a simple model described above. The growth rate increases with the increase in the wave number k  up to the 

limit k
~

 for which the constraint of )2/(
~

00 NHfk <<  is still valid. Nevertheless, for a rough estimate of the time of formation of 

unstable perturbations it is reasonable to use formula Eq. (16). It is also worth evaluating the relationship between the growth 

rate of unstable disturbances and the layer thickness (case 1) or the characteristic vertical scale of disturbances (case 2). Let us 5 

address Eq. (17), which follows from the boundary conditions for one of the problems of studying the instability in a finite layer. 

The parameter 2
0

2/12
0 )/(5.0)Re( HKksaH =−=χ  governs Eq. (17). The higher the value of χ this parameter, the greater larger 

the wave number of the unstable mode for the given values parameters of the problem parameters, K , s , and 0H , and 

therefore, the larger greater the growth rate. However, the applicability of our model imposes a constraint on the space of wave 

numbers, )2/( 00 HNfk << . In order to satisfy these two conditions simultaneously in the wide range of variability of 10 

hydrological parameters in the ocean, it is reasonable to put 21 ≤≤ χ . For 2=χ , taking into account Eq. (16), we obtain the 

following formula relating the growth rate of disturbances and the vertical scale of the layer: 2
02 /10/1 HKTkc ⋅== . 

For damped with increasing z  solutions )(3 zF , the length scale 4/1)/(2 ksKH =  determines the characteristic vertical scale 

of the disturbances. Therefore, when 2=χ  the characteristic vertical scale of disturbances is a scale on which the perturbation 

amplitude decreases by a factor ...718.2=e .The formula relating the growth rate and the vertical scale of the disturbances will 15 

be the same as the previous one, but with H  instead of 0H . 

It is easy to understand the physical meaning of the parameter χ . This parameter characterizes the ratio of advection and 

vertical diffusion terms depending on the wave number k . Indeed, recalling if we take into account that in our model 

31 UUU +=  and take zero the geostrophic velocity on the boundaries of the layer is zero, ( 2/2
03 sHU −= , 0>s ), the maximum 

velocity at the midline of the layer will shall be 2/|| 2
0max HsU = . This allows the squared parameter χ  to be presented as 20 

0
4

0
2 5.0)/(25.0 kHRHKks d⋅==χ , where KHUKsHRd //5.0 0max

3
0 ==  is a diffusion analogue of the Reynolds number called 

the or Peclet number. 

It is worth noting that Eq. (13), being differentiated, corresponds to a simplified form of the Orr–Sommerfeld equation (see 

e.g. (Lin, 1955; Stern, 1975)) written under the extra-long-wave approximation. However, there are a number of differences 

between these equations, namely: (a) the destabilising factor in the Orr–Sommerfeld equation is friction, rather than diffusion, 25 

(b) the unknown function is a stream function in the vertical plane, and, finally, (c) to analyse instability in the frame of the Orr–

Sommerfeld equation it is suggested that viscosity is vanishingly small but finite. For this reason, the disturbances out of the 

crirical layer are described by the equation of an ideal fluid, but in the region of a thin critical layer the equation of the so-called 

"viscous regime" is used (see, for example, Miles, 1965). 

To obtain the solutions for the "viscous regime", the Orr–Sommerfeld equation is greatly simplified: only the terms 30 

describing derivatives of the unknown function of the 4th and 2nd order are considered (Iordanskiy and Kulikovskiy, 1966). 

Moreover, the velocity of the flow )(zU is linearised as ))(()( 00
' zzzUzU z −≈ , where 0z  is a point lying on the midline of the 

critical layer. In this regard, the solutions obtained in the present work for a parabolic type of geostrophic flow are different from 

the solutions of the "viscous regime" of the Orr–Sommerfeld equation, which are expressed by Hankel functions of order 1/3 

(Lin, 1955). The unstable modes described by solutions (15) cannot be attributed to the instability of the critical layer: see 35 
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formulas (16) describing the phase velocity of unstable modes. Thus, there are significant differences between the approaches 

used to study instability in the frame of the Orr–Sommerfeld equation [see also the paper by Miles (Miles, 1965)] and the 

approach proposed in the present work.  

To conclude this section, we note the following. 

The instability of the weak geostrophic flow in the frame of the solutions Eq. (15) is an oscillatory instability (the growth rate 5 

has real and imaginary components). Generally, using interleaving models (Stern, 1967; Tool and Georgy, 1981; McDougal, 

1985a, 1985b; Niino, 1986; Yoshida et al., 1989; Kuzmina and Rodionov, 1992; May and Kelley, 1997; Kuzmina and Zhurbas, 

2000; Walsh and Ruddick, 2000; Merryfield, 2002), it is possible to obtain the monotonous unstable modes only (the phase 

velocity of the disturbances is equal to zero: 0Re =c .). The exceptions to this rule are the interleaving models related to 

describing the interleaving in the equatorial fronts. In accordance with the modelling efforts (Richards, 1991; Edwards and 10 

Richards, 1999; Kuzmina et al., 2004; Kuzmina and Lee, 2005), the instability of the equatorial fronts in the scale of intrusive 

layering is regarded as an oscillatory instability. 

The gGeneral solution Eq. (15) is one of the classes of solutions of Eq. (13). Thus, for example, at 39 ikUKaikc +⋅=  it is 

also possible to find an analytically general solution of (13) too. This solution will would have a more complex structure than the 

solution Eq.  (15). The Ddetailed analytical consideration of unstable modes based on the analysis of different classes of 15 

solutions of Eq. (13) taking into account the friction may be a subject for further research. In order Tto clearly define the range of 

applicability of our model, it would be is worth solving the eigenvalue problem for Eq. (7) for small values of parameter 2δ  by 

means of numerical methods. This problem also may be a the subject for of further research too. The analytical solutions found 

can be used to validate numerical solutions of the eigenvalue problems. Moreover, the analytical solutions obtained provide give 

analytical expressions formulas for own eigenfunctions, phase velocities and growth/decay rates of disturbances that cannot, as a 20 

rule, be found exactly from numerical solutions. 

3   Application to thermohaline intrusions in the Eurasian Basin of the Arctic Ocean 

It is worth evaluating the time of formation of the large-scale intrusions based on the results of the presented model. 

According to Kuzmina et al. (2011), in the upper layer of the Polar Deep Water (PDW) where the large-scale intrusions are 

observed in the Eurasian Basin at stable–stable stratification, the following estimates of N, f , and β  are typical: 3102 −⋅≈N s-25 

1, 4104.1 −⋅=f s-1, and 11103.0 −⋅<β m-1s-1 (at latitude of 83ºN and higher). Therefore, for disturbances, for example, with the 

vertical scale of 100=h  m, the Rossby radius of deformation is only ≈fhN / 1 km.  

According to the derivation of Eq. (7), the value of the linear shear s is limited by the inequality of 2
0NfLs << . Given that 

the horizontal scale of the baroclinic fronts (along the cross-front axis y) in the upper layer of the PDW is approximately ≈L 50–

100 km [see examples of transections across the fronts of different types observed in the PDW (Kuzmina et al., 2011)], the 30 

maximal linear shear can be estimated as ≈s (1–2)·10-7 m-1s-1. Such value of the linear shear is large enough to neglect the β -

effect term relative to the linear shear term in Eq. (7): 1106.0/ 222
0 <<⋅< −sfNβ . The Vvertical diffusivity K can be estimated in 

the range of =K (1–3)10-6–3·10-6 m2s-1 (Merryfield, 2002; Walsh and Carmack, 2003). [see also the following paper where the 

evaluations of coefficients of diffusivity in the Arctic thermocline were considered (Walsh and Carmack, 2003)]. We suggest a 
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weak turbulence regime in the layer under consideration: 1Pr > , 1BuPr <<⋅ . The typical vertical scale of intrusive layering in 

the fronts of PDW is approximately 30–40 m (Merryfield, 2002; Kuzmina et al., 2014). Let us evaluate the time of formation of 

intrusions with the vertical scale of ~ 40 m. Using the following formula 2
00 /10 HKck ⋅=  (see Subsection 2.3), 

2
00 /10 HKck ⋅= , we can estimate the time of formation obtain that the time formation of the unstable mode is estimated as 

5~)/(1 20ck  years for at 610−=K  m2s-1 and approximately 2 years for at 6103 −⋅=K  m2s-1. 5 

To verify the applicability of our model, it is worth necessary to estimate the wave number 0k , using the following formula 

(see Subsection 2.3): 

)/(16 4
00 sHKk ⋅= .              (20) 

Substituting =0H 40 m, 7102 −⋅=s  m-1s-1, and 610−=K  m2s-1 in Eq. (20), we find 3
0 102.0 −⋅=k 5

0 103 −⋅=k  m-1. The value 

of 4
0 10−≈k  m-1 may be obtained at 7102 −⋅=s  m-1s-1, 6103 −⋅=K  m2s-1. These is values of 0k  lies in the wave number range of 10 

applicability of our model, since 3422
0

22
0

2 1010~/ −− −= fkHNδ 432 104104 −− ⋅−⋅≈δ .  

The above-presented estimates of the time of formation time of intrusions in PDW are evidently better than the evaluations 

that can be obtained from 2D modelling of baroclinic front instability (see Introduction). 

In the closing of this section, let us justify the assumption that the circulations associated with changes in vorticity p∆  are 

not essential in the description of the formation of intrusions in all considered the cases considered. According to Eqs. (2) and 15 

(10), the characteristic scale of vertical velocity in such circulations can be written as fkHuUw /~ 2
01 ⋅⋅⋅ . In all the considered 

above-considered cases of the application of the model to the Arctic intrusions, the relation of 8
0 10−<⋅kU s-1following ratio is 

satisfied.  810~/ −<LU s-1. Given that small disturbances of horizontal velocity cannot exceed the value of geostrophic velocity 

U , we find 11
1 104 −⋅<w  m s-1. A liquid particle with such vertical velocity travels less than 0.004 m over for the period of 

formation of intrusion formation ( ≈=∗ )/(1 20ckt 3 years), while due to the vertical diffusion, the particle displacement is 20 

estimated as ≈⋅ ∗tK 40 m (i.e. four orders of magnitude larger). fluid particle can cover a distance of 40 m in approximately 

the same period. Note also, that the decreasing with damped with increasing z  solution )(3 zF  can be used for the description of 

generation of intrusions generation even if the vertical velocity is not negligibly smalle quantity. 

4   Conclusions 

In this paper, we investigated analytically the 3D instability of a baroclinic front in the quasi-geostrophic, long-wave 25 

approximation taking into account the vertical diffusion of buoyancy. It is shown for the first time that not only double diffusion, 

but the diffusion of buoyancy can cause destabilization of the geostrophic flow. Such instability has to be distinguished from the 

2D McIntyre instability (McIntyre, 1970), the a type of instability due to flow-dependent fluctuations in turbulent diffusivities 

(Smyth and Ruddick, 2010), and the 2D baroclinic instability due to the double diffusion (Kuzmina and Rodionov, 1992; May 

and Kelley, 1997; Kuzmina and Zhurbas, 2000; Kuzmina and Lee, 2005). 30 
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In contrast to the work paper by Miles (Miles, 1965), who showed, that the in which it was shown that the influence of 

vertical diffusion of buoyancy is not essential in comparison with the influence of vorticity change in the destabilisation of to 

destabilize the zonal flow, we considered the opposite case, when where the vertical diffusion of buoyancy can play an important 

role as a destabilizeration factor of a very weak geostrophic current with linear shear and large cross-frontal scale.  

The model we developed can be considered as a modification of Stern’s model (Stern, 1967). However, instead of analysing 5 

the instability of a purely thermohaline front due to the double diffusion (Stern, 1967), in our case the instability of a weak 

baroclinic front is analysed taking into account the vertical diffusion of density. This model can be useful for describing stable 

and unstable disturbances of the a planetary scale in the polar regions of the ocean under the stable–stable stratification, 

particularly in the deep water of the Arctic OceanBasin, where weak baroclinic fronts with a large horizontal (cross-frontal) scale 

and typical temporal variability period of the order of several years or more are have been observed, and the beta β -effect is 10 

negligible. 

The stable (decaying with time) solutions are shown to describe long-wave disturbances that, which, unlike Rossby waves, 

can move not only to the west but also to the east, depending on the magnitude and sign of the linear shear of geostrophic 

velocity. It is important to underline, that the linear shear of the mean flow (parabolic z-dependence of the mean velocity) affects 

upon vertical co-ordinate) has an action upon the dynamics of disturbances and likewise the β -effect.  15 

The Uunstable (increasing with time) solutions can contribute to better understanding of are used to describe the formation of 

large-scale intrusions at in the areas of baroclinic fronts of , which are observed in the Arctic Ocean Basin in the layers regions 

characterized by an absolutely stable thermohaline stratification, for example, in the upper layer of the PDW in the Eurasian 

Basin. It is important, that the vertical scale of the new modes of instability can reach tens of meters of magnitude, just in 

accordance with the observations. However, the model is so complex that obtaining the comprehensive results of modelling that 20 

can be fully comparable with the empirical data, would still remain a future task.   

The proposed description of intrusions generation in baroclinic fronts can be considered as a possible alternative mechanism 

relative to the differential mixing. However, at the moment this is just a hypothesis, and further efforts, both in theoretical 

modelling and field data analysis, are needed to justify it. 
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Figures 

 
Figure 1. Modelled vertical profiles of density disturbances ρρ ~Re)/Re( ==dzdF  for case 1. Unstable (growing) solution 

for boundary conditions of type 1 (left) and type 2 (right) for and value of 5.1)/(5.0)Re( 2
0

2/12
0 ==−= HKksaHχ , 5 

510−=K  m 2 s 1− , 1000 =H  m, 710−=s  m-1s-1. 
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Figure 2. Modelled vertical profile of density disturbances ρρ ~Re)/Re( ==dzdF  for case 2. The function )/Re( 3 dzdF  
(left) and its stretched fragment of this function (right) versus the depending on dimensionless co-ordinate 

4/1)/(~ Kkszz ⋅=  are presented for 510−=k  m-1, 710−=s  m-1s-1, 510−=K  m2s-1.  5 
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Figure 3. Stable solution for case 1 and boundary conditions of type 2 for at 2)/(5.0)Re( 2

0
2/12

0 ==−= HKksaHχ , 
510−=K  m 2 s 1− , 1000 =H  m, 710−=s  m-1s-1. 
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